Fast, constant-time, correct:
pick three

Daniel J. Bernstein



Is the next slide a zero-day?

Maybe this code leaks secrets through timings,
but maybe it ends up not being exploitable.

Daniel J. Bernstein: Fast, constant-time, correct: pick three


https://web.archive.org/web/20250703104625/https://openssl-library.org/policies/general/security-policy/index.html

Is the next slide a zero-day?

Maybe this code leaks secrets through timings,
but maybe it ends up not being exploitable.

The proactive approach, what | recommend:
This code is dangerous, so fix it.

Daniel J. Bernstein: Fast, constant-time, correct: pick three


https://web.archive.org/web/20250703104625/https://openssl-library.org/policies/general/security-policy/index.html

Is the next slide a zero-day?

Maybe this code leaks secrets through timings,
but maybe it ends up not being exploitable.

The proactive approach, what | recommend:
This code is dangerous, so fix it.

The reactive approach, common practice:
Fix the code only when an exploit is demonstrated.

Daniel J. Bernstein: Fast, constant-time, correct: pick three


https://web.archive.org/web/20250703104625/https://openssl-library.org/policies/general/security-policy/index.html

Is the next slide a zero-day?

Maybe this code leaks secrets through timings,
but maybe it ends up not being exploitable.

The proactive approach, what | recommend:
This code is dangerous, so fix it.

The reactive approach, common practice:
Fix the code only when an exploit is demonstrated.

The OpenSSL approach, at least for now:
Timing attack extracting keys from “same physical
system” doesn’t count as a vulnerability. Fix the
code only when a remote exploit is demonstrated.

Daniel J. Bernstein: Fast, constant-time, correct: pick three


https://web.archive.org/web/20250703104625/https://openssl-library.org/policies/general/security-policy/index.html

Does compiler use bit test + branch?

From openssh/libcrux _mlkem768_sha3.h
(plus extra line breaks to fit on this slide):

static inline uint8 t
libcrux_ml_kem constant_time ops_inz(uint8_t value) {
uint16_t valueO = (uint16_t)value;
uint16_t result = (((uint32_t)valueO |
(uint32_t)core_num__ul6_7__wrapping add(“valueO, 1U))
&
OxFFFFU) >>
8U &
1U;
return (uint8 t)result;

b

Daniel J. Bernstein: Fast, constant-time, correct: pick three 3



Similar cases with known branches

2024.04 Bernstein: “Tracking down some
TIMECOP alerts led to a 2021 gcc patch from
ARM ... turning (-x)>>31 into a bool, often
breaking constant-time code.”

Daniel J. Bernstein: Fast, constant-time, correct: pick three


https://microblog.cr.yp.to/1713627640/
https://pqshield.com/pqshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-implementation-maturity/
https://cr.yp.to/papers/cryptoint-20250424.pdf

Similar cases with known branches

2024.04 Bernstein: “Tracking down some
TIMECOP alerts led to a 2021 gcc patch from
ARM ... turning (-x)>>31 into a bool, often
breaking constant-time code.”

2024.06 Purnal: demo exploiting &1 to extract
secret keys from the reference Kyber-512 software.

Daniel J. Bernstein: Fast, constant-time, correct: pick three


https://microblog.cr.yp.to/1713627640/
https://pqshield.com/pqshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-implementation-maturity/
https://cr.yp.to/papers/cryptoint-20250424.pdf

Similar cases with known branches

2024.04 Bernstein: “Tracking down some
TIMECOP alerts led to a 2021 gcc patch from
ARM ... turning (-x)>>31 into a bool, often
breaking constant-time code.”

2024.06 Purnal: demo exploiting &1 to extract
secret keys from the reference Kyber-512 software.

More examples are now known where compiler
produces CPU branches from similar source code.

Daniel J. Bernstein: Fast, constant-time, correct: pick three


https://microblog.cr.yp.to/1713627640/
https://pqshield.com/pqshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-implementation-maturity/
https://cr.yp.to/papers/cryptoint-20250424.pdf

This was supposedly the state of the art

libcrux advertising: “libcrux has been formally
verified. This gives you the highest level of
assurance that it is safe to use and free of bugs.”

Daniel J. Bernstein: Fast, constant-time, correct: pick three


https://web.archive.org/web/20250625074536/https://cryspen.com/libcrux-library/
https://eprint.iacr.org/2025/435

This was supposedly the state of the art

libcrux advertising: “libcrux has been formally
verified. This gives you the highest level of
assurance that it is safe to use and free of bugs.”

Compare to 2025 Pornin, “Constant-time code: the
pessimist case”: paper reviews failures; “highlights
why such failures are expected to become more
common, and how constant-time coding is, or will
soon become, infeasible in all generality”.

Daniel J. Bernstein: Fast, constant-time, correct: pick three


https://web.archive.org/web/20250625074536/https://cryspen.com/libcrux-library/
https://eprint.iacr.org/2025/435

This was supposedly the state of the art

libcrux advertising: “libcrux has been formally
verified. This gives you the highest level of
assurance that it is safe to use and free of bugs.”

Compare to 2025 Pornin, “Constant-time code: the
pessimist case”: paper reviews failures; “highlights
why such failures are expected to become more
common, and how constant-time coding is, or will
soon become, infeasible in all generality”.

See also “Constant-time BIGNUM is bollocks™” talk
coming up in this conference.

Daniel J. Bernstein: Fast, constant-time, correct: pick three


https://web.archive.org/web/20250625074536/https://cryspen.com/libcrux-library/
https://eprint.iacr.org/2025/435

C compiler can also break correctness

gcc repo: 223889 commits as of 2025-10-07.
1lvm-project: 555094 commits as of 2025-10-07.

Daniel J. Bernstein: Fast, constant-time, correct: pick three


https://web.archive.org/web/20250804171534/https://gcc.gnu.org/bugzilla/show_bug.cgi?id=95189
https://web.archive.org/web/20201031054836/https://gcc.gnu.org/pipermail/gcc-bugs/1999-December/031165.html

C compiler can also break correctness

gcc repo: 223889 commits as of 2025-10-07.
1lvm-project: 555094 commits as of 2025-10-07.

Topics of typical commits:
e added “optimizations”’;

added tests for “optimizations”;

fixes to tests for “optimizations”;

fixes for bugs in “optimizations”.

Daniel J. Bernstein: Fast, constant-time, correct: pick three


https://web.archive.org/web/20250804171534/https://gcc.gnu.org/bugzilla/show_bug.cgi?id=95189
https://web.archive.org/web/20201031054836/https://gcc.gnu.org/pipermail/gcc-bugs/1999-December/031165.html

C compiler can also break correctness

gcc repo: 223889 commits as of 2025-10-07.
1lvm-project: 555094 commits as of 2025-10-07.

Topics of typical commits:
e added “optimizations”’;

added tests for “optimizations”;

fixes to tests for “optimizations”;

fixes for bugs in “optimizations”.

e.g. a gcc bug introduced in 2018 and found in 2020
incorrectly “optimizes” memcmp constants
the same way as strncmp constants.

Daniel J. Bernstein: Fast, constant-time, correct: pick three


https://web.archive.org/web/20250804171534/https://gcc.gnu.org/bugzilla/show_bug.cgi?id=95189
https://web.archive.org/web/20201031054836/https://gcc.gnu.org/pipermail/gcc-bugs/1999-December/031165.html

C compiler can also break correctness

gcc repo: 223889 commits as of 2025-10-07.
1lvm-project: 555094 commits as of 2025-10-07.

Topics of typical commits:
e added “optimizations”’;

added tests for “optimizations”;

fixes to tests for “optimizations”;

fixes for bugs in “optimizations”.

e.g. a gcc bug introduced in 2018 and found in 2020
incorrectly “optimizes” memcmp constants

the same way as strncmp constants.

Similar to a gcc bug that | pointed out in 1999.

Daniel J. Bernstein: Fast, constant-time, correct: pick three


https://web.archive.org/web/20250804171534/https://gcc.gnu.org/bugzilla/show_bug.cgi?id=95189
https://web.archive.org/web/20201031054836/https://gcc.gnu.org/pipermail/gcc-bugs/1999-December/031165.html

Reasonable fear of bugs holds back speed

2020 Pornin const-time inverter mod 2%° — 19
takes 6 kcycles on Intel Skylake. (OpenSSL has
slower const-time Fermat inverter for X25519.
Var-time BN_mod_inverse takes 53 kcycles.)

Daniel J. Bernstein: Fast, constant-time, correct: pick three


https://eprint.iacr.org/2020/972
https://gcd.cr.yp.to

Reasonable fear of bugs holds back speed

2020 Pornin const-time inverter mod 2%° — 19
takes 6 kcycles on Intel Skylake. (OpenSSL has
slower const-time Fermat inverter for X25519.
Var-time BN_mod_inverse takes 53 kcycles.)

Pornin’s paper says previous version of paper had a
“gap in the proof” and an example “for which the

algorithm failed”. Also says revised algorithm+-proof
“are believed correct”. Would you deploy this code?

Daniel J. Bernstein: Fast, constant-time, correct: pick three


https://eprint.iacr.org/2020/972
https://gcd.cr.yp.to

Reasonable fear of bugs holds back speed

2020 Pornin const-time inverter mod 2%° — 19
takes 6 kcycles on Intel Skylake. (OpenSSL has
slower const-time Fermat inverter for X25519.
Var-time BN_mod_inverse takes 53 kcycles.)

Pornin’s paper says previous version of paper had a
“gap in the proof” and an example “for which the

algorithm failed”. Also says revised algorithm+-proof
“are believed correct”. Would you deploy this code?

How about const-time divstep-based inverter from
2019 Bernstein—Yang where the proof involves a
lengthy calculation? Would you deploy that?

Daniel J. Bernstein: Fast, constant-time, correct: pick three


https://eprint.iacr.org/2020/972
https://gcd.cr.yp.to

Another example of the fear factor

2023 Cloudflare said it “deployed a non AVX2
implementation of Kyber, because we're more
worried about implementation mistakes”.

Daniel J. Bernstein: Fast, constant-time, correct: pick three


https://twitter.com/bwesterb/status/1734601576788980216
https://kyberslash.cr.yp.to/libraries.html
https://kyberslash.cr.yp.to
https://web.archive.org/web/20220308031431/https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/aWxC2ynJDLE/m/YOsMJ2ewAAAJ

Another example of the fear factor

2023 Cloudflare said it “deployed a non AVX2
implementation of Kyber, because we're more
worried about implementation mistakes”.

It then turned out that the majority of Kyber
implementations had divisions with secret inputs,
leading to the KyberSlash timing-attack demos.
The AVX2 implementation didn't use divisions,
so it was immune to these attacks.

Daniel J. Bernstein: Fast, constant-time, correct: pick three


https://twitter.com/bwesterb/status/1734601576788980216
https://kyberslash.cr.yp.to/libraries.html
https://kyberslash.cr.yp.to
https://web.archive.org/web/20220308031431/https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/aWxC2ynJDLE/m/YOsMJ2ewAAAJ

Another example of the fear factor

2023 Cloudflare said it “deployed a non AVX2
implementation of Kyber, because we're more
worried about implementation mistakes”.

It then turned out that the majority of Kyber
implementations had divisions with secret inputs,
leading to the KyberSlash timing-attack demos.
The AVX2 implementation didn't use divisions,
so it was immune to these attacks.

So AVX2 code is magically safe? No: consider, e.g.,
Dilithium's exploitable bugs in ref and AVX2 code.

Daniel J. Bernstein: Fast, constant-time, correct: pick three


https://twitter.com/bwesterb/status/1734601576788980216
https://kyberslash.cr.yp.to/libraries.html
https://kyberslash.cr.yp.to
https://web.archive.org/web/20220308031431/https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/aWxC2ynJDLE/m/YOsMJ2ewAAAJ

Deployed crypto libraries are full of bugs

In 2016, OpenSSL claimed to be “robust”.
OpenSSL continues to claim this.

There have been hundreds of OpenSSL CVEs
since 2016, often at the protocol layer (libssl),
often at the primitives layer (libcrypto).

Daniel J. Bernstein: Fast, constant-time, correct: pick three


https://web.archive.org/web/20160131103525/http://www.openssl.org/

Wasn'’t this supposed to be a happy talk?

Daniel J. Bernstein: Fast, constant-time, correct: pick three 10



Let's take a look at s2n-bignum

https://github.com/awslabs/s2n-bignum
Led by AWS's John Harrison. First release in 2021.

Daniel J. Bernstein: Fast, constant-time, correct: pick three

11


https://github.com/awslabs/s2n-bignum
https://github.com/awslabs/s2n-bignum/blob/main/include/s2n-bignum.h

Let's take a look at s2n-bignum

https://github.com/awslabs/s2n-bignum

Led by AWS's John Harrison. First release in 2021.
API includes various functions such as X25519:

extern void curve2b519_x25519 byte
(uint8_t res([32],
const uint8_ t scalar[32],
const uint8_t point[32]);

Daniel J. Bernstein: Fast, constant-time, correct: pick three 11


https://github.com/awslabs/s2n-bignum
https://github.com/awslabs/s2n-bignum/blob/main/include/s2n-bignum.h

Let's take a look at s2n-bignum

https://github.com/awslabs/s2n-bignum

Led by AWS's John Harrison. First release in 2021.
API includes various functions such as X25519:

extern void curve2b519_x25519 byte
(uint8_t res([32],
const uint8_ t scalar[32],
const uint8_t point[32]);

Each function has
e an asm implementation for 64-bit ARM and
e an asm implementation for 64-bit AMD/Intel.

Daniel J. Bernstein: Fast, constant-time, correct: pick three 11


https://github.com/awslabs/s2n-bignum
https://github.com/awslabs/s2n-bignum/blob/main/include/s2n-bignum.h

Some X25519 speeds

Keygen+DH cost on an Intel Skylake core:

e 29485 kcycles for s2n-bignum.

e 130+118 kcycles for OpenSSL.
e 166+166 kcycles for libcrux.

Daniel J. Bernstein: Fast, constant-time, correct: pick three

12


https://cr.yp.to/papers/pppqefs-20240327.pdf
https://lib25519.cr.yp.to/speed.html

Some X25519 speeds

Keygen+DH cost on an Intel Skylake core:
e 29485 kcycles for s2n-bignum.
e 130+118 kcycles for OpenSSL.
e 166+166 kcycles for libcrux.

Note: 2 kcycles cost about 2740 USD,
as does sending a byte through the Internet.

Daniel J. Bernstein: Fast, constant-time, correct: pick three 12


https://cr.yp.to/papers/pppqefs-20240327.pdf
https://lib25519.cr.yp.to/speed.html

Some X25519 speeds

Keygen+DH cost on an Intel Skylake core:
e 29485 kcycles for s2n-bignum.
e 130+118 kcycles for OpenSSL.
e 166+166 kcycles for libcrux.

Note: 2 kcycles cost about 2740 USD,

as does sending a byte through the Internet.

See the 1ib25519 speed page for benchmarks on
more CPU microarchitectures.

Daniel J. Bernstein: Fast, constant-time, correct: pick three

12


https://cr.yp.to/papers/pppqefs-20240327.pdf
https://lib25519.cr.yp.to/speed.html

Is s2n-bignum constant-time?

2005 Bernstein: “CPU manufacturers should
thoroughly document the performance of their
chips. In particular, they need to highlight every
variation in their instruction timings, and to
guarantee that there are no other variations.”

Daniel J. Bernstein: Fast, constant-time, correct: pick three 13


https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://blog.cr.yp.to/20140517-insns.html
https://developer.arm.com/documentation/ddi0601/2020-12/AArch64-Registers/DIT--Data-Independent-Timing
https://eprint.iacr.org/2025/759
https://archive.cr.yp.to/2022-09-24/09:44:12/iX88hHTkrNsX18tbTWfGuhwVv_E0DBpgyfvuupQzCBw/https/www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://github.com/awslabs/s2n-bignum/blob/main/x86/INSTRUCTION.md

Is s2n-bignum constant-time?

2005 Bernstein: “CPU manufacturers should
thoroughly document the performance of their
chips. In particular, they need to highlight every
variation in their instruction timings, and to
guarantee that there are no other variations.”

2014 Bernstein: “Please specify that various
instructions keep various inputs secret.”

Daniel J. Bernstein: Fast, constant-time, correct: pick three 13


https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://blog.cr.yp.to/20140517-insns.html
https://developer.arm.com/documentation/ddi0601/2020-12/AArch64-Registers/DIT--Data-Independent-Timing
https://eprint.iacr.org/2025/759
https://archive.cr.yp.to/2022-09-24/09:44:12/iX88hHTkrNsX18tbTWfGuhwVv_E0DBpgyfvuupQzCBw/https/www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://github.com/awslabs/s2n-bignum/blob/main/x86/INSTRUCTION.md

Is s2n-bignum constant-time?

2005 Bernstein: “CPU manufacturers should
thoroughly document the performance of their
chips. In particular, they need to highlight every
variation in their instruction timings, and to
guarantee that there are no other variations.”

2014 Bernstein: “Please specify that various
instructions keep various inputs secret.”

2020 ARM: "Data Independent Timing" (DIT).
Note: instruction list changed later.

Daniel J. Bernstein: Fast, constant-time, correct: pick three 13


https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://blog.cr.yp.to/20140517-insns.html
https://developer.arm.com/documentation/ddi0601/2020-12/AArch64-Registers/DIT--Data-Independent-Timing
https://eprint.iacr.org/2025/759
https://archive.cr.yp.to/2022-09-24/09:44:12/iX88hHTkrNsX18tbTWfGuhwVv_E0DBpgyfvuupQzCBw/https/www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://github.com/awslabs/s2n-bignum/blob/main/x86/INSTRUCTION.md

Is s2n-bignum constant-time?

2005 Bernstein: “CPU manufacturers should
thoroughly document the performance of their
chips. In particular, they need to highlight every
variation in their instruction timings, and to
guarantee that there are no other variations.”

2014 Bernstein: “Please specify that various
instructions keep various inputs secret.”

2020 ARM: "Data Independent Timing" (DIT).
Note: instruction list changed later.

2022 Intel: “Data Operand Independent Timing”

(DOIT). s2n-bignum has started testing against this.

Daniel J. Bernstein: Fast, constant-time, correct: pick three

13


https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://blog.cr.yp.to/20140517-insns.html
https://developer.arm.com/documentation/ddi0601/2020-12/AArch64-Registers/DIT--Data-Independent-Timing
https://eprint.iacr.org/2025/759
https://archive.cr.yp.to/2022-09-24/09:44:12/iX88hHTkrNsX18tbTWfGuhwVv_E0DBpgyfvuupQzCBw/https/www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://github.com/awslabs/s2n-bignum/blob/main/x86/INSTRUCTION.md

Is s2n-bignum correct?

The X25519 machine code for ARM has a theorem
CURVE25519 X25519 BYTE SUBROUTINE CORRECT.
There's a similar theorem for the AMD/Intel code.

Daniel J. Bernstein: Fast, constant-time, correct: pick three 14


https://github.com/awslabs/s2n-bignum/blob/main/arm/proofs/curve25519_x25519_byte.ml
https://github.com/awslabs/s2n-bignum/blob/main/x86/proofs/curve25519_x25519.ml
https://github.com/awslabs/s2n-bignum/blob/main/arm/proofs/instruction.ml
https://compcert.org/doc/LICENSE.txt

Is s2n-bignum correct?

The X25519 machine code for ARM has a theorem
CURVE25519 X25519 BYTE SUBROUTINE CORRECT.
There's a similar theorem for the AMD/Intel code.

The theorem hypotheses include a specification
of how each relevant CPU instruction works.

Daniel J. Bernstein: Fast, constant-time, correct: pick three

14


https://github.com/awslabs/s2n-bignum/blob/main/arm/proofs/curve25519_x25519_byte.ml
https://github.com/awslabs/s2n-bignum/blob/main/x86/proofs/curve25519_x25519.ml
https://github.com/awslabs/s2n-bignum/blob/main/arm/proofs/instruction.ml
https://compcert.org/doc/LICENSE.txt

Is s2n-bignum correct?

The X25519 machine code for ARM has a theorem
CURVE25519 X25519 BYTE SUBROUTINE CORRECT.
There's a similar theorem for the AMD/Intel code.

The theorem hypotheses include a specification
of how each relevant CPU instruction works.

For comparison, many formal-verification projects
assume a specification of how the C language works.

Daniel J. Bernstein: Fast, constant-time, correct: pick three

14


https://github.com/awslabs/s2n-bignum/blob/main/arm/proofs/curve25519_x25519_byte.ml
https://github.com/awslabs/s2n-bignum/blob/main/x86/proofs/curve25519_x25519.ml
https://github.com/awslabs/s2n-bignum/blob/main/arm/proofs/instruction.ml
https://compcert.org/doc/LICENSE.txt

Is s2n-bignum correct?

The X25519 machine code for ARM has a theorem
CURVE25519 X25519 BYTE SUBROUTINE CORRECT.
There's a similar theorem for the AMD/Intel code.

The theorem hypotheses include a specification
of how each relevant CPU instruction works.

For comparison, many formal-verification projects
assume a specification of how the C language works.
This boils down to assuming a CPU spec

if you're using CompCert to compile C code;
otherwise you're relying on the CPU and a compiler.

Daniel J. Bernstein: Fast, constant-time, correct: pick three 14


https://github.com/awslabs/s2n-bignum/blob/main/arm/proofs/curve25519_x25519_byte.ml
https://github.com/awslabs/s2n-bignum/blob/main/x86/proofs/curve25519_x25519.ml
https://github.com/awslabs/s2n-bignum/blob/main/arm/proofs/instruction.ml
https://compcert.org/doc/LICENSE.txt

Is s2n-bignum correct? part 2

Are there mistakes in the CPU specs? Possibly,
even with s2n-bignum'’s testing of the specs.
Want more cross-checks among CPU specs.

Daniel J. Bernstein: Fast, constant-time, correct: pick three 15


https://github.com/awslabs/s2n-bignum/blob/main/arm/INSTRUCTION.md
https://web.archive.org/web/20250318160650/https://edc.intel.com/content/www/us/en/secure/design/confidential/products-and-solutions/processors-and-chipsets/tiger-lake/11th-generation-intel-core-processor-family-specification-update/errata-details/
https://lock.cmpxchg8b.com/zenbleed.html
https://hol-light.github.io/

Is s2n-bignum correct? part 2

Are there mistakes in the CPU specs? Possibly,
even with s2n-bignum'’s testing of the specs.
Want more cross-checks among CPU specs.

Are CPU designers making mistakes? Sometimes,

yes, maybe including mistakes relevant to this code.

Daniel J. Bernstein: Fast, constant-time, correct: pick three

15


https://github.com/awslabs/s2n-bignum/blob/main/arm/INSTRUCTION.md
https://web.archive.org/web/20250318160650/https://edc.intel.com/content/www/us/en/secure/design/confidential/products-and-solutions/processors-and-chipsets/tiger-lake/11th-generation-intel-core-processor-family-specification-update/errata-details/
https://lock.cmpxchg8b.com/zenbleed.html
https://hol-light.github.io/

Is s2n-bignum correct? part 2

Are there mistakes in the CPU specs? Possibly,
even with s2n-bignum'’s testing of the specs.
Want more cross-checks among CPU specs.

Are CPU designers making mistakes? Sometimes,

yes, maybe including mistakes relevant to this code.

Are there other deviations between the theorem
statements and what we want? Maybe. Important
for every aspect of the statements to be audited.

Daniel J. Bernstein: Fast, constant-time, correct: pick three

15


https://github.com/awslabs/s2n-bignum/blob/main/arm/INSTRUCTION.md
https://web.archive.org/web/20250318160650/https://edc.intel.com/content/www/us/en/secure/design/confidential/products-and-solutions/processors-and-chipsets/tiger-lake/11th-generation-intel-core-processor-family-specification-update/errata-details/
https://lock.cmpxchg8b.com/zenbleed.html
https://hol-light.github.io/

Is s2n-bignum correct? part 2

Are there mistakes in the CPU specs? Possibly,
even with s2n-bignum'’s testing of the specs.
Want more cross-checks among CPU specs.

Are CPU designers making mistakes? Sometimes,

yes, maybe including mistakes relevant to this code.

Are there other deviations between the theorem
statements and what we want? Maybe. Important
for every aspect of the statements to be audited.

Are there gaps in the proofs of the theorems?

Daniel J. Bernstein: Fast, constant-time, correct: pick three

15


https://github.com/awslabs/s2n-bignum/blob/main/arm/INSTRUCTION.md
https://web.archive.org/web/20250318160650/https://edc.intel.com/content/www/us/en/secure/design/confidential/products-and-solutions/processors-and-chipsets/tiger-lake/11th-generation-intel-core-processor-family-specification-update/errata-details/
https://lock.cmpxchg8b.com/zenbleed.html
https://hol-light.github.io/

Is s2n-bignum correct? part 2

Are there mistakes in the CPU specs? Possibly,
even with s2n-bignum'’s testing of the specs.
Want more cross-checks among CPU specs.

Are CPU designers making mistakes? Sometimes,
yes, maybe including mistakes relevant to this code.

Are there other deviations between the theorem
statements and what we want? Maybe. Important
for every aspect of the statements to be audited.

Are there gaps in the proofs of the theorems?
Very unlikely: the proofs are checked by the small,
carefully reviewed HOL Light proof-checking kernel.

Daniel J. Bernstein: Fast, constant-time, correct: pick three


https://github.com/awslabs/s2n-bignum/blob/main/arm/INSTRUCTION.md
https://web.archive.org/web/20250318160650/https://edc.intel.com/content/www/us/en/secure/design/confidential/products-and-solutions/processors-and-chipsets/tiger-lake/11th-generation-intel-core-processor-family-specification-update/errata-details/
https://lock.cmpxchg8b.com/zenbleed.html
https://hol-light.github.io/

Shrinking the TCB

Traditional auditing of cryptographic software:

check every line in every implementation;
check proofs that the computations work.

Daniel J. Bernstein: Fast, constant-time, correct: pick three

16



Shrinking the TCB

Traditional auditing of cryptographic software:
check every line in every implementation;
check proofs that the computations work.
With computer-checked proofs: auditors check

e the theorem statements
(which are much shorter than the proofs) and

e the proof-checking tools
(which are shared by many proofs).

Those tools then verify the theorems, automating

the audits of each proof line and of each code line.

Daniel J. Bernstein: Fast, constant-time, correct: pick three

16



Inversion modulo 2%°° — 19 revisited

2021 version of s2n-bignum takes 6 kcycles on
Skylake. Algorithm is similar to 2020 Pornin but
with a computer-checked proof of correctness.

Daniel J. Bernstein: Fast, constant-time, correct: pick three

17



Inversion modulo 2%°° — 19 revisited

2021 version of s2n-bignum takes 6 kcycles on
Skylake. Algorithm is similar to 2020 Pornin but
with a computer-checked proof of correctness.

Current s2n-bignum takes 4 kcycles on Skylake
using a divstep-based inversion algorithm, also
with a computer-checked proof of correctness.

Daniel J. Bernstein: Fast, constant-time, correct: pick three

17



Inversion modulo 2%°° — 19 revisited

2021 version of s2n-bignum takes 6 kcycles on
Skylake. Algorithm is similar to 2020 Pornin but
with a computer-checked proof of correctness.

Current s2n-bignum takes 4 kcycles on Skylake
using a divstep-based inversion algorithm, also
with a computer-checked proof of correctness.

X25519 auditor doesn't even have to look at these
theorems: these are internal details of the proofs of
CURVE25519 X25519 BYTE SUBROUTINE CORRECT.

Daniel J. Bernstein: Fast, constant-time, correct: pick three

17



Let’s try auditing this theorem:

CURVE25519_X25519_ BYTE_SUBROUTINE_CORRECT

Daniel J. Bernstein: Fast, constant-time, correct: pick three

18



Top level of the theorem

The theorem has 18 lines. General shape:

lvariables.
assumptionl /\
assumption2 /\
assumption3
==> conclusion

meaning: for all possible values of variables, if
assumptionl and assumption2 and assumption3
are true then conclusion is true

Daniel J. Bernstein: Fast, constant-time, correct: pick three 19



The first assumption

Here's assumptionl:
aligned 16 stackpointer

which sounds like it means:
the stack pointer has 16-byte alignment.

Daniel J. Bernstein: Fast, constant-time, correct: pick three 20



The first assumption

Here's assumptionl:
aligned 16 stackpointer

which sounds like it means:

the stack pointer has 16-byte alignment.

Checking the definition of aligned:
aligned n (a:N word) <=>

n divides 2 EXP dimindex(:N) /\
n divides val a

Daniel J. Bernstein: Fast, constant-time, correct: pick three

20



The third assumption

Here's assumptiona3:

nonoverlapping (res,32) (word pc,0x27£8)

This means: the 32 bytes that res points to must
not overlap the 0x27f8 bytes that pc points to;

i.e., output array must not overlap the code.
Again can check definitions.

Daniel J. Bernstein: Fast, constant-time, correct: pick three

21



The second assumption

Here's assumption2:

ALL (nonoverlapping
(word_sub stackpointer (word 384),
384))
[(word pc,0x27£8); (res,32);
(scalar,32); (point,32)]

This means: 384 bytes below stackpointer must
not overlap code, output, first input, second input

Daniel J. Bernstein: Fast, constant-time, correct: pick three 22



The conclusion

General shape of conclusion:
ensures arm pre post maychange

meaning: if an arm CPU state satisfies pre,
then it will evolve to a state satisfying post;

also, the state is unmodified beyond maychange.

Daniel J. Bernstein: Fast, constant-time, correct: pick three

23



The conclusion

General shape of conclusion:
ensures arm pre post maychange

meaning: if an arm CPU state satisfies pre,
then it will evolve to a state satisfying post;
also, the state is unmodified beyond maychange.

The definition of arm is thousands of lines,
but the work of auditing this is shared
across all ARM software in s2n-bignum.

Daniel J. Bernstein: Fast, constant-time, correct: pick three 23



A precondition on the code

aligned bytes_loaded s (word pc)
curve25519_x25519 byte_mc

meaning: the CPU state s has, at address pc,
the machine code specified in
curve25519 x25519 byte_mc.

Daniel J. Bernstein: Fast, constant-time, correct: pick three

24



A precondition on the code

aligned bytes_loaded s (word pc)
curve25519_x25519 byte_mc

meaning: the CPU state s has, at address pc,
the machine code specified in
curve25519 x25519 byte_mc.

One of the proof-checking tools also checks that
the definition of curve25519 x25519 byte_mc
matches the s2n-bignum object code on disk.
There's no need for us to audit this code:

the computer checks proof that the code works.

Daniel J. Bernstein: Fast, constant-time, correct: pick three

24



Preconditions on registers

read PC s = word pc

meaning: the program-counter register in CPU state
s stores the same address as pc.

read SP s = stackpointer
meaning: the stack pointer matches stackpointer.
read X30 s = returnaddress

meaning: register X30 matches returnaddress.

Daniel J. Bernstein: Fast, constant-time, correct: pick three 25



Preconditions on arguments

C_ARGUMENTS [res; scalar; point] s /\
read (memory :> bytes(scalar,32)) s =n /\
read (memory :> bytes(point,32)) s = X
meaning: variables res and scalar and point
match arguments stored in CPU state s according
to the C ABI; variables n and X are 32-byte integers
stored at addresses scalar and point.

Daniel J. Bernstein: Fast, constant-time, correct: pick three 26



The postcondition

read PC s = returnaddress /\
read (memory :> bytes(res,32)) s
= rfcx25519(n,X)

meaning: the CPU’s program counter now points to
returnaddress; the 32-byte integer stored at
address res matches rfcx25519(n,X).

Can check that the rfcx25519(n,X) definition
matches X25519.

Daniel J. Bernstein: Fast, constant-time, correct: pick three 27



My reaction after auditing

Reading this was much less work than
manually verifying an X25519 implementation.

Can still do better by eliminating boilerplate:
s2n-bignum should expand C_ARGUMENTS to C_CALL
encapsulating low-level details of stack, regs, etc.
Would make the theorem much more concise,

help auditor focus on rfcx25519 definition.

Daniel J. Bernstein: Fast, constant-time, correct: pick three

28



Ecosystem evolution

Daniel J. Bernstein: Fast, constant-time, correct: pick three

29



Library competition

How will OpenSSL stop callers from switching to
s2n-bignum’s fast, constant-time, correct code?

Daniel J. Bernstein: Fast, constant-time, correct: pick three

30



Library competition

How will OpenSSL stop callers from switching to

s2n-bignum’s fast, constant-time, correct code?
“OpenSSL is robust™?

Daniel J. Bernstein: Fast, constant-time, correct: pick three

30



Library competition

How will OpenSSL stop callers from switching to
s2n-bignum’s fast, constant-time, correct code?
“OpenSSL is robust”? “C is better than asm"?

Daniel J. Bernstein: Fast, constant-time, correct: pick three

30



Library competition

How will OpenSSL stop callers from switching to
s2n-bignum’s fast, constant-time, correct code?
“OpenSSL is robust”? “C is better than asm”?
“You're trapped in our API, get used to it"?

Daniel J. Bernstein: Fast, constant-time, correct: pick three

30



Library competition—or cooperation

How will OpenSSL stop callers from switching to
s2n-bignum’s fast, constant-time, correct code?
“OpenSSL is robust”? “C is better than asm”?
“You're trapped in our API, get used to it"?

Shouldn’t OpenSSL start calling s2n-bignum?

Daniel J. Bernstein: Fast, constant-time, correct: pick three 30



Library competition—or cooperation

How will OpenSSL stop callers from switching to
s2n-bignum’s fast, constant-time, correct code?
“OpenSSL is robust”? “C is better than asm”?
“You're trapped in our API, get used to it"?

Shouldn’t OpenSSL start calling s2n-bignum?
Shouldn’t other libraries also start doing this?

Daniel J. Bernstein: Fast, constant-time, correct: pick three 30



Supporting more cryptosystems

Adding verified asm for a new cryptosystem:

e Add pure asm implementations of the system.
Maybe from an asm generator such as Jasmin;
maybe from gcc -S; but remember that the
asm will be the stable, verified, packaged code.

Daniel J. Bernstein: Fast, constant-time, correct: pick three 31


https://jasmin-lang.readthedocs.io/en/latest/
https://github.com/awslabs/s2n-bignum/blob/main/arm/tutorial/README.md
https://www.cl.cam.ac.uk/~jrh13/hol-light/tutorial_220.pdf
https://cr.yp.to/papers/pwccp-20250520.pdf
https://iacr.org/submit/files/slides/2024/rwc/rwc2024/38/slides.pdf

Supporting more cryptosystems

Adding verified asm for a new cryptosystem:

e Add pure asm implementations of the system.
Maybe from an asm generator such as Jasmin;
maybe from gcc -S; but remember that the

asm will be the stable, verified, packaged code.

e Add proofs that the code works correctly.
This is another toolkit to learn, but
there are already some introductory examples,
plus broader introductions to HOL Light.

Daniel J. Bernstein: Fast, constant-time, correct: pick three

31


https://jasmin-lang.readthedocs.io/en/latest/
https://github.com/awslabs/s2n-bignum/blob/main/arm/tutorial/README.md
https://www.cl.cam.ac.uk/~jrh13/hol-light/tutorial_220.pdf
https://cr.yp.to/papers/pwccp-20250520.pdf
https://iacr.org/submit/files/slides/2024/rwc/rwc2024/38/slides.pdf

Supporting more cryptosystems

Adding verified asm for a new cryptosystem:

e Add pure asm implementations of the system.
Maybe from an asm generator such as Jasmin;
maybe from gcc -S; but remember that the

asm will be the stable, verified, packaged code.

e Add proofs that the code works correctly.
This is another toolkit to learn, but
there are already some introductory examples,
plus broader introductions to HOL Light.

AWS reported 1 person-year for X25519.

Daniel J. Bernstein: Fast, constant-time, correct: pick three

31


https://jasmin-lang.readthedocs.io/en/latest/
https://github.com/awslabs/s2n-bignum/blob/main/arm/tutorial/README.md
https://www.cl.cam.ac.uk/~jrh13/hol-light/tutorial_220.pdf
https://cr.yp.to/papers/pwccp-20250520.pdf
https://iacr.org/submit/files/slides/2024/rwc/rwc2024/38/slides.pdf

Supporting more CPUs

Remember that s2n-bignum is only for 64-bit ARM
and 64-bit AMD/Intel. On other platforms, libraries
will fall back to other code—maybe bad code.

Daniel J. Bernstein: Fast, constant-time, correct: pick three 32



Supporting more CPUs

Remember that s2n-bignum is only for 64-bit ARM
and 64-bit AMD/Intel. On other platforms, libraries
will fall back to other code—maybe bad code.
Adding verified asm for, e.g., 32-bit ARM:

e Add-+test central specification of
the 32-bit ARM instruction set.

e Add pure asm for 32-bit ARM for each
function. Every new addition helps!

e Add proofs that the code works correctly.

Daniel J. Bernstein: Fast, constant-time, correct: pick three 32



The bigger picture

Verification has moved from theory to practice.

Some related talks coming up at this conference:

e "PQConnect: automated post-quantum
end-to-end tunnels”"—the handshake protocol
inside PQConnect is formally verified.

e “High-assurance post-quantum
cryptography”—broader view of the ecosystem,
including libcrux.

More projects: Cryptol /SAW /hacrypto, Cryptoline,
Fiat-Crypto, HACL*, Libjade, ValeCrypt, VST.

Daniel J. Bernstein: Fast, constant-time, correct: pick three 33


https://github.com/GaloisInc/hacrypto
https://github.com/fmlab-iis/cryptoline
https://github.com/mit-plv/fiat-crypto/
https://github.com/project-everest/hacl-star
https://github.com/formosa-crypto/libjade
https://github.com/project-everest/hacl-star/tree/master/vale
https://vst.cs.princeton.edu/

