
CryptAttackTester:
high-assurance attack analysis

Daniel J. Bernstein, Tung Chou

For Crypto 2024 paper and software:
https://cat.cr.yp.to

https://cat.cr.yp.to


An incorrect analysis of a factorization algorithm

1984 Schnorr–Lenstra claimed that “every composite integer n
will be factored in o(exp

√
ln n ln ln n) bit operations”

by the algorithm in that paper.

1992 Lenstra–Pomerance: the 1984 algorithm was “the first
factoring algorithm of which the expected running time was
conjectured to be Ln[1

2 , 1 + o(1)], and it is now also the first
algorithm for which that conjecture must be withdrawn”.

CryptAttackTester: high-assurance attack analysis 2



An incorrect analysis of a factorization algorithm

1984 Schnorr–Lenstra claimed that “every composite integer n
will be factored in o(exp

√
ln n ln ln n) bit operations”

by the algorithm in that paper.
1992 Lenstra–Pomerance: the 1984 algorithm was “the first
factoring algorithm of which the expected running time was
conjectured to be Ln[1

2 , 1 + o(1)], and it is now also the first
algorithm for which that conjecture must be withdrawn”.

CryptAttackTester: high-assurance attack analysis 2



An incorrect analysis of a subset-sum algorithm

Eurocrypt 2010 Howgrave-Graham–Joux claimed that it will
“solve 1/2-unbalanced knapsacks in time Õ(20.3113n)”.

2011 Becker–Coron–Joux: No, May and Meurer found a
mistake. Correcting this mistake changes 0.3113 to 0.337.
But here’s a different algorithm obtaining 0.291, really!
2019 Esser–May: Here’s another algorithm obtaining 0.255.
Three months later: 2019 paper was withdrawn
(“Issue with counting duplicate representations”).

CryptAttackTester: high-assurance attack analysis 3



An incorrect analysis of a subset-sum algorithm

Eurocrypt 2010 Howgrave-Graham–Joux claimed that it will
“solve 1/2-unbalanced knapsacks in time Õ(20.3113n)”.
2011 Becker–Coron–Joux: No, May and Meurer found a
mistake. Correcting this mistake changes 0.3113 to 0.337.
But here’s a different algorithm obtaining 0.291, really!

2019 Esser–May: Here’s another algorithm obtaining 0.255.
Three months later: 2019 paper was withdrawn
(“Issue with counting duplicate representations”).

CryptAttackTester: high-assurance attack analysis 3



An incorrect analysis of a subset-sum algorithm

Eurocrypt 2010 Howgrave-Graham–Joux claimed that it will
“solve 1/2-unbalanced knapsacks in time Õ(20.3113n)”.
2011 Becker–Coron–Joux: No, May and Meurer found a
mistake. Correcting this mistake changes 0.3113 to 0.337.
But here’s a different algorithm obtaining 0.291, really!
2019 Esser–May: Here’s another algorithm obtaining 0.255.

Three months later: 2019 paper was withdrawn
(“Issue with counting duplicate representations”).

CryptAttackTester: high-assurance attack analysis 3



An incorrect analysis of a subset-sum algorithm

Eurocrypt 2010 Howgrave-Graham–Joux claimed that it will
“solve 1/2-unbalanced knapsacks in time Õ(20.3113n)”.
2011 Becker–Coron–Joux: No, May and Meurer found a
mistake. Correcting this mistake changes 0.3113 to 0.337.
But here’s a different algorithm obtaining 0.291, really!
2019 Esser–May: Here’s another algorithm obtaining 0.255.
Three months later: 2019 paper was withdrawn
(“Issue with counting duplicate representations”).

CryptAttackTester: high-assurance attack analysis 3



An incorrect analysis of an Ideal-SVP algorithm

Crypto 2019 Ducas–Plançon–Wesolowski: performance graph
for an asymptotically useful quantum algorithm to attack
Ideal-SVP; “reassuring” conclusion that “the cross-over point
with BKZ-300 should not happen before ring rank n ≈ 6000”.

2021: Online update radically revised the graph and changed
“6000” to “2000”, crediting a six-person team for discovering
a critical sign error inside the underlying attack analysis.

CryptAttackTester: high-assurance attack analysis 4



An incorrect analysis of an Ideal-SVP algorithm

Crypto 2019 Ducas–Plançon–Wesolowski: performance graph
for an asymptotically useful quantum algorithm to attack
Ideal-SVP; “reassuring” conclusion that “the cross-over point
with BKZ-300 should not happen before ring rank n ≈ 6000”.
2021: Online update radically revised the graph and changed
“6000” to “2000”, crediting a six-person team for discovering
a critical sign error inside the underlying attack analysis.

CryptAttackTester: high-assurance attack analysis 4



Do we care?

“The numbers don’t matter unless they’re feasible.”

— Applications often choose bleeding-edge key sizes.
Small errors in exponents are dangerous.
Furthermore, decisions of which cryptosystem to use are often
based on very small differences in exponents: e.g., NTRU-509
costs less than Kyber-512, but NIST eliminated NTRU-509
(below AES-128?) and kept Kyber-512 (above AES-128?).
Also, small differences can warp risk evaluation and resource
allocation. e.g. Asiacrypt 2017 Chailloux–Naya-Plasencia–
Schrottenloher incorrectly claimed quantum collision exponent
12n/25, slightly below traditional non-quantum n/2.

CryptAttackTester: high-assurance attack analysis 5



Do we care?

“The numbers don’t matter unless they’re feasible.”
— Applications often choose bleeding-edge key sizes.
Small errors in exponents are dangerous.

Furthermore, decisions of which cryptosystem to use are often
based on very small differences in exponents: e.g., NTRU-509
costs less than Kyber-512, but NIST eliminated NTRU-509
(below AES-128?) and kept Kyber-512 (above AES-128?).
Also, small differences can warp risk evaluation and resource
allocation. e.g. Asiacrypt 2017 Chailloux–Naya-Plasencia–
Schrottenloher incorrectly claimed quantum collision exponent
12n/25, slightly below traditional non-quantum n/2.

CryptAttackTester: high-assurance attack analysis 5



Do we care?

“The numbers don’t matter unless they’re feasible.”
— Applications often choose bleeding-edge key sizes.
Small errors in exponents are dangerous.
Furthermore, decisions of which cryptosystem to use are often
based on very small differences in exponents: e.g., NTRU-509
costs less than Kyber-512, but NIST eliminated NTRU-509
(below AES-128?) and kept Kyber-512 (above AES-128?).

Also, small differences can warp risk evaluation and resource
allocation. e.g. Asiacrypt 2017 Chailloux–Naya-Plasencia–
Schrottenloher incorrectly claimed quantum collision exponent
12n/25, slightly below traditional non-quantum n/2.

CryptAttackTester: high-assurance attack analysis 5



Do we care?

“The numbers don’t matter unless they’re feasible.”
— Applications often choose bleeding-edge key sizes.
Small errors in exponents are dangerous.
Furthermore, decisions of which cryptosystem to use are often
based on very small differences in exponents: e.g., NTRU-509
costs less than Kyber-512, but NIST eliminated NTRU-509
(below AES-128?) and kept Kyber-512 (above AES-128?).
Also, small differences can warp risk evaluation and resource
allocation. e.g. Asiacrypt 2017 Chailloux–Naya-Plasencia–
Schrottenloher incorrectly claimed quantum collision exponent
12n/25, slightly below traditional non-quantum n/2.

CryptAttackTester: high-assurance attack analysis 5



Do we care? part 2

“Errors are rare.”

— How rare? “Only 10% of attack analyses are wrong”?
Aren’t we worried about the damage from that rate of errors?
And why exactly should we believe that the rate isn’t higher?
Analogy from “provable security”: 2007 Goldreich commented
on “the unfortunate (and rare) cases in which flaws were
found in published claimed ‘proofs’ (of security)” (boldface
added). No quantification; no evidence. Many years later:
Koblitz–Menezes surveyed many flawed “security proofs”.

CryptAttackTester: high-assurance attack analysis 6

https://www.ams.org/notices/200711/tx071101454p.pdf
https://eprint.iacr.org/2019/1336


Do we care? part 2

“Errors are rare.”
— How rare? “Only 10% of attack analyses are wrong”?

Aren’t we worried about the damage from that rate of errors?
And why exactly should we believe that the rate isn’t higher?
Analogy from “provable security”: 2007 Goldreich commented
on “the unfortunate (and rare) cases in which flaws were
found in published claimed ‘proofs’ (of security)” (boldface
added). No quantification; no evidence. Many years later:
Koblitz–Menezes surveyed many flawed “security proofs”.

CryptAttackTester: high-assurance attack analysis 6

https://www.ams.org/notices/200711/tx071101454p.pdf
https://eprint.iacr.org/2019/1336


Do we care? part 2

“Errors are rare.”
— How rare? “Only 10% of attack analyses are wrong”?
Aren’t we worried about the damage from that rate of errors?

And why exactly should we believe that the rate isn’t higher?
Analogy from “provable security”: 2007 Goldreich commented
on “the unfortunate (and rare) cases in which flaws were
found in published claimed ‘proofs’ (of security)” (boldface
added). No quantification; no evidence. Many years later:
Koblitz–Menezes surveyed many flawed “security proofs”.

CryptAttackTester: high-assurance attack analysis 6

https://www.ams.org/notices/200711/tx071101454p.pdf
https://eprint.iacr.org/2019/1336


Do we care? part 2

“Errors are rare.”
— How rare? “Only 10% of attack analyses are wrong”?
Aren’t we worried about the damage from that rate of errors?
And why exactly should we believe that the rate isn’t higher?

Analogy from “provable security”: 2007 Goldreich commented
on “the unfortunate (and rare) cases in which flaws were
found in published claimed ‘proofs’ (of security)” (boldface
added). No quantification; no evidence. Many years later:
Koblitz–Menezes surveyed many flawed “security proofs”.

CryptAttackTester: high-assurance attack analysis 6

https://www.ams.org/notices/200711/tx071101454p.pdf
https://eprint.iacr.org/2019/1336


Do we care? part 2

“Errors are rare.”
— How rare? “Only 10% of attack analyses are wrong”?
Aren’t we worried about the damage from that rate of errors?
And why exactly should we believe that the rate isn’t higher?
Analogy from “provable security”: 2007 Goldreich commented
on “the unfortunate (and rare) cases in which flaws were
found in published claimed ‘proofs’ (of security)” (boldface
added). No quantification; no evidence.

Many years later:
Koblitz–Menezes surveyed many flawed “security proofs”.

CryptAttackTester: high-assurance attack analysis 6

https://www.ams.org/notices/200711/tx071101454p.pdf
https://eprint.iacr.org/2019/1336


Do we care? part 2

“Errors are rare.”
— How rare? “Only 10% of attack analyses are wrong”?
Aren’t we worried about the damage from that rate of errors?
And why exactly should we believe that the rate isn’t higher?
Analogy from “provable security”: 2007 Goldreich commented
on “the unfortunate (and rare) cases in which flaws were
found in published claimed ‘proofs’ (of security)” (boldface
added). No quantification; no evidence. Many years later:
Koblitz–Menezes surveyed many flawed “security proofs”.

CryptAttackTester: high-assurance attack analysis 6

https://www.ams.org/notices/200711/tx071101454p.pdf
https://eprint.iacr.org/2019/1336


Let’s figure out how many proofs are wrong

Any correct proof can be explained to a computer.
Examples of systems to verify proofs: Coq (new name: Rocq),
HOL4, HOL Light, Isabelle/HOL, Lean, Metamath, Mizar.

If we take a supposed proof and go through this process,
either we obtain high assurance that the proof is correct,
or we find a problem with the proof.
Does this sound expensive? It’s less expensive than you think.
The community can afford to do it for a random sample of
proofs, giving clear evidence of the failure rate of proofs.

CryptAttackTester: high-assurance attack analysis 7

https://cr.yp.to/papers.html#pwccp


Let’s figure out how many proofs are wrong

Any correct proof can be explained to a computer.
Examples of systems to verify proofs: Coq (new name: Rocq),
HOL4, HOL Light, Isabelle/HOL, Lean, Metamath, Mizar.
If we take a supposed proof and go through this process,
either we obtain high assurance that the proof is correct,
or we find a problem with the proof.

Does this sound expensive? It’s less expensive than you think.
The community can afford to do it for a random sample of
proofs, giving clear evidence of the failure rate of proofs.

CryptAttackTester: high-assurance attack analysis 7

https://cr.yp.to/papers.html#pwccp


Let’s figure out how many proofs are wrong

Any correct proof can be explained to a computer.
Examples of systems to verify proofs: Coq (new name: Rocq),
HOL4, HOL Light, Isabelle/HOL, Lean, Metamath, Mizar.
If we take a supposed proof and go through this process,
either we obtain high assurance that the proof is correct,
or we find a problem with the proof.
Does this sound expensive? It’s less expensive than you think.
The community can afford to do it for a random sample of
proofs, giving clear evidence of the failure rate of proofs.

CryptAttackTester: high-assurance attack analysis 7

https://cr.yp.to/papers.html#pwccp


High assurance for a proof of attack effectiveness
Effectiveness = (success probability, cost). Tasks:

1. Fully specify the model of computation and a cost metric.

2. Fully specify the problem under attack.
3. Fully specify the attack algorithm in the model of

computation.
4. Fully specify the formula for the predicted cost of the

algorithm.
5. Fully specify the formula for the predicted success

probability of the algorithm.
6. Fully specify the proof that the algorithm matches these

predictions.
7. Have a computer verify each step in the proof.

CryptAttackTester: high-assurance attack analysis 8



High assurance for a proof of attack effectiveness
Effectiveness = (success probability, cost). Tasks:

1. Fully specify the model of computation and a cost metric.
2. Fully specify the problem under attack.

3. Fully specify the attack algorithm in the model of
computation.

4. Fully specify the formula for the predicted cost of the
algorithm.

5. Fully specify the formula for the predicted success
probability of the algorithm.

6. Fully specify the proof that the algorithm matches these
predictions.

7. Have a computer verify each step in the proof.

CryptAttackTester: high-assurance attack analysis 8



High assurance for a proof of attack effectiveness
Effectiveness = (success probability, cost). Tasks:

1. Fully specify the model of computation and a cost metric.
2. Fully specify the problem under attack.
3. Fully specify the attack algorithm in the model of

computation.

4. Fully specify the formula for the predicted cost of the
algorithm.

5. Fully specify the formula for the predicted success
probability of the algorithm.

6. Fully specify the proof that the algorithm matches these
predictions.

7. Have a computer verify each step in the proof.

CryptAttackTester: high-assurance attack analysis 8



High assurance for a proof of attack effectiveness
Effectiveness = (success probability, cost). Tasks:

1. Fully specify the model of computation and a cost metric.
2. Fully specify the problem under attack.
3. Fully specify the attack algorithm in the model of

computation.
4. Fully specify the formula for the predicted cost of the

algorithm.

5. Fully specify the formula for the predicted success
probability of the algorithm.

6. Fully specify the proof that the algorithm matches these
predictions.

7. Have a computer verify each step in the proof.

CryptAttackTester: high-assurance attack analysis 8



High assurance for a proof of attack effectiveness
Effectiveness = (success probability, cost). Tasks:

1. Fully specify the model of computation and a cost metric.
2. Fully specify the problem under attack.
3. Fully specify the attack algorithm in the model of

computation.
4. Fully specify the formula for the predicted cost of the

algorithm.
5. Fully specify the formula for the predicted success

probability of the algorithm.

6. Fully specify the proof that the algorithm matches these
predictions.

7. Have a computer verify each step in the proof.

CryptAttackTester: high-assurance attack analysis 8



High assurance for a proof of attack effectiveness
Effectiveness = (success probability, cost). Tasks:

1. Fully specify the model of computation and a cost metric.
2. Fully specify the problem under attack.
3. Fully specify the attack algorithm in the model of

computation.
4. Fully specify the formula for the predicted cost of the

algorithm.
5. Fully specify the formula for the predicted success

probability of the algorithm.
6. Fully specify the proof that the algorithm matches these

predictions.

7. Have a computer verify each step in the proof.

CryptAttackTester: high-assurance attack analysis 8



High assurance for a proof of attack effectiveness
Effectiveness = (success probability, cost). Tasks:

1. Fully specify the model of computation and a cost metric.
2. Fully specify the problem under attack.
3. Fully specify the attack algorithm in the model of

computation.
4. Fully specify the formula for the predicted cost of the

algorithm.
5. Fully specify the formula for the predicted success

probability of the algorithm.
6. Fully specify the proof that the algorithm matches these

predictions.
7. Have a computer verify each step in the proof.

CryptAttackTester: high-assurance attack analysis 8



Wait, where’s the proof?

The incorrect analyses from 1984 Schnorr–Lenstra, 2010
Howgrave-Graham–Joux, etc. never claimed to be proofs.

The analyses relied on estimates and heuristics and
experiments. Some fragments of the analyses had proofs,
but the (known) errors were outside these fragments.
Clearly the plan of verifying proofs cannot give us
high assurance for heuristic attack analyses,
and cannot tell us the failure rate of those analyses.

CryptAttackTester: high-assurance attack analysis 9



Wait, where’s the proof?

The incorrect analyses from 1984 Schnorr–Lenstra, 2010
Howgrave-Graham–Joux, etc. never claimed to be proofs.
The analyses relied on estimates and heuristics and
experiments. Some fragments of the analyses had proofs,
but the (known) errors were outside these fragments.

Clearly the plan of verifying proofs cannot give us
high assurance for heuristic attack analyses,
and cannot tell us the failure rate of those analyses.

CryptAttackTester: high-assurance attack analysis 9



Wait, where’s the proof?

The incorrect analyses from 1984 Schnorr–Lenstra, 2010
Howgrave-Graham–Joux, etc. never claimed to be proofs.
The analyses relied on estimates and heuristics and
experiments. Some fragments of the analyses had proofs,
but the (known) errors were outside these fragments.
Clearly the plan of verifying proofs cannot give us
high assurance for heuristic attack analyses,
and cannot tell us the failure rate of those analyses.

CryptAttackTester: high-assurance attack analysis 9



Heuristic analyses are the normal situation
More examples of factorization algorithms:

• Trial division: proven.
• 1970 Shanks n1/5+o(1) algorithm: heuristic.
• 1974 Pollard n1/4+o(1) algorithm: proven but slower.
• 1974 Pollard p − 1 algorithm: heuristic.
• 1975 Pollard rho algorithm: heuristic.
• 1977 Schroeppel linear sieve: heuristic.
• 1981 Dixon random-squares method: proven but slower.
• 1982 Pomerance quadratic sieve: heuristic.
• 1987 Lenstra elliptic-curve method: heuristic.
• 1990 Pollard number-field sieve: heuristic.
• 1992 Lenstra–Pomerance method: proven but slower.

Ignoring heuristic speedups would be dangerous!
CryptAttackTester: high-assurance attack analysis 10



A post-quantum example: lattices
Some exponents for attacking n-dimensional SVP:

• 2011: 0.384n, heuristic.
• 2013: 0.3778n, heuristic.
• 2014: 0.3774n, heuristic.
• 2015: 0.337n, heuristic.
• 2015: 0.298n, heuristic.
• 2015: 1.000n, proven but slower.
• 2016: 0.292n, heuristic.

More heuristics appear in using SVP for BKZ,
and in other algorithms for attacking lattice problems,
especially for “structured lattices” arising from number fields.
e.g. STOC 2009 Gentry FHE system for power-of-2
cyclotomics is conjectured to be broken in quantum poly time.

CryptAttackTester: high-assurance attack analysis 11



A post-quantum example: lattices
Some exponents for attacking n-dimensional SVP:

• 2011: 0.384n, heuristic.
• 2013: 0.3778n, heuristic.
• 2014: 0.3774n, heuristic.
• 2015: 0.337n, heuristic.
• 2015: 0.298n, heuristic.
• 2015: 1.000n, proven but slower.
• 2016: 0.292n, heuristic.

More heuristics appear in using SVP for BKZ,
and in other algorithms for attacking lattice problems,
especially for “structured lattices” arising from number fields.
e.g. STOC 2009 Gentry FHE system for power-of-2
cyclotomics is conjectured to be broken in quantum poly time.

CryptAttackTester: high-assurance attack analysis 11



This pattern is well known among experts

e.g. 1992 Lenstra: “The analysis of many algorithms related to
algebraic number fields seriously challenges our theoretical
understanding, and one is often forced to argue on the basis of
heuristic assumptions that are formulated for the occasion. It
is considered a relief when one runs into a standard conjecture
such as the generalized Riemann hypothesis (as in [6, 15]) or
Leopoldt’s conjecture on the nonvanishing of the p-adic
regulator [60].”

CryptAttackTester: high-assurance attack analysis 12



High assurance for heuristic attack analyses
Even without proofs, can imagine the following process:

1. Fully specify the model of computation and a cost metric.
2. Fully specify the problem under attack.
3. Fully specify each attack algorithm in the model of

computation.
4. Fully specify the formula for the predicted cost of each

algorithm.
5. Fully specify the formula for the predicted success

probability of each algorithm.

6. Have a computer simulate each algorithm, comparing the
observed cost to the prediction.

7. Have a computer simulate each algorithm, comparing the
observed success probability to the prediction.

CryptAttackTester: high-assurance attack analysis 13



High assurance for heuristic attack analyses
Even without proofs, can imagine the following process:

1. Fully specify the model of computation and a cost metric.
2. Fully specify the problem under attack.
3. Fully specify each attack algorithm in the model of

computation.
4. Fully specify the formula for the predicted cost of each

algorithm.
5. Fully specify the formula for the predicted success

probability of each algorithm.
6. Have a computer simulate each algorithm, comparing the

observed cost to the prediction.

7. Have a computer simulate each algorithm, comparing the
observed success probability to the prediction.

CryptAttackTester: high-assurance attack analysis 13



High assurance for heuristic attack analyses
Even without proofs, can imagine the following process:

1. Fully specify the model of computation and a cost metric.
2. Fully specify the problem under attack.
3. Fully specify each attack algorithm in the model of

computation.
4. Fully specify the formula for the predicted cost of each

algorithm.
5. Fully specify the formula for the predicted success

probability of each algorithm.
6. Have a computer simulate each algorithm, comparing the

observed cost to the prediction.
7. Have a computer simulate each algorithm, comparing the

observed success probability to the prediction.

CryptAttackTester: high-assurance attack analysis 13



CryptAttackTester demonstrates feasibility
CryptAttackTester (CAT) includes formal specifications of

• a general-purpose model of computation and cost metric;
• examples of problems: (1) AES-128 key recovery, (2) the

basic attack problem in code-based cryptography;
• case studies of attack algorithms in this model: (1)

brute-force AES-128 key search, (2) information-set
decoding (ISD), the state-of-the-art McEliece attack;

• formulas predicting the cost of each algorithm in this
metric; and

• formulas predicting the success probability of each
algorithm.

CAT includes a general-purpose simulator for this model of
computation. Paper presents results for AES and ISD.

CryptAttackTester: high-assurance attack analysis 14



How do we check probability for an AES attack?
Generalize the problem to allow scaled-down experiments.
The problem has a parameter K , the number of key bits,
used inside the code generating problem instances:

vector<bool> keybits;
for (bigint j = 0;j < K;++j)

keybits.push_back(random_bool());

unsigned char keybytes[16];
for (bigint j = 0;j < 16;++j)

keybytes[j] = 0;
for (bigint j = 0;j < 128 && j < K;++j)

keybytes[j/8] += (int(keybits.at(j))<<int(j%8));

CryptAttackTester: high-assurance attack analysis 15



Attack algorithms are built from bit operations

CAT provides attack inputs as vector<bit>.
Attack builds a circuit from bit XOR, bit AND, etc.
For example, this attack subroutine does 8 bit operations:

typedef vector<bit> byte;

static byte byte_xor(byte c,byte d)
{

byte result;
for (bigint i = 0;i < 8;++i)

result.push_back(c.at(i)ˆd.at(i));
return result;

}

CryptAttackTester: high-assurance attack analysis 16



The attack interface

To add an attack to CAT:
• Add a function A that builds the attack circuit,

given problem parameters and attack parameters.
e.g. aes128_enum.

• Add a function C that predicts cost of the attack,
given problem parameters and attack parameters.
e.g. aes128_enum_cost.

• Add a function P that predicts success probability of the
attack, given problem parameters and attack parameters.
e.g. aes128_enum_prob.

CAT uses A to simulate the circuit on many inputs;
compares observed effectiveness to the results of C and P .

CryptAttackTester: high-assurance attack analysis 17



The attack interface

To add an attack to CAT:
• Add a function A that builds the attack circuit,

given problem parameters and attack parameters.
e.g. aes128_enum.

• Add a function C that predicts cost of the attack,
given problem parameters and attack parameters.
e.g. aes128_enum_cost.

• Add a function P that predicts success probability of the
attack, given problem parameters and attack parameters.
e.g. aes128_enum_prob.

CAT uses A to simulate the circuit on many inputs;
compares observed effectiveness to the results of C and P .

CryptAttackTester: high-assurance attack analysis 17



The attack interface

To add an attack to CAT:
• Add a function A that builds the attack circuit,

given problem parameters and attack parameters.
e.g. aes128_enum.

• Add a function C that predicts cost of the attack,
given problem parameters and attack parameters.
e.g. aes128_enum_cost.

• Add a function P that predicts success probability of the
attack, given problem parameters and attack parameters.
e.g. aes128_enum_prob.

CAT uses A to simulate the circuit on many inputs;
compares observed effectiveness to the results of C and P .

CryptAttackTester: high-assurance attack analysis 17



The attack interface

To add an attack to CAT:
• Add a function A that builds the attack circuit,

given problem parameters and attack parameters.
e.g. aes128_enum.

• Add a function C that predicts cost of the attack,
given problem parameters and attack parameters.
e.g. aes128_enum_cost.

• Add a function P that predicts success probability of the
attack, given problem parameters and attack parameters.
e.g. aes128_enum_prob.

CAT uses A to simulate the circuit on many inputs;
compares observed effectiveness to the results of C and P .

CryptAttackTester: high-assurance attack analysis 17



NIST’s AES-128 estimates

In its 2016 call for post-quantum submissions, NIST specified
AES-128 key search as a “floor” for security, and estimated
“2143 classical gates” for an “optimal” AES-128 key-recovery
attack. No details, and no definition of the set of “gates”.

In its 2022 report, NIST wrote that, in “the gate count
model”, the “operations being counted are ‘bit operations’
that act on no more than 2 bits at a time and where each
one-bit memory read or write is counted as one bit-operation”
when “memory is read or written in a random access fashion”.

CryptAttackTester: high-assurance attack analysis 18



NIST’s AES-128 estimates

In its 2016 call for post-quantum submissions, NIST specified
AES-128 key search as a “floor” for security, and estimated
“2143 classical gates” for an “optimal” AES-128 key-recovery
attack. No details, and no definition of the set of “gates”.
In its 2022 report, NIST wrote that, in “the gate count
model”, the “operations being counted are ‘bit operations’
that act on no more than 2 bits at a time and where each
one-bit memory read or write is counted as one bit-operation”
when “memory is read or written in a random access fashion”.

CryptAttackTester: high-assurance attack analysis 18



Flaws in NIST’s AES-128 estimates

Allowing a “one-bit memory read or write” for cost 1 allows
many bit operations to be clumped into a single “gate”:
e.g., just 8 “gates” to compute an AES S-box.
This easily reduces key-recovery cost to about 2140.

CAT does not allow this type of cheating: CAT counts all
bit operations involved in building a memory-access circuit.
CAT shows that AES-128 key recovery with a simple
brute-force attack takes under 2141.89 bit operations.
These aren’t very different from 2143, but expect larger errors
for more complicated attacks than brute-force key search.

CryptAttackTester: high-assurance attack analysis 19



Flaws in NIST’s AES-128 estimates

Allowing a “one-bit memory read or write” for cost 1 allows
many bit operations to be clumped into a single “gate”:
e.g., just 8 “gates” to compute an AES S-box.
This easily reduces key-recovery cost to about 2140.
CAT does not allow this type of cheating: CAT counts all
bit operations involved in building a memory-access circuit.
CAT shows that AES-128 key recovery with a simple
brute-force attack takes under 2141.89 bit operations.

These aren’t very different from 2143, but expect larger errors
for more complicated attacks than brute-force key search.

CryptAttackTester: high-assurance attack analysis 19



Flaws in NIST’s AES-128 estimates

Allowing a “one-bit memory read or write” for cost 1 allows
many bit operations to be clumped into a single “gate”:
e.g., just 8 “gates” to compute an AES S-box.
This easily reduces key-recovery cost to about 2140.
CAT does not allow this type of cheating: CAT counts all
bit operations involved in building a memory-access circuit.
CAT shows that AES-128 key recovery with a simple
brute-force attack takes under 2141.89 bit operations.
These aren’t very different from 2143, but expect larger errors
for more complicated attacks than brute-force key search.

CryptAttackTester: high-assurance attack analysis 19



Flaws in ISD estimates in the literature

ISD papers generally state costs using undefined concepts such
as “work factor”, “elementary operations”, or “complexity”.
This makes the cost claims formally meaningless.
But papers sound like they’re counting bit operations,
often claiming different costs for the same algorithms,
so clearly most of those claims are wrong.

e.g. For mceliece348864, one paper says 2149.91 for “BJMM”;
another paper says 2142 for “BJMM” (below NIST’s 2143!).
Different algorithms? Different attack-parameter
optimizations? Different overestimates? Different
underestimates? All of the above?

CryptAttackTester: high-assurance attack analysis 20



Flaws in ISD estimates in the literature

ISD papers generally state costs using undefined concepts such
as “work factor”, “elementary operations”, or “complexity”.
This makes the cost claims formally meaningless.
But papers sound like they’re counting bit operations,
often claiming different costs for the same algorithms,
so clearly most of those claims are wrong.
e.g. For mceliece348864, one paper says 2149.91 for “BJMM”;
another paper says 2142 for “BJMM” (below NIST’s 2143!).
Different algorithms? Different attack-parameter
optimizations? Different overestimates? Different
underestimates? All of the above?

CryptAttackTester: high-assurance attack analysis 20



CAT’s auditable ISD numbers

CAT has a completely defined isd2 algorithm,
which covers BJMM and further optimizations.
Also a defined method of searching for attack parameters.

CAT’s cost predictions and probability predictions cover
various effects missed in the literature and are tested for
small problem sizes against complete attack simulations.
Predicts 2150.59 for mceliece348864.
For comparison: earlier paper’s 2142 counted number of input
and output bits for sorting, not the number of bit operations.

CryptAttackTester: high-assurance attack analysis 21



CAT’s auditable ISD numbers

CAT has a completely defined isd2 algorithm,
which covers BJMM and further optimizations.
Also a defined method of searching for attack parameters.
CAT’s cost predictions and probability predictions cover
various effects missed in the literature and are tested for
small problem sizes against complete attack simulations.

Predicts 2150.59 for mceliece348864.
For comparison: earlier paper’s 2142 counted number of input
and output bits for sorting, not the number of bit operations.

CryptAttackTester: high-assurance attack analysis 21



CAT’s auditable ISD numbers

CAT has a completely defined isd2 algorithm,
which covers BJMM and further optimizations.
Also a defined method of searching for attack parameters.
CAT’s cost predictions and probability predictions cover
various effects missed in the literature and are tested for
small problem sizes against complete attack simulations.
Predicts 2150.59 for mceliece348864.

For comparison: earlier paper’s 2142 counted number of input
and output bits for sorting, not the number of bit operations.

CryptAttackTester: high-assurance attack analysis 21



CAT’s auditable ISD numbers

CAT has a completely defined isd2 algorithm,
which covers BJMM and further optimizations.
Also a defined method of searching for attack parameters.
CAT’s cost predictions and probability predictions cover
various effects missed in the literature and are tested for
small problem sizes against complete attack simulations.
Predicts 2150.59 for mceliece348864.
For comparison: earlier paper’s 2142 counted number of input
and output bits for sorting, not the number of bit operations.

CryptAttackTester: high-assurance attack analysis 21


