
Slow-boiled frogs

Daniel J. Bernstein



Background:
Lattice computations

Daniel J. Bernstein, Slow-boiled frogs 2



Euclid’s algorithm

Input: positive u, v ∈ Z.
Goal: identify a basis
for the 1-dimensional lattice uZ + vZ.
Algorithm: Repeatedly replace (u, v)
with shorter (u − v , v) or shorter (u, v − u),
stopping when no improvement is possible.
Often-faster algorithm jumps through subtractions:
(u, v) 7→ (u mod v , v) or (u, v) 7→ (u, v mod u).

Daniel J. Bernstein, Slow-boiled frogs 3



Reducing lattice bases in dimension 2

Lagrange and Gauss encountered
2-dimensional lattices in number theory.
Applied a simple, fast algorithm to find
shortest-length nonzero vectors in those lattices.
i.e., solved “SVP”: the “shortest-vector problem”.
Input: independent vectors u, v ∈ R2.
Algorithm: Repeatedly replace (u, v)
with shorter (u mod v , v) or shorter (u, v mod u),
with “centered” notion of mod.

Daniel J. Bernstein, Slow-boiled frogs 4

https://gallica.bnf.fr/ark:/12148/bpt6k229222d/f696
https://archive.org/details/disquisitionesa00gaus


Higher dimensions: existence
Hermite wrote a letter (published 1850) to Jacobi
showing that any dim-n lattice L for n ≥ 1 has a
nonzero vector of length ≤(4/3)(n−1)/4(det L)1/n.
Proof generalizes Lagrange.

1896 Minkowski convex-body theorem implies
nonzero vector of length ≤(2/(vol Bn)1/n)(det L)1/n

where Bn is the n-dimensional unit ball.
As n → ∞: 2/(vol Bn)1/n ∈ (2 + o(1))(n/2πe)1/2.
1956 Rogers: shortest nonzero length is
(1 + o(1))(n/2πe)1/2(det L)1/n for most lattices.

Daniel J. Bernstein, Slow-boiled frogs 5

https://www.degruyter.com/document/doi/10.1515/crll.1850.40.279/pdf


Higher dimensions: existence
Hermite wrote a letter (published 1850) to Jacobi
showing that any dim-n lattice L for n ≥ 1 has a
nonzero vector of length ≤(4/3)(n−1)/4(det L)1/n.
Proof generalizes Lagrange.
1896 Minkowski convex-body theorem implies
nonzero vector of length ≤(2/(vol Bn)1/n)(det L)1/n

where Bn is the n-dimensional unit ball.
As n → ∞: 2/(vol Bn)1/n ∈ (2 + o(1))(n/2πe)1/2.

1956 Rogers: shortest nonzero length is
(1 + o(1))(n/2πe)1/2(det L)1/n for most lattices.

Daniel J. Bernstein, Slow-boiled frogs 5

https://www.degruyter.com/document/doi/10.1515/crll.1850.40.279/pdf


Higher dimensions: existence
Hermite wrote a letter (published 1850) to Jacobi
showing that any dim-n lattice L for n ≥ 1 has a
nonzero vector of length ≤(4/3)(n−1)/4(det L)1/n.
Proof generalizes Lagrange.
1896 Minkowski convex-body theorem implies
nonzero vector of length ≤(2/(vol Bn)1/n)(det L)1/n

where Bn is the n-dimensional unit ball.
As n → ∞: 2/(vol Bn)1/n ∈ (2 + o(1))(n/2πe)1/2.
1956 Rogers: shortest nonzero length is
(1 + o(1))(n/2πe)1/2(det L)1/n for most lattices.

Daniel J. Bernstein, Slow-boiled frogs 5

https://www.degruyter.com/document/doi/10.1515/crll.1850.40.279/pdf


Sufficiently fast lattice computations
Lattices show up in many more math papers.
Sometimes the papers do lattice computations.
e.g. 1967 Coveyou–Macpherson “Fourier analysis of
random number generators” encountered lattices
with n ≤ 10. Solved SVP by enumeration of lattice
vectors after preliminary lattice-basis reduction.

e.g. 1982 Lenstra–Lenstra–Lovasz “Factoring
polynomials with rational coefficients” included
a polynomial-time algorithm for length at most
(4/3 + ϵ)(n−1)/4(det L)1/n, which is good enough
for factorization (and many other applications).

Daniel J. Bernstein, Slow-boiled frogs 6

https://web.archive.org/web/20081031144215id_/http://www.cs.fsu.edu/~mascagni/RNG_Papers/Coveyou_MacPherson_1967.pdf
https://web.archive.org/web/20081031144215id_/http://www.cs.fsu.edu/~mascagni/RNG_Papers/Coveyou_MacPherson_1967.pdf
https://www.math.leidenuniv.nl/~hwl/PUBLICATIONS/1982f/art.pdf
https://www.math.leidenuniv.nl/~hwl/PUBLICATIONS/1982f/art.pdf


Sufficiently fast lattice computations
Lattices show up in many more math papers.
Sometimes the papers do lattice computations.
e.g. 1967 Coveyou–Macpherson “Fourier analysis of
random number generators” encountered lattices
with n ≤ 10. Solved SVP by enumeration of lattice
vectors after preliminary lattice-basis reduction.
e.g. 1982 Lenstra–Lenstra–Lovasz “Factoring
polynomials with rational coefficients” included
a polynomial-time algorithm for length at most
(4/3 + ϵ)(n−1)/4(det L)1/n, which is good enough
for factorization (and many other applications).

Daniel J. Bernstein, Slow-boiled frogs 6

https://web.archive.org/web/20081031144215id_/http://www.cs.fsu.edu/~mascagni/RNG_Papers/Coveyou_MacPherson_1967.pdf
https://web.archive.org/web/20081031144215id_/http://www.cs.fsu.edu/~mascagni/RNG_Papers/Coveyou_MacPherson_1967.pdf
https://www.math.leidenuniv.nl/~hwl/PUBLICATIONS/1982f/art.pdf
https://www.math.leidenuniv.nl/~hwl/PUBLICATIONS/1982f/art.pdf


Asymptotics improving

1983 Kannan, 1987 Kannan:
enumeration solves SVP-n in time 2O(n log n).

1987 Schnorr: the BKZ-(β, n) algorithm produces
length at most (

√
6β)n/β(det L)1/n for 2 ≤ β ≤ n,

at the expense of calling an SVP-β subroutine.
BKZ-(β, n) using SVP-β enumeration is poly-time
if β ∈ Θ(log n/log log n) as n → ∞,
so poly-time for length (1 + o(1))n(det L)1/n.

Daniel J. Bernstein, Slow-boiled frogs 7

https://scholar.archive.org/work/ztpknsiwejgkjgu3tnknwj2opu/access/wayback/https://s3-eu-west-1.amazonaws.com/pstorage-cmu-348901238291901/12097865/file.pdf
https://www.sciencedirect.com/science/article/pii/0304397587900648


Asymptotics improving

1983 Kannan, 1987 Kannan:
enumeration solves SVP-n in time 2O(n log n).
1987 Schnorr: the BKZ-(β, n) algorithm produces
length at most (

√
6β)n/β(det L)1/n for 2 ≤ β ≤ n,

at the expense of calling an SVP-β subroutine.

BKZ-(β, n) using SVP-β enumeration is poly-time
if β ∈ Θ(log n/log log n) as n → ∞,
so poly-time for length (1 + o(1))n(det L)1/n.

Daniel J. Bernstein, Slow-boiled frogs 7

https://scholar.archive.org/work/ztpknsiwejgkjgu3tnknwj2opu/access/wayback/https://s3-eu-west-1.amazonaws.com/pstorage-cmu-348901238291901/12097865/file.pdf
https://www.sciencedirect.com/science/article/pii/0304397587900648


Asymptotics improving

1983 Kannan, 1987 Kannan:
enumeration solves SVP-n in time 2O(n log n).
1987 Schnorr: the BKZ-(β, n) algorithm produces
length at most (

√
6β)n/β(det L)1/n for 2 ≤ β ≤ n,

at the expense of calling an SVP-β subroutine.
BKZ-(β, n) using SVP-β enumeration is poly-time
if β ∈ Θ(log n/log log n) as n → ∞,
so poly-time for length (1 + o(1))n(det L)1/n.

Daniel J. Bernstein, Slow-boiled frogs 7

https://scholar.archive.org/work/ztpknsiwejgkjgu3tnknwj2opu/access/wayback/https://s3-eu-west-1.amazonaws.com/pstorage-cmu-348901238291901/12097865/file.pdf
https://www.sciencedirect.com/science/article/pii/0304397587900648


Important trends continuing today
Already visible in these papers from the 1980s:

• Lattice algorithms becoming faster and faster.
• Also becoming more and more complicated,

with more and more avenues for speedups.
• Analyses becoming much more complicated.

This is great for writing more papers!
See, e.g., survey of 20 advances in 2018–2021.
Would need an entire talk to summarize current
performance conjectures for pruned enumeration,
sieving, near-neighbor sieving, dimensions for free,
tuple sieving, hybrid attacks, dual attacks, etc.

Daniel J. Bernstein, Slow-boiled frogs 8

https://ntruprime.cr.yp.to/latticerisks-20211031.pdf#page.3


Important trends continuing today
Already visible in these papers from the 1980s:

• Lattice algorithms becoming faster and faster.
• Also becoming more and more complicated,

with more and more avenues for speedups.
• Analyses becoming much more complicated.

This is great for writing more papers!
See, e.g., survey of 20 advances in 2018–2021.

Would need an entire talk to summarize current
performance conjectures for pruned enumeration,
sieving, near-neighbor sieving, dimensions for free,
tuple sieving, hybrid attacks, dual attacks, etc.

Daniel J. Bernstein, Slow-boiled frogs 8

https://ntruprime.cr.yp.to/latticerisks-20211031.pdf#page.3


Important trends continuing today
Already visible in these papers from the 1980s:

• Lattice algorithms becoming faster and faster.
• Also becoming more and more complicated,

with more and more avenues for speedups.
• Analyses becoming much more complicated.

This is great for writing more papers!
See, e.g., survey of 20 advances in 2018–2021.
Would need an entire talk to summarize current
performance conjectures for pruned enumeration,
sieving, near-neighbor sieving, dimensions for free,
tuple sieving, hybrid attacks, dual attacks, etc.

Daniel J. Bernstein, Slow-boiled frogs 8

https://ntruprime.cr.yp.to/latticerisks-20211031.pdf#page.3


Lattice-based cryptography

Daniel J. Bernstein, Slow-boiled frogs 9



NP-hard PKE: the myth begins

1978 Hellman–Merkle “Hiding information and
signatures in trapdoor knapsacks”: “The knapsack
problem is an NP-complete combinatorial problem
that is strongly believed to be computationally
difficult to solve in general. Specific instances of
this problem that appear very difficult to solve
unless one possesses ‘trapdoor information’ used in
the design of the problem are demonstrated.”

Daniel J. Bernstein, Slow-boiled frogs 10

https://ieeexplore.ieee.org/abstract/document/1055927
https://ieeexplore.ieee.org/abstract/document/1055927


Knapsack problems

Basic knapsack problem: Find small c1, . . . , cn ∈ Z
(simplest version: all 0 or 1, “subset-sum problem”)
given v1, . . . , vn and s = c1v1 + · · · + cnvn.

One approach to a solution:
Easy to find big t1, . . . , tn ∈ Z
with s = t1v1 + · · · + tnvn.
Note (t1 − c1)v1 + · · · + (tn − cn)vn = 0.
Finding c1, . . . , cn is equivalent to finding a
vector in L close to (t1, . . . , tn), where L is the
lattice of (a1, . . . , an) with a1v1 + · · · + anvn = 0.

Daniel J. Bernstein, Slow-boiled frogs 11



Knapsack problems are lattice problems

Basic knapsack problem: Find small c1, . . . , cn ∈ Z
(simplest version: all 0 or 1, “subset-sum problem”)
given v1, . . . , vn and s = c1v1 + · · · + cnvn.
One approach to a solution:
Easy to find big t1, . . . , tn ∈ Z
with s = t1v1 + · · · + tnvn.
Note (t1 − c1)v1 + · · · + (tn − cn)vn = 0.
Finding c1, . . . , cn is equivalent to finding a
vector in L close to (t1, . . . , tn), where L is the
lattice of (a1, . . . , an) with a1v1 + · · · + anvn = 0.

Daniel J. Bernstein, Slow-boiled frogs 11



More lattice-based cryptosystems

1978 Shamir, 1979 Graham–Shamir, etc. proposed
further “knapsack” cryptosystems.

Practically all “knapsack” proposals were then
broken by 1982 Shamir, 1983 Adleman,
1983 Brickell–Lagarias–Odlyzko, etc.
“The attacks broke NP-hard problems?”
— Conjecturally no poly-time PKE is NP-hard.

Daniel J. Bernstein, Slow-boiled frogs 12

https://dl.acm.org/doi/pdf/10.1145/356789.356792
https://www-users.cse.umn.edu/~odlyzko/doc/arch/knapsack.attacks.pdf


More lattice-based cryptosystems

1978 Shamir, 1979 Graham–Shamir, etc. proposed
further “knapsack” cryptosystems.
Practically all “knapsack” proposals were then
broken by 1982 Shamir, 1983 Adleman,
1983 Brickell–Lagarias–Odlyzko, etc.

“The attacks broke NP-hard problems?”
— Conjecturally no poly-time PKE is NP-hard.

Daniel J. Bernstein, Slow-boiled frogs 12

https://dl.acm.org/doi/pdf/10.1145/356789.356792
https://www-users.cse.umn.edu/~odlyzko/doc/arch/knapsack.attacks.pdf


More lattice-based cryptosystems

1978 Shamir, 1979 Graham–Shamir, etc. proposed
further “knapsack” cryptosystems.
Practically all “knapsack” proposals were then
broken by 1982 Shamir, 1983 Adleman,
1983 Brickell–Lagarias–Odlyzko, etc.
“The attacks broke NP-hard problems?”
— Conjecturally no poly-time PKE is NP-hard.

Daniel J. Bernstein, Slow-boiled frogs 12

https://dl.acm.org/doi/pdf/10.1145/356789.356792
https://www-users.cse.umn.edu/~odlyzko/doc/arch/knapsack.attacks.pdf


NTRU
1996 Hoffstein–Pipher–Silverman preprint “NTRU:
a new high speed public key cryptosystem”:
Public key: v ∈ (Z/q)[x ]/(xn − 1).
Ciphertext: av + b for small a, b ∈ Z[x ]/(xn − 1).
So ciphertext is small-coeff linear combination of
v , xv , . . . , xn−1v , 1, x , . . . , xn−1.
There’s also a decryption procedure using
small private key (k , ℓ) where 0 = kv + ℓ.
(Require coeffs of ℓ to be in, e.g., {−3, 0, 3};
multiply ciphertext by k ; “reduce” mod 3; etc.)

Daniel J. Bernstein, Slow-boiled frogs 13

https://ntru.org/f/hps96.pdf


Not dead yet
Many subsequent variants of NTRU:
e.g., using xn + 1 instead of xn − 1.

Most obvious change: n keeps increasing to
try to compensate for advances in attacks. e.g.:

• 1996 preprint proposed n = 83 for security 280.
• 1998 revision proposed n = 167 for security 278.
• 2010 Lindner–Peikert proposed n = 256 for

security “about” 2150, “at least” 2128.
• 2017 NTRU-HPS, 2017 Kyber, 2017 Frodo

proposed n = 509, 512, 640 for security 2128.
• 2030: ?

Daniel J. Bernstein, Slow-boiled frogs 14

https://ntru.org/f/hps98.pdf
https://eprint.iacr.org/2010/613


Not dead yet . . . with bigger ciphertexts
Many subsequent variants of NTRU:
e.g., using xn + 1 instead of xn − 1.
Most obvious change: n keeps increasing to
try to compensate for advances in attacks. e.g.:

• 1996 preprint proposed n = 83 for security 280.
• 1998 revision proposed n = 167 for security 278.

• 2010 Lindner–Peikert proposed n = 256 for
security “about” 2150, “at least” 2128.

• 2017 NTRU-HPS, 2017 Kyber, 2017 Frodo
proposed n = 509, 512, 640 for security 2128.

• 2030: ?

Daniel J. Bernstein, Slow-boiled frogs 14

https://ntru.org/f/hps98.pdf
https://eprint.iacr.org/2010/613


Not dead yet . . . with bigger ciphertexts
Many subsequent variants of NTRU:
e.g., using xn + 1 instead of xn − 1.
Most obvious change: n keeps increasing to
try to compensate for advances in attacks. e.g.:

• 1996 preprint proposed n = 83 for security 280.
• 1998 revision proposed n = 167 for security 278.
• 2010 Lindner–Peikert proposed n = 256 for

security “about” 2150, “at least” 2128.

• 2017 NTRU-HPS, 2017 Kyber, 2017 Frodo
proposed n = 509, 512, 640 for security 2128.

• 2030: ?

Daniel J. Bernstein, Slow-boiled frogs 14

https://ntru.org/f/hps98.pdf
https://eprint.iacr.org/2010/613


Not dead yet . . . with bigger ciphertexts
Many subsequent variants of NTRU:
e.g., using xn + 1 instead of xn − 1.
Most obvious change: n keeps increasing to
try to compensate for advances in attacks. e.g.:

• 1996 preprint proposed n = 83 for security 280.
• 1998 revision proposed n = 167 for security 278.
• 2010 Lindner–Peikert proposed n = 256 for

security “about” 2150, “at least” 2128.
• 2017 NTRU-HPS, 2017 Kyber, 2017 Frodo

proposed n = 509, 512, 640 for security 2128.

• 2030: ?

Daniel J. Bernstein, Slow-boiled frogs 14

https://ntru.org/f/hps98.pdf
https://eprint.iacr.org/2010/613


Not dead yet . . . with bigger ciphertexts
Many subsequent variants of NTRU:
e.g., using xn + 1 instead of xn − 1.
Most obvious change: n keeps increasing to
try to compensate for advances in attacks. e.g.:

• 1996 preprint proposed n = 83 for security 280.
• 1998 revision proposed n = 167 for security 278.
• 2010 Lindner–Peikert proposed n = 256 for

security “about” 2150, “at least” 2128.
• 2017 NTRU-HPS, 2017 Kyber, 2017 Frodo

proposed n = 509, 512, 640 for security 2128.
• 2030: ?

Daniel J. Bernstein, Slow-boiled frogs 14

https://ntru.org/f/hps98.pdf
https://eprint.iacr.org/2010/613


Why do some people claim confidence?
Myths about history: “the underlying worst-case
problems—e.g., approximating short vectors in
lattices—have been deeply studied by some of the
great mathematicians and computer scientists going
back at least to Gauss, and appear to be very hard.”

More hype: the problem of finding small a, b given
v , av + b ∈ (Z/q)[x ]/(xn + 1) for n a power of 2
(or, more generally, the “Ring-LWE” problem)
has “very strong hardness guarantees”.
Whenever a lattice problem is broken: Downplay
that; hype a different problem that isn’t broken.

Daniel J. Bernstein, Slow-boiled frogs 15



Why do some people claim confidence?
Myths about history: “the underlying worst-case
problems—e.g., approximating short vectors in
lattices—have been deeply studied by some of the
great mathematicians and computer scientists going
back at least to Gauss, and appear to be very hard.”
More hype: the problem of finding small a, b given
v , av + b ∈ (Z/q)[x ]/(xn + 1) for n a power of 2
(or, more generally, the “Ring-LWE” problem)
has “very strong hardness guarantees”.

Whenever a lattice problem is broken: Downplay
that; hype a different problem that isn’t broken.

Daniel J. Bernstein, Slow-boiled frogs 15



Why do some people claim confidence?
Myths about history: “the underlying worst-case
problems—e.g., approximating short vectors in
lattices—have been deeply studied by some of the
great mathematicians and computer scientists going
back at least to Gauss, and appear to be very hard.”
More hype: the problem of finding small a, b given
v , av + b ∈ (Z/q)[x ]/(xn + 1) for n a power of 2
(or, more generally, the “Ring-LWE” problem)
has “very strong hardness guarantees”.
Whenever a lattice problem is broken: Downplay
that; hype a different problem that isn’t broken.

Daniel J. Bernstein, Slow-boiled frogs 15



Theorems begging questions
e.g. 2012 Lyubashevsky–Peikert–Regev theorem:
can convert a poly-time Ring-LWE algorithm
into a poly-time algorithm to solve
“worst-case problems on ideal lattices”.
Are these ideal-lattice problems hard?

Focus for rest of talk: given n = 2e and ideal I ̸= 0
of R = Z[x ]/(xn + 1), find “short” nonzero α ∈ I .
“Short”: within polynomial factor of shortest.
Sometimes cryptosystems use ideals directly.
e.g. 2009 Gentry: short secret g ; public I = gR .

Daniel J. Bernstein, Slow-boiled frogs 16



Theorems begging questions
e.g. 2012 Lyubashevsky–Peikert–Regev theorem:
can convert a poly-time Ring-LWE algorithm
into a poly-time algorithm to solve
“worst-case problems on ideal lattices”.
Are these ideal-lattice problems hard?
Focus for rest of talk: given n = 2e and ideal I ̸= 0
of R = Z[x ]/(xn + 1), find “short” nonzero α ∈ I .
“Short”: within polynomial factor of shortest.

Sometimes cryptosystems use ideals directly.
e.g. 2009 Gentry: short secret g ; public I = gR .

Daniel J. Bernstein, Slow-boiled frogs 16



Theorems begging questions
e.g. 2012 Lyubashevsky–Peikert–Regev theorem:
can convert a poly-time Ring-LWE algorithm
into a poly-time algorithm to solve
“worst-case problems on ideal lattices”.
Are these ideal-lattice problems hard?
Focus for rest of talk: given n = 2e and ideal I ̸= 0
of R = Z[x ]/(xn + 1), find “short” nonzero α ∈ I .
“Short”: within polynomial factor of shortest.
Sometimes cryptosystems use ideals directly.
e.g. 2009 Gentry: short secret g ; public I = gR .

Daniel J. Bernstein, Slow-boiled frogs 16



Computational
algebraic number theory

Daniel J. Bernstein, Slow-boiled frogs 17



Many useful algorithms
1993 Cohen list of “the main computational tasks of
algebraic number theory”:

• Compute integral bases, prime ideals, ordP α.
• Compute Galois group of K = (R − {0})−1R .
• Compute regulator and unit group R∗.
• Compute class number and class group.
• Recognize principal ideals; compute generators.

“In the rest of this book, we will give algorithms for
these tasks . . . ” (Next slide: more about speed.)
Traditional application: Diophantine equations.

Daniel J. Bernstein, Slow-boiled frogs 18



S-units (aka “S-smooth numbers”)
“S-units”: US = {α ∈ K ∗ : ordP α ̸= 0 ⇒ P ∈ S}.
“S-unit lattice”: LogS US .
For typical R , conjecturally subexponential search
through small elements of R finds LogS US where
y is subexp and S has all prime ideals of norm ≤y .

Also gives LogT UT for any T ⊆ S; in particular,
gives Log R∗; also conjecturally gives class group.
Given nonzero ideal I of R , search small elements
β ∈ I . Any βI−1 supported on S gives class of I etc.
Same idea: NFS for integer factorization.

Daniel J. Bernstein, Slow-boiled frogs 19



S-units (aka “S-smooth numbers”)
“S-units”: US = {α ∈ K ∗ : ordP α ̸= 0 ⇒ P ∈ S}.
“S-unit lattice”: LogS US .
For typical R , conjecturally subexponential search
through small elements of R finds LogS US where
y is subexp and S has all prime ideals of norm ≤y .
Also gives LogT UT for any T ⊆ S; in particular,
gives Log R∗; also conjecturally gives class group.

Given nonzero ideal I of R , search small elements
β ∈ I . Any βI−1 supported on S gives class of I etc.
Same idea: NFS for integer factorization.

Daniel J. Bernstein, Slow-boiled frogs 19



S-units (aka “S-smooth numbers”)
“S-units”: US = {α ∈ K ∗ : ordP α ̸= 0 ⇒ P ∈ S}.
“S-unit lattice”: LogS US .
For typical R , conjecturally subexponential search
through small elements of R finds LogS US where
y is subexp and S has all prime ideals of norm ≤y .
Also gives LogT UT for any T ⊆ S; in particular,
gives Log R∗; also conjecturally gives class group.
Given nonzero ideal I of R , search small elements
β ∈ I . Any βI−1 supported on S gives class of I etc.

Same idea: NFS for integer factorization.

Daniel J. Bernstein, Slow-boiled frogs 19



S-units (aka “S-smooth numbers”)
“S-units”: US = {α ∈ K ∗ : ordP α ̸= 0 ⇒ P ∈ S}.
“S-unit lattice”: LogS US .
For typical R , conjecturally subexponential search
through small elements of R finds LogS US where
y is subexp and S has all prime ideals of norm ≤y .
Also gives LogT UT for any T ⊆ S; in particular,
gives Log R∗; also conjecturally gives class group.
Given nonzero ideal I of R , search small elements
β ∈ I . Any βI−1 supported on S gives class of I etc.
Same idea: NFS for integer factorization.

Daniel J. Bernstein, Slow-boiled frogs 19



Short generators
2014.02 Bernstein “A subfield-logarithm attack
against ideal lattices”:
1. To find short g given I = gR : find some
generator gu in subexp time; reduce Log gu mod
Log R∗ to find Log g . “I think that this approach to
finding generators is reasonably well known among
computational algebraic number theorists.”

2. Exploit subfields to use lower-dim lattices.
Subsequent work: e.g., 2017 Bauch–Bernstein–de
Valence–Lange–van Vredendaal; 2019 Biasse–van
Vredendaal; 2020 Biasse–Fieker–Hofmann–Page.

Daniel J. Bernstein, Slow-boiled frogs 20

https://blog.cr.yp.to/20140213-ideal.html
https://blog.cr.yp.to/20140213-ideal.html
https://cr.yp.to/papers.html#multiquad
https://cr.yp.to/papers.html#multiquad
https://msp.org/obs/2019/2-1/obs-v2-n1-p07-p.pdf
https://msp.org/obs/2019/2-1/obs-v2-n1-p07-p.pdf
https://arxiv.org/abs/2002.12332


Short generators
2014.02 Bernstein “A subfield-logarithm attack
against ideal lattices”:
1. To find short g given I = gR : find some
generator gu in subexp time; reduce Log gu mod
Log R∗ to find Log g . “I think that this approach to
finding generators is reasonably well known among
computational algebraic number theorists.”
2. Exploit subfields to use lower-dim lattices.
Subsequent work: e.g., 2017 Bauch–Bernstein–de
Valence–Lange–van Vredendaal; 2019 Biasse–van
Vredendaal; 2020 Biasse–Fieker–Hofmann–Page.

Daniel J. Bernstein, Slow-boiled frogs 20

https://blog.cr.yp.to/20140213-ideal.html
https://blog.cr.yp.to/20140213-ideal.html
https://cr.yp.to/papers.html#multiquad
https://cr.yp.to/papers.html#multiquad
https://msp.org/obs/2019/2-1/obs-v2-n1-p07-p.pdf
https://msp.org/obs/2019/2-1/obs-v2-n1-p07-p.pdf
https://arxiv.org/abs/2002.12332


Simple reduction
One technique to reduce mod L (e.g., 2000 Cohen,
pages 375–376): reduce mod each v ∈ D and
repeat, after precomputing D that generates L.
Works best when elements of D are short:
e.g., all elements of L below some size bound.

2014.10 Campbell–Groves–Shepherd:
for R = Z[x ]/(xn + 1) with n a power of 2, the
usual cyclotomic units (1 − x 3)/(1 − x) etc. are
short. Conjecturally fast break of 2009 Gentry.
More analysis under various conjectures: 2015.04
Cramer–Ducas–Peikert–Regev, 2016 Biasse–Song.

Daniel J. Bernstein, Slow-boiled frogs 21

https://docbox.etsi.org/workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf
https://eprint.iacr.org/2015/313
https://epubs.siam.org/doi/10.1137/1.9781611974331.ch64


Simple reduction mod cyclotomic units
One technique to reduce mod L (e.g., 2000 Cohen,
pages 375–376): reduce mod each v ∈ D and
repeat, after precomputing D that generates L.
Works best when elements of D are short:
e.g., all elements of L below some size bound.
2014.10 Campbell–Groves–Shepherd:
for R = Z[x ]/(xn + 1) with n a power of 2, the
usual cyclotomic units (1 − x 3)/(1 − x) etc. are
short. Conjecturally fast break of 2009 Gentry.
More analysis under various conjectures: 2015.04
Cramer–Ducas–Peikert–Regev, 2016 Biasse–Song.

Daniel J. Bernstein, Slow-boiled frogs 21

https://docbox.etsi.org/workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf
https://eprint.iacr.org/2015/313
https://epubs.siam.org/doi/10.1137/1.9781611974331.ch64


Close principal multiples
2015.02 Bernstein: “We also know that the ideal I
contains [the target short element] . . . This means
that there can’t be much gap between [that
element] and I : the ratio is some small ideal J , and
replacing I by IJ will give us exactly the desired
ideal . . . [After computing] the class group, the
class of I , and the classes of all small prime ideals,
we don’t have to waste time enumerating J for
which IJ isn’t principal, since the condition ‘IJ is
principal’ linearly constrains the exponents in J ’s
factorization.”

Daniel J. Bernstein, Slow-boiled frogs 22

https://groups.google.com/g/cryptanalytic-algorithms/c/GdVfp5Kbdb8/m/A1fwcggpJ_8J


Example of close principal multiples

2015.04 Bernstein for, e.g., x 256 + 1: “If we know
the classes of (say) ideals I , P1, P2, . . . , P10, and we
want to search through a range of 2182 possibilities
for a principal ideal of the form IPe1

1 Pe2
2 · · · Pe10

10 with
small (e1, e2, . . . , e10), then we can immediately
restrict attention to a linear subspace that typically
includes just 1 possibility. It’s conceivable that the
classes will conspire against the search, but the main
heuristic used in class-group computations is that
small primes rarely engage in such conspiracies.”

Daniel J. Bernstein, Slow-boiled frogs 23

https://groups.google.com/g/cryptanalytic-algorithms/c/GdVfp5Kbdb8/m/jvjfHzFGObEJ


S-unit attacks

2016.08 Bernstein: “The idea of
• solving a close-vector problem in the unit

lattice, to recover a short g from any unit
multiple ug

generalizes straightforwardly to
• solving a close-vector problem in the S-unit

lattice, to recover a short g from any S-unit
multiple ug .”

Daniel J. Bernstein, Slow-boiled frogs 24

https://groups.google.com/g/cryptanalytic-algorithms/c/mCMdsFemzQk/m/3cewE8Q5BwAJ


Quantifying close principal multiples

2016.09 Cramer–Ducas–Wesolowski, considering
close principal multiples as in 2015.02 Bernstein
for R = Z[x ]/(xn + 1) with n a power of 2,
conjecturing asymptotics: quantum poly-time
algorithm to find α within exp(n1/2+o(1)) of shortest.
Previous poly-time algorithms: exp(n1+o(1)).

For comparison, 2015.04
Cramer–Ducas–Peikert–Regev: known algorithms
“apply only to principal ideals”; this is a “barrier”.

Daniel J. Bernstein, Slow-boiled frogs 25

https://eprint.iacr.org/2016/885
https://eprint.iacr.org/2015/313


Quantifying close principal multiples

2016.09 Cramer–Ducas–Wesolowski, considering
close principal multiples as in 2015.02 Bernstein
for R = Z[x ]/(xn + 1) with n a power of 2,
conjecturing asymptotics: quantum poly-time
algorithm to find α within exp(n1/2+o(1)) of shortest.
Previous poly-time algorithms: exp(n1+o(1)).
For comparison, 2015.04
Cramer–Ducas–Peikert–Regev: known algorithms
“apply only to principal ideals”; this is a “barrier”.

Daniel J. Bernstein, Slow-boiled frogs 25

https://eprint.iacr.org/2016/885
https://eprint.iacr.org/2015/313


Quantifying S-unit attacks

2019 Pellet-Mary–Hanrot–Stehlé,
using S-unit attacks as in 2016 Bernstein,
taking small S, conjecturing asymptotics:
approx factor exp(n1/4+o(1)) in time exp(n1/2+o(1)),
after precomputation depending only on R .
BKZ etc.: exp(n1/4+o(1)) in time exp(n3/4+o(1)).

For comparison, 2016/2016/2018 Peikert:
approx factor exp(n1/2+o(1)) is a “barrier”,
an “inherent barrier”, and a “natural barrier”
for the number-theoretic algorithms.

Daniel J. Bernstein, Slow-boiled frogs 26

https://eprint.iacr.org/2019/215
https://web.archive.org/web/20210818101136/https://www.mathematik.uni-kl.de/~thofmann/ants/talks/mon/talk_peikert.pdf
https://www.youtube.com/watch?v=FVFw_qb1ZkY
https://www.youtube.com/watch?v=VUGHJipRfwA


Quantifying S-unit attacks

2019 Pellet-Mary–Hanrot–Stehlé,
using S-unit attacks as in 2016 Bernstein,
taking small S, conjecturing asymptotics:
approx factor exp(n1/4+o(1)) in time exp(n1/2+o(1)),
after precomputation depending only on R .
BKZ etc.: exp(n1/4+o(1)) in time exp(n3/4+o(1)).
For comparison, 2016/2016/2018 Peikert:
approx factor exp(n1/2+o(1)) is a “barrier”,
an “inherent barrier”, and a “natural barrier”
for the number-theoretic algorithms.

Daniel J. Bernstein, Slow-boiled frogs 26

https://eprint.iacr.org/2019/215
https://web.archive.org/web/20210818101136/https://www.mathematik.uni-kl.de/~thofmann/ants/talks/mon/talk_peikert.pdf
https://www.youtube.com/watch?v=FVFw_qb1ZkY
https://www.youtube.com/watch?v=VUGHJipRfwA


Quantifying S-unit attacks, continued

2021.08.20 Bernstein talk “S-unit attacks”,
reporting results from joint papers in progress:
S-unit attacks find α within poly factor of shortest,
conjecturally for #S, #D, time ∈ exp(n1/2+o(1)).
Also, many speedups for cyclotomics,
and many successful reduction experiments.
Another writeup of the cyclotomic speedups:
2021.10 Bernard–Lesavourey–Nguyen–Roux-Langlois.

Daniel J. Bernstein, Slow-boiled frogs 27

https://cr.yp.to/talks.html#2021.08.20
https://eprint.iacr.org/2021/1384


Finding cyclotomic S-units
Cyclotomic constructions used in the 2021.08 talk:

• (1 − x 3)/(1 − x) etc., as in the 2014.10 attack.
• 1 + x .
• JacobiΣp(χ1, χ2) =

∑
a∈F∗

p−{1}
χ1(a)χ2(1 − a).

Fragments used implicitly in the 2016.09
attack: exponent vectors of Gauss sums.

• Search small elements of subring R ∩ R .
• Square roots: see next slide.

Of course, always apply automorphisms. See also
2022 Bernstein “Fast norm computation in
smooth-degree Abelian number fields”.

Daniel J. Bernstein, Slow-boiled frogs 28

https://cr.yp.to/papers.html#abeliannorms
https://cr.yp.to/papers.html#abeliannorms


Square-root details
Up (meaning US where p ∈ P ⇔ P ∈ S) for
p ∈ 1 + 2nZ is almost generated by cyclotomic
units, Jacobi sums, and R ∩ Up, assuming h+ = 1.
Index is a power of 2, so find the full group Up
by repeatedly adjoining square roots.

How to find square products of powers of current
generators? Map the group in many ways to F2:
ordP for all P; random quadratic characters
(squareness mod random odd prime ideals).
Then fast linear algebra over F2 finds squares,
as in NFS starting with 1991 Adleman.

Daniel J. Bernstein, Slow-boiled frogs 29

https://dl.acm.org/doi/pdf/10.1145/103418.103432


Square-root details
Up (meaning US where p ∈ P ⇔ P ∈ S) for
p ∈ 1 + 2nZ is almost generated by cyclotomic
units, Jacobi sums, and R ∩ Up, assuming h+ = 1.
Index is a power of 2, so find the full group Up
by repeatedly adjoining square roots.
How to find square products of powers of current
generators? Map the group in many ways to F2:
ordP for all P; random quadratic characters
(squareness mod random odd prime ideals).
Then fast linear algebra over F2 finds squares,
as in NFS starting with 1991 Adleman.

Daniel J. Bernstein, Slow-boiled frogs 29

https://dl.acm.org/doi/pdf/10.1145/103418.103432


What about larger S?
For, e.g., Up,q: Jacobi sums give p-units and
q-units, but they don’t produce mixing of p with q.
Index after all of the constructions so far,
including square roots, is h− ∈ exp(n1+o(1)).
Standard cyclotomic algorithms quickly compute h−.

2021 Bernard–Lesavourey–Nguyen–Roux-Langlois:
adjoining h−th roots is “hopeless in general”
since h− has huge prime factors.
Does this mean we have to fill in the remaining
S-units by searching small elements of R?

Daniel J. Bernstein, Slow-boiled frogs 30

https://eprint.iacr.org/2021/1384


What about larger S?
For, e.g., Up,q: Jacobi sums give p-units and
q-units, but they don’t produce mixing of p with q.
Index after all of the constructions so far,
including square roots, is h− ∈ exp(n1+o(1)).
Standard cyclotomic algorithms quickly compute h−.
2021 Bernard–Lesavourey–Nguyen–Roux-Langlois:
adjoining h−th roots is “hopeless in general”
since h− has huge prime factors.

Does this mean we have to fill in the remaining
S-units by searching small elements of R?

Daniel J. Bernstein, Slow-boiled frogs 30

https://eprint.iacr.org/2021/1384


What about larger S?
For, e.g., Up,q: Jacobi sums give p-units and
q-units, but they don’t produce mixing of p with q.
Index after all of the constructions so far,
including square roots, is h− ∈ exp(n1+o(1)).
Standard cyclotomic algorithms quickly compute h−.
2021 Bernard–Lesavourey–Nguyen–Roux-Langlois:
adjoining h−th roots is “hopeless in general”
since h− has huge prime factors.
Does this mean we have to fill in the remaining
S-units by searching small elements of R?

Daniel J. Bernstein, Slow-boiled frogs 30

https://eprint.iacr.org/2021/1384


Adjoining huge roots

Have group generated by g1, g2, . . .. Goal: reduce
index by huge prime r , by adjoining an r th root g ′.

Map the group in many ways to Z/r :
ordP ; random order-r characters (followed by
discrete logs). Fast linear algebra over Z/r
then finds exponent vector (e1, e2, . . .)
where g e1

1 g e2
2 · · · is nontrivially an r th power.

Daniel J. Bernstein, Slow-boiled frogs 31



Adjoining huge roots

Have group generated by g1, g2, . . .. Goal: reduce
index by huge prime r , by adjoining an r th root g ′.
Map the group in many ways to Z/r :
ordP ; random order-r characters (followed by
discrete logs). Fast linear algebra over Z/r
then finds exponent vector (e1, e2, . . .)
where g e1

1 g e2
2 · · · is nontrivially an r th power.

Daniel J. Bernstein, Slow-boiled frogs 31



Adjoining huge roots, continued

Expect e1, e2, . . . to have same scale as r , so can’t
afford to write down the coefficients of g e1

1 g e2
2 · · · .

But the r th root g ′ is much smaller. Recover g ′

from Log g ′ = (e1/r) Log g1 + (e2/r) Log g2 + · · · .
Summary: thanks to cyclotomic structure,
computing Up,q boils down to computing R ∩ Up,q,
which is a problem of degree only n/2.

Daniel J. Bernstein, Slow-boiled frogs 32



Adjoining huge roots, continued

Expect e1, e2, . . . to have same scale as r , so can’t
afford to write down the coefficients of g e1

1 g e2
2 · · · .

But the r th root g ′ is much smaller. Recover g ′

from Log g ′ = (e1/r) Log g1 + (e2/r) Log g2 + · · · .

Summary: thanks to cyclotomic structure,
computing Up,q boils down to computing R ∩ Up,q,
which is a problem of degree only n/2.

Daniel J. Bernstein, Slow-boiled frogs 32



Adjoining huge roots, continued

Expect e1, e2, . . . to have same scale as r , so can’t
afford to write down the coefficients of g e1

1 g e2
2 · · · .

But the r th root g ′ is much smaller. Recover g ′

from Log g ′ = (e1/r) Log g1 + (e2/r) Log g2 + · · · .
Summary: thanks to cyclotomic structure,
computing Up,q boils down to computing R ∩ Up,q,
which is a problem of degree only n/2.

Daniel J. Bernstein, Slow-boiled frogs 32



Unsurprising for number theorists
Very long history of number theorists studying
general number fields. Often proofs and speedups
exploit subfields, automorphisms, etc. Example:

• Cyclotomics have short textbook generators of
a finite-index subgroup of the unit group.

• For general number fields, best methods known
are subexp, not poly. (Even with a quantum
computer, how do we find short generators?)

Given previous literature on faster computations
exploiting special fields, why would we be surprised
by faster lattice attacks exploiting special fields?

Daniel J. Bernstein, Slow-boiled frogs 33



The cyclotomic debate in crypto
2014.02 Bernstein: R = Z[x ]/(xp − x − 1) is a safer
ring choice for lattice-based crypto. Prime degree,
so no intermediate subfields; very large Galois
group, so very far from automorphisms.

Compare 2017 Kyber: “Z[X ]/(X n + 1) is one of the
most widely studied, and best understood, rings
(along with other cyclotomic rings) in algebraic
number theory. The fact that no attacks have been
found against its use for cryptosystems like Kyber
makes it a much more conservative choice than
some ring that is harder to analyze and may show
weaknesses only after many more years of study.”

Daniel J. Bernstein, Slow-boiled frogs 34

https://blog.cr.yp.to/20140213-ideal.html
https://pq-crystals.org/kyber/data/kyber-specification.pdf


The cyclotomic debate in crypto
2014.02 Bernstein: R = Z[x ]/(xp − x − 1) is a safer
ring choice for lattice-based crypto. Prime degree,
so no intermediate subfields; very large Galois
group, so very far from automorphisms.
Compare 2017 Kyber: “Z[X ]/(X n + 1) is one of the
most widely studied, and best understood, rings
(along with other cyclotomic rings) in algebraic
number theory. The fact that no attacks have been
found against its use for cryptosystems like Kyber
makes it a much more conservative choice than
some ring that is harder to analyze and may show
weaknesses only after many more years of study.”

Daniel J. Bernstein, Slow-boiled frogs 34

https://blog.cr.yp.to/20140213-ideal.html
https://pq-crystals.org/kyber/data/kyber-specification.pdf


Last topic: A trap for the unwary
Common practice in lattice-based cryptography:
if a lattice appears, analyze it as a random lattice
with the same dimension and determinant.
Deceptive name: “Gaussian heuristic”.
Heuristic 1: shortest nonzero length is
always (1 + o(1))(n/2πe)1/2(det L)1/n.

Heuristic 2: high-probability simple reduction
needs #D at least exponential in n.
Why this is a trap: The heuristics are wrong
for, e.g., Zn and other orthogonal lattices.

Daniel J. Bernstein, Slow-boiled frogs 35



Last topic: A trap for the unwary
Common practice in lattice-based cryptography:
if a lattice appears, analyze it as a random lattice
with the same dimension and determinant.
Deceptive name: “Gaussian heuristic”.
Heuristic 1: shortest nonzero length is
always (1 + o(1))(n/2πe)1/2(det L)1/n.
Heuristic 2: high-probability simple reduction
needs #D at least exponential in n.

Why this is a trap: The heuristics are wrong
for, e.g., Zn and other orthogonal lattices.

Daniel J. Bernstein, Slow-boiled frogs 35



Last topic: A trap for the unwary
Common practice in lattice-based cryptography:
if a lattice appears, analyze it as a random lattice
with the same dimension and determinant.
Deceptive name: “Gaussian heuristic”.
Heuristic 1: shortest nonzero length is
always (1 + o(1))(n/2πe)1/2(det L)1/n.
Heuristic 2: high-probability simple reduction
needs #D at least exponential in n.
Why this is a trap: The heuristics are wrong
for, e.g., Zn and other orthogonal lattices.

Daniel J. Bernstein, Slow-boiled frogs 35



How to not understand S-unit lattices

The analysis from 2019 Pellet-Mary–Hanrot–Stehlé
applied these heuristics to S-unit lattices,
concluding that S-unit attacks need
time exp(n1+o(1)) for poly approx factor;
“there is a pre-processing phase of exponential
time” to reach factors below exp(n1/2+o(1));
optimal #S is n1+o(1); optimal #D is exp(n1+o(1)).
2021.08.24 Ducas–Pellet-Mary, same reasoning: for
#S, #D ∈ exp(n1/2+o(1)), success probability of
S-unit reduction “would be ridiculously small”.

Daniel J. Bernstein, Slow-boiled frogs 36

https://eprint.iacr.org/2019/215


Non-randomness of S-unit lattices
2021.10 Bernstein–Lange: those heuristics say the
probability converges to 0 for #S → ∞ if
#D ∈ #S1+o(1); but it actually converges to 1.
Paper gives 5 different ways to see that S-unit
lattices are much closer to orthogonal than to
random; 1 more way where this is conjectured.
How this was summarized in the 2021.08.20 talk:
the S-unit lattice is an “amazingly special lattice”,
in particular regarding its “analytic features”.
Further analysis, experiments, more speedups:
see https://s-unit.attacks.cr.yp.to.

Daniel J. Bernstein, Slow-boiled frogs 37

https://cr.yp.to/papers.html#spherical
https://s-unit.attacks.cr.yp.to

