
Algorithms for
attacking lattices

Daniel J. Bernstein

2017 Dilithium

“In this paper, we present a new digital signature
scheme Dilithium, whose security is based on the
hardness of finding short vectors in lattices.”
“It can be shown that in the (classical) random
oracle model, Dilithium is SUF-CMA secure based
on the hardness of the standard MLWE and MSIS
lattice problems.”
“Since we are aiming for long-term security, we have
analyzed the applicability of lattice attacks from a
very favorable, to the attacker, viewpoint.”

Daniel J. Bernstein, Algorithms for attacking lattices 2

https://eprint.iacr.org/2017/633

2022 NIST
“Enumeration algorithms . . . have run times that
are super-exponential . . . Sieving
algorithms . . . require an exponential amount of
memory. . . . The performance of sieving algorithms
has been improving [306–314], however recent
results [315] indicate that improvements in locally
sensitive hash techniques, which have resulted in the
largest decreases in asymptotic complexity for
sieving thus far, cannot be improved
further. . . . understanding of the concrete security
of lattice-based cryptosystems has greatly improved
over the past several years”

Daniel J. Bernstein, Algorithms for attacking lattices 3

https://web.archive.org/web/20230824124130/https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413-upd1.pdf

2024 HAETAE (version 2.1)

“We introduce HAETAE, a new post-quantum
digital signature scheme, whose security is based on
the hardness of the module versions of the lattice
problems LWE and SIS.”
“Our scheme relies on the difficulty of hard lattice
problems, which have been well-studied for a long
time.”
“For setting parameters, we estimated the costs of
practical attacks, as in Dilithium, Falcon, and many
other NIST-submitted schemes.”

Daniel J. Bernstein, Algorithms for attacking lattices 4

https://kpqc.or.kr/images/pdf/HAETAE_Document.pdf

Conclusion: Lattices are secure.

End of talk

.?

Daniel J. Bernstein, Algorithms for attacking lattices 5

Conclusion: Lattices are secure.

End of talk.

?

Daniel J. Bernstein, Algorithms for attacking lattices 5

Conclusion: Lattices are secure.

End of talk

.

?

Daniel J. Bernstein, Algorithms for attacking lattices 5

Why do people claim SVP is strong?

Myths about history: “the underlying worst-case
problems—e.g., approximating short vectors in
lattices—have been deeply studied by some of the
great mathematicians and computer scientists going
back at least to Gauss, and appear to be very hard.”

Reality: Lagrange and Gauss encountered
2-dimensional lattices in number theory
and applied a simple, fast SVP algorithm.
Basically Euclid’s algorithm: Replace lattice basis
u, v with shorter u ± v , v or shorter u, v ± u.

Daniel J. Bernstein, Algorithms for attacking lattices 6

https://gallica.bnf.fr/ark:/12148/bpt6k229222d/f696
https://archive.org/details/disquisitionesa00gaus

Why do people claim SVP is strong?

Myths about history: “the underlying worst-case
problems—e.g., approximating short vectors in
lattices—have been deeply studied by some of the
great mathematicians and computer scientists going
back at least to Gauss, and appear to be very hard.”
Reality: Lagrange and Gauss encountered
2-dimensional lattices in number theory
and applied a simple, fast SVP algorithm.

Basically Euclid’s algorithm: Replace lattice basis
u, v with shorter u ± v , v or shorter u, v ± u.

Daniel J. Bernstein, Algorithms for attacking lattices 6

https://gallica.bnf.fr/ark:/12148/bpt6k229222d/f696
https://archive.org/details/disquisitionesa00gaus

Why do people claim SVP is strong?

Myths about history: “the underlying worst-case
problems—e.g., approximating short vectors in
lattices—have been deeply studied by some of the
great mathematicians and computer scientists going
back at least to Gauss, and appear to be very hard.”
Reality: Lagrange and Gauss encountered
2-dimensional lattices in number theory
and applied a simple, fast SVP algorithm.
Basically Euclid’s algorithm: Replace lattice basis
u, v with shorter u ± v , v or shorter u, v ± u.

Daniel J. Bernstein, Algorithms for attacking lattices 6

https://gallica.bnf.fr/ark:/12148/bpt6k229222d/f696
https://archive.org/details/disquisitionesa00gaus

Mathematicians proving existence
Hermite wrote a letter (published 1850) to Jacobi
showing that any rank-n lattice L for n ≥ 1
has a nonzero vector of length at most
(4/3)(n−1)/4(det L)1/n. Proof generalizes Lagrange.

Easy improvement, using 1896 Minkowski
convex-body theorem: length at most
(2/vol B1/n

n)(det L)1/n where
Bn is the n-dimensional unit ball. Have
2/vol B1/n

n ∈ (2 + o(1))
√

n/2πe as n → ∞.
Lattices show up in many math papers.
Most of those papers do not study speed.

Daniel J. Bernstein, Algorithms for attacking lattices 7

https://www.degruyter.com/document/doi/10.1515/crll.1850.40.279/pdf

Mathematicians proving existence
Hermite wrote a letter (published 1850) to Jacobi
showing that any rank-n lattice L for n ≥ 1
has a nonzero vector of length at most
(4/3)(n−1)/4(det L)1/n. Proof generalizes Lagrange.
Easy improvement, using 1896 Minkowski
convex-body theorem: length at most
(2/vol B1/n

n)(det L)1/n where
Bn is the n-dimensional unit ball. Have
2/vol B1/n

n ∈ (2 + o(1))
√

n/2πe as n → ∞.

Lattices show up in many math papers.
Most of those papers do not study speed.

Daniel J. Bernstein, Algorithms for attacking lattices 7

https://www.degruyter.com/document/doi/10.1515/crll.1850.40.279/pdf

Mathematicians proving existence
Hermite wrote a letter (published 1850) to Jacobi
showing that any rank-n lattice L for n ≥ 1
has a nonzero vector of length at most
(4/3)(n−1)/4(det L)1/n. Proof generalizes Lagrange.
Easy improvement, using 1896 Minkowski
convex-body theorem: length at most
(2/vol B1/n

n)(det L)1/n where
Bn is the n-dimensional unit ball. Have
2/vol B1/n

n ∈ (2 + o(1))
√

n/2πe as n → ∞.
Lattices show up in many math papers.
Most of those papers do not study speed.

Daniel J. Bernstein, Algorithms for attacking lattices 7

https://www.degruyter.com/document/doi/10.1515/crll.1850.40.279/pdf

Sufficiently fast lattice computations

e.g. 1967 Coveyou–Macpherson “Fourier analysis of
random number generators” encountered lattices
with n ≤ 10. Solved SVP by enumeration of lattice
vectors after preliminary lattice-basis reduction.

e.g. 1982 Lenstra–Lenstra–Lovasz “Factoring
polynomials with rational coefficients” included
a polynomial-time algorithm for length at most
(4/3 + ϵ)(n−1)/4(det L)1/n, which is good enough
for factorization (and many other applications).

Daniel J. Bernstein, Algorithms for attacking lattices 8

https://web.archive.org/web/20081031144215id_/http://www.cs.fsu.edu/~mascagni/RNG_Papers/Coveyou_MacPherson_1967.pdf
https://web.archive.org/web/20081031144215id_/http://www.cs.fsu.edu/~mascagni/RNG_Papers/Coveyou_MacPherson_1967.pdf
https://www.math.leidenuniv.nl/~hwl/PUBLICATIONS/1982f/art.pdf
https://www.math.leidenuniv.nl/~hwl/PUBLICATIONS/1982f/art.pdf

Sufficiently fast lattice computations

e.g. 1967 Coveyou–Macpherson “Fourier analysis of
random number generators” encountered lattices
with n ≤ 10. Solved SVP by enumeration of lattice
vectors after preliminary lattice-basis reduction.
e.g. 1982 Lenstra–Lenstra–Lovasz “Factoring
polynomials with rational coefficients” included
a polynomial-time algorithm for length at most
(4/3 + ϵ)(n−1)/4(det L)1/n, which is good enough
for factorization (and many other applications).

Daniel J. Bernstein, Algorithms for attacking lattices 8

https://web.archive.org/web/20081031144215id_/http://www.cs.fsu.edu/~mascagni/RNG_Papers/Coveyou_MacPherson_1967.pdf
https://web.archive.org/web/20081031144215id_/http://www.cs.fsu.edu/~mascagni/RNG_Papers/Coveyou_MacPherson_1967.pdf
https://www.math.leidenuniv.nl/~hwl/PUBLICATIONS/1982f/art.pdf
https://www.math.leidenuniv.nl/~hwl/PUBLICATIONS/1982f/art.pdf

Asymptotics improving

1983 Kannan, 1987 Kannan:
enumeration solves SVP-n in time 2O(n log n).

1987 Schnorr: the BKZ-(β, n) algorithm produces
length at most (2β)n/β(det L)1/n for 2 ≤ β ≤ n,
at the expense of calling an SVP-β subroutine.
BKZ-(β, n) using SVP-β enumeration is poly-time
if β ∈ Θ(log n/log log n) as n → ∞,
so poly-time for length (1 + o(1))n(det L)1/n.

Daniel J. Bernstein, Algorithms for attacking lattices 9

https://scholar.archive.org/work/ztpknsiwejgkjgu3tnknwj2opu/access/wayback/https://s3-eu-west-1.amazonaws.com/pstorage-cmu-348901238291901/12097865/file.pdf
https://www.sciencedirect.com/science/article/pii/0304397587900648

Asymptotics improving

1983 Kannan, 1987 Kannan:
enumeration solves SVP-n in time 2O(n log n).
1987 Schnorr: the BKZ-(β, n) algorithm produces
length at most (2β)n/β(det L)1/n for 2 ≤ β ≤ n,
at the expense of calling an SVP-β subroutine.

BKZ-(β, n) using SVP-β enumeration is poly-time
if β ∈ Θ(log n/log log n) as n → ∞,
so poly-time for length (1 + o(1))n(det L)1/n.

Daniel J. Bernstein, Algorithms for attacking lattices 9

https://scholar.archive.org/work/ztpknsiwejgkjgu3tnknwj2opu/access/wayback/https://s3-eu-west-1.amazonaws.com/pstorage-cmu-348901238291901/12097865/file.pdf
https://www.sciencedirect.com/science/article/pii/0304397587900648

Asymptotics improving

1983 Kannan, 1987 Kannan:
enumeration solves SVP-n in time 2O(n log n).
1987 Schnorr: the BKZ-(β, n) algorithm produces
length at most (2β)n/β(det L)1/n for 2 ≤ β ≤ n,
at the expense of calling an SVP-β subroutine.
BKZ-(β, n) using SVP-β enumeration is poly-time
if β ∈ Θ(log n/log log n) as n → ∞,
so poly-time for length (1 + o(1))n(det L)1/n.

Daniel J. Bernstein, Algorithms for attacking lattices 9

https://scholar.archive.org/work/ztpknsiwejgkjgu3tnknwj2opu/access/wayback/https://s3-eu-west-1.amazonaws.com/pstorage-cmu-348901238291901/12097865/file.pdf
https://www.sciencedirect.com/science/article/pii/0304397587900648

BKZ
One “tour” of BKZ-(β, n):

• Start with basis b1, b2, . . . , bn.
• Replace b1 with short combination of

b1, b2, . . . , bβ. Can tweak to still have basis.

• Replace b2 with short combination of
b2, . . . , bβ+1 (projected orthogonally to b1).

• Replace b3 with short combination of
b3, . . . , bβ+2 (projected orthogonally to b1, b2).

• Replace b4, then b5, . . . , then bn−β+1.
Continue through some number of tours.

Daniel J. Bernstein, Algorithms for attacking lattices 10

BKZ
One “tour” of BKZ-(β, n):

• Start with basis b1, b2, . . . , bn.
• Replace b1 with short combination of

b1, b2, . . . , bβ. Can tweak to still have basis.
• Replace b2 with short combination of

b2, . . . , bβ+1 (projected orthogonally to b1).

• Replace b3 with short combination of
b3, . . . , bβ+2 (projected orthogonally to b1, b2).

• Replace b4, then b5, . . . , then bn−β+1.
Continue through some number of tours.

Daniel J. Bernstein, Algorithms for attacking lattices 10

BKZ
One “tour” of BKZ-(β, n):

• Start with basis b1, b2, . . . , bn.
• Replace b1 with short combination of

b1, b2, . . . , bβ. Can tweak to still have basis.
• Replace b2 with short combination of

b2, . . . , bβ+1 (projected orthogonally to b1).
• Replace b3 with short combination of

b3, . . . , bβ+2 (projected orthogonally to b1, b2).

• Replace b4, then b5, . . . , then bn−β+1.
Continue through some number of tours.

Daniel J. Bernstein, Algorithms for attacking lattices 10

BKZ
One “tour” of BKZ-(β, n):

• Start with basis b1, b2, . . . , bn.
• Replace b1 with short combination of

b1, b2, . . . , bβ. Can tweak to still have basis.
• Replace b2 with short combination of

b2, . . . , bβ+1 (projected orthogonally to b1).
• Replace b3 with short combination of

b3, . . . , bβ+2 (projected orthogonally to b1, b2).
• Replace b4, then b5, . . . , then bn−β+1.

Continue through some number of tours.

Daniel J. Bernstein, Algorithms for attacking lattices 10

BKZ
One “tour” of BKZ-(β, n):

• Start with basis b1, b2, . . . , bn.
• Replace b1 with short combination of

b1, b2, . . . , bβ. Can tweak to still have basis.
• Replace b2 with short combination of

b2, . . . , bβ+1 (projected orthogonally to b1).
• Replace b3 with short combination of

b3, . . . , bβ+2 (projected orthogonally to b1, b2).
• Replace b4, then b5, . . . , then bn−β+1.

Continue through some number of tours.

Daniel J. Bernstein, Algorithms for attacking lattices 10

Enumeration
Given basis b1, b2, . . . , bn,
search all small (c1, c2, . . . , cn) ∈ Zn

to find shortest nonzero c1b1 + c2b2 + · · · + cnbn.

Can show: If c1b1 + c2b2 + · · · + cnbn
is shorter than shortest vector found so far
then |cj | ≤ Hj for an efficiently computable Hj .
Preliminary reduction of b1, b2, . . . , bn
makes Hj smaller, speeding up enumeration.
“Recursive preprocessing”: BKZ-(β, n) calls
Enum-β, which calls BKZ-(β′, β) with β′ < β.

Daniel J. Bernstein, Algorithms for attacking lattices 11

Enumeration
Given basis b1, b2, . . . , bn,
search all small (c1, c2, . . . , cn) ∈ Zn

to find shortest nonzero c1b1 + c2b2 + · · · + cnbn.
Can show: If c1b1 + c2b2 + · · · + cnbn
is shorter than shortest vector found so far
then |cj | ≤ Hj for an efficiently computable Hj .

Preliminary reduction of b1, b2, . . . , bn
makes Hj smaller, speeding up enumeration.
“Recursive preprocessing”: BKZ-(β, n) calls
Enum-β, which calls BKZ-(β′, β) with β′ < β.

Daniel J. Bernstein, Algorithms for attacking lattices 11

Enumeration
Given basis b1, b2, . . . , bn,
search all small (c1, c2, . . . , cn) ∈ Zn

to find shortest nonzero c1b1 + c2b2 + · · · + cnbn.
Can show: If c1b1 + c2b2 + · · · + cnbn
is shorter than shortest vector found so far
then |cj | ≤ Hj for an efficiently computable Hj .
Preliminary reduction of b1, b2, . . . , bn
makes Hj smaller, speeding up enumeration.

“Recursive preprocessing”: BKZ-(β, n) calls
Enum-β, which calls BKZ-(β′, β) with β′ < β.

Daniel J. Bernstein, Algorithms for attacking lattices 11

Enumeration
Given basis b1, b2, . . . , bn,
search all small (c1, c2, . . . , cn) ∈ Zn

to find shortest nonzero c1b1 + c2b2 + · · · + cnbn.
Can show: If c1b1 + c2b2 + · · · + cnbn
is shorter than shortest vector found so far
then |cj | ≤ Hj for an efficiently computable Hj .
Preliminary reduction of b1, b2, . . . , bn
makes Hj smaller, speeding up enumeration.
“Recursive preprocessing”: BKZ-(β, n) calls
Enum-β, which calls BKZ-(β′, β) with β′ < β.

Daniel J. Bernstein, Algorithms for attacking lattices 11

Important trends
Already visible in these papers, continuing today:

• Lattice algorithms becoming more complicated.
• Analyses becoming much more complicated.

Complicated attack analyses are a security risk:
• Errors/uncertainties regarding algorithm cost.
• Difficulties optimizing parameters.
• Difficulties managing the search for speedups.

e.g. “pruned enumeration”: What happens if we
require |cj | ≤ (1/2)Hj? No guarantee of success,
but what’s the chance that it works if we randomize
b1, b2, . . . , bn? What if we modify the 1/2?

Daniel J. Bernstein, Algorithms for attacking lattices 12

Important trends
Already visible in these papers, continuing today:

• Lattice algorithms becoming more complicated.
• Analyses becoming much more complicated.

Complicated attack analyses are a security risk:
• Errors/uncertainties regarding algorithm cost.
• Difficulties optimizing parameters.
• Difficulties managing the search for speedups.

e.g. “pruned enumeration”: What happens if we
require |cj | ≤ (1/2)Hj? No guarantee of success,
but what’s the chance that it works if we randomize
b1, b2, . . . , bn? What if we modify the 1/2?

Daniel J. Bernstein, Algorithms for attacking lattices 12

Important trends
Already visible in these papers, continuing today:

• Lattice algorithms becoming more complicated.
• Analyses becoming much more complicated.

Complicated attack analyses are a security risk:
• Errors/uncertainties regarding algorithm cost.
• Difficulties optimizing parameters.
• Difficulties managing the search for speedups.

e.g. “pruned enumeration”: What happens if we
require |cj | ≤ (1/2)Hj? No guarantee of success,
but what’s the chance that it works if we randomize
b1, b2, . . . , bn? What if we modify the 1/2?

Daniel J. Bernstein, Algorithms for attacking lattices 12

Sieving
2001 Ajtai–Kumar–Sivakumar:
“sieving” solves SVP-n in time 2O(n).
Basic sieving idea:

• Start with LLL-reduced basis b1, . . . , bn.
• Write down random combinations

c1b1 + · · · + cnbn.

• Given 2Θ(n) combinations, find 2Θ(n) close pairs
u, v , meaning |u − v | < 0.5 min{|u|, |v |}.

• Find 2Θ(n) close differences of those pairs.
• Find 2Θ(n) close differences of differences.
• etc.

Daniel J. Bernstein, Algorithms for attacking lattices 13

https://web.archive.org/web/20170829045013id_/http://www.csie.nuk.edu.tw/~cychen/Lattices/A%20Sieve%20Algorithm%20for%20the%20Shortest%20Lattice%20Vector%20Problem.pdf

Sieving
2001 Ajtai–Kumar–Sivakumar:
“sieving” solves SVP-n in time 2O(n).
Basic sieving idea:

• Start with LLL-reduced basis b1, . . . , bn.
• Write down random combinations

c1b1 + · · · + cnbn.
• Given 2Θ(n) combinations, find 2Θ(n) close pairs

u, v , meaning |u − v | < 0.5 min{|u|, |v |}.

• Find 2Θ(n) close differences of those pairs.
• Find 2Θ(n) close differences of differences.
• etc.

Daniel J. Bernstein, Algorithms for attacking lattices 13

https://web.archive.org/web/20170829045013id_/http://www.csie.nuk.edu.tw/~cychen/Lattices/A%20Sieve%20Algorithm%20for%20the%20Shortest%20Lattice%20Vector%20Problem.pdf

Sieving
2001 Ajtai–Kumar–Sivakumar:
“sieving” solves SVP-n in time 2O(n).
Basic sieving idea:

• Start with LLL-reduced basis b1, . . . , bn.
• Write down random combinations

c1b1 + · · · + cnbn.
• Given 2Θ(n) combinations, find 2Θ(n) close pairs

u, v , meaning |u − v | < 0.5 min{|u|, |v |}.
• Find 2Θ(n) close differences of those pairs.

• Find 2Θ(n) close differences of differences.
• etc.

Daniel J. Bernstein, Algorithms for attacking lattices 13

https://web.archive.org/web/20170829045013id_/http://www.csie.nuk.edu.tw/~cychen/Lattices/A%20Sieve%20Algorithm%20for%20the%20Shortest%20Lattice%20Vector%20Problem.pdf

Sieving
2001 Ajtai–Kumar–Sivakumar:
“sieving” solves SVP-n in time 2O(n).
Basic sieving idea:

• Start with LLL-reduced basis b1, . . . , bn.
• Write down random combinations

c1b1 + · · · + cnbn.
• Given 2Θ(n) combinations, find 2Θ(n) close pairs

u, v , meaning |u − v | < 0.5 min{|u|, |v |}.
• Find 2Θ(n) close differences of those pairs.
• Find 2Θ(n) close differences of differences.

• etc.

Daniel J. Bernstein, Algorithms for attacking lattices 13

https://web.archive.org/web/20170829045013id_/http://www.csie.nuk.edu.tw/~cychen/Lattices/A%20Sieve%20Algorithm%20for%20the%20Shortest%20Lattice%20Vector%20Problem.pdf

Sieving
2001 Ajtai–Kumar–Sivakumar:
“sieving” solves SVP-n in time 2O(n).
Basic sieving idea:

• Start with LLL-reduced basis b1, . . . , bn.
• Write down random combinations

c1b1 + · · · + cnbn.
• Given 2Θ(n) combinations, find 2Θ(n) close pairs

u, v , meaning |u − v | < 0.5 min{|u|, |v |}.
• Find 2Θ(n) close differences of those pairs.
• Find 2Θ(n) close differences of differences.
• etc.

Daniel J. Bernstein, Algorithms for attacking lattices 13

https://web.archive.org/web/20170829045013id_/http://www.csie.nuk.edu.tw/~cychen/Lattices/A%20Sieve%20Algorithm%20for%20the%20Shortest%20Lattice%20Vector%20Problem.pdf

What is the SVP exponent?
Approximate α for some algorithms believed to take
time 2(α+o(1))n (without quantum computation):

• 0.415: 2008 Nguyen–Vidick.
• 0.415: 2010 Micciancio–Voulgaris.

• 0.384: 2011 Wang–Liu–Tian–Bi.
• 0.378: 2013 Zhang–Pan–Hu.
• 0.337: 2014 Laarhoven.
• 0.298: 2015 Laarhoven–de Weger.
• 0.292: 2015 Becker–Ducas–Gama–Laarhoven.

“Locality-sensitive hashing” of lattice vectors v
gives subquadratic search for v close to u.

Daniel J. Bernstein, Algorithms for attacking lattices 14

https://people.csail.mit.edu/vidick/JoMC08.pdf
https://cseweb.ucsd.edu/~daniele/papers/Sieve.pdf
https://eprint.iacr.org/2010/647
https://eprint.iacr.org/2013/536
https://eprint.iacr.org/2014/744
https://eprint.iacr.org/2015/211
https://eprint.iacr.org/2015/1128

What is the SVP exponent?
Approximate α for some algorithms believed to take
time 2(α+o(1))n (without quantum computation):

• 0.415: 2008 Nguyen–Vidick.
• 0.415: 2010 Micciancio–Voulgaris.
• 0.384: 2011 Wang–Liu–Tian–Bi.

• 0.378: 2013 Zhang–Pan–Hu.
• 0.337: 2014 Laarhoven.
• 0.298: 2015 Laarhoven–de Weger.
• 0.292: 2015 Becker–Ducas–Gama–Laarhoven.

“Locality-sensitive hashing” of lattice vectors v
gives subquadratic search for v close to u.

Daniel J. Bernstein, Algorithms for attacking lattices 14

https://people.csail.mit.edu/vidick/JoMC08.pdf
https://cseweb.ucsd.edu/~daniele/papers/Sieve.pdf
https://eprint.iacr.org/2010/647
https://eprint.iacr.org/2013/536
https://eprint.iacr.org/2014/744
https://eprint.iacr.org/2015/211
https://eprint.iacr.org/2015/1128

What is the SVP exponent?
Approximate α for some algorithms believed to take
time 2(α+o(1))n (without quantum computation):

• 0.415: 2008 Nguyen–Vidick.
• 0.415: 2010 Micciancio–Voulgaris.
• 0.384: 2011 Wang–Liu–Tian–Bi.
• 0.378: 2013 Zhang–Pan–Hu.

• 0.337: 2014 Laarhoven.
• 0.298: 2015 Laarhoven–de Weger.
• 0.292: 2015 Becker–Ducas–Gama–Laarhoven.

“Locality-sensitive hashing” of lattice vectors v
gives subquadratic search for v close to u.

Daniel J. Bernstein, Algorithms for attacking lattices 14

https://people.csail.mit.edu/vidick/JoMC08.pdf
https://cseweb.ucsd.edu/~daniele/papers/Sieve.pdf
https://eprint.iacr.org/2010/647
https://eprint.iacr.org/2013/536
https://eprint.iacr.org/2014/744
https://eprint.iacr.org/2015/211
https://eprint.iacr.org/2015/1128

What is the SVP exponent?
Approximate α for some algorithms believed to take
time 2(α+o(1))n (without quantum computation):

• 0.415: 2008 Nguyen–Vidick.
• 0.415: 2010 Micciancio–Voulgaris.
• 0.384: 2011 Wang–Liu–Tian–Bi.
• 0.378: 2013 Zhang–Pan–Hu.
• 0.337: 2014 Laarhoven.

• 0.298: 2015 Laarhoven–de Weger.
• 0.292: 2015 Becker–Ducas–Gama–Laarhoven.

“Locality-sensitive hashing” of lattice vectors v
gives subquadratic search for v close to u.

Daniel J. Bernstein, Algorithms for attacking lattices 14

https://people.csail.mit.edu/vidick/JoMC08.pdf
https://cseweb.ucsd.edu/~daniele/papers/Sieve.pdf
https://eprint.iacr.org/2010/647
https://eprint.iacr.org/2013/536
https://eprint.iacr.org/2014/744
https://eprint.iacr.org/2015/211
https://eprint.iacr.org/2015/1128

What is the SVP exponent?
Approximate α for some algorithms believed to take
time 2(α+o(1))n (without quantum computation):

• 0.415: 2008 Nguyen–Vidick.
• 0.415: 2010 Micciancio–Voulgaris.
• 0.384: 2011 Wang–Liu–Tian–Bi.
• 0.378: 2013 Zhang–Pan–Hu.
• 0.337: 2014 Laarhoven.
• 0.298: 2015 Laarhoven–de Weger.
• 0.292: 2015 Becker–Ducas–Gama–Laarhoven.

“Locality-sensitive hashing” of lattice vectors v
gives subquadratic search for v close to u.

Daniel J. Bernstein, Algorithms for attacking lattices 14

https://people.csail.mit.edu/vidick/JoMC08.pdf
https://cseweb.ucsd.edu/~daniele/papers/Sieve.pdf
https://eprint.iacr.org/2010/647
https://eprint.iacr.org/2013/536
https://eprint.iacr.org/2014/744
https://eprint.iacr.org/2015/211
https://eprint.iacr.org/2015/1128

What is the SVP exponent?
Approximate α for some algorithms believed to take
time 2(α+o(1))n (without quantum computation):

• 0.415: 2008 Nguyen–Vidick.
• 0.415: 2010 Micciancio–Voulgaris.
• 0.384: 2011 Wang–Liu–Tian–Bi.
• 0.378: 2013 Zhang–Pan–Hu.
• 0.337: 2014 Laarhoven.
• 0.298: 2015 Laarhoven–de Weger.
• 0.292: 2015 Becker–Ducas–Gama–Laarhoven.

“Locality-sensitive hashing” of lattice vectors v
gives subquadratic search for v close to u.

Daniel J. Bernstein, Algorithms for attacking lattices 14

https://people.csail.mit.edu/vidick/JoMC08.pdf
https://cseweb.ucsd.edu/~daniele/papers/Sieve.pdf
https://eprint.iacr.org/2010/647
https://eprint.iacr.org/2013/536
https://eprint.iacr.org/2014/744
https://eprint.iacr.org/2015/211
https://eprint.iacr.org/2015/1128

Many more SVP improvements
e.g. 2017 Ducas “dimensions for free”:
Solve SVP-n using Sieving-(n − d).

Basic idea:
• Project lattice orthogonally to b1, b2, . . . , bd .
• Sieve. Gives 2Θ(n−d) short vectors in projected

lattice, not just shortest nonzero vector.
• Hope that shortest nonzero vector in original

lattice projects to one of those vectors.
High success probability with d ∈ Θ(n/ log n).
Maybe better to increase d , try repeatedly.

Daniel J. Bernstein, Algorithms for attacking lattices 15

https://eprint.iacr.org/2017/999

Many more SVP improvements
e.g. 2017 Ducas “dimensions for free”:
Solve SVP-n using Sieving-(n − d).
Basic idea:

• Project lattice orthogonally to b1, b2, . . . , bd .

• Sieve. Gives 2Θ(n−d) short vectors in projected
lattice, not just shortest nonzero vector.

• Hope that shortest nonzero vector in original
lattice projects to one of those vectors.

High success probability with d ∈ Θ(n/ log n).
Maybe better to increase d , try repeatedly.

Daniel J. Bernstein, Algorithms for attacking lattices 15

https://eprint.iacr.org/2017/999

Many more SVP improvements
e.g. 2017 Ducas “dimensions for free”:
Solve SVP-n using Sieving-(n − d).
Basic idea:

• Project lattice orthogonally to b1, b2, . . . , bd .
• Sieve. Gives 2Θ(n−d) short vectors in projected

lattice, not just shortest nonzero vector.

• Hope that shortest nonzero vector in original
lattice projects to one of those vectors.

High success probability with d ∈ Θ(n/ log n).
Maybe better to increase d , try repeatedly.

Daniel J. Bernstein, Algorithms for attacking lattices 15

https://eprint.iacr.org/2017/999

Many more SVP improvements
e.g. 2017 Ducas “dimensions for free”:
Solve SVP-n using Sieving-(n − d).
Basic idea:

• Project lattice orthogonally to b1, b2, . . . , bd .
• Sieve. Gives 2Θ(n−d) short vectors in projected

lattice, not just shortest nonzero vector.
• Hope that shortest nonzero vector in original

lattice projects to one of those vectors.

High success probability with d ∈ Θ(n/ log n).
Maybe better to increase d , try repeatedly.

Daniel J. Bernstein, Algorithms for attacking lattices 15

https://eprint.iacr.org/2017/999

Many more SVP improvements
e.g. 2017 Ducas “dimensions for free”:
Solve SVP-n using Sieving-(n − d).
Basic idea:

• Project lattice orthogonally to b1, b2, . . . , bd .
• Sieve. Gives 2Θ(n−d) short vectors in projected

lattice, not just shortest nonzero vector.
• Hope that shortest nonzero vector in original

lattice projects to one of those vectors.
High success probability with d ∈ Θ(n/ log n).
Maybe better to increase d , try repeatedly.

Daniel J. Bernstein, Algorithms for attacking lattices 15

https://eprint.iacr.org/2017/999

Interlude: memory-access costs

Daniel J. Bernstein, Algorithms for attacking lattices 16

Cost metrics for algorithms

Algorithm designers typically count “operations”.

Real-world complication: the cost of a memory
access x[i] increases rapidly with the size of x,
even though x[i] is just one “operation”.
Sometimes algorithm designers consider this cost,
often ending up with very different algorithms.
Some examples of how this complication changes
cost exponents: NFS, collisions, batch NFS.

Daniel J. Bernstein, Algorithms for attacking lattices 17

https://cr.yp.to/papers.html#nfscircuit
https://cr.yp.to/papers.html#collisioncost
https://cr.yp.to/papers.html#batchnfs

Cost metrics for algorithms

Algorithm designers typically count “operations”.
Real-world complication: the cost of a memory
access x[i] increases rapidly with the size of x,
even though x[i] is just one “operation”.

Sometimes algorithm designers consider this cost,
often ending up with very different algorithms.
Some examples of how this complication changes
cost exponents: NFS, collisions, batch NFS.

Daniel J. Bernstein, Algorithms for attacking lattices 17

https://cr.yp.to/papers.html#nfscircuit
https://cr.yp.to/papers.html#collisioncost
https://cr.yp.to/papers.html#batchnfs

Cost metrics for algorithms

Algorithm designers typically count “operations”.
Real-world complication: the cost of a memory
access x[i] increases rapidly with the size of x,
even though x[i] is just one “operation”.
Sometimes algorithm designers consider this cost,
often ending up with very different algorithms.

Some examples of how this complication changes
cost exponents: NFS, collisions, batch NFS.

Daniel J. Bernstein, Algorithms for attacking lattices 17

https://cr.yp.to/papers.html#nfscircuit
https://cr.yp.to/papers.html#collisioncost
https://cr.yp.to/papers.html#batchnfs

Cost metrics for algorithms

Algorithm designers typically count “operations”.
Real-world complication: the cost of a memory
access x[i] increases rapidly with the size of x,
even though x[i] is just one “operation”.
Sometimes algorithm designers consider this cost,
often ending up with very different algorithms.
Some examples of how this complication changes
cost exponents: NFS, collisions, batch NFS.

Daniel J. Bernstein, Algorithms for attacking lattices 17

https://cr.yp.to/papers.html#nfscircuit
https://cr.yp.to/papers.html#collisioncost
https://cr.yp.to/papers.html#batchnfs

Simplifying attack analyses
For the first six years of the NIST competition,
NIST consistently asked submissions to reach the
security level of AES-128 as measured by “classical
gates”: bit operations, not memory-access costs.
NIST discouraged research into memory-access
costs. Highlighted features of “classical gates”:
(1) “accurately measured” for known attacks;
(2) does not “overestimate” real-world costs.
See, e.g., 2016 “gates”; 2019 report regarding
NTRU Prime; 2020 “criteria”; 2020 report regarding
NTRU; 2022.07 exclusion of NTRU-509.

Daniel J. Bernstein, Algorithms for attacking lattices 18

https://web.archive.org/web/20220119113311/https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://web.archive.org/web/20230920201351/https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8240.pdf
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/o2roJXAlsUk/m/9oeKbY5MAQAJ
https://web.archive.org/web/20230903180546/https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://web.archive.org/web/20230824124130/https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413-upd1.pdf

A sudden complication
2022.11: NIST suddenly switched to
counting costs of memory access. On this basis,
announced plans to standardize Kyber-512.

2023.10: I pointed out serious mistakes in how NIST
was tallying memory-access costs in known attacks.
The simplest issue: NIST’s calculation “40 bits of
security more than would be suggested by the RAM
model” was incorrectly multiplying the following:

• a 240 estimate of cost per memory access;
• an estimate for the number of bit operations,

rather than the number of memory accesses.

Daniel J. Bernstein, Algorithms for attacking lattices 19

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/4MBurXr58Rs/m/-1Ja0ZYyAQAJ
https://blog.cr.yp.to/20231003-countcorrectly.html
https://blog.cr.yp.to/20231023-clumping.html
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/4MBurXr58Rs/m/xHojUDCaBAAJ

A sudden complication
2022.11: NIST suddenly switched to
counting costs of memory access. On this basis,
announced plans to standardize Kyber-512.
2023.10: I pointed out serious mistakes in how NIST
was tallying memory-access costs in known attacks.
The simplest issue: NIST’s calculation “40 bits of
security more than would be suggested by the RAM
model” was incorrectly multiplying the following:

• a 240 estimate of cost per memory access;
• an estimate for the number of bit operations,

rather than the number of memory accesses.

Daniel J. Bernstein, Algorithms for attacking lattices 19

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/4MBurXr58Rs/m/-1Ja0ZYyAQAJ
https://blog.cr.yp.to/20231003-countcorrectly.html
https://blog.cr.yp.to/20231023-clumping.html
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/4MBurXr58Rs/m/xHojUDCaBAAJ

The collapse of memory-access costs
Subsequent claims regarding the cost exponent
of SVP-β including memory-access costs:

Month Source Claimed exponent
2023.11 Schanck 0.396β
2023.11 Schanck

0.349β

2023.12 NIST

0.349β, or 0.329β in 3 dimensions

2024.01 Jaques

0.311β, or 0.292β in 3 dimensions

This is “well studied”?
Maybe subexponential factors save the day,
but the study of those is in its infancy.

Daniel J. Bernstein, Algorithms for attacking lattices 20

https://web.archive.org/web/20231125213807/https://finiterealities.net/kyber512/
https://web.archive.org/web/20231125213807/https://finiterealities.net/kyber512/
https://web.archive.org/web/20231219201240/https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/faq/Kyber-512-FAQ.pdf
https://eprint.iacr.org/2024/080

The collapse of memory-access costs
Subsequent claims regarding the cost exponent
of SVP-β including memory-access costs:

Month Source Claimed exponent
2023.11 Schanck 0.396β
2023.11 Schanck 0.349β
2023.12 NIST

0.349β, or 0.329β in 3 dimensions

2024.01 Jaques

0.311β, or 0.292β in 3 dimensions

This is “well studied”?
Maybe subexponential factors save the day,
but the study of those is in its infancy.

Daniel J. Bernstein, Algorithms for attacking lattices 20

https://web.archive.org/web/20231125213807/https://finiterealities.net/kyber512/
https://web.archive.org/web/20231125213807/https://finiterealities.net/kyber512/
https://web.archive.org/web/20231219201240/https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/faq/Kyber-512-FAQ.pdf
https://eprint.iacr.org/2024/080

The collapse of memory-access costs
Subsequent claims regarding the cost exponent
of SVP-β including memory-access costs:

Month Source Claimed exponent
2023.11 Schanck 0.396β
2023.11 Schanck 0.349β
2023.12 NIST 0.349β, or 0.329β in 3 dimensions
2024.01 Jaques

0.311β, or 0.292β in 3 dimensions

This is “well studied”?
Maybe subexponential factors save the day,
but the study of those is in its infancy.

Daniel J. Bernstein, Algorithms for attacking lattices 20

https://web.archive.org/web/20231125213807/https://finiterealities.net/kyber512/
https://web.archive.org/web/20231125213807/https://finiterealities.net/kyber512/
https://web.archive.org/web/20231219201240/https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/faq/Kyber-512-FAQ.pdf
https://eprint.iacr.org/2024/080

The collapse of memory-access costs
Subsequent claims regarding the cost exponent
of SVP-β including memory-access costs:

Month Source Claimed exponent
2023.11 Schanck 0.396β
2023.11 Schanck 0.349β
2023.12 NIST 0.349β, or 0.329β in 3 dimensions
2024.01 Jaques 0.311β, or 0.292β in 3 dimensions

This is “well studied”?
Maybe subexponential factors save the day,
but the study of those is in its infancy.

Daniel J. Bernstein, Algorithms for attacking lattices 20

https://web.archive.org/web/20231125213807/https://finiterealities.net/kyber512/
https://web.archive.org/web/20231125213807/https://finiterealities.net/kyber512/
https://web.archive.org/web/20231219201240/https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/faq/Kyber-512-FAQ.pdf
https://eprint.iacr.org/2024/080

The collapse of memory-access costs
Subsequent claims regarding the cost exponent
of SVP-β including memory-access costs:

Month Source Claimed exponent
2023.11 Schanck 0.396β
2023.11 Schanck 0.349β
2023.12 NIST 0.349β, or 0.329β in 3 dimensions
2024.01 Jaques 0.311β, or 0.292β in 3 dimensions

This is “well studied”?

Maybe subexponential factors save the day,
but the study of those is in its infancy.

Daniel J. Bernstein, Algorithms for attacking lattices 20

https://web.archive.org/web/20231125213807/https://finiterealities.net/kyber512/
https://web.archive.org/web/20231125213807/https://finiterealities.net/kyber512/
https://web.archive.org/web/20231219201240/https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/faq/Kyber-512-FAQ.pdf
https://eprint.iacr.org/2024/080

The collapse of memory-access costs
Subsequent claims regarding the cost exponent
of SVP-β including memory-access costs:

Month Source Claimed exponent
2023.11 Schanck 0.396β
2023.11 Schanck 0.349β
2023.12 NIST 0.349β, or 0.329β in 3 dimensions
2024.01 Jaques 0.311β, or 0.292β in 3 dimensions

This is “well studied”?
Maybe subexponential factors save the day,
but the study of those is in its infancy.

Daniel J. Bernstein, Algorithms for attacking lattices 20

https://web.archive.org/web/20231125213807/https://finiterealities.net/kyber512/
https://web.archive.org/web/20231125213807/https://finiterealities.net/kyber512/
https://web.archive.org/web/20231219201240/https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/faq/Kyber-512-FAQ.pdf
https://eprint.iacr.org/2024/080

Overconfidence

2023.11 Schanck comment about the 0.396: “This
matters because the best exponent was 0.415 a
decade ago, and the 0.349 and 0.292 estimates play
into a false narrative that the cost of lattice attacks
has been falling precipitously since then.”

2024.03 Schanck “update on lattice cryptanalysis”
admits the “narrative” is correct? Disputes the
speedups? No: switches to talking about Kyber-768.
2024.04: Without commenting on the collapse,
NIST states that it will standardize Kyber-512.

Daniel J. Bernstein, Algorithms for attacking lattices 21

https://web.archive.org/web/20231125213807/https://finiterealities.net/kyber512/
https://web.archive.org/web/20240403204317/https://jmschanck.info/talks/20240324-rwpqc.pdf
https://web.archive.org/web/20240505144551/https://csrc.nist.gov/csrc/media/Presentations/2024/fips-203/images-media/dang-fips-203-pqc2024.pdf

Overconfidence

2023.11 Schanck comment about the 0.396: “This
matters because the best exponent was 0.415 a
decade ago, and the 0.349 and 0.292 estimates play
into a false narrative that the cost of lattice attacks
has been falling precipitously since then.”
2024.03 Schanck “update on lattice cryptanalysis”
admits the “narrative” is correct?

Disputes the
speedups? No: switches to talking about Kyber-768.
2024.04: Without commenting on the collapse,
NIST states that it will standardize Kyber-512.

Daniel J. Bernstein, Algorithms for attacking lattices 21

https://web.archive.org/web/20231125213807/https://finiterealities.net/kyber512/
https://web.archive.org/web/20240403204317/https://jmschanck.info/talks/20240324-rwpqc.pdf
https://web.archive.org/web/20240505144551/https://csrc.nist.gov/csrc/media/Presentations/2024/fips-203/images-media/dang-fips-203-pqc2024.pdf

Overconfidence

2023.11 Schanck comment about the 0.396: “This
matters because the best exponent was 0.415 a
decade ago, and the 0.349 and 0.292 estimates play
into a false narrative that the cost of lattice attacks
has been falling precipitously since then.”
2024.03 Schanck “update on lattice cryptanalysis”
admits the “narrative” is correct? Disputes the
speedups?

No: switches to talking about Kyber-768.
2024.04: Without commenting on the collapse,
NIST states that it will standardize Kyber-512.

Daniel J. Bernstein, Algorithms for attacking lattices 21

https://web.archive.org/web/20231125213807/https://finiterealities.net/kyber512/
https://web.archive.org/web/20240403204317/https://jmschanck.info/talks/20240324-rwpqc.pdf
https://web.archive.org/web/20240505144551/https://csrc.nist.gov/csrc/media/Presentations/2024/fips-203/images-media/dang-fips-203-pqc2024.pdf

Overconfidence

2023.11 Schanck comment about the 0.396: “This
matters because the best exponent was 0.415 a
decade ago, and the 0.349 and 0.292 estimates play
into a false narrative that the cost of lattice attacks
has been falling precipitously since then.”
2024.03 Schanck “update on lattice cryptanalysis”
admits the “narrative” is correct? Disputes the
speedups? No: switches to talking about Kyber-768.

2024.04: Without commenting on the collapse,
NIST states that it will standardize Kyber-512.

Daniel J. Bernstein, Algorithms for attacking lattices 21

https://web.archive.org/web/20231125213807/https://finiterealities.net/kyber512/
https://web.archive.org/web/20240403204317/https://jmschanck.info/talks/20240324-rwpqc.pdf
https://web.archive.org/web/20240505144551/https://csrc.nist.gov/csrc/media/Presentations/2024/fips-203/images-media/dang-fips-203-pqc2024.pdf

Overconfidence

2023.11 Schanck comment about the 0.396: “This
matters because the best exponent was 0.415 a
decade ago, and the 0.349 and 0.292 estimates play
into a false narrative that the cost of lattice attacks
has been falling precipitously since then.”
2024.03 Schanck “update on lattice cryptanalysis”
admits the “narrative” is correct? Disputes the
speedups? No: switches to talking about Kyber-768.
2024.04: Without commenting on the collapse,
NIST states that it will standardize Kyber-512.

Daniel J. Bernstein, Algorithms for attacking lattices 21

https://web.archive.org/web/20231125213807/https://finiterealities.net/kyber512/
https://web.archive.org/web/20240403204317/https://jmschanck.info/talks/20240324-rwpqc.pdf
https://web.archive.org/web/20240505144551/https://csrc.nist.gov/csrc/media/Presentations/2024/fips-203/images-media/dang-fips-203-pqc2024.pdf

What went wrong here?

A simple pre-quantum analogy:
• Ask people to optimize discrete logs,

ignoring memory-access costs:
baby-step-giant-step discrete-log algorithm.

• Suddenly start counting memory-access costs:
much higher exponent for baby-step-giant-step.

• But then people find algorithms eliminating
those costs: e.g., Pollard’s rho method,
or, for parallelization, van Oorschot–Wiener.

Daniel J. Bernstein, Algorithms for attacking lattices 22

https://link.springer.com/article/10.1007/PL00003816

What went wrong here?

A simple pre-quantum analogy:
• Ask people to optimize discrete logs,

ignoring memory-access costs:
baby-step-giant-step discrete-log algorithm.

• Suddenly start counting memory-access costs:
much higher exponent for baby-step-giant-step.

• But then people find algorithms eliminating
those costs: e.g., Pollard’s rho method,
or, for parallelization, van Oorschot–Wiener.

Daniel J. Bernstein, Algorithms for attacking lattices 22

https://link.springer.com/article/10.1007/PL00003816

What went wrong here?

A simple pre-quantum analogy:
• Ask people to optimize discrete logs,

ignoring memory-access costs:
baby-step-giant-step discrete-log algorithm.

• Suddenly start counting memory-access costs:
much higher exponent for baby-step-giant-step.

• But then people find algorithms eliminating
those costs: e.g., Pollard’s rho method,
or, for parallelization, van Oorschot–Wiener.

Daniel J. Bernstein, Algorithms for attacking lattices 22

https://link.springer.com/article/10.1007/PL00003816

If we exclude parameter sets
that mention memory-access costs,

then lattices are safe?

Daniel J. Bernstein, Algorithms for attacking lattices 23

Many attack avenues

Further advances against SVP will be unsurprising.
e.g. 2020 Albrecht–Bai–Fouque–Kirchner–Stehlé–Wen
and 2020 Albrecht–Bai–Li–Rowell achieved better
enumeration exponents; what’s the impact on tuple
lattice sieving (combining sieving and enumeration)?

But the rest of this talk will instead consider
avenues for lattice attacks beyond SVP attacks.

Daniel J. Bernstein, Algorithms for attacking lattices 24

https://eprint.iacr.org/2020/707.pdf
https://eprint.iacr.org/2020/1260

Many attack avenues

Further advances against SVP will be unsurprising.
e.g. 2020 Albrecht–Bai–Fouque–Kirchner–Stehlé–Wen
and 2020 Albrecht–Bai–Li–Rowell achieved better
enumeration exponents; what’s the impact on tuple
lattice sieving (combining sieving and enumeration)?
But the rest of this talk will instead consider
avenues for lattice attacks beyond SVP attacks.

Daniel J. Bernstein, Algorithms for attacking lattices 24

https://eprint.iacr.org/2020/707.pdf
https://eprint.iacr.org/2020/1260

Wait, what about the proofs?

The proofs don’t say systems are as hard to break
as SVP. Let’s look at what a proof actually says.
Theorem 4 from 2023 Barbosa–Barthe–Doczkal–
Don–Fehr–Grégoire–Huang–Hülsing–Lee–Wu
“Fixing and mechanizing the security proof of
Fiat-Shamir with aborts and Dilithium”
says that the “EF-CMA” advantage of a Dilithium
attack F is at most P1 + P2 + P3 + P4 + P5.
(Formula in paper is missing the second “+”;
fixed in Springer version.)

Daniel J. Bernstein, Algorithms for attacking lattices 25

https://eprint.iacr.org/2023/246
https://eprint.iacr.org/2023/246

Wait, what about the proofs?
The proofs don’t say systems are as hard to break
as SVP.

Let’s look at what a proof actually says.
Theorem 4 from 2023 Barbosa–Barthe–Doczkal–
Don–Fehr–Grégoire–Huang–Hülsing–Lee–Wu
“Fixing and mechanizing the security proof of
Fiat-Shamir with aborts and Dilithium”
says that the “EF-CMA” advantage of a Dilithium
attack F is at most P1 + P2 + P3 + P4 + P5.
(Formula in paper is missing the second “+”;
fixed in Springer version.)

Daniel J. Bernstein, Algorithms for attacking lattices 25

https://eprint.iacr.org/2023/246
https://eprint.iacr.org/2023/246

Wait, what about the proofs?
The proofs don’t say systems are as hard to break
as SVP. Let’s look at what a proof actually says.

Theorem 4 from 2023 Barbosa–Barthe–Doczkal–
Don–Fehr–Grégoire–Huang–Hülsing–Lee–Wu
“Fixing and mechanizing the security proof of
Fiat-Shamir with aborts and Dilithium”
says that the “EF-CMA” advantage of a Dilithium
attack F is at most P1 + P2 + P3 + P4 + P5.
(Formula in paper is missing the second “+”;
fixed in Springer version.)

Daniel J. Bernstein, Algorithms for attacking lattices 25

https://eprint.iacr.org/2023/246
https://eprint.iacr.org/2023/246

Wait, what about the proofs?
The proofs don’t say systems are as hard to break
as SVP. Let’s look at what a proof actually says.
Theorem 4 from 2023 Barbosa–Barthe–Doczkal–
Don–Fehr–Grégoire–Huang–Hülsing–Lee–Wu
“Fixing and mechanizing the security proof of
Fiat-Shamir with aborts and Dilithium”
says that the “EF-CMA” advantage of a Dilithium
attack F is at most P1 + P2 + P3 + P4 + P5.
(Formula in paper is missing the second “+”;
fixed in Springer version.)

Daniel J. Bernstein, Algorithms for attacking lattices 25

https://eprint.iacr.org/2023/246
https://eprint.iacr.org/2023/246

MLWE
Define R = Z[x]/(xn + 1).
First term P1 is advantage of a specific algorithm
derived from F in breaking the following “MLWE”
problem: distinguish As + e ∈ (R/q)k from uniform
random, given uniform random A ∈ (R/q)k×ℓ, when
entries of s ∈ Rℓ and e ∈ Rk are chosen from the
uniform distribution on {−η, . . . , −1, 0, 1, . . . , η}.

q = 223 − 213 + 1 is the Dilithium modulus.
n = 256 is Dilithium’s base dimension.
(k , ℓ) is, e.g., (4, 4) for Dilithium-2.
η is, e.g., 2 for Dilithium-2.

Daniel J. Bernstein, Algorithms for attacking lattices 26

MLWE
Define R = Z[x]/(xn + 1).
First term P1 is advantage of a specific algorithm
derived from F in breaking the following “MLWE”
problem: distinguish As + e ∈ (R/q)k from uniform
random, given uniform random A ∈ (R/q)k×ℓ, when
entries of s ∈ Rℓ and e ∈ Rk are chosen from the
uniform distribution on {−η, . . . , −1, 0, 1, . . . , η}.
q = 223 − 213 + 1 is the Dilithium modulus.
n = 256 is Dilithium’s base dimension.
(k , ℓ) is, e.g., (4, 4) for Dilithium-2.
η is, e.g., 2 for Dilithium-2.

Daniel J. Bernstein, Algorithms for attacking lattices 26

MLWE is not SVP, part 1

Distinguishing As + e from uniform random
can be easier than finding s, e.

Example of gap in the literature: reported costs of
“dual attacks” are normally for finding s, e, but the
same attacks are faster when used as distinguishers.
Does a distinguisher break Dilithium? Maybe,
maybe not. It makes the theorem vacuous.

Daniel J. Bernstein, Algorithms for attacking lattices 27

https://eprint.iacr.org/2023/1508

MLWE is not SVP, part 1

Distinguishing As + e from uniform random
can be easier than finding s, e.
Example of gap in the literature: reported costs of
“dual attacks” are normally for finding s, e, but the
same attacks are faster when used as distinguishers.

Does a distinguisher break Dilithium? Maybe,
maybe not. It makes the theorem vacuous.

Daniel J. Bernstein, Algorithms for attacking lattices 27

https://eprint.iacr.org/2023/1508

MLWE is not SVP, part 1

Distinguishing As + e from uniform random
can be easier than finding s, e.
Example of gap in the literature: reported costs of
“dual attacks” are normally for finding s, e, but the
same attacks are faster when used as distinguishers.
Does a distinguisher break Dilithium? Maybe,
maybe not. It makes the theorem vacuous.

Daniel J. Bernstein, Algorithms for attacking lattices 27

https://eprint.iacr.org/2023/1508

MLWE is not SVP, part 2
Finding s, e is equivalent to
finding a vector in L close to (0, As + e) where
L = {(u, v) ∈ Rℓ × Rk : v = Au in (R/q)k}.

Can attack that by finding a short nonzero vector in
another lattice L′ built from L, s, e: an artificial
“gap” lattice with an unusually short nonzero vector.
Typically use BKZ-(β, n) to reduce to SVP-β, with
β chosen so that the “gap” is visible in dimension β.
A closer look shows that people are continuing to
find new algorithms and optimizations here:
see, e.g., 2024.01 Xia–Wang–Wang–Gu–Wang.

Daniel J. Bernstein, Algorithms for attacking lattices 28

https://eprint.iacr.org/2024/067

MLWE is not SVP, part 2
Finding s, e is equivalent to
finding a vector in L close to (0, As + e) where
L = {(u, v) ∈ Rℓ × Rk : v = Au in (R/q)k}.
Can attack that by finding a short nonzero vector in
another lattice L′ built from L, s, e: an artificial
“gap” lattice with an unusually short nonzero vector.

Typically use BKZ-(β, n) to reduce to SVP-β, with
β chosen so that the “gap” is visible in dimension β.
A closer look shows that people are continuing to
find new algorithms and optimizations here:
see, e.g., 2024.01 Xia–Wang–Wang–Gu–Wang.

Daniel J. Bernstein, Algorithms for attacking lattices 28

https://eprint.iacr.org/2024/067

MLWE is not SVP, part 2
Finding s, e is equivalent to
finding a vector in L close to (0, As + e) where
L = {(u, v) ∈ Rℓ × Rk : v = Au in (R/q)k}.
Can attack that by finding a short nonzero vector in
another lattice L′ built from L, s, e: an artificial
“gap” lattice with an unusually short nonzero vector.
Typically use BKZ-(β, n) to reduce to SVP-β, with
β chosen so that the “gap” is visible in dimension β.
A closer look shows that people are continuing to
find new algorithms and optimizations here:
see, e.g., 2024.01 Xia–Wang–Wang–Gu–Wang.

Daniel J. Bernstein, Algorithms for attacking lattices 28

https://eprint.iacr.org/2024/067

MLWE is not SVP, part 3
Each s, e coefficient is small and can be guessed.
2003 Schnorr, 2007 Howgrave-Graham, etc.:
can productively mix guessing techniques with
lattice techniques to form “hybrid” attacks.

For q ∈ nQ0+o(1): existing heuristics imply that
non-hybrid “primal” attacks cost 2(ρ+o(1))n where
z0 = 2Q0/(Q0 + 1/2)2 and ρ = z0 log4(3/2).
2023.12 Bernstein: same heuristics imply that
simple hybrid primal attacks cost 2(ρ−ρH0+o(1))n

where H0 = 1/(1 + (log2(2η + 1))/0.057981z0).

Daniel J. Bernstein, Algorithms for attacking lattices 29

https://publikationen.ub.uni-frankfurt.de/frontdoor/deliver/index/docId/4286/file/schnorr.pdf/1000
https://www.iacr.org/archive/crypto2007/46220150/46220150.pdf
https://cr.yp.to/papers.html#latticeasymp
https://cr.yp.to/papers.html#hybrid

MLWE is not SVP, part 3
Each s, e coefficient is small and can be guessed.
2003 Schnorr, 2007 Howgrave-Graham, etc.:
can productively mix guessing techniques with
lattice techniques to form “hybrid” attacks.
For q ∈ nQ0+o(1): existing heuristics imply that
non-hybrid “primal” attacks cost 2(ρ+o(1))n where
z0 = 2Q0/(Q0 + 1/2)2 and ρ = z0 log4(3/2).
2023.12 Bernstein: same heuristics imply that
simple hybrid primal attacks cost 2(ρ−ρH0+o(1))n

where H0 = 1/(1 + (log2(2η + 1))/0.057981z0).

Daniel J. Bernstein, Algorithms for attacking lattices 29

https://publikationen.ub.uni-frankfurt.de/frontdoor/deliver/index/docId/4286/file/schnorr.pdf/1000
https://www.iacr.org/archive/crypto2007/46220150/46220150.pdf
https://cr.yp.to/papers.html#latticeasymp
https://cr.yp.to/papers.html#hybrid

Useful subroutines for hybrid attacks
2016 Laarhoven, 2019 Doulgerakis–Laarhoven–de
Weger, 2020 Ducas–Laarhoven–van Woerden: can
find an element of L closest to t with time exponent
≈0.234, after an L-dependent t-independent
precomputation with time exponent ≈0.292.

2020 Espitau–Kirchner analysis of
Howgrave-Graham “nearest-colattice” algorithm:
find an element of L close to t using a BKZ-(β, n)
computation and a β-dimensional closest-vector
computation. Closeness ≈ BKZ-(β, n) shortness.
BKZ and CVP use t-independent lattices.

Daniel J. Bernstein, Algorithms for attacking lattices 30

https://arxiv.org/abs/1607.04789
https://eprint.iacr.org/2016/888
https://eprint.iacr.org/2016/888
https://eprint.iacr.org/2020/120
https://cr.yp.to/papers/hybrid-20231208.pdf

Useful subroutines for hybrid attacks
2016 Laarhoven, 2019 Doulgerakis–Laarhoven–de
Weger, 2020 Ducas–Laarhoven–van Woerden: can
find an element of L closest to t with time exponent
≈0.234, after an L-dependent t-independent
precomputation with time exponent ≈0.292.
2020 Espitau–Kirchner analysis of
Howgrave-Graham “nearest-colattice” algorithm:
find an element of L close to t using a BKZ-(β, n)
computation and a β-dimensional closest-vector
computation. Closeness ≈ BKZ-(β, n) shortness.
BKZ and CVP use t-independent lattices.

Daniel J. Bernstein, Algorithms for attacking lattices 30

https://arxiv.org/abs/1607.04789
https://eprint.iacr.org/2016/888
https://eprint.iacr.org/2016/888
https://eprint.iacr.org/2020/120
https://cr.yp.to/papers/hybrid-20231208.pdf

MLWE is not SVP, part 4

The lattices here have a special algebraic structure:
they’re R-modules where R is the cyclotomic ring
Z[x]/(xn + 1) with n a power of 2.

Example of why this is a concern: for ideals of R ,
“S-unit attacks” achieve approximation factor
2n1/2+o(1) in quantum poly time (assuming “h+ = 1”).
This line of work keeps breaking claimed “barriers”.
Conjecturally poly approx factor in subexponential
time. Could the ideas handle more general modules?

Daniel J. Bernstein, Algorithms for attacking lattices 31

https://s-unit.attacks.cr.yp.to
https://cr.yp.to/talks.html#2021.08.20

MLWE is not SVP, part 4

The lattices here have a special algebraic structure:
they’re R-modules where R is the cyclotomic ring
Z[x]/(xn + 1) with n a power of 2.
Example of why this is a concern: for ideals of R ,
“S-unit attacks” achieve approximation factor
2n1/2+o(1) in quantum poly time (assuming “h+ = 1”).
This line of work keeps breaking claimed “barriers”.

Conjecturally poly approx factor in subexponential
time. Could the ideas handle more general modules?

Daniel J. Bernstein, Algorithms for attacking lattices 31

https://s-unit.attacks.cr.yp.to
https://cr.yp.to/talks.html#2021.08.20

MLWE is not SVP, part 4

The lattices here have a special algebraic structure:
they’re R-modules where R is the cyclotomic ring
Z[x]/(xn + 1) with n a power of 2.
Example of why this is a concern: for ideals of R ,
“S-unit attacks” achieve approximation factor
2n1/2+o(1) in quantum poly time (assuming “h+ = 1”).
This line of work keeps breaking claimed “barriers”.
Conjecturally poly approx factor in subexponential
time. Could the ideas handle more general modules?

Daniel J. Bernstein, Algorithms for attacking lattices 31

https://s-unit.attacks.cr.yp.to
https://cr.yp.to/talks.html#2021.08.20

SelfTargetMSIS attacks
Second term P2 in Theorem 4 is advantage of
a specific algorithm derived from F in breaking
the following “SelfTargetMSIS” problem:
given uniform random (A, t)
with A ∈ (R/q)k×ℓ and t ∈ (R/q)k ,
find µ, z , c , v with G(µ, Az + v − ct) = c and all
entries of z , c , v at most max{2(γ1 − β), 4γ2 + 2}.

The quantities γ1 − β, γ2 appear in signature
verification. G is the Dilithium hash function
producing vectors with small entries. (This is a
normal hash function followed by “SampleInBall”.)

Daniel J. Bernstein, Algorithms for attacking lattices 32

SelfTargetMSIS attacks
Second term P2 in Theorem 4 is advantage of
a specific algorithm derived from F in breaking
the following “SelfTargetMSIS” problem:
given uniform random (A, t)
with A ∈ (R/q)k×ℓ and t ∈ (R/q)k ,
find µ, z , c , v with G(µ, Az + v − ct) = c and all
entries of z , c , v at most max{2(γ1 − β), 4γ2 + 2}.
The quantities γ1 − β, γ2 appear in signature
verification. G is the Dilithium hash function
producing vectors with small entries. (This is a
normal hash function followed by “SampleInBall”.)

Daniel J. Bernstein, Algorithms for attacking lattices 32

Is this proof content-free?

SelfTargetMSIS feels like it’s simply restating
the problem of forging Dilithium signatures.
Dilithium verification forces G(µ, Az + v − ct) = c ,
and forces z , c , v to have small entries.

One difference: Dilithium has t = As + e;
SelfTargetMSIS has t chosen uniformly at random.
Distinguishing these breaks MLWE.

Daniel J. Bernstein, Algorithms for attacking lattices 33

Is this proof content-free?

SelfTargetMSIS feels like it’s simply restating
the problem of forging Dilithium signatures.
Dilithium verification forces G(µ, Az + v − ct) = c ,
and forces z , c , v to have small entries.
One difference: Dilithium has t = As + e;
SelfTargetMSIS has t chosen uniformly at random.
Distinguishing these breaks MLWE.

Daniel J. Bernstein, Algorithms for attacking lattices 33

Interaction (“CMA”)

Another difference:
Dilithium attackers can ask for signatures;
the SelfTargetMSIS problem doesn’t allow this.

The terms P3, P4, P5 in Theorem 4 account for this,
in terms of the number of signatures, the number of
hash calls, and various quantities “p”, “δ”, “ϵ”.
Supposedly all of these are small enough.
Has anyone checked the calculations?

Daniel J. Bernstein, Algorithms for attacking lattices 34

Interaction (“CMA”)

Another difference:
Dilithium attackers can ask for signatures;
the SelfTargetMSIS problem doesn’t allow this.
The terms P3, P4, P5 in Theorem 4 account for this,
in terms of the number of signatures, the number of
hash calls, and various quantities “p”, “δ”, “ϵ”.

Supposedly all of these are small enough.
Has anyone checked the calculations?

Daniel J. Bernstein, Algorithms for attacking lattices 34

Interaction (“CMA”)

Another difference:
Dilithium attackers can ask for signatures;
the SelfTargetMSIS problem doesn’t allow this.
The terms P3, P4, P5 in Theorem 4 account for this,
in terms of the number of signatures, the number of
hash calls, and various quantities “p”, “δ”, “ϵ”.
Supposedly all of these are small enough.
Has anyone checked the calculations?

Daniel J. Bernstein, Algorithms for attacking lattices 34

Why is SelfTargetMSIS a lattice problem?

Dilithium documentation says: “H is a
cryptographic hash function whose structure is
completely independent of the algebraic structure of
its inputs . . . the only approach for obtaining a
solution appears to be picking some w , computing
H ′(µ||w) = c , and then finding z, u′ such that
Az + u′ = w + ct”.

i.e. pick µ, w ; compute c = G(µ, w);
find short z , v such that Az + v = w + ct.

Daniel J. Bernstein, Algorithms for attacking lattices 35

Why is SelfTargetMSIS a lattice problem?

Dilithium documentation says: “H is a
cryptographic hash function whose structure is
completely independent of the algebraic structure of
its inputs . . . the only approach for obtaining a
solution appears to be picking some w , computing
H ′(µ||w) = c , and then finding z, u′ such that
Az + u′ = w + ct”.
i.e. pick µ, w ; compute c = G(µ, w);
find short z , v such that Az + v = w + ct.

Daniel J. Bernstein, Algorithms for attacking lattices 35

Multiple targets inside SelfTargetMSIS

2022.11 Wang–Xia–Shi–Wan–Zhang–Gu:
better approaches to attacking SelfTargetMSIS.

e.g. pick µ1, w1, . . . , µB, wB.
Compute c1 = G(µ1, w1), . . . , cB = G(µB, wB).
Goal is now to find short z , v such that
Az + v ∈ {w1 + c1t, . . . , wB + cBt}.
Use multi-target close-vector algorithms.
Should be able to succeed with smaller β.

Daniel J. Bernstein, Algorithms for attacking lattices 36

https://eprint.iacr.org/2022/1601

Multiple targets inside SelfTargetMSIS

2022.11 Wang–Xia–Shi–Wan–Zhang–Gu:
better approaches to attacking SelfTargetMSIS.
e.g. pick µ1, w1, . . . , µB, wB.
Compute c1 = G(µ1, w1), . . . , cB = G(µB, wB).

Goal is now to find short z , v such that
Az + v ∈ {w1 + c1t, . . . , wB + cBt}.
Use multi-target close-vector algorithms.
Should be able to succeed with smaller β.

Daniel J. Bernstein, Algorithms for attacking lattices 36

https://eprint.iacr.org/2022/1601

Multiple targets inside SelfTargetMSIS

2022.11 Wang–Xia–Shi–Wan–Zhang–Gu:
better approaches to attacking SelfTargetMSIS.
e.g. pick µ1, w1, . . . , µB, wB.
Compute c1 = G(µ1, w1), . . . , cB = G(µB, wB).
Goal is now to find short z , v such that
Az + v ∈ {w1 + c1t, . . . , wB + cBt}.

Use multi-target close-vector algorithms.
Should be able to succeed with smaller β.

Daniel J. Bernstein, Algorithms for attacking lattices 36

https://eprint.iacr.org/2022/1601

Multiple targets inside SelfTargetMSIS

2022.11 Wang–Xia–Shi–Wan–Zhang–Gu:
better approaches to attacking SelfTargetMSIS.
e.g. pick µ1, w1, . . . , µB, wB.
Compute c1 = G(µ1, w1), . . . , cB = G(µB, wB).
Goal is now to find short z , v such that
Az + v ∈ {w1 + c1t, . . . , wB + cBt}.
Use multi-target close-vector algorithms.
Should be able to succeed with smaller β.

Daniel J. Bernstein, Algorithms for attacking lattices 36

https://eprint.iacr.org/2022/1601

Proofs, revisited
“It can be shown that in the (classical) random
oracle model, Dilithium is SUF-CMA secure based
on the hardness of the standard MLWE and MSIS
lattice problems.”

This is based on an outline of a way to convert a
SelfTargetMSIS attack into a slower attack against
MSIS. This is not evidence against the idea that
SelfTargetMSIS is easier to break than MSIS!
Showing proofs to cryptanalysts is good:
proof gaps can help identify attacks.
Telling users about proofs is usually misleading.

Daniel J. Bernstein, Algorithms for attacking lattices 37

Proofs, revisited
“It can be shown that in the (classical) random
oracle model, Dilithium is SUF-CMA secure based
on the hardness of the standard MLWE and MSIS
lattice problems.”
This is based on an outline of a way to convert a
SelfTargetMSIS attack into a slower attack against
MSIS. This is not evidence against the idea that
SelfTargetMSIS is easier to break than MSIS!

Showing proofs to cryptanalysts is good:
proof gaps can help identify attacks.
Telling users about proofs is usually misleading.

Daniel J. Bernstein, Algorithms for attacking lattices 37

Proofs, revisited
“It can be shown that in the (classical) random
oracle model, Dilithium is SUF-CMA secure based
on the hardness of the standard MLWE and MSIS
lattice problems.”
This is based on an outline of a way to convert a
SelfTargetMSIS attack into a slower attack against
MSIS. This is not evidence against the idea that
SelfTargetMSIS is easier to break than MSIS!
Showing proofs to cryptanalysts is good:
proof gaps can help identify attacks.
Telling users about proofs is usually misleading.

Daniel J. Bernstein, Algorithms for attacking lattices 37

NCC-Sign and HAETAE

NCC-Sign uses “SelfTargetRSIS”, which is a special
case of Dilithium’s SelfTargetMSIS, but takes
different rings: non-cyclotomic xn − x − 1 with
prime n, or cyclotomic xn − xn/2 + 1 with n = 2a3b.
Assumes SelfTargetRSIS is as hard as RSIS.
HAETAE replaces Dilithium’s SelfTargetMSIS with
“BimodalSelfTargetMSIS”, and says “we use the
fact that the only known way to solve
BimodalSelfTargetMSIS is to solve MSIS”.
What about the multi-target attacks from 2022?

Daniel J. Bernstein, Algorithms for attacking lattices 38

Unstable cryptanalytic picture

Some attack avenues that need further study:
• Enumeration.
• Tuple lattice sieving.
• Hybrid attacks.
• Multi-target attacks in SelfTargetMSIS.
• Dual attacks.
• BKZ.
• S-unit attacks.

Daniel J. Bernstein, Algorithms for attacking lattices 39

