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2017 Hofheinz–Hövelmanns–Kiltz,

generalizing 2012 Persichetti):

instead of having a KEM reject

an invalid ciphertext C, have

it output H′′(r; C) where r is a

random string stored in secret key.

8

Is implicit rejection really an

adequate substitute for plaintext

confirmation as a defense against

chosen-ciphertext attacks?



6

Defense 3 (in the numbering from

ntrw’s survey of attacks and

defenses): plaintext confirmation.

Instead of ciphertext E(m),

send ciphertext (E(m); H′(m))

where H′ is a hash function.

Also use (E;H′) in reencryption.

This stops chosen-ciphertext

attacks that exploit structure of

the public-key encryption function

E to convert E(m) for secret m

into, e.g., E(m + 1). Attacker

has no way to convert H′(m) into

H′(m + 1) for “unstructured” H′.

7

Current NTRU-HRSS is different

2019 NTRU-HRSS proposal

adopts changes proposed by

2017 Saito–Xagawa–Yamakawa.

Modified proposal removes

plaintext confirmation and

relies on another defense.

Defense 4, implicit rejection (from

2017 Hofheinz–Hövelmanns–Kiltz,
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2017 Hofheinz–Hövelmanns–Kiltz,

generalizing 2012 Persichetti):

instead of having a KEM reject

an invalid ciphertext C, have

it output H′′(r; C) where r is a

random string stored in secret key.

8

Is implicit rejection really an

adequate substitute for plaintext

confirmation as a defense against

chosen-ciphertext attacks?

SXY+HRSS answer: Here’s a

proof of IND-CCA2 security from

OW-CPA + implicit rejection.

Issue 1: Proof is only in QROM;

are there non-QROM attacks?

Issue 2: Proof is tight only in

ROM; can this be exploited?

Issue 3, my focus today: Are

there chosen-ciphertext attacks

beyond the IND-CCA2 model?

9

2007 Koblitz, regarding HMQV:

“Anyone working in cryptography

should think very carefully before

dropping a validation step that

had been put in to prevent

security problems. Certainly

someone with Krawczyk’s

experience and expertise would

never have made such a blunder

if he hadn’t been over-confident

because of his ‘proof’ of security.”

See also 2019 survey of failures.



7

Current NTRU-HRSS is different

2019 NTRU-HRSS proposal

adopts changes proposed by

2017 Saito–Xagawa–Yamakawa.

Modified proposal removes

plaintext confirmation and

relies on another defense.

Defense 4, implicit rejection (from

2017 Hofheinz–Hövelmanns–Kiltz,
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