A one-time single-bit fault PQ deployment and standards

leaks all previous
NTRU-HRSS session keys
to a chosen-ciphertext attack

2022.04: OpenSSH 9.0 uses
x25519+sntrup761 by default.

D. J. Bernstein

University of lllinois at Chicago;
Ruhr University Bochum

cr.yp.to/papers.html#ntrw

Thanks to Lange for pointing
out plaintext confirmation as a
countermeasure to fault attacks.




A one-time single-bit fault

leaks all previous
NTRU-HRSS session keys
to a chosen-ciphertext attack

D. J. Bernstein

University of lllinois at Chicago;
Ruhr University Bochum

PQ deployment and standards

cr.yp.to/papers.html#ntrw

Thanks to Lange for pointing
out plaintext confirmation as a

countermeasure to fault attacks.

2022.04: OpenSSH 9.0 uses
x25519+sntrup761 by default.

2022.07: NIST announces intent
to standardize Kyber (+ sigs).



A one-time single-bit fault PQ deployment and standards

leaks all previous
NTRU-HRSS session keys
to a chosen-ciphertext attack

2022.04: OpenSSH 9.0 uses
x25519+sntrup761 by default.

D | B - 2022.07: NIST announces intent
. J. Bernstein to standardize Kyber (4 sigs).

University of lllinois at Chicago; 2022.11: Google announces that

all internal Google networking
uses x25519+ntruhrss701.

Ruhr University Bochum

cr.yp.to/papers.html#ntrw

Thanks to Lange for pointing
out plaintext confirmation as a
countermeasure to fault attacks.




A one-time single-bit fault PQ deployment and standards

leaks all previous
NTRU-HRSS session keys
to a chosen-ciphertext attack

2022.04: OpenSSH 9.0 uses
x25519+sntrup761 by default.

D | B - 2022.07: NIST announces intent
. J. Bernstein to standardize Kyber (4 sigs).

University of lllinois at Chicago; 2022.11: Google announces that

all internal Google networking
uses x25519+ntruhrss701.

Ruhr University Bochum

yp.t .html#nt
cr.yp.to/papers.html#ntrw "Kyber has high performance ...

but still lacks some clarification
Thanks to Lange for pointing from NIST about its Intellectual

out plaintext confirmation as a Property status’, I.e., patents.
countermeasure to fault attacks.




me single-bit fault
previous

1RSS session keys
sen-ciphertext attack

rnstein

ty of lllinois at Chicago;
Iversity Bochum

PQ deployment and standards

0/papers.html#ntrw

to Lange for pointing
1text confirmation as a
neasure to fault attacks.

2022.04: OpenSSH 9.0 uses
x25519+sntrup761 by default.

2022.07: NIST announces intent
to standardize Kyber (+ sigs).

2022.11: Google announces that
all internal Google networking
uses x25519+ntruhrss701.

"Kyber has high performance . ..

but still lacks some clarification
from NIST about its Intellectual
Property status’, I.e., patents.

2010-20
NTRU I
US9246¢
CN1081
US1105(



bit fault

on keys
text attack

is at Chicago;
ochum

PQ deployment and standards

3. html#ntrw

or pointing
rmation as a
) fault attacks.

2022.04: OpenSSH 9.0 uses
x25519+sntrup761 by default.

2022.07: NIST announces intent
to standardize Kyber (+ sigs).

2022.11: Google announces that
all internal Google networking
uses x25519+ntruhrss701.

“"Kyber has high performance ...

but sti

| lacks some clarification

from NIST about its Intellectual
Property status’, I.e., patents.

2010-2017 patent
NTRU Prime FAQ
US9246675, CN1C
CN108173643, KF
US11050557, EP3



1g0;

PQ deployment and standards

CTYwW

S d

1cks.

2022.04: OpenSSH 9.0 uses
x25519+sntrup761 by default.

2022.07: NIST announces intent
to standardize Kyber (+ sigs).

2022.11: Google announces that
all internal Google networking
uses x25519+ntruhrss701.

"Kyber has high performance . ..
but still lacks some clarification
from NIST about its Intellectual
Property status’, I.e., patents.

2010-2017 patents listed In
NTRU Prime FAQ: U59094.
US9246675, CN107566121,
CN108173643, KR10190568
US11050557, EP3698515.



PQ deployment and standards

2022.04: OpenSSH 9.0 uses
x25519+sntrup761 by default.

2022.07: NIST announces intent
to standardize Kyber (+ sigs).

2022.11: Google announces that
all internal Google networking
uses x25519+ntruhrss701.

“"Kyber has high performance ...

but sti

| lacks some clarification

from NIST about its Intellectual
Property status’, I.e., patents.

2010-2017 patents listed In
NTRU Prime FAQ: US90941839,
US9246675, CN107566121,
CN108173643, KR101905689,
US11050557, EP3698515.



PQ deployment and standards

2022.04: OpenSSH 9.0 uses
x25519+sntrup761 by default.

2022.07: NIST announces intent
to standardize Kyber (+ sigs).

2022.11: Google announces that
all internal Google networking
uses x25519+ntruhrss701.

“"Kyber has high performance ...
but still lacks some clarification
from NIST about its Intellectual
Property status’, I.e., patents.

2010-2017 patents listed In
NTRU Prime FAQ: US90941839,
US9246675, CN107566121,
CN108173643, KR101905689,
US11050557, EP3698515.

2022.11: NIST announces licenses
for US9094189, US9246675 for
Kyber v2024 after Kyber v2024 is
defined and standardized.

No analysis of other patents.



PQ deployment and standards

2022.04: OpenSSH 9.0 uses
x25519+sntrup761 by default.

2022.07: NIST announces intent
to standardize Kyber (+ sigs).

2022.11: Google announces that
all internal Google networking
uses x25519+ntruhrss701.

“"Kyber has high performance ...
but still lacks some clarification
from NIST about its Intellectual
Property status’, I.e., patents.

2010-2017 patents listed In
NTRU Prime FAQ: US90941839,
US9246675, CN107566121,
CN108173643, KR101905689,
US11050557, EP3698515.

2022.11: NIST announces licenses
for US9094189, US9246675 for
Kyber v2024 after Kyber v2024 is
defined and standardized.

No analysis of other patents.

For deploying software to protect
users now, NTRU-HRSS is
attractive: small, fast, unpatented.



oyment and standards

- OpenSSH 9.0 uses
Fsntrup761 by default.

- NIST announces intent
ardize Kyber (+ sigs).

~ Google announces that
al Google networking
019+ntruhrss701.

has high performance ...
lacks some clarification
ST about its Intellectual
/ status', I.e., patents.

2010-2017 patents listed In
NTRU Prime FAQ: US90941839,
US9246675, CN107566121,
CN108173643, KR101905689,
US11050557, EP3698515.

2022.11: NIST announces licenses
for US9094189, US9246675 for
Kyber v2024 after Kyber v2024 is
defined and standardized.

No analysis of other patents.

For deploying software to protect
users now, NTRU-HRSS is

attractive: small, fast, unpatented.

s NTRL

2017 HF
proposal
has “at
20 years



1d standards

4 9.0 uses
61 by default.

nounces intent
ver (+ sigs).

‘nnounces that
- networking
uhrss701.

erformance . ..
e clarification
Its Intellectual
l.e., patents.

2010-2017 patents listed In
NTRU Prime FAQ: US90941839,
US9246675, CN107566121,
CN108173643, KR101905689,
US11050557, EP3698515.

2022.11: NIST announces licenses
for US9094189, US9246675 for
Kyber v2024 after Kyber v2024 is
defined and standardized.

No analysis of other patents.

For deploying software to protect
users now, NTRU-HRSS is
attractive: small, fast, unpatented.

s NTRU-HRSS se¢

2017 HRSS paper
proposal for OW-(
has “a track recor
20 years of crypta



ult.

1tent

that
g

10N
tual
ts.

2010-2017 patents listed In
NTRU Prime FAQ: US90941839,
US9246675, CN107566121,
CN108173643, KR101905689,
US11050557, EP3698515.

2022.11: NIST announces licenses
for US9094189, US9246675 for
Kyber v2024 after Kyber v2024 is
defined and standardized.

No analysis of other patents.

For deploying software to protect
users now, NTRU-HRSS is
attractive: small, fast, unpatented.

Is NTRU-HRSS secure?

2017 HRSS paper says: NT
proposal for OW-CPA encry
has “a track record of survi\
20 years of cryptanalysis’ .



2010-2017 patents listed In
NTRU Prime FAQ: US90941839,
US9246675, CN107566121,
CN108173643, KR101905689,
US11050557, EP3698515.

2022.11: NIST announces licenses
for US9094189, US9246675 for
Kyber v2024 after Kyber v2024 is
defined and standardized.

No analysis of other patents.

For deploying software to protect
users now, NTRU-HRSS is
attractive: small, fast, unpatented.

Is NTRU-HRSS secure?

2017 HRSS paper says: NTRU
proposal for OW-CPA encryption
has “a track record of surviving
20 years of cryptanalysis’.



2010-2017 patents listed in s NTRU-HRSS secure?
NTRU Prime FAQ: US90941839,
US9246675, CN107566121,
CN108173643, KR101905689,
US11050557, EP3698515.

2017 HRSS paper says: NTRU
proposal for OW-CPA encryption
has “a track record of surviving
20 years of cryptanalysis’.
2022.11: NIST announces licenses
for US9094189, US9246675 for
Kyber v2024 after Kyber v2024 is
defined and standardized.

No analysis of other patents.

Make various changes, including:
“We now show how to turn the
above OW-CPA secure encryption
into an IND-CCA2-secure KEM"—
l.e., include extra defenses to

For deploying software to protect stop chosen-ciphertext attacks.
users now, NTRU-HRSS is

attractive: small, fast, unpatented.




2010-2017 patents listed In
NTRU Prime FAQ: US90941839,
US9246675, CN107566121,
CN108173643, KR101905689,
US11050557, EP3698515.

2022.11: NIST announces licenses
for US9094189, US9246675 for
Kyber v2024 after Kyber v2024 is
defined and standardized.

No analysis of other patents.

For deploying software to protect
users now, NTRU-HRSS is
attractive: small, fast, unpatented.

Is NTRU-HRSS secure?

2017 HRSS paper says: NTRU
proposal for OW-CPA encryption
has “a track record of surviving
20 years of cryptanalysis’.

Make various changes, including:
“We now show how to turn the
above OW-CPA secure encryption
into an IND-CCA2-secure KEM" —
l.e., include extra defenses to

stop chosen-ciphertext attacks.

HRSS uses Fujisaki-Okamoto

(FO) transform, specifically one
of the variants from 2002 Dent.



17 patents listed In

’rime FAQ: U590941839,
75, CN107566121,
73643, KR101905689,
)557, EP3698515.

- NIST announces licenses
)904189, US9246675 for
2024 after Kyber v2024 is
and standardized.

/sis of other patents.

oying software to protect
w, NTRU-HRSS is
e: small, fast, unpatented.

Is NTRU-HRSS secure?

2017 HRSS paper says: NTRU
proposal for OW-CPA encryption
has “a track record of surviving
20 years of cryptanalysis’ .

Make various changes, including:
“We now show how to turn the
above OW-CPA secure encryption
into an IND-CCA2-secure KEM" —
I.e., include extra defenses to

stop chosen-ciphertext attacks.

HRSS uses Fujisaki-Okamoto

(FO) transform, specifically one
of the variants from 2002 Dent.

Defense
cipherte:

m, reenc



s listed In

: US9094189,
/560121,
101905689,
698515.

nounces licenses
59246675 for
Kyber v2024 is
ardized.

er patents.

ware to protect
HRSS is

fast, unpatented.

Is NTRU-HRSS secure?

2017 HRSS paper says: NTRU
proposal for OW-CPA encryption
has “a track record of surviving
20 years of cryptanalysis’.

Make various changes, including:
“We now show how to turn the
above OW-CPA secure encryption
into an IND-CCA2-secure KEM" —
l.e., include extra defenses to

stop chosen-ciphertext attacks.

HRSS uses Fujisaki-Okamoto

(FO) transform, specifically one
of the variants from 2002 Dent.

Defense 1: After ¢

ciphertext C to ok
m, reencrypt m ar



139,

censes
for

024 is

otect

tented.

Is NTRU-HRSS secure?

2017 HRSS paper says: NTRU
proposal for OW-CPA encryption
has “a track record of surviving
20 years of cryptanalysis’ .

Make various changes, including:
“We now show how to turn the
above OW-CPA secure encryption
into an IND-CCA2-secure KEM" —
I.e., include extra defenses to

stop chosen-ciphertext attacks.

HRSS uses Fujisaki-Okamoto

(FO) transform, specifically one
of the variants from 2002 Dent.

Defense 1: After decrypting
ciphertext C to obtain mess,
m, reencrypt m and reject I



Is NTRU-HRSS secure?

2017 HRSS paper says: NTRU
proposal for OW-CPA encryption
has “a track record of surviving
20 years of cryptanalysis’.

Make various changes, including:
“We now show how to turn the
above OW-CPA secure encryption
into an IND-CCA2-secure KEM" —
l.e., include extra defenses to

stop chosen-ciphertext attacks.

HRSS uses Fujisaki-Okamoto

(FO) transform, specifically one
of the variants from 2002 Dent.

Defense 1: After decrypting
ciphertext C to obtain message
m, reencrypt m and reject if # C.



Is NTRU-HRSS secure?

2017 HRSS paper says: NTRU
proposal for OW-CPA encryption
has “a track record of surviving
20 years of cryptanalysis’.

Make various changes, including:
“We now show how to turn the
above OW-CPA secure encryption
into an IND-CCA2-secure KEM" —
l.e., include extra defenses to

stop chosen-ciphertext attacks.

HRSS uses Fujisaki-Okamoto
(FO) transform, specifically one

of the variants from 2002 Dent.

Defense 1: After decrypting
ciphertext C to obtain message
m, reencrypt m and reject if # C.

This stops chosen-ciphertext
attacks that probe variants of a
legitimate C to see which variants
decrypt to the same m.



Is NTRU-HRSS secure?

2017 HRSS paper says: NTRU
proposal for OW-CPA encryption
has “a track record of surviving
20 years of cryptanalysis’.

Make various changes, including:
“We now show how to turn the
above OW-CPA secure encryption
into an IND-CCA2-secure KEM" —
l.e., include extra defenses to

stop chosen-ciphertext attacks.

HRSS uses Fujisaki-Okamoto

(FO) transform, specifically one
of the variants from 2002 Dent.

Defense 1: After decrypting
ciphertext C to obtain message
m, reencrypt m and reject if # C.

This stops chosen-ciphertext
attacks that probe variants of a
legitimate C to see which variants
decrypt to the same m.

If encryption is randomized, first

derandomize it: obtain random
bits as H(m).



Is NTRU-HRSS secure?

2017 HRSS paper says: NTRU
proposal for OW-CPA encryption
has “a track record of surviving
20 years of cryptanalysis’.

Make various changes, including:
“We now show how to turn the
above OW-CPA secure encryption
into an IND-CCA2-secure KEM" —
l.e., include extra defenses to

stop chosen-ciphertext attacks.

HRSS uses Fujisaki-Okamoto

(FO) transform, specifically one
of the variants from 2002 Dent.

Defense 1: After decrypting
ciphertext C to obtain message
m, reencrypt m and reject if # C.

This stops chosen-ciphertext
attacks that probe variants of a
legitimate C to see which variants
decrypt to the same m.

If encryption is randomized, first
derandomize it: obtain random
vits as H(m). Make sure m has

nigh entropy!



Is NTRU-HRSS secure?

2017 HRSS paper says: NTRU
proposal for OW-CPA encryption
has “a track record of surviving
20 years of cryptanalysis’.

Make various changes, including:
“We now show how to turn the
above OW-CPA secure encryption
into an IND-CCA2-secure KEM" —
l.e., include extra defenses to

stop chosen-ciphertext attacks.

HRSS uses Fujisaki-Okamoto

(FO) transform, specifically one
of the variants from 2002 Dent.

Defense 1: After decrypting
ciphertext C to obtain message
m, reencrypt m and reject if # C.

This stops chosen-ciphertext
attacks that probe variants of a
legitimate C to see which variants
decrypt to the same m.

If encryption is randomized, first
derandomize it: obtain random
vits as H(m). Make sure m has

nigh entropy! See recent collapse
of “FrodoKEM parameter sets
comfortably match their target

security levels with a large margin”.



J-HRSS secure?

SS paper says: NTRU
for OW-CPA encryption
rack record of surviving
of cryptanalysis” .

rious changes, including:

v show how to turn the
W-CPA secure encryption
IND-CCA2-secure KEM"—
ide extra defenses to
sen-ciphertext attacks.

ses Fujisaki—-Okamoto
nsform, specifically one
ariants from 2002 Dent.

Defense 1: After decrypting
ciphertext C to obtain message
m, reencrypt m and reject if # C.

This stops chosen-ciphertext
attacks that probe variants of a
legitimate C to see which variants
decrypt to the same m.

If encryption is randomized, first
derandomize it: obtain random
vits as H(m). Make sure m has

nigh entropy! See recent collapse
of “FrodoKEM parameter sets
comfortably match their target

security levels with a large margin”.

Defense
NnNtrw's S

defenses

Instead
send cip
where H

Also use



cure’

says: NTRU
_PA encryption
d of surviving
nalysis’ .

1ges, Including:
w to turn the
cure encryption
-secure KEM"™—
defenses to

text attacks.

(d—Okamoto

becifically one
m 2002 Dent.

Defense 1: After decrypting

ciphertext C to obtain message

m, reencrypt m and reject if # C.

This stops chosen-ciphertext

attacks that probe variants of a

legitimate C to see which variants

decrypt to the same m.

If encryption is randomized, first

derandomize it: obtain random

vits as H(m). Make sure m has

nigh entropy! See recent collapse

of “FrodoKEM parameter sets

comfortably matc
security levels wit

n their target

n a large margin”.

Defense 3 (in the

ntrw's survey of a
defenses): plainte:

Instead of cipherte
send ciphertext (E
where H" is a hast

Also use (E, H') i




RU
ption
ing

ding:
the

yption
EM"™ —

ks.

one
ent.

Defense 1: After decrypting

ciphertext C to obtain message

m, reencrypt m and reject if

This stops chosen-ciphertext

£C.

attacks that probe variants of a

legitimate C to see which variants

decrypt to the same m.

If encryption is randomized, first

derandomize it: obtain random

vits as H(m). Make sure m

nigh entropy! See recent col

1dS

apse

of “FrodoKEM parameter sets

comfortably match their target

security levels with a large margin”.

Defense 3 (in the numbering
ntrw's survey of attacks anc
defenses): plaintext confirm

Instead of ciphertext E(m),
send ciphertext (E(m), H'(n
where H' is a hash function.

Also use (E, H') in reencryp



Defense 1: After decrypting Defense 3 (in the numbering from

ciphertext C to obtain message ntrw's survey of attacks and

m, reencrypt m and reject if # C. defenses): plaintext confirmation.
This stops chosen-ciphertext Instead of ciphertext E(m),
attacks that probe variants of a send ciphertext (E(m), H'(m))
legitimate C to see which variants where H' is a hash function.
decrypt to the same m. Also use (E, H') in reencryption.

If encryption is randomized, first
derandomize it: obtain random
vits as H(m). Make sure m has

nigh entropy! See recent collapse
of “FrodoKEM parameter sets
comfortably match their target

security levels with a large margin”.




Defense 1: After decrypting
ciphertext C to obtain message
m, reencrypt m and reject if # C.

This stops chosen-ciphertext
attacks that probe variants of a
legitimate C to see which variants
decrypt to the same m.

If encryption is randomized, first
derandomize it: obtain random
vits as H(m). Make sure m has

nigh entropy! See recent collapse
of “FrodoKEM parameter sets
comfortably match their target

security levels with a large margin”.

Defense 3 (in the numbering from
ntrw's survey of attacks and
defenses): plaintext confirmation.

Instead of ciphertext E(m),
send ciphertext (E(m), H'(m))
where H' is a hash function.

Also use (E, H') in reencryption.

This stops chosen-ciphertext
attacks that exploit structure of
the public-key encryption function
E to convert E(m) for secret m
into, e.g., E(m + 1). Attacker
has no way to convert H'(m) into
H'(m + 1) for “unstructured” H’.



1: After decrypting
xt C to obtain message
rypt m and reject if = C.

ps chosen-ciphertext

that probe variants of a

e C to see which variants
to the same m.

ytion is randomized, first
mize it: obtain random
1(m). Make sure m has

ropy! See recent collapse
lOKEM parameter sets
bly match their target

levels with a large margin™.

Defense 3 (in the numbering from
ntrw's survey of attacks and
defenses): plaintext confirmation.

Instead of ciphertext E(m),
send ciphertext (E(m), H'(m))
where H' is a hash function.

Also use (E, H') in reencryption.

This stops chosen-ciphertext
attacks that exploit structure of
the public-key encryption function
E to convert E(m) for secret m
into, e.g., E(m + 1). Attacker
has no way to convert H'(m) into
H'(m + 1) for “unstructured” H'.

Current

2019 N1
adopts ¢
2017 Sa

Modifiec
plaintex
relies on



lecrypting
tain message
d reject if # C.

-ciphertext
' variants of a
>~ which variants

1€ n.

1domized, first
btain random
ke sure m has

recent collapse
rameter sets
1 their target

1 a large margin” .

Defense 3 (in the numbering from
ntrw's survey of attacks and
defenses): plaintext confirmation.

Instead of ciphertext E(m),
send ciphertext (E(m), H'(m))
where H' is a hash function.

Also use (E, H') in reencryption.

This stops chosen-ciphertext
attacks that exploit structure of
the public-key encryption function
E to convert E(m) for secret m
into, e.g., E(m + 1). Attacker
has no way to convert H'(m) into
H'(m + 1) for “unstructured” H’.

Current NTRU-HF

2019 NTRU-HRSS
adopts changes pr
2017 Saito—Xagaw

Modified proposal
plaintext confirm
relies on another ¢



age

£ C.

of 3
\riants

first
om
Nas

lapse
TS
ret

nargin’ .

Defense 3 (in the numbering from
ntrw's survey of attacks and
defenses): plaintext confirmation.

Instead of ciphertext E(m),
send ciphertext (E(m), H'(m))
where H' is a hash function.

Also use (E, H') in reencryption.

This stops chosen-ciphertext
attacks that exploit structure of
the public-key encryption function
E to convert E(m) for secret m
into, e.g., E(m + 1). Attacker
has no way to convert H'(m) into
H'(m + 1) for “unstructured” H'.

Current NTRU-HRSS is diff

2019 NTRU-HRSS proposal
adopts changes proposed by
2017 Saito—Xagawa—Yamak:

Modified proposal removes
plaintext confirmation anc
relies on another defense.



Defense 3 (in the numbering from
ntrw's survey of attacks and
defenses): plaintext confirmation.

Instead of ciphertext E(m),
send ciphertext (E(m), H'(m))
where H' is a hash function.

Also use (E, H') in reencryption.

This stops chosen-ciphertext
attacks that exploit structure of
the public-key encryption function
E to convert E(m) for secret m
into, e.g., E(m + 1). Attacker
has no way to convert H'(m) into
H'(m + 1) for “unstructured” H’.

Current NTRU-HRSS is different

2019 NTRU-HRSS proposal

adopts changes proposed by
2017 Saito—Xagawa—Yamakawa.

Modified proposal removes
plaintext confirmation and
relies on another defense.



Defense 3 (in the numbering from
ntrw's survey of attacks and
defenses): plaintext confirmation.

Instead of ciphertext E(m),
send ciphertext (E(m), H'(m))
where H' is a hash function.

Also use (E, H') in reencryption.

This stops chosen-ciphertext
attacks that exploit structure of
the public-key encryption function
E to convert E(m) for secret m
into, e.g., E(m + 1). Attacker
has no way to convert H'(m) into
H'(m + 1) for “unstructured” H’.

Current NTRU-HRSS is different

2019 NTRU-HRSS proposal

adopts changes proposed by
2017 Saito—Xagawa—Yamakawa.

Modified proposal removes
plaintext confirmation and
relies on another defense.

Defense 4, implicit rejection (from
2017 Hoftheinz—Hovelmanns—Kiltz,
generalizing 2012 Persichetti):

instead of having a KEM reject
an invalid ciphertext C, have

it output H"(r, C) where r is a
random string stored In secret key.



3 (in the numbering from
urvey of attacks and
): plaintext confirmation.

of ciphertext E(m),
hertext (E(m), H'(m))
" is a hash function.

(E, H') in reencryption.

ps chosen-ciphertext

that exploit structure of
ic-key encryption function
wert E(m) for secret m
., E(m + 1). Attacker
vay to convert H'(m) into
1) for “unstructured” H'.

6

Current NTRU-HRSS is different

2019 NTRU-HRSS proposal

adopts changes proposed by
2017 Saito—Xagawa—Yamakawa.

Modified proposal removes
plaintext confirmation and
relies on another defense.

Defense 4, implicit rejection (from
2017 Hoftheinz—Hovelmanns—Kiltz,
generalizing 2012 Persichetti):

instead of having a KEM reject
an invalid ciphertext C, have

it output H"(r, C) where r is a
random string stored in secret key.

Is Implic
adequat
confirme

chosen-c



numbering from
ttacks and
<t confirmation.

xt E(m),
(m), H'(m))

1 function.

1 reencryption.

-ciphertext

it structure of
ryption function
) for secret m
1). Attacker
vert H'(m) into
structured” H'.

Current NTRU-HRSS is different

2019 NTRU-HRSS proposal

adopts changes proposed by
2017 Saito—Xagawa—Yamakawa.

Modified proposal removes
plaintext confirmation and
relies on another defense.

Defense 4, implicit rejection (from
2017 Hoftheinz—Hovelmanns—Kiltz,
generalizing 2012 Persichetti):

instead of having a KEM reject
an invalid ciphertext C, have

it output H"(r, C) where r is a
random string stored In secret key.

Is implicit rejectiol
adequate substitut
confirmation as a
chosen-ciphertext



r from Current NTRU-HRSS is different Is implicit rejection really an
] | 2019 NTRU-HRSS proposal adec!uate .substltute for plair
ation. confirmation as a defense ag

adopts changes proposed by

—Cl 2
2017 Saito—Xagawa—Yamakawa. chosen-ciphertext attacks:

1))

Modified proposal removes
plaintext confirmation and

tion. relies on another defense.

f Defense 4, implicit rejection (from
© O_ 2017 Hofheinz—Hovelmanns—Kiltz,
nction . . .

generalizing 2012 Persichetti):
tm instead of having a KEM reject
ker . D
| an invalid ciphertext C, have
;) I:;E,O it output H"(r, C) where r is a

random string stored in secret key.




Current NTRU-HRSS is different

2019 NTRU-HRSS proposal

adopts changes proposed by
2017 Saito—Xagawa—Yamakawa.

Modified proposal removes
plaintext confirmation and
relies on another defense.

Defense 4, implicit rejection (from
2017 Hoftheinz—Hovelmanns—Kiltz,
generalizing 2012 Persichetti):

instead of having a KEM reject
an invalid ciphertext C, have

it output H"(r, C) where r is a
random string stored In secret key.

Is implicit rejection really an
adequate substitute for plaintext
confirmation as a defense against
chosen-ciphertext attacks?



Current NTRU-HRSS is different

2019 NTRU-HRSS proposal

adopts changes proposed by
2017 Saito—Xagawa—Yamakawa.

Modified proposal removes
plaintext confirmation and
relies on another defense.

Defense 4, implicit rejection (from
2017 Hoftheinz—Hovelmanns—Kiltz,
generalizing 2012 Persichetti):

instead of having a KEM reject
an invalid ciphertext C, have

it output H"(r, C) where r is a
random string stored In secret key.

Is implicit rejection really an
adequate substitute for plaintext
confirmation as a defense against
chosen-ciphertext attacks?

SXY+HRSS answer: Here's a
proof of IND-CCA2 security from
OW-CPA + implicit rejection.



Current NTRU-HRSS is different

2019 NTRU-HRSS proposal

adopts changes proposed by
2017 Saito—Xagawa—Yamakawa.

Modified proposal removes
plaintext confirmation and
relies on another defense.

Defense 4, implicit rejection (from
2017 Hoftheinz—Hovelmanns—Kiltz,
generalizing 2012 Persichetti):

instead of having a KEM reject
an invalid ciphertext C, have
it output H"(r, C) where r is a

random string stored In secret key.

Is implicit rejection really an
adequate substitute for plaintext
confirmation as a defense against
chosen-ciphertext attacks?

SXY+HRSS answer: Here's a
proof of IND-CCA2 security from
OW-CPA + implicit rejection.

Issue 1: Proof is only in QROM;
are there non-QROM attacks?



Current NTRU-HRSS is different

2019 NTRU-HRSS proposal

adopts changes proposed by
2017 Saito—Xagawa—Yamakawa.

Modified proposal removes
plaintext confirmation and
relies on another defense.

Defense 4, implicit rejection (from
2017 Hoftheinz—Hovelmanns—Kiltz,
generalizing 2012 Persichetti):

instead of having a KEM reject
an invalid ciphertext C, have
it output H"(r, C) where r is a

random string stored In secret key.

Is implicit rejection really an
adequate substitute for plaintext
confirmation as a defense against
chosen-ciphertext attacks?

SXY+HRSS answer: Here's a
proof of IND-CCA2 security from
OW-CPA + implicit rejection.

Issue 1: Proof is only in QROM;
are there non-QROM attacks?

Issue 2: Proof is tight only in
ROM: can this be exploited?



Current NTRU-HRSS is different

2019 NTRU-HRSS proposal
adopts changes proposed by
2017 Saito—Xagawa—Yamakawa.

Modified proposal removes
plaintext confirmation and
relies on another defense.

Defense 4, implicit rejection (from
2017 Hoftheinz—Hovelmanns—Kiltz,
generalizing 2012 Persichetti):

instead of having a KEM reject
an invalid ciphertext C, have
it output H"(r, C) where r is a

random string stored In secret key.

Is implicit rejection really an
adequate substitute for plaintext
confirmation as a defense against
chosen-ciphertext attacks?

SXY+HRSS answer: Here's a
proof of IND-CCA2 security from
OW-CPA + implicit rejection.

Issue 1: Proof is only in QROM;
are there non-QROM attacks?
Issue 2: Proof is tight only in
ROM: can this be exploited?
Issue 3, my focus today: Are
there chosen-ciphertext attacks

beyond the IND-CCA2 model?



NTRU-HRSS is different

"RU-HRSS proposal

hanges proposed by
ito—Xagawa—Yamakawa.

] proposal removes
t confirmation and
another defense.

4, implicit rejection (from
theinz—Hovelmanns—Kiltz,
ing 2012 Persichetti):

of having a KEM reject

d ciphertext C, have

t H"(r, C) where r is a

string stored in secret key.

Is implicit rejection really an
adequate substitute for plaintext
confirmation as a defense against
chosen-ciphertext attacks?

SXY+HRSS answer: Here's a
proof of IND-CCA2 security from
OW-CPA + implicit rejection.

Issue 1: Proof is only in QROM;
are there non-QROM attacks?
Issue 2: Proof is tight only in
ROM; can this be exploited?
Issue 3, my focus today: Are
there chosen-ciphertext attacks

beyond the IND-CCA2 model?

2007 Kc
“"Anyone
should t
dropping
had beel
security
someone
experien
never ha
if he hac

because

See also



XSS is different

> proposal
oposed by
/a—Yamakawa.

removes
ation and
lefense.

. rejection (from
velmanns—Kiltz,
Persichetti):

2 KEM reject
xt C, have
where r Is a

ed In secret key.

Is implicit rejection really an
adequate substitute for plaintext
confirmation as a defense against
chosen-ciphertext attacks?

SXY+HRSS answer: Here's a
proof of IND-CCA2 security from
OW-CPA + implicit rejection.

Issue 1: Proof is only in QROM;
are there non-QROM attacks?
Issue 2: Proof is tight only in
ROM: can this be exploited?
Issue 3, my focus today: Are

there chosen-ciphertext attacks
beyond the IND-CCA2 model?

2007 Koblitz, rega
“"Anyone working |
should think very
dropping a validat
had been put in tc
security problems.
someone with Kra
experience and ex|
never have made ¢

if he hadn't been
because of his ‘pre¢

See also 2019 sur\



erent

IWa.

(from
-Kiltz,

et key.

Is implicit rejection really an
adequate substitute for plaintext
confirmation as a defense against
chosen-ciphertext attacks?

SXY+HRSS answer: Here's a
proof of IND-CCA2 security from
OW-CPA + implicit rejection.

Issue 1: Proof is only in QROM;
are there non-QROM attacks?
Issue 2: Proof is tight only in
ROM; can this be exploited?
Issue 3, my focus today: Are

there chosen-ciphertext attacks
beyond the IND-CCA2 model?

2007 Koblitz, regarding HM
“"Anyone working in cryptog
should think very carefully b
dropping a validation step tl
had been put in to prevent
security problems. Certainly
someone with Krawczyk's
experience and expertise wo
never have made such a blu
if he hadn't been over-confic
because of his ‘proof’ of sec

See also 2019 survey of failt



Is implicit rejection really an
adequate substitute for plaintext
confirmation as a defense against
chosen-ciphertext attacks?

SXY+HRSS answer: Here's a
proof of IND-CCA2 security from
OW-CPA + implicit rejection.

Issue 1: Proof is only in QROM;
are there non-QROM attacks?
Issue 2: Proof is tight only in
ROM: can this be exploited?
Issue 3, my focus today: Are

there chosen-ciphertext attacks
beyond the IND-CCA2 model?

2007 Koblitz, regarding HMQV:
“"Anyone working In cryptography
should think very carefully before
dropping a validation step that
had been put in to prevent
security problems. Certainly
someone with Krawczyk's
experience and expertise would
never have made such a blunder
if he hadn't been over-confident
because of his ‘proof’ of security.”

See also 2019 survey of failures.



Is implicit rejection really an
adequate substitute for plaintext
confirmation as a defense against
chosen-ciphertext attacks?

SXY+HRSS answer: Here's a
proof of IND-CCA2 security from
OW-CPA + implicit rejection.

Issue 1: Proof is only in QROM;
are there non-QROM attacks?
Issue 2: Proof is tight only in
ROM: can this be exploited?
Issue 3, my focus today: Are

there chosen-ciphertext attacks
beyond the IND-CCA2 model?

2007 Koblitz, regarding HMQV:
“"Anyone working In cryptography
should think very carefully before
dropping a validation step that
had been put in to prevent
security problems. Certainly
someone with Krawczyk's
experience and expertise would
never have made such a blunder
if he hadn't been over-confident
because of his ‘proof’ of security.”

See also 2019 survey of failures.

Should think very carefully before
dropping plaintext confirmation.



It rejection really an

e substitute for plaintext
ition as a defense against
Iiphertext attacks?

RSS answer: Here's a
- IND-CCA2 security from
A\ + implicit rejection.

Proof is only in QROM;
> non-QROM attacks?
Proof is tight only in

an this be exploited?
my focus today: Are
osen-ciphertext attacks

the IND-CCA2 model?

2007 Koblitz, regarding HMQV:
“"Anyone working in cryptography
should think very carefully before
dropping a validation step that
had been put in to prevent
security problems. Certainly
someone with Krawczyk's
experience and expertise would
never have made such a blunder
if he hadn't been over-confident
because of his ‘proof’ of security.”

See also 2019 survey of failures.

Should think very carefully before
dropping plaintext confirmation.

2018 Be
implicit

random-
invalid c
the patt
plaintex
an earlie
current |
any adv:
defense
‘seems ¢
recommi
dual-def
given th
different



n really an

e for plaintext
defense against
attacks?

er: Here's a
\2 security from
It rejection.

nly in QROM;
DM attacks?
ight only In
exploited?
today: Are
rtext attacks

CA2 model?

2007 Koblitz, regarding HMQV:
“"Anyone working In cryptography
should think very carefully before
dropping a validation step that
had been put in to prevent
security problems. Certainly
someone with Krawczyk's
experience and expertise would
never have made such a blunder
if he hadn't been over-confident

because of his ‘proof’ of security.”

See also 2019 survey of failures.

Should think very carefully before
dropping plaintext confirmation.

2018 Bernstein—Pe
implicit rejection

random-looking se
invalid ciphertexts
the pattern of vali
plaintext confirma
an earlier stage of
current proofs do

any advantages fo
defense constructi
“seems difficult to
recommendation g
dual-defense const
given that the def:
different aspects c



1text
rainst

2007 Koblitz, regarding HMQV:
“"Anyone working in cryptography
should think very carefully before
dropping a validation step that
had been put in to prevent
security problems. Certainly
someone with Krawczyk's
experience and expertise would
never have made such a blunder
if he hadn't been over-confident
because of his ‘proof’ of security.”

See also 2019 survey of failures.

Should think very carefully before
dropping plaintext confirmation.

2018 Bernstein—Persichetti:
implicit rejection “produces

random-looking session keys
invalid ciphertexts, “so it hi
the pattern of valid cipherte
plaintext confirmation “stop
an earlier stage of the attac|
current proofs do not “show

any advantages for the dual-
defense construction” but it
“seems difficult to justify a

recommendation against the
dual-defense construction”

given that the defenses “tar.
different aspects of attacks”



2007 Koblitz, regarding HMQV:
“"Anyone working In cryptography
should think very carefully before
dropping a validation step that
had been put in to prevent
security problems. Certainly
someone with Krawczyk's
experience and expertise would
never have made such a blunder
if he hadn't been over-confident

because of his ‘proof’ of security.”

See also 2019 survey of failures.

Should think very carefully before
dropping plaintext confirmation.

10
2018 Bernstein—Persichetti:

implicit rejection “produces

random-looking session keys" for
invalid ciphertexts, “so it hides
the pattern of valid ciphertexts’;
plaintext confirmation “stops

an earlier stage of the attack’;
current proofs do not “show

any advantages for the dual-
defense construction” but it
“seems difficult to justify a
recommendation against the
dual-defense construction”
given that the defenses “target
different aspects of attacks".



blitz, regarding HMQV:

» working In cryptography
hink very carefully before
r a validation step that

1 put In to prevent
problems. Certainly

» with Krawczyk's

ce and expertise would
ve made such a blunder
In't been over-confident

of his ‘proof’ of security.”

2019 survey of failures.

hink very carefully before
r plaintext confirmation.

2018 Bernstein—Persichetti:
implicit rejection “produces

random-looking session keys” for
invalid ciphertexts, “so it hides
the pattern of valid ciphertexts”;
plaintext confirmation “stops

an earlier stage of the attack’;
current proofs do not “show

any advantages for the dual-
defense construction” but it
“seems difficult to justify a
recommendation against the
dual-defense construction”
given that the defenses “target
different aspects of attacks’ .

10

An attac

DRAM |
Often st
Google ¢
each sto
DRAM,

keys cor



rding HMQV:

n cryptography

carefully before
lon step that

) prevent
Certainly

wczyk's

sertise would

such a blunder

over-confident

of ' of security.”

ey of failures.

carefully before
confirmation.

2018 Bernstein—Persichetti:
implicit rejection “produces

random-looking session keys” for
invalid ciphertexts, “so it hides
the pattern of valid ciphertexts”;
plaintext confirmation “stops

an earlier stage of the attack’;
current proofs do not “show

any advantages for the dual-
defense construction” but it
“seems difficult to justify a
recommendation against the
dual-defense construction”
given that the defenses “target
different aspects of attacks".

10

An attack against

DRAM hardware i
Often stored bits :
Google statistics =
each storing a 25b¢€
DRAM, will have

keys corrupted eac



QV:
raphy
efore
nat

uld

nder
Jent

urity.”

IFES.

yefore
1on.

2018 Bernstein—Persichetti:
implicit rejection “produces

random-looking session keys” for
invalid ciphertexts, “so it hides
the pattern of valid ciphertexts” ;
plaintext confirmation “stops

an earlier stage of the attack’;
current proofs do not “show

any advantages for the dual-
defense construction” but it
“seems difficult to justify a
recommendation against the
dual-defense construction”
given that the defenses “target
different aspects of attacks’ .

10

An attack against NTRU-HI

DRAM hardware is unreliabl
Often stored bits are corrup
Google statistics = 10? use
each storing a 256-bit key Ir
DRAM, will have 50000—14(

keys corrupted each year.



2018 Bernstein—Persichetti:
implicit rejection “produces

random-looking session keys" for
invalid ciphertexts, “so it hides
the pattern of valid ciphertexts”;
plaintext confirmation “stops

an earlier stage of the attack’;
current proofs do not “show

any advantages for the dual-
defense construction” but it
“seems difficult to justify a
recommendation against the
dual-defense construction”
given that the defenses “target
different aspects of attacks".

10

11
An attack against NTRU-HRSS

DRAM hardware is unreliable.
Often stored bits are corrupted.
Google statistics = 102 users,
each storing a 256-bit key In
DRAM, will have 50000-140000

keys corrupted each year.



2018 Bernstein—Persichetti:
implicit rejection “produces

random-looking session keys" for
invalid ciphertexts, “so it hides
the pattern of valid ciphertexts”;
plaintext confirmation “stops

an earlier stage of the attack’;
current proofs do not “show

any advantages for the dual-
defense construction” but it
“seems difficult to justify a
recommendation against the
dual-defense construction”
given that the defenses “target
different aspects of attacks".

10

11
An attack against NTRU-HRSS

DRAM hardware is unreliable.
Often stored bits are corrupted.
Google statistics = 102 users,
each storing a 256-bit key In
DRAM, will have 50000-140000

keys corrupted each year.

Main point of the ntrw paper:
implicit rejection doesn't do its job
if ris corrupted. Attacker detects
invalid ciphertexts: changing r
changes decryption output. See
paper for application to NTRU-

HRSS and ful

attack software.



rnstein—Persichetti:
rejection “produces
looking session keys” for
Iphertexts, “so It hides
ern of valid ciphertexts’;
- confirmation “stops

r stage of the attack”;
oroofs do not “show

antages for the dual-
construction” but it
difficult to justify a
endation against the
ense construction”

at the defenses “target
aspects of attacks”.

10

An attack against NTRU-HRSS

DRAM hardware is unreliable.
Often stored bits are corrupted.
Google statistics = 10? users,
each storing a 256-bit key In
DRAM, will have 50000-140000

keys corrupted each year.

Main point of the ntrw paper:
implicit rejection doesn't do its job
if ris corrupted. Attacker detects
invalid ciphertexts: changing r
changes decryption output. See
paper for application to NTRU-
HRSS and full attack software.

11

What ca

Incompa
can re-a



rsichetti:
‘produces
ssion keys' for
, "so It hides
d ciphertexts”
tion “stops
the attack’:
not “‘show

r the dual-
on" but 1t
justify a
gainst the
ruction”
enses target
f attacks”.

10

An attack against NTRU-HRSS

DRAM hardware is unreliable.
Often stored bits are corrupted.

Google statistics = 102 users,

each storing a 256-bit key In

DRAM, will have 50000-140000

keys corrupted each year.

Main point of the ntrw paper:

implicit rejection doesn't do its job
if ris corrupted. Attacker detects

invalid ciphertexts: changing r

changes decryption output. See

paper for app
HRSS and ful

ication to NTRU-
attack software.

11

What can

we do |

Incompati

ble new

can re-add

plainte



for
Jes

Xts

<

set

10

An attack against NTRU-HRSS

DRAM hardware is unreliable.
Often stored bits are corrupted.
Google statistics = 10? users,
each storing a 256-bit key In
DRAM, will have 50000-140000

keys corrupted each year.

Main point of the ntrw paper:
implicit rejection doesn't do its job
if ris corrupted. Attacker detects
invalid ciphertexts: changing r
changes decryption output. See
paper for application to NTRU-
HRSS and full attack software.

11

What can

we do In response

Incompati

ole new NTRU-HF

can re-add

plaintext confirm



An attack against NTRU-HRSS

DRAM hardware is unreliable.
Often stored bits are corrupted.
Google statistics = 10 users,
each storing a 256-bit key In
DRAM, will have 50000-140000

keys corrupted each year.

Main point of the ntrw paper:
implicit rejection doesn't do its job
if ris corrupted. Attacker detects
invalid ciphertexts: changing r
changes decryption output. See
paper for application to NTRU-
HRSS and full attack software.

11

What can

we do in response’?

Incompati

ble new NTRU-HRSS

can re-add

plaintext confirmation.

12



11

An attack against NTRU-HRSS What can we do in response?
DRAM hardware is unreliable. Incompatible new NTRU-HRSS
Often stored bits are corrupted. can re-add plaintext confirmation.

. 9
Google statistics = 107 users, Can fix corruption by applying an

each storing a 256-bit key In
DRAM, will have 50000-140000
keys corrupted each year.

error-correcting code (ECC):

e ntrw's 1libsecded software: or
e SECDED ECC DRAM hardware.
Main point of the ntrw paper: Many benefits beyond this attack.
implicit rejection doesn't do its job
if ris corrupted. Attacker detects
invalid ciphertexts: changing r
changes decryption output. See
paper for application to NTRU-
HRSS and full attack software.




An attack against NTRU-HRSS

DRAM hardware is unreliable.
Often stored bits are corrupted.
Google statistics = 10 users,
each storing a 256-bit key In
DRAM, will have 50000-140000
keys corrupted each year.

Main point of the ntrw paper:
implicit rejection doesn't do its job
if ris corrupted. Attacker detects
invalid ciphertexts: changing r
changes decryption output. See

paper for application to NTRU-
HRSS and ful

attack software.

11

What can we do in response?

Incompatible new NTRU-HRSS
can re-ado

plaintext confirmation.

Can fix corruption by applying an
error-correcting code (ECC):

e ntrw's 1libsecded software: or
e SECDED ECC DRAM hardware.

Many benefits beyond this attack.

Specify ECC in secret-key format?
Use ECC in crypto libraries?

Use ECC in applications?
Programming language? OS?
Require SECDED ECC DRAM?

12



An attack against NTRU-HRSS

DRAM hardware is unreliable.
Often stored bits are corrupted.
Google statistics = 10 users,
each storing a 256-bit key In
DRAM, will have 50000-140000
keys corrupted each year.

Main point of the ntrw paper:
implicit rejection doesn't do its job
if ris corrupted. Attacker detects
invalid ciphertexts: changing r
changes decryption output. See

paper for application to NTRU-
HRSS and ful

attack software.

11

What can we do in response?

Incompatible new NTRU-HRSS
can re-ado

plaintext confirmation.

Can fix corruption by applying an
error-correcting code (ECC):
e ntrw's 1libsecded software: or

e SECDED ECC DRAM hardware.
Many benefits beyond this attack.

Specify ECC in secret-key format?
Use ECC in crypto libraries?

Use ECC in applications?
Programming language? OS?
Require SECDED ECC DRAM?
Point fingers and do nothing?

12



k against NTRU-HRSS

1ardware Is unreliable.
ored bits are corrupted.
tatistics = 10° users,
ring a 256-bit key In
will have 50000-140000
rupted each year.

int of the ntrw paper:
rejection doesn't do Iits job
rrupted. Attacker detects
Iphertexts: changing r
decryption output. See

r application to NTRU-

d full attack software.

11

What can we do in response?

Incompatible new NTRU-HRSS
can re-add plaintext confirmation.

Can fix corruption by applying an
error-correcting code (ECC):

e ntrw's 1libsecded software: or
e SECDED ECC DRAM hardware.

Many benefits beyond this attack.

Specify ECC in secret-key format?
Use ECC in crypto libraries?

Use ECC in applications?
Programming language? OS?
Require SECDED ECC DRAM?
Point fingers and do nothing?

12

Classic |

2022.10.
recommiz
confirme

eliminat

U.S. pat




NTRU-HRSS

s unreliable.
are corrupted.
> 107 users,
-bit key In
50000—-140000
h year.

ntrw paper:
loesn't do Its job
Attacker detects
. changing r

n output. See
on to NTRU-

ack software.

11

12
What can we do in response?

Incompatible new NTRU-HRSS
can re-adoc

plaintext confirmation.

Can fix corruption by applying an
error-correcting code (ECC):

e ntrw's 1libsecded software: or
e SECDED ECC DRAM hardware.

Many benefits beyond this attack.

Specify ECC in secret-key format?
Use ECC in crypto libraries?

Use ECC in applications?
Programming language? OS?
Require SECDED ECC DRAM?
Point fingers and do nothing?

Classic McEliece f

2022.10: Classic N
recommends dropj

confirmation “to

€

L

Iminate any conc
.S. patent 99124



)000

er:
its job
etects
e
See
RU-

Ire.

11

12
What can we do in response?

Incompatible new NTRU-HRSS
can re-add plaintext confirmation.

Can fix corruption by applying an
error-correcting code (ECC):

e ntrw's 1libsecded software: or
e SECDED ECC DRAM hardware.

Many benefits beyond this attack.

Specify ECC in secret-key format?
Use ECC in crypto libraries?

Use ECC in applications?
Programming language? OS?
Require SECDED ECC DRAM?
Point fingers and do nothing?

Classic McEliece followup

2022.10: Classic McEliece

recommends dropping plaint
confirmation “to proactively
eliminate any concerns regail

U.S. patent 9912479".




What can

we do in response’?

Incompati

can re-add plaintext confirmation.

Can fix corruption by applying an

ble new NTRU-HRSS

error-correcting code (ECC):

e ntrw's 1libsecded software: or

e SECDED ECC DRAM hardware.
Many benefits beyond this attack.

Specify ECC in secret-key format?

Use ECC |
Use ECC |

n crypto libraries?
n applications?

Programming language? OS?
Require SECDED ECC DRAM?
Point fingers and do nothing?

12

Classic McEliece followup

2022.10: Classic McEliece
recommends dropping plaintext
confirmation “to proactively

eliminate any concerns regarding
U.S. patent 9912479".

13



What can

we do in response’?

Incompati

ble new NTRU-HRSS

can re-add plaintext confirmation.

Can fix co

rruption by applying an

error-correcting code (ECC):

e ntrw's 1libsecded software: or

e SECDED ECC DRAM hardware.

Many benefits beyond this attack.

Specify ECC in secret-key format?

Use ECC |
Use ECC |

n crypto libraries?
n applications?

Programming language? OS?
Require SECDED ECC DRAM?
Point fingers and do nothing?

12

Classic McEliece followup

2022.10: Classic McEliece
recommends dropping plaintext
confirmation “to proactively

eliminate any concerns regarding
U.S. patent 9912479".

Warns that this allows the ntrw
attack whenever r Is corrupted.
Describes ECC as a defense.

13



What can we do in response?

Incompatible new NTRU-HRSS

can re-add

plaintext confirmation.

Can fix corruption by applying an

error-correcting code (ECC):

ntrw's 1libsecded software: or

SECDED ECC DRAM hardware.

Many benefits beyond this attack.

Specify ECC in secret-key format?

L

L

se ECC in crypto libraries?
se ECC in applications?

Programming language? OS?
Require SECDED ECC DRAM?
Point fingers and do nothing?

12

Classic McEliece followup

2022.10: Classic McEliece
recommends dropping plaintext
confirmation “to proactively

eliminate any concerns regarding
U.S. patent 9912479".

Warns that this allows the ntrw
attack whenever r Is corrupted.
Describes ECC as a defense.

Introduces principle of factoring
“any generic transformation
aiming at a goal beyond IND-

CCA2" out of KEM specifications,

to simplify design and review.

13



