
1

A one-time single-bit fault

leaks all previous

NTRU-HRSS session keys

to a chosen-ciphertext attack

D. J. Bernstein

University of Illinois at Chicago;

Ruhr University Bochum

cr.yp.to/papers.html#ntrw

Thanks to Lange for pointing

out plaintext confirmation as a

countermeasure to fault attacks.

2

PQ deployment and standards

2022.04: OpenSSH 9.0 uses

x25519+sntrup761 by default.



1

A one-time single-bit fault

leaks all previous

NTRU-HRSS session keys

to a chosen-ciphertext attack

D. J. Bernstein

University of Illinois at Chicago;

Ruhr University Bochum

cr.yp.to/papers.html#ntrw

Thanks to Lange for pointing

out plaintext confirmation as a

countermeasure to fault attacks.

2

PQ deployment and standards

2022.04: OpenSSH 9.0 uses

x25519+sntrup761 by default.

2022.07: NIST announces intent

to standardize Kyber (+ sigs).



1

A one-time single-bit fault

leaks all previous

NTRU-HRSS session keys

to a chosen-ciphertext attack

D. J. Bernstein

University of Illinois at Chicago;

Ruhr University Bochum

cr.yp.to/papers.html#ntrw

Thanks to Lange for pointing

out plaintext confirmation as a

countermeasure to fault attacks.

2

PQ deployment and standards

2022.04: OpenSSH 9.0 uses

x25519+sntrup761 by default.

2022.07: NIST announces intent

to standardize Kyber (+ sigs).

2022.11: Google announces that

all internal Google networking

uses x25519+ntruhrss701.



1

A one-time single-bit fault

leaks all previous

NTRU-HRSS session keys

to a chosen-ciphertext attack

D. J. Bernstein

University of Illinois at Chicago;

Ruhr University Bochum

cr.yp.to/papers.html#ntrw

Thanks to Lange for pointing

out plaintext confirmation as a

countermeasure to fault attacks.

2

PQ deployment and standards

2022.04: OpenSSH 9.0 uses

x25519+sntrup761 by default.

2022.07: NIST announces intent

to standardize Kyber (+ sigs).

2022.11: Google announces that

all internal Google networking

uses x25519+ntruhrss701.

“Kyber has high performance : : :

but still lacks some clarification

from NIST about its Intellectual

Property status”, i.e., patents.



1

A one-time single-bit fault

leaks all previous

NTRU-HRSS session keys

to a chosen-ciphertext attack

D. J. Bernstein

University of Illinois at Chicago;

Ruhr University Bochum

cr.yp.to/papers.html#ntrw

Thanks to Lange for pointing

out plaintext confirmation as a

countermeasure to fault attacks.

2

PQ deployment and standards

2022.04: OpenSSH 9.0 uses

x25519+sntrup761 by default.

2022.07: NIST announces intent

to standardize Kyber (+ sigs).

2022.11: Google announces that

all internal Google networking

uses x25519+ntruhrss701.

“Kyber has high performance : : :

but still lacks some clarification

from NIST about its Intellectual

Property status”, i.e., patents.

3

2010–2017 patents listed in

NTRU Prime FAQ: US9094189,

US9246675, CN107566121,

CN108173643, KR101905689,

US11050557, EP3698515.



1

A one-time single-bit fault

leaks all previous

NTRU-HRSS session keys

to a chosen-ciphertext attack

D. J. Bernstein

University of Illinois at Chicago;

Ruhr University Bochum

cr.yp.to/papers.html#ntrw

Thanks to Lange for pointing

out plaintext confirmation as a

countermeasure to fault attacks.

2

PQ deployment and standards

2022.04: OpenSSH 9.0 uses

x25519+sntrup761 by default.

2022.07: NIST announces intent

to standardize Kyber (+ sigs).

2022.11: Google announces that

all internal Google networking

uses x25519+ntruhrss701.

“Kyber has high performance : : :

but still lacks some clarification

from NIST about its Intellectual

Property status”, i.e., patents.

3

2010–2017 patents listed in

NTRU Prime FAQ: US9094189,

US9246675, CN107566121,

CN108173643, KR101905689,

US11050557, EP3698515.



1

A one-time single-bit fault

leaks all previous

NTRU-HRSS session keys

to a chosen-ciphertext attack

D. J. Bernstein

University of Illinois at Chicago;

Ruhr University Bochum

cr.yp.to/papers.html#ntrw

Thanks to Lange for pointing

out plaintext confirmation as a

countermeasure to fault attacks.

2

PQ deployment and standards

2022.04: OpenSSH 9.0 uses

x25519+sntrup761 by default.

2022.07: NIST announces intent

to standardize Kyber (+ sigs).

2022.11: Google announces that

all internal Google networking

uses x25519+ntruhrss701.

“Kyber has high performance : : :

but still lacks some clarification

from NIST about its Intellectual

Property status”, i.e., patents.

3

2010–2017 patents listed in

NTRU Prime FAQ: US9094189,

US9246675, CN107566121,

CN108173643, KR101905689,

US11050557, EP3698515.



2

PQ deployment and standards

2022.04: OpenSSH 9.0 uses

x25519+sntrup761 by default.

2022.07: NIST announces intent

to standardize Kyber (+ sigs).

2022.11: Google announces that

all internal Google networking

uses x25519+ntruhrss701.

“Kyber has high performance : : :

but still lacks some clarification

from NIST about its Intellectual

Property status”, i.e., patents.

3

2010–2017 patents listed in

NTRU Prime FAQ: US9094189,

US9246675, CN107566121,

CN108173643, KR101905689,

US11050557, EP3698515.



2

PQ deployment and standards

2022.04: OpenSSH 9.0 uses

x25519+sntrup761 by default.

2022.07: NIST announces intent

to standardize Kyber (+ sigs).

2022.11: Google announces that

all internal Google networking

uses x25519+ntruhrss701.

“Kyber has high performance : : :

but still lacks some clarification

from NIST about its Intellectual

Property status”, i.e., patents.

3

2010–2017 patents listed in

NTRU Prime FAQ: US9094189,

US9246675, CN107566121,

CN108173643, KR101905689,

US11050557, EP3698515.

2022.11: NIST announces licenses

for US9094189, US9246675 for

Kyber v2024 after Kyber v2024 is

defined and standardized.

No analysis of other patents.



2

PQ deployment and standards

2022.04: OpenSSH 9.0 uses

x25519+sntrup761 by default.

2022.07: NIST announces intent

to standardize Kyber (+ sigs).

2022.11: Google announces that

all internal Google networking

uses x25519+ntruhrss701.

“Kyber has high performance : : :

but still lacks some clarification

from NIST about its Intellectual

Property status”, i.e., patents.

3

2010–2017 patents listed in

NTRU Prime FAQ: US9094189,

US9246675, CN107566121,

CN108173643, KR101905689,

US11050557, EP3698515.

2022.11: NIST announces licenses

for US9094189, US9246675 for

Kyber v2024 after Kyber v2024 is

defined and standardized.

No analysis of other patents.

For deploying software to protect

users now, NTRU-HRSS is

attractive: small, fast, unpatented.



2

PQ deployment and standards

2022.04: OpenSSH 9.0 uses

x25519+sntrup761 by default.

2022.07: NIST announces intent

to standardize Kyber (+ sigs).

2022.11: Google announces that

all internal Google networking

uses x25519+ntruhrss701.

“Kyber has high performance : : :

but still lacks some clarification

from NIST about its Intellectual

Property status”, i.e., patents.

3

2010–2017 patents listed in

NTRU Prime FAQ: US9094189,

US9246675, CN107566121,

CN108173643, KR101905689,

US11050557, EP3698515.

2022.11: NIST announces licenses

for US9094189, US9246675 for

Kyber v2024 after Kyber v2024 is

defined and standardized.

No analysis of other patents.

For deploying software to protect

users now, NTRU-HRSS is

attractive: small, fast, unpatented.

4

Is NTRU-HRSS secure?

2017 HRSS paper says: NTRU

proposal for OW-CPA encryption

has “a track record of surviving

20 years of cryptanalysis”.



2

PQ deployment and standards

2022.04: OpenSSH 9.0 uses

x25519+sntrup761 by default.

2022.07: NIST announces intent

to standardize Kyber (+ sigs).

2022.11: Google announces that

all internal Google networking

uses x25519+ntruhrss701.

“Kyber has high performance : : :

but still lacks some clarification

from NIST about its Intellectual

Property status”, i.e., patents.

3

2010–2017 patents listed in

NTRU Prime FAQ: US9094189,

US9246675, CN107566121,

CN108173643, KR101905689,

US11050557, EP3698515.

2022.11: NIST announces licenses

for US9094189, US9246675 for

Kyber v2024 after Kyber v2024 is

defined and standardized.

No analysis of other patents.

For deploying software to protect

users now, NTRU-HRSS is

attractive: small, fast, unpatented.

4

Is NTRU-HRSS secure?

2017 HRSS paper says: NTRU

proposal for OW-CPA encryption

has “a track record of surviving

20 years of cryptanalysis”.



2

PQ deployment and standards

2022.04: OpenSSH 9.0 uses

x25519+sntrup761 by default.

2022.07: NIST announces intent

to standardize Kyber (+ sigs).

2022.11: Google announces that

all internal Google networking

uses x25519+ntruhrss701.

“Kyber has high performance : : :

but still lacks some clarification

from NIST about its Intellectual

Property status”, i.e., patents.

3

2010–2017 patents listed in

NTRU Prime FAQ: US9094189,

US9246675, CN107566121,

CN108173643, KR101905689,

US11050557, EP3698515.

2022.11: NIST announces licenses

for US9094189, US9246675 for

Kyber v2024 after Kyber v2024 is

defined and standardized.

No analysis of other patents.

For deploying software to protect

users now, NTRU-HRSS is

attractive: small, fast, unpatented.

4

Is NTRU-HRSS secure?

2017 HRSS paper says: NTRU

proposal for OW-CPA encryption

has “a track record of surviving

20 years of cryptanalysis”.



3

2010–2017 patents listed in

NTRU Prime FAQ: US9094189,

US9246675, CN107566121,

CN108173643, KR101905689,

US11050557, EP3698515.

2022.11: NIST announces licenses

for US9094189, US9246675 for

Kyber v2024 after Kyber v2024 is

defined and standardized.

No analysis of other patents.

For deploying software to protect

users now, NTRU-HRSS is

attractive: small, fast, unpatented.

4

Is NTRU-HRSS secure?

2017 HRSS paper says: NTRU

proposal for OW-CPA encryption

has “a track record of surviving

20 years of cryptanalysis”.



3

2010–2017 patents listed in

NTRU Prime FAQ: US9094189,

US9246675, CN107566121,

CN108173643, KR101905689,

US11050557, EP3698515.

2022.11: NIST announces licenses

for US9094189, US9246675 for

Kyber v2024 after Kyber v2024 is

defined and standardized.

No analysis of other patents.

For deploying software to protect

users now, NTRU-HRSS is

attractive: small, fast, unpatented.

4

Is NTRU-HRSS secure?

2017 HRSS paper says: NTRU

proposal for OW-CPA encryption

has “a track record of surviving

20 years of cryptanalysis”.

Make various changes, including:

“We now show how to turn the

above OW-CPA secure encryption

into an IND-CCA2-secure KEM”—

i.e., include extra defenses to

stop chosen-ciphertext attacks.



3

2010–2017 patents listed in

NTRU Prime FAQ: US9094189,

US9246675, CN107566121,

CN108173643, KR101905689,

US11050557, EP3698515.

2022.11: NIST announces licenses

for US9094189, US9246675 for

Kyber v2024 after Kyber v2024 is

defined and standardized.

No analysis of other patents.

For deploying software to protect

users now, NTRU-HRSS is

attractive: small, fast, unpatented.

4

Is NTRU-HRSS secure?

2017 HRSS paper says: NTRU

proposal for OW-CPA encryption

has “a track record of surviving

20 years of cryptanalysis”.

Make various changes, including:

“We now show how to turn the

above OW-CPA secure encryption

into an IND-CCA2-secure KEM”—

i.e., include extra defenses to

stop chosen-ciphertext attacks.

HRSS uses Fujisaki–Okamoto

(FO) transform, specifically one

of the variants from 2002 Dent.



3

2010–2017 patents listed in

NTRU Prime FAQ: US9094189,

US9246675, CN107566121,

CN108173643, KR101905689,

US11050557, EP3698515.

2022.11: NIST announces licenses

for US9094189, US9246675 for

Kyber v2024 after Kyber v2024 is

defined and standardized.

No analysis of other patents.

For deploying software to protect

users now, NTRU-HRSS is

attractive: small, fast, unpatented.

4

Is NTRU-HRSS secure?

2017 HRSS paper says: NTRU

proposal for OW-CPA encryption

has “a track record of surviving

20 years of cryptanalysis”.

Make various changes, including:

“We now show how to turn the

above OW-CPA secure encryption

into an IND-CCA2-secure KEM”—

i.e., include extra defenses to

stop chosen-ciphertext attacks.

HRSS uses Fujisaki–Okamoto

(FO) transform, specifically one

of the variants from 2002 Dent.

5

Defense 1: After decrypting

ciphertext C to obtain message

m, reencrypt m and reject if 6= C.



3

2010–2017 patents listed in

NTRU Prime FAQ: US9094189,

US9246675, CN107566121,

CN108173643, KR101905689,

US11050557, EP3698515.

2022.11: NIST announces licenses

for US9094189, US9246675 for

Kyber v2024 after Kyber v2024 is

defined and standardized.

No analysis of other patents.

For deploying software to protect

users now, NTRU-HRSS is

attractive: small, fast, unpatented.

4

Is NTRU-HRSS secure?

2017 HRSS paper says: NTRU

proposal for OW-CPA encryption

has “a track record of surviving

20 years of cryptanalysis”.

Make various changes, including:

“We now show how to turn the

above OW-CPA secure encryption

into an IND-CCA2-secure KEM”—

i.e., include extra defenses to

stop chosen-ciphertext attacks.

HRSS uses Fujisaki–Okamoto

(FO) transform, specifically one

of the variants from 2002 Dent.

5

Defense 1: After decrypting

ciphertext C to obtain message

m, reencrypt m and reject if 6= C.



3

2010–2017 patents listed in

NTRU Prime FAQ: US9094189,

US9246675, CN107566121,

CN108173643, KR101905689,

US11050557, EP3698515.

2022.11: NIST announces licenses

for US9094189, US9246675 for

Kyber v2024 after Kyber v2024 is

defined and standardized.

No analysis of other patents.

For deploying software to protect

users now, NTRU-HRSS is

attractive: small, fast, unpatented.

4

Is NTRU-HRSS secure?

2017 HRSS paper says: NTRU

proposal for OW-CPA encryption

has “a track record of surviving

20 years of cryptanalysis”.

Make various changes, including:

“We now show how to turn the

above OW-CPA secure encryption

into an IND-CCA2-secure KEM”—

i.e., include extra defenses to

stop chosen-ciphertext attacks.

HRSS uses Fujisaki–Okamoto

(FO) transform, specifically one

of the variants from 2002 Dent.

5

Defense 1: After decrypting

ciphertext C to obtain message

m, reencrypt m and reject if 6= C.



4

Is NTRU-HRSS secure?

2017 HRSS paper says: NTRU

proposal for OW-CPA encryption

has “a track record of surviving

20 years of cryptanalysis”.

Make various changes, including:

“We now show how to turn the

above OW-CPA secure encryption

into an IND-CCA2-secure KEM”—

i.e., include extra defenses to

stop chosen-ciphertext attacks.

HRSS uses Fujisaki–Okamoto

(FO) transform, specifically one

of the variants from 2002 Dent.

5

Defense 1: After decrypting

ciphertext C to obtain message

m, reencrypt m and reject if 6= C.



4

Is NTRU-HRSS secure?

2017 HRSS paper says: NTRU

proposal for OW-CPA encryption

has “a track record of surviving

20 years of cryptanalysis”.

Make various changes, including:

“We now show how to turn the

above OW-CPA secure encryption

into an IND-CCA2-secure KEM”—

i.e., include extra defenses to

stop chosen-ciphertext attacks.

HRSS uses Fujisaki–Okamoto

(FO) transform, specifically one

of the variants from 2002 Dent.

5

Defense 1: After decrypting

ciphertext C to obtain message

m, reencrypt m and reject if 6= C.

This stops chosen-ciphertext

attacks that probe variants of a

legitimate C to see which variants

decrypt to the same m.



4

Is NTRU-HRSS secure?

2017 HRSS paper says: NTRU

proposal for OW-CPA encryption

has “a track record of surviving

20 years of cryptanalysis”.

Make various changes, including:

“We now show how to turn the

above OW-CPA secure encryption

into an IND-CCA2-secure KEM”—

i.e., include extra defenses to

stop chosen-ciphertext attacks.

HRSS uses Fujisaki–Okamoto

(FO) transform, specifically one

of the variants from 2002 Dent.

5

Defense 1: After decrypting

ciphertext C to obtain message

m, reencrypt m and reject if 6= C.

This stops chosen-ciphertext

attacks that probe variants of a

legitimate C to see which variants

decrypt to the same m.

If encryption is randomized, first

derandomize it: obtain random

bits as H(m).



4

Is NTRU-HRSS secure?

2017 HRSS paper says: NTRU

proposal for OW-CPA encryption

has “a track record of surviving

20 years of cryptanalysis”.

Make various changes, including:

“We now show how to turn the

above OW-CPA secure encryption

into an IND-CCA2-secure KEM”—

i.e., include extra defenses to

stop chosen-ciphertext attacks.

HRSS uses Fujisaki–Okamoto

(FO) transform, specifically one

of the variants from 2002 Dent.

5

Defense 1: After decrypting

ciphertext C to obtain message

m, reencrypt m and reject if 6= C.

This stops chosen-ciphertext

attacks that probe variants of a

legitimate C to see which variants

decrypt to the same m.

If encryption is randomized, first

derandomize it: obtain random

bits as H(m). Make sure m has

high entropy!



4

Is NTRU-HRSS secure?

2017 HRSS paper says: NTRU

proposal for OW-CPA encryption

has “a track record of surviving

20 years of cryptanalysis”.

Make various changes, including:

“We now show how to turn the

above OW-CPA secure encryption

into an IND-CCA2-secure KEM”—

i.e., include extra defenses to

stop chosen-ciphertext attacks.

HRSS uses Fujisaki–Okamoto

(FO) transform, specifically one

of the variants from 2002 Dent.

5

Defense 1: After decrypting

ciphertext C to obtain message

m, reencrypt m and reject if 6= C.

This stops chosen-ciphertext

attacks that probe variants of a

legitimate C to see which variants

decrypt to the same m.

If encryption is randomized, first

derandomize it: obtain random

bits as H(m). Make sure m has

high entropy! See recent collapse

of “FrodoKEM parameter sets

comfortably match their target

security levels with a large margin”.



4

Is NTRU-HRSS secure?

2017 HRSS paper says: NTRU

proposal for OW-CPA encryption

has “a track record of surviving

20 years of cryptanalysis”.

Make various changes, including:

“We now show how to turn the

above OW-CPA secure encryption

into an IND-CCA2-secure KEM”—

i.e., include extra defenses to

stop chosen-ciphertext attacks.

HRSS uses Fujisaki–Okamoto

(FO) transform, specifically one

of the variants from 2002 Dent.

5

Defense 1: After decrypting

ciphertext C to obtain message

m, reencrypt m and reject if 6= C.

This stops chosen-ciphertext

attacks that probe variants of a

legitimate C to see which variants

decrypt to the same m.

If encryption is randomized, first

derandomize it: obtain random

bits as H(m). Make sure m has

high entropy! See recent collapse

of “FrodoKEM parameter sets

comfortably match their target

security levels with a large margin”.

6

Defense 3 (in the numbering from

ntrw’s survey of attacks and

defenses): plaintext confirmation.

Instead of ciphertext E(m),

send ciphertext (E(m); H′(m))

where H′ is a hash function.

Also use (E;H′) in reencryption.



4

Is NTRU-HRSS secure?

2017 HRSS paper says: NTRU

proposal for OW-CPA encryption

has “a track record of surviving

20 years of cryptanalysis”.

Make various changes, including:

“We now show how to turn the

above OW-CPA secure encryption

into an IND-CCA2-secure KEM”—

i.e., include extra defenses to

stop chosen-ciphertext attacks.

HRSS uses Fujisaki–Okamoto

(FO) transform, specifically one

of the variants from 2002 Dent.

5

Defense 1: After decrypting

ciphertext C to obtain message

m, reencrypt m and reject if 6= C.

This stops chosen-ciphertext

attacks that probe variants of a

legitimate C to see which variants

decrypt to the same m.

If encryption is randomized, first

derandomize it: obtain random

bits as H(m). Make sure m has

high entropy! See recent collapse

of “FrodoKEM parameter sets

comfortably match their target

security levels with a large margin”.

6

Defense 3 (in the numbering from

ntrw’s survey of attacks and

defenses): plaintext confirmation.

Instead of ciphertext E(m),

send ciphertext (E(m); H′(m))

where H′ is a hash function.

Also use (E;H′) in reencryption.



4

Is NTRU-HRSS secure?

2017 HRSS paper says: NTRU

proposal for OW-CPA encryption

has “a track record of surviving

20 years of cryptanalysis”.

Make various changes, including:

“We now show how to turn the

above OW-CPA secure encryption

into an IND-CCA2-secure KEM”—

i.e., include extra defenses to

stop chosen-ciphertext attacks.

HRSS uses Fujisaki–Okamoto

(FO) transform, specifically one

of the variants from 2002 Dent.

5

Defense 1: After decrypting

ciphertext C to obtain message

m, reencrypt m and reject if 6= C.

This stops chosen-ciphertext

attacks that probe variants of a

legitimate C to see which variants

decrypt to the same m.

If encryption is randomized, first

derandomize it: obtain random

bits as H(m). Make sure m has

high entropy! See recent collapse

of “FrodoKEM parameter sets

comfortably match their target

security levels with a large margin”.

6

Defense 3 (in the numbering from

ntrw’s survey of attacks and

defenses): plaintext confirmation.

Instead of ciphertext E(m),

send ciphertext (E(m); H′(m))

where H′ is a hash function.

Also use (E;H′) in reencryption.



5

Defense 1: After decrypting

ciphertext C to obtain message

m, reencrypt m and reject if 6= C.

This stops chosen-ciphertext

attacks that probe variants of a

legitimate C to see which variants

decrypt to the same m.

If encryption is randomized, first

derandomize it: obtain random

bits as H(m). Make sure m has

high entropy! See recent collapse

of “FrodoKEM parameter sets

comfortably match their target

security levels with a large margin”.

6

Defense 3 (in the numbering from

ntrw’s survey of attacks and

defenses): plaintext confirmation.

Instead of ciphertext E(m),

send ciphertext (E(m); H′(m))

where H′ is a hash function.

Also use (E;H′) in reencryption.



5

Defense 1: After decrypting

ciphertext C to obtain message

m, reencrypt m and reject if 6= C.

This stops chosen-ciphertext

attacks that probe variants of a

legitimate C to see which variants

decrypt to the same m.

If encryption is randomized, first

derandomize it: obtain random

bits as H(m). Make sure m has

high entropy! See recent collapse

of “FrodoKEM parameter sets

comfortably match their target

security levels with a large margin”.

6

Defense 3 (in the numbering from

ntrw’s survey of attacks and

defenses): plaintext confirmation.

Instead of ciphertext E(m),

send ciphertext (E(m); H′(m))

where H′ is a hash function.

Also use (E;H′) in reencryption.

This stops chosen-ciphertext

attacks that exploit structure of

the public-key encryption function

E to convert E(m) for secret m

into, e.g., E(m + 1). Attacker

has no way to convert H′(m) into

H′(m + 1) for “unstructured” H′.



5

Defense 1: After decrypting

ciphertext C to obtain message

m, reencrypt m and reject if 6= C.

This stops chosen-ciphertext

attacks that probe variants of a

legitimate C to see which variants

decrypt to the same m.

If encryption is randomized, first

derandomize it: obtain random

bits as H(m). Make sure m has

high entropy! See recent collapse

of “FrodoKEM parameter sets

comfortably match their target

security levels with a large margin”.

6

Defense 3 (in the numbering from

ntrw’s survey of attacks and

defenses): plaintext confirmation.

Instead of ciphertext E(m),

send ciphertext (E(m); H′(m))

where H′ is a hash function.

Also use (E;H′) in reencryption.

This stops chosen-ciphertext

attacks that exploit structure of

the public-key encryption function

E to convert E(m) for secret m

into, e.g., E(m + 1). Attacker

has no way to convert H′(m) into

H′(m + 1) for “unstructured” H′.

7

Current NTRU-HRSS is different

2019 NTRU-HRSS proposal

adopts changes proposed by

2017 Saito–Xagawa–Yamakawa.

Modified proposal removes

plaintext confirmation and

relies on another defense.



5

Defense 1: After decrypting

ciphertext C to obtain message

m, reencrypt m and reject if 6= C.

This stops chosen-ciphertext

attacks that probe variants of a

legitimate C to see which variants

decrypt to the same m.

If encryption is randomized, first

derandomize it: obtain random

bits as H(m). Make sure m has

high entropy! See recent collapse

of “FrodoKEM parameter sets

comfortably match their target

security levels with a large margin”.

6

Defense 3 (in the numbering from

ntrw’s survey of attacks and

defenses): plaintext confirmation.

Instead of ciphertext E(m),

send ciphertext (E(m); H′(m))

where H′ is a hash function.

Also use (E;H′) in reencryption.

This stops chosen-ciphertext

attacks that exploit structure of

the public-key encryption function

E to convert E(m) for secret m

into, e.g., E(m + 1). Attacker

has no way to convert H′(m) into

H′(m + 1) for “unstructured” H′.

7

Current NTRU-HRSS is different

2019 NTRU-HRSS proposal

adopts changes proposed by

2017 Saito–Xagawa–Yamakawa.

Modified proposal removes

plaintext confirmation and

relies on another defense.



5

Defense 1: After decrypting

ciphertext C to obtain message

m, reencrypt m and reject if 6= C.

This stops chosen-ciphertext

attacks that probe variants of a

legitimate C to see which variants

decrypt to the same m.

If encryption is randomized, first

derandomize it: obtain random

bits as H(m). Make sure m has

high entropy! See recent collapse

of “FrodoKEM parameter sets

comfortably match their target

security levels with a large margin”.

6

Defense 3 (in the numbering from

ntrw’s survey of attacks and

defenses): plaintext confirmation.

Instead of ciphertext E(m),

send ciphertext (E(m); H′(m))

where H′ is a hash function.

Also use (E;H′) in reencryption.

This stops chosen-ciphertext

attacks that exploit structure of

the public-key encryption function

E to convert E(m) for secret m

into, e.g., E(m + 1). Attacker

has no way to convert H′(m) into

H′(m + 1) for “unstructured” H′.

7

Current NTRU-HRSS is different

2019 NTRU-HRSS proposal

adopts changes proposed by

2017 Saito–Xagawa–Yamakawa.

Modified proposal removes

plaintext confirmation and

relies on another defense.



6

Defense 3 (in the numbering from

ntrw’s survey of attacks and

defenses): plaintext confirmation.

Instead of ciphertext E(m),

send ciphertext (E(m); H′(m))

where H′ is a hash function.

Also use (E;H′) in reencryption.

This stops chosen-ciphertext

attacks that exploit structure of

the public-key encryption function

E to convert E(m) for secret m

into, e.g., E(m + 1). Attacker

has no way to convert H′(m) into

H′(m + 1) for “unstructured” H′.

7

Current NTRU-HRSS is different

2019 NTRU-HRSS proposal

adopts changes proposed by

2017 Saito–Xagawa–Yamakawa.

Modified proposal removes

plaintext confirmation and

relies on another defense.



6

Defense 3 (in the numbering from

ntrw’s survey of attacks and

defenses): plaintext confirmation.

Instead of ciphertext E(m),

send ciphertext (E(m); H′(m))

where H′ is a hash function.

Also use (E;H′) in reencryption.

This stops chosen-ciphertext

attacks that exploit structure of

the public-key encryption function

E to convert E(m) for secret m

into, e.g., E(m + 1). Attacker

has no way to convert H′(m) into

H′(m + 1) for “unstructured” H′.

7

Current NTRU-HRSS is different

2019 NTRU-HRSS proposal

adopts changes proposed by

2017 Saito–Xagawa–Yamakawa.

Modified proposal removes

plaintext confirmation and

relies on another defense.

Defense 4, implicit rejection (from

2017 Hofheinz–Hövelmanns–Kiltz,

generalizing 2012 Persichetti):

instead of having a KEM reject

an invalid ciphertext C, have

it output H′′(r; C) where r is a

random string stored in secret key.



6

Defense 3 (in the numbering from

ntrw’s survey of attacks and

defenses): plaintext confirmation.

Instead of ciphertext E(m),

send ciphertext (E(m); H′(m))

where H′ is a hash function.

Also use (E;H′) in reencryption.

This stops chosen-ciphertext

attacks that exploit structure of

the public-key encryption function

E to convert E(m) for secret m

into, e.g., E(m + 1). Attacker

has no way to convert H′(m) into

H′(m + 1) for “unstructured” H′.

7

Current NTRU-HRSS is different

2019 NTRU-HRSS proposal

adopts changes proposed by

2017 Saito–Xagawa–Yamakawa.

Modified proposal removes

plaintext confirmation and

relies on another defense.

Defense 4, implicit rejection (from

2017 Hofheinz–Hövelmanns–Kiltz,

generalizing 2012 Persichetti):

instead of having a KEM reject

an invalid ciphertext C, have

it output H′′(r; C) where r is a

random string stored in secret key.

8

Is implicit rejection really an

adequate substitute for plaintext

confirmation as a defense against

chosen-ciphertext attacks?



6

Defense 3 (in the numbering from

ntrw’s survey of attacks and

defenses): plaintext confirmation.

Instead of ciphertext E(m),

send ciphertext (E(m); H′(m))

where H′ is a hash function.

Also use (E;H′) in reencryption.

This stops chosen-ciphertext

attacks that exploit structure of

the public-key encryption function

E to convert E(m) for secret m

into, e.g., E(m + 1). Attacker

has no way to convert H′(m) into

H′(m + 1) for “unstructured” H′.

7

Current NTRU-HRSS is different

2019 NTRU-HRSS proposal

adopts changes proposed by

2017 Saito–Xagawa–Yamakawa.

Modified proposal removes

plaintext confirmation and

relies on another defense.

Defense 4, implicit rejection (from

2017 Hofheinz–Hövelmanns–Kiltz,

generalizing 2012 Persichetti):

instead of having a KEM reject

an invalid ciphertext C, have

it output H′′(r; C) where r is a

random string stored in secret key.

8

Is implicit rejection really an

adequate substitute for plaintext

confirmation as a defense against

chosen-ciphertext attacks?



6

Defense 3 (in the numbering from

ntrw’s survey of attacks and

defenses): plaintext confirmation.

Instead of ciphertext E(m),

send ciphertext (E(m); H′(m))

where H′ is a hash function.

Also use (E;H′) in reencryption.

This stops chosen-ciphertext

attacks that exploit structure of

the public-key encryption function

E to convert E(m) for secret m

into, e.g., E(m + 1). Attacker

has no way to convert H′(m) into

H′(m + 1) for “unstructured” H′.

7

Current NTRU-HRSS is different

2019 NTRU-HRSS proposal

adopts changes proposed by

2017 Saito–Xagawa–Yamakawa.

Modified proposal removes

plaintext confirmation and

relies on another defense.

Defense 4, implicit rejection (from

2017 Hofheinz–Hövelmanns–Kiltz,

generalizing 2012 Persichetti):

instead of having a KEM reject

an invalid ciphertext C, have

it output H′′(r; C) where r is a

random string stored in secret key.

8

Is implicit rejection really an

adequate substitute for plaintext

confirmation as a defense against

chosen-ciphertext attacks?



7

Current NTRU-HRSS is different

2019 NTRU-HRSS proposal

adopts changes proposed by

2017 Saito–Xagawa–Yamakawa.

Modified proposal removes

plaintext confirmation and

relies on another defense.

Defense 4, implicit rejection (from

2017 Hofheinz–Hövelmanns–Kiltz,

generalizing 2012 Persichetti):

instead of having a KEM reject

an invalid ciphertext C, have

it output H′′(r; C) where r is a

random string stored in secret key.

8

Is implicit rejection really an

adequate substitute for plaintext

confirmation as a defense against

chosen-ciphertext attacks?



7

Current NTRU-HRSS is different

2019 NTRU-HRSS proposal

adopts changes proposed by

2017 Saito–Xagawa–Yamakawa.

Modified proposal removes

plaintext confirmation and

relies on another defense.

Defense 4, implicit rejection (from

2017 Hofheinz–Hövelmanns–Kiltz,

generalizing 2012 Persichetti):

instead of having a KEM reject

an invalid ciphertext C, have

it output H′′(r; C) where r is a

random string stored in secret key.

8

Is implicit rejection really an

adequate substitute for plaintext

confirmation as a defense against

chosen-ciphertext attacks?

SXY+HRSS answer: Here’s a

proof of IND-CCA2 security from

OW-CPA + implicit rejection.



7

Current NTRU-HRSS is different

2019 NTRU-HRSS proposal

adopts changes proposed by

2017 Saito–Xagawa–Yamakawa.

Modified proposal removes

plaintext confirmation and

relies on another defense.

Defense 4, implicit rejection (from

2017 Hofheinz–Hövelmanns–Kiltz,

generalizing 2012 Persichetti):

instead of having a KEM reject

an invalid ciphertext C, have

it output H′′(r; C) where r is a

random string stored in secret key.

8

Is implicit rejection really an

adequate substitute for plaintext

confirmation as a defense against

chosen-ciphertext attacks?

SXY+HRSS answer: Here’s a

proof of IND-CCA2 security from

OW-CPA + implicit rejection.

Issue 1: Proof is only in QROM;

are there non-QROM attacks?



7

Current NTRU-HRSS is different

2019 NTRU-HRSS proposal

adopts changes proposed by

2017 Saito–Xagawa–Yamakawa.

Modified proposal removes

plaintext confirmation and

relies on another defense.

Defense 4, implicit rejection (from

2017 Hofheinz–Hövelmanns–Kiltz,

generalizing 2012 Persichetti):

instead of having a KEM reject

an invalid ciphertext C, have

it output H′′(r; C) where r is a

random string stored in secret key.

8

Is implicit rejection really an

adequate substitute for plaintext

confirmation as a defense against

chosen-ciphertext attacks?

SXY+HRSS answer: Here’s a

proof of IND-CCA2 security from

OW-CPA + implicit rejection.

Issue 1: Proof is only in QROM;

are there non-QROM attacks?

Issue 2: Proof is tight only in

ROM; can this be exploited?



7

Current NTRU-HRSS is different

2019 NTRU-HRSS proposal

adopts changes proposed by

2017 Saito–Xagawa–Yamakawa.

Modified proposal removes

plaintext confirmation and

relies on another defense.

Defense 4, implicit rejection (from

2017 Hofheinz–Hövelmanns–Kiltz,

generalizing 2012 Persichetti):

instead of having a KEM reject

an invalid ciphertext C, have

it output H′′(r; C) where r is a

random string stored in secret key.

8

Is implicit rejection really an

adequate substitute for plaintext

confirmation as a defense against

chosen-ciphertext attacks?

SXY+HRSS answer: Here’s a

proof of IND-CCA2 security from

OW-CPA + implicit rejection.

Issue 1: Proof is only in QROM;

are there non-QROM attacks?

Issue 2: Proof is tight only in

ROM; can this be exploited?

Issue 3, my focus today: Are

there chosen-ciphertext attacks

beyond the IND-CCA2 model?



7

Current NTRU-HRSS is different

2019 NTRU-HRSS proposal

adopts changes proposed by

2017 Saito–Xagawa–Yamakawa.

Modified proposal removes

plaintext confirmation and

relies on another defense.

Defense 4, implicit rejection (from

2017 Hofheinz–Hövelmanns–Kiltz,

generalizing 2012 Persichetti):

instead of having a KEM reject

an invalid ciphertext C, have

it output H′′(r; C) where r is a

random string stored in secret key.

8

Is implicit rejection really an

adequate substitute for plaintext

confirmation as a defense against

chosen-ciphertext attacks?

SXY+HRSS answer: Here’s a

proof of IND-CCA2 security from

OW-CPA + implicit rejection.

Issue 1: Proof is only in QROM;

are there non-QROM attacks?

Issue 2: Proof is tight only in

ROM; can this be exploited?

Issue 3, my focus today: Are

there chosen-ciphertext attacks

beyond the IND-CCA2 model?

9

2007 Koblitz, regarding HMQV:

“Anyone working in cryptography

should think very carefully before

dropping a validation step that

had been put in to prevent

security problems. Certainly

someone with Krawczyk’s

experience and expertise would

never have made such a blunder

if he hadn’t been over-confident

because of his ‘proof’ of security.”

See also 2019 survey of failures.



7

Current NTRU-HRSS is different

2019 NTRU-HRSS proposal

adopts changes proposed by

2017 Saito–Xagawa–Yamakawa.

Modified proposal removes

plaintext confirmation and

relies on another defense.

Defense 4, implicit rejection (from

2017 Hofheinz–Hövelmanns–Kiltz,

generalizing 2012 Persichetti):

instead of having a KEM reject

an invalid ciphertext C, have

it output H′′(r; C) where r is a

random string stored in secret key.

8

Is implicit rejection really an

adequate substitute for plaintext

confirmation as a defense against

chosen-ciphertext attacks?

SXY+HRSS answer: Here’s a

proof of IND-CCA2 security from

OW-CPA + implicit rejection.

Issue 1: Proof is only in QROM;

are there non-QROM attacks?

Issue 2: Proof is tight only in

ROM; can this be exploited?

Issue 3, my focus today: Are

there chosen-ciphertext attacks

beyond the IND-CCA2 model?

9

2007 Koblitz, regarding HMQV:

“Anyone working in cryptography

should think very carefully before

dropping a validation step that

had been put in to prevent

security problems. Certainly

someone with Krawczyk’s

experience and expertise would

never have made such a blunder

if he hadn’t been over-confident

because of his ‘proof’ of security.”

See also 2019 survey of failures.



7

Current NTRU-HRSS is different

2019 NTRU-HRSS proposal

adopts changes proposed by

2017 Saito–Xagawa–Yamakawa.

Modified proposal removes

plaintext confirmation and

relies on another defense.

Defense 4, implicit rejection (from

2017 Hofheinz–Hövelmanns–Kiltz,

generalizing 2012 Persichetti):

instead of having a KEM reject

an invalid ciphertext C, have

it output H′′(r; C) where r is a

random string stored in secret key.

8

Is implicit rejection really an

adequate substitute for plaintext

confirmation as a defense against

chosen-ciphertext attacks?

SXY+HRSS answer: Here’s a

proof of IND-CCA2 security from

OW-CPA + implicit rejection.

Issue 1: Proof is only in QROM;

are there non-QROM attacks?

Issue 2: Proof is tight only in

ROM; can this be exploited?

Issue 3, my focus today: Are

there chosen-ciphertext attacks

beyond the IND-CCA2 model?

9

2007 Koblitz, regarding HMQV:

“Anyone working in cryptography

should think very carefully before

dropping a validation step that

had been put in to prevent

security problems. Certainly

someone with Krawczyk’s

experience and expertise would

never have made such a blunder

if he hadn’t been over-confident

because of his ‘proof’ of security.”

See also 2019 survey of failures.



8

Is implicit rejection really an

adequate substitute for plaintext

confirmation as a defense against

chosen-ciphertext attacks?

SXY+HRSS answer: Here’s a

proof of IND-CCA2 security from

OW-CPA + implicit rejection.

Issue 1: Proof is only in QROM;

are there non-QROM attacks?

Issue 2: Proof is tight only in

ROM; can this be exploited?

Issue 3, my focus today: Are

there chosen-ciphertext attacks

beyond the IND-CCA2 model?

9

2007 Koblitz, regarding HMQV:

“Anyone working in cryptography

should think very carefully before

dropping a validation step that

had been put in to prevent

security problems. Certainly

someone with Krawczyk’s

experience and expertise would

never have made such a blunder

if he hadn’t been over-confident

because of his ‘proof’ of security.”

See also 2019 survey of failures.



8

Is implicit rejection really an

adequate substitute for plaintext

confirmation as a defense against

chosen-ciphertext attacks?

SXY+HRSS answer: Here’s a

proof of IND-CCA2 security from

OW-CPA + implicit rejection.

Issue 1: Proof is only in QROM;

are there non-QROM attacks?

Issue 2: Proof is tight only in

ROM; can this be exploited?

Issue 3, my focus today: Are

there chosen-ciphertext attacks

beyond the IND-CCA2 model?

9

2007 Koblitz, regarding HMQV:

“Anyone working in cryptography

should think very carefully before

dropping a validation step that

had been put in to prevent

security problems. Certainly

someone with Krawczyk’s

experience and expertise would

never have made such a blunder

if he hadn’t been over-confident

because of his ‘proof’ of security.”

See also 2019 survey of failures.

Should think very carefully before

dropping plaintext confirmation.



8

Is implicit rejection really an

adequate substitute for plaintext

confirmation as a defense against

chosen-ciphertext attacks?

SXY+HRSS answer: Here’s a

proof of IND-CCA2 security from

OW-CPA + implicit rejection.

Issue 1: Proof is only in QROM;

are there non-QROM attacks?

Issue 2: Proof is tight only in

ROM; can this be exploited?

Issue 3, my focus today: Are

there chosen-ciphertext attacks

beyond the IND-CCA2 model?

9

2007 Koblitz, regarding HMQV:

“Anyone working in cryptography

should think very carefully before

dropping a validation step that

had been put in to prevent

security problems. Certainly

someone with Krawczyk’s

experience and expertise would

never have made such a blunder

if he hadn’t been over-confident

because of his ‘proof’ of security.”

See also 2019 survey of failures.

Should think very carefully before

dropping plaintext confirmation.

10

2018 Bernstein–Persichetti:

implicit rejection “produces

random-looking session keys” for

invalid ciphertexts, “so it hides

the pattern of valid ciphertexts”;

plaintext confirmation “stops

an earlier stage of the attack”;

current proofs do not “show

any advantages for the dual-

defense construction” but it

“seems difficult to justify a

recommendation against the

dual-defense construction”

given that the defenses “target

different aspects of attacks”.



8

Is implicit rejection really an

adequate substitute for plaintext

confirmation as a defense against

chosen-ciphertext attacks?

SXY+HRSS answer: Here’s a

proof of IND-CCA2 security from

OW-CPA + implicit rejection.

Issue 1: Proof is only in QROM;

are there non-QROM attacks?

Issue 2: Proof is tight only in

ROM; can this be exploited?

Issue 3, my focus today: Are

there chosen-ciphertext attacks

beyond the IND-CCA2 model?

9

2007 Koblitz, regarding HMQV:

“Anyone working in cryptography

should think very carefully before

dropping a validation step that

had been put in to prevent

security problems. Certainly

someone with Krawczyk’s

experience and expertise would

never have made such a blunder

if he hadn’t been over-confident

because of his ‘proof’ of security.”

See also 2019 survey of failures.

Should think very carefully before

dropping plaintext confirmation.

10

2018 Bernstein–Persichetti:

implicit rejection “produces

random-looking session keys” for

invalid ciphertexts, “so it hides

the pattern of valid ciphertexts”;

plaintext confirmation “stops

an earlier stage of the attack”;

current proofs do not “show

any advantages for the dual-

defense construction” but it

“seems difficult to justify a

recommendation against the

dual-defense construction”

given that the defenses “target

different aspects of attacks”.



8

Is implicit rejection really an

adequate substitute for plaintext

confirmation as a defense against

chosen-ciphertext attacks?

SXY+HRSS answer: Here’s a

proof of IND-CCA2 security from

OW-CPA + implicit rejection.

Issue 1: Proof is only in QROM;

are there non-QROM attacks?

Issue 2: Proof is tight only in

ROM; can this be exploited?

Issue 3, my focus today: Are

there chosen-ciphertext attacks

beyond the IND-CCA2 model?

9

2007 Koblitz, regarding HMQV:

“Anyone working in cryptography

should think very carefully before

dropping a validation step that

had been put in to prevent

security problems. Certainly

someone with Krawczyk’s

experience and expertise would

never have made such a blunder

if he hadn’t been over-confident

because of his ‘proof’ of security.”

See also 2019 survey of failures.

Should think very carefully before

dropping plaintext confirmation.

10

2018 Bernstein–Persichetti:

implicit rejection “produces

random-looking session keys” for

invalid ciphertexts, “so it hides

the pattern of valid ciphertexts”;

plaintext confirmation “stops

an earlier stage of the attack”;

current proofs do not “show

any advantages for the dual-

defense construction” but it

“seems difficult to justify a

recommendation against the

dual-defense construction”

given that the defenses “target

different aspects of attacks”.



9

2007 Koblitz, regarding HMQV:

“Anyone working in cryptography

should think very carefully before

dropping a validation step that

had been put in to prevent

security problems. Certainly

someone with Krawczyk’s

experience and expertise would

never have made such a blunder

if he hadn’t been over-confident

because of his ‘proof’ of security.”

See also 2019 survey of failures.

Should think very carefully before

dropping plaintext confirmation.

10

2018 Bernstein–Persichetti:

implicit rejection “produces

random-looking session keys” for

invalid ciphertexts, “so it hides

the pattern of valid ciphertexts”;

plaintext confirmation “stops

an earlier stage of the attack”;

current proofs do not “show

any advantages for the dual-

defense construction” but it

“seems difficult to justify a

recommendation against the

dual-defense construction”

given that the defenses “target

different aspects of attacks”.



9

2007 Koblitz, regarding HMQV:

“Anyone working in cryptography

should think very carefully before

dropping a validation step that

had been put in to prevent

security problems. Certainly

someone with Krawczyk’s

experience and expertise would

never have made such a blunder

if he hadn’t been over-confident

because of his ‘proof’ of security.”

See also 2019 survey of failures.

Should think very carefully before

dropping plaintext confirmation.

10

2018 Bernstein–Persichetti:

implicit rejection “produces

random-looking session keys” for

invalid ciphertexts, “so it hides

the pattern of valid ciphertexts”;

plaintext confirmation “stops

an earlier stage of the attack”;

current proofs do not “show

any advantages for the dual-

defense construction” but it

“seems difficult to justify a

recommendation against the

dual-defense construction”

given that the defenses “target

different aspects of attacks”.

11

An attack against NTRU-HRSS

DRAM hardware is unreliable.

Often stored bits are corrupted.

Google statistics ⇒ 109 users,

each storing a 256-bit key in

DRAM, will have 50000–140000

keys corrupted each year.



9

2007 Koblitz, regarding HMQV:

“Anyone working in cryptography

should think very carefully before

dropping a validation step that

had been put in to prevent

security problems. Certainly

someone with Krawczyk’s

experience and expertise would

never have made such a blunder

if he hadn’t been over-confident

because of his ‘proof’ of security.”

See also 2019 survey of failures.

Should think very carefully before

dropping plaintext confirmation.

10

2018 Bernstein–Persichetti:

implicit rejection “produces

random-looking session keys” for

invalid ciphertexts, “so it hides

the pattern of valid ciphertexts”;

plaintext confirmation “stops

an earlier stage of the attack”;

current proofs do not “show

any advantages for the dual-

defense construction” but it

“seems difficult to justify a

recommendation against the

dual-defense construction”

given that the defenses “target

different aspects of attacks”.

11

An attack against NTRU-HRSS

DRAM hardware is unreliable.

Often stored bits are corrupted.

Google statistics ⇒ 109 users,

each storing a 256-bit key in

DRAM, will have 50000–140000

keys corrupted each year.



9

2007 Koblitz, regarding HMQV:

“Anyone working in cryptography

should think very carefully before

dropping a validation step that

had been put in to prevent

security problems. Certainly

someone with Krawczyk’s

experience and expertise would

never have made such a blunder

if he hadn’t been over-confident

because of his ‘proof’ of security.”

See also 2019 survey of failures.

Should think very carefully before

dropping plaintext confirmation.

10

2018 Bernstein–Persichetti:

implicit rejection “produces

random-looking session keys” for

invalid ciphertexts, “so it hides

the pattern of valid ciphertexts”;

plaintext confirmation “stops

an earlier stage of the attack”;

current proofs do not “show

any advantages for the dual-

defense construction” but it

“seems difficult to justify a

recommendation against the

dual-defense construction”

given that the defenses “target

different aspects of attacks”.

11

An attack against NTRU-HRSS

DRAM hardware is unreliable.

Often stored bits are corrupted.

Google statistics ⇒ 109 users,

each storing a 256-bit key in

DRAM, will have 50000–140000

keys corrupted each year.



10

2018 Bernstein–Persichetti:

implicit rejection “produces

random-looking session keys” for

invalid ciphertexts, “so it hides

the pattern of valid ciphertexts”;

plaintext confirmation “stops

an earlier stage of the attack”;

current proofs do not “show

any advantages for the dual-

defense construction” but it

“seems difficult to justify a

recommendation against the

dual-defense construction”

given that the defenses “target

different aspects of attacks”.

11

An attack against NTRU-HRSS

DRAM hardware is unreliable.

Often stored bits are corrupted.

Google statistics ⇒ 109 users,

each storing a 256-bit key in

DRAM, will have 50000–140000

keys corrupted each year.



10

2018 Bernstein–Persichetti:

implicit rejection “produces

random-looking session keys” for

invalid ciphertexts, “so it hides

the pattern of valid ciphertexts”;

plaintext confirmation “stops

an earlier stage of the attack”;

current proofs do not “show

any advantages for the dual-

defense construction” but it

“seems difficult to justify a

recommendation against the

dual-defense construction”

given that the defenses “target

different aspects of attacks”.

11

An attack against NTRU-HRSS

DRAM hardware is unreliable.

Often stored bits are corrupted.

Google statistics ⇒ 109 users,

each storing a 256-bit key in

DRAM, will have 50000–140000

keys corrupted each year.

Main point of the ntrw paper:

implicit rejection doesn’t do its job

if r is corrupted. Attacker detects

invalid ciphertexts: changing r

changes decryption output. See

paper for application to NTRU-

HRSS and full attack software.



10

2018 Bernstein–Persichetti:

implicit rejection “produces

random-looking session keys” for

invalid ciphertexts, “so it hides

the pattern of valid ciphertexts”;

plaintext confirmation “stops

an earlier stage of the attack”;

current proofs do not “show

any advantages for the dual-

defense construction” but it

“seems difficult to justify a

recommendation against the

dual-defense construction”

given that the defenses “target

different aspects of attacks”.

11

An attack against NTRU-HRSS

DRAM hardware is unreliable.

Often stored bits are corrupted.

Google statistics ⇒ 109 users,

each storing a 256-bit key in

DRAM, will have 50000–140000

keys corrupted each year.

Main point of the ntrw paper:

implicit rejection doesn’t do its job

if r is corrupted. Attacker detects

invalid ciphertexts: changing r

changes decryption output. See

paper for application to NTRU-

HRSS and full attack software.

12

What can we do in response?

Incompatible new NTRU-HRSS

can re-add plaintext confirmation.



10

2018 Bernstein–Persichetti:

implicit rejection “produces

random-looking session keys” for

invalid ciphertexts, “so it hides

the pattern of valid ciphertexts”;

plaintext confirmation “stops

an earlier stage of the attack”;

current proofs do not “show

any advantages for the dual-

defense construction” but it

“seems difficult to justify a

recommendation against the

dual-defense construction”

given that the defenses “target

different aspects of attacks”.

11

An attack against NTRU-HRSS

DRAM hardware is unreliable.

Often stored bits are corrupted.

Google statistics ⇒ 109 users,

each storing a 256-bit key in

DRAM, will have 50000–140000

keys corrupted each year.

Main point of the ntrw paper:

implicit rejection doesn’t do its job

if r is corrupted. Attacker detects

invalid ciphertexts: changing r

changes decryption output. See

paper for application to NTRU-

HRSS and full attack software.

12

What can we do in response?

Incompatible new NTRU-HRSS

can re-add plaintext confirmation.



10

2018 Bernstein–Persichetti:

implicit rejection “produces

random-looking session keys” for

invalid ciphertexts, “so it hides

the pattern of valid ciphertexts”;

plaintext confirmation “stops

an earlier stage of the attack”;

current proofs do not “show

any advantages for the dual-

defense construction” but it

“seems difficult to justify a

recommendation against the

dual-defense construction”

given that the defenses “target

different aspects of attacks”.

11

An attack against NTRU-HRSS

DRAM hardware is unreliable.

Often stored bits are corrupted.

Google statistics ⇒ 109 users,

each storing a 256-bit key in

DRAM, will have 50000–140000

keys corrupted each year.

Main point of the ntrw paper:

implicit rejection doesn’t do its job

if r is corrupted. Attacker detects

invalid ciphertexts: changing r

changes decryption output. See

paper for application to NTRU-

HRSS and full attack software.

12

What can we do in response?

Incompatible new NTRU-HRSS

can re-add plaintext confirmation.



11

An attack against NTRU-HRSS

DRAM hardware is unreliable.

Often stored bits are corrupted.

Google statistics ⇒ 109 users,

each storing a 256-bit key in

DRAM, will have 50000–140000

keys corrupted each year.

Main point of the ntrw paper:

implicit rejection doesn’t do its job

if r is corrupted. Attacker detects

invalid ciphertexts: changing r

changes decryption output. See

paper for application to NTRU-

HRSS and full attack software.

12

What can we do in response?

Incompatible new NTRU-HRSS

can re-add plaintext confirmation.



11

An attack against NTRU-HRSS

DRAM hardware is unreliable.

Often stored bits are corrupted.

Google statistics ⇒ 109 users,

each storing a 256-bit key in

DRAM, will have 50000–140000

keys corrupted each year.

Main point of the ntrw paper:

implicit rejection doesn’t do its job

if r is corrupted. Attacker detects

invalid ciphertexts: changing r

changes decryption output. See

paper for application to NTRU-

HRSS and full attack software.

12

What can we do in response?

Incompatible new NTRU-HRSS

can re-add plaintext confirmation.

Can fix corruption by applying an

error-correcting code (ECC):

• ntrw’s libsecded software; or

• SECDED ECC DRAM hardware.

Many benefits beyond this attack.



11

An attack against NTRU-HRSS

DRAM hardware is unreliable.

Often stored bits are corrupted.

Google statistics ⇒ 109 users,

each storing a 256-bit key in

DRAM, will have 50000–140000

keys corrupted each year.

Main point of the ntrw paper:

implicit rejection doesn’t do its job

if r is corrupted. Attacker detects

invalid ciphertexts: changing r

changes decryption output. See

paper for application to NTRU-

HRSS and full attack software.

12

What can we do in response?

Incompatible new NTRU-HRSS

can re-add plaintext confirmation.

Can fix corruption by applying an

error-correcting code (ECC):

• ntrw’s libsecded software; or

• SECDED ECC DRAM hardware.

Many benefits beyond this attack.

Specify ECC in secret-key format?

Use ECC in crypto libraries?

Use ECC in applications?

Programming language? OS?

Require SECDED ECC DRAM?



11

An attack against NTRU-HRSS

DRAM hardware is unreliable.

Often stored bits are corrupted.

Google statistics ⇒ 109 users,

each storing a 256-bit key in

DRAM, will have 50000–140000

keys corrupted each year.

Main point of the ntrw paper:

implicit rejection doesn’t do its job

if r is corrupted. Attacker detects

invalid ciphertexts: changing r

changes decryption output. See

paper for application to NTRU-

HRSS and full attack software.

12

What can we do in response?

Incompatible new NTRU-HRSS

can re-add plaintext confirmation.

Can fix corruption by applying an

error-correcting code (ECC):

• ntrw’s libsecded software; or

• SECDED ECC DRAM hardware.

Many benefits beyond this attack.

Specify ECC in secret-key format?

Use ECC in crypto libraries?

Use ECC in applications?

Programming language? OS?

Require SECDED ECC DRAM?

Point fingers and do nothing?



11

An attack against NTRU-HRSS

DRAM hardware is unreliable.

Often stored bits are corrupted.

Google statistics ⇒ 109 users,

each storing a 256-bit key in

DRAM, will have 50000–140000

keys corrupted each year.

Main point of the ntrw paper:

implicit rejection doesn’t do its job

if r is corrupted. Attacker detects

invalid ciphertexts: changing r

changes decryption output. See

paper for application to NTRU-

HRSS and full attack software.

12

What can we do in response?

Incompatible new NTRU-HRSS

can re-add plaintext confirmation.

Can fix corruption by applying an

error-correcting code (ECC):

• ntrw’s libsecded software; or

• SECDED ECC DRAM hardware.

Many benefits beyond this attack.

Specify ECC in secret-key format?

Use ECC in crypto libraries?

Use ECC in applications?

Programming language? OS?

Require SECDED ECC DRAM?

Point fingers and do nothing?

13

Classic McEliece followup

2022.10: Classic McEliece

recommends dropping plaintext

confirmation “to proactively

eliminate any concerns regarding

U.S. patent 9912479”.



11

An attack against NTRU-HRSS

DRAM hardware is unreliable.

Often stored bits are corrupted.

Google statistics ⇒ 109 users,

each storing a 256-bit key in

DRAM, will have 50000–140000

keys corrupted each year.

Main point of the ntrw paper:

implicit rejection doesn’t do its job

if r is corrupted. Attacker detects

invalid ciphertexts: changing r

changes decryption output. See

paper for application to NTRU-

HRSS and full attack software.

12

What can we do in response?

Incompatible new NTRU-HRSS

can re-add plaintext confirmation.

Can fix corruption by applying an

error-correcting code (ECC):

• ntrw’s libsecded software; or

• SECDED ECC DRAM hardware.

Many benefits beyond this attack.

Specify ECC in secret-key format?

Use ECC in crypto libraries?

Use ECC in applications?

Programming language? OS?

Require SECDED ECC DRAM?

Point fingers and do nothing?

13

Classic McEliece followup

2022.10: Classic McEliece

recommends dropping plaintext

confirmation “to proactively

eliminate any concerns regarding

U.S. patent 9912479”.



11

An attack against NTRU-HRSS

DRAM hardware is unreliable.

Often stored bits are corrupted.

Google statistics ⇒ 109 users,

each storing a 256-bit key in

DRAM, will have 50000–140000

keys corrupted each year.

Main point of the ntrw paper:

implicit rejection doesn’t do its job

if r is corrupted. Attacker detects

invalid ciphertexts: changing r

changes decryption output. See

paper for application to NTRU-

HRSS and full attack software.

12

What can we do in response?

Incompatible new NTRU-HRSS

can re-add plaintext confirmation.

Can fix corruption by applying an

error-correcting code (ECC):

• ntrw’s libsecded software; or

• SECDED ECC DRAM hardware.

Many benefits beyond this attack.

Specify ECC in secret-key format?

Use ECC in crypto libraries?

Use ECC in applications?

Programming language? OS?

Require SECDED ECC DRAM?

Point fingers and do nothing?

13

Classic McEliece followup

2022.10: Classic McEliece

recommends dropping plaintext

confirmation “to proactively

eliminate any concerns regarding

U.S. patent 9912479”.



12

What can we do in response?

Incompatible new NTRU-HRSS

can re-add plaintext confirmation.

Can fix corruption by applying an

error-correcting code (ECC):

• ntrw’s libsecded software; or

• SECDED ECC DRAM hardware.

Many benefits beyond this attack.

Specify ECC in secret-key format?

Use ECC in crypto libraries?

Use ECC in applications?

Programming language? OS?

Require SECDED ECC DRAM?

Point fingers and do nothing?

13

Classic McEliece followup

2022.10: Classic McEliece

recommends dropping plaintext

confirmation “to proactively

eliminate any concerns regarding

U.S. patent 9912479”.



12

What can we do in response?

Incompatible new NTRU-HRSS

can re-add plaintext confirmation.

Can fix corruption by applying an

error-correcting code (ECC):

• ntrw’s libsecded software; or

• SECDED ECC DRAM hardware.

Many benefits beyond this attack.

Specify ECC in secret-key format?

Use ECC in crypto libraries?

Use ECC in applications?

Programming language? OS?

Require SECDED ECC DRAM?

Point fingers and do nothing?

13

Classic McEliece followup

2022.10: Classic McEliece

recommends dropping plaintext

confirmation “to proactively

eliminate any concerns regarding

U.S. patent 9912479”.

Warns that this allows the ntrw

attack whenever r is corrupted.

Describes ECC as a defense.



12

What can we do in response?

Incompatible new NTRU-HRSS

can re-add plaintext confirmation.

Can fix corruption by applying an

error-correcting code (ECC):

• ntrw’s libsecded software; or

• SECDED ECC DRAM hardware.

Many benefits beyond this attack.

Specify ECC in secret-key format?

Use ECC in crypto libraries?

Use ECC in applications?

Programming language? OS?

Require SECDED ECC DRAM?

Point fingers and do nothing?

13

Classic McEliece followup

2022.10: Classic McEliece

recommends dropping plaintext

confirmation “to proactively

eliminate any concerns regarding

U.S. patent 9912479”.

Warns that this allows the ntrw

attack whenever r is corrupted.

Describes ECC as a defense.

Introduces principle of factoring

“any generic transformation

aiming at a goal beyond IND-

CCA2” out of KEM specifications,

to simplify design and review.


