
1

Lattice-based cryptography,

day 1: simplicity

D. J. Bernstein

University of Illinois at Chicago;

Ruhr University Bochum

2

2000 Cohen cryptosystem

Public key: vector of integers

K = (K1; : : : ; KN) ∈ {−X; : : : ; X}N .

Encryption:

1. Input message m ∈ {0; 1}.

2. Generate r1; : : : ; rN ∈ {0; 1}.
i.e. r = (r1; : : : ; rN) ∈ {0; 1}N .

(Cohen says pick “half of the

integers in the public key at

random”: I guess this means

N ∈ 2Z and
P
ri = N=2.)

3. Compute and send ciphertext

C = (−1)m(r1K1 + · · ·+ rNKN).

1

Lattice-based cryptography,

day 1: simplicity

D. J. Bernstein

University of Illinois at Chicago;

Ruhr University Bochum

2

2000 Cohen cryptosystem

Public key: vector of integers

K = (K1; : : : ; KN) ∈ {−X; : : : ; X}N .

Encryption:

1. Input message m ∈ {0; 1}.

2. Generate r1; : : : ; rN ∈ {0; 1}.
i.e. r = (r1; : : : ; rN) ∈ {0; 1}N .

(Cohen says pick “half of the

integers in the public key at

random”: I guess this means

N ∈ 2Z and
P
ri = N=2.)

3. Compute and send ciphertext

C = (−1)m(r1K1 + · · ·+ rNKN).

3

How can receiver decrypt?

1

Lattice-based cryptography,

day 1: simplicity

D. J. Bernstein

University of Illinois at Chicago;

Ruhr University Bochum

2

2000 Cohen cryptosystem

Public key: vector of integers

K = (K1; : : : ; KN) ∈ {−X; : : : ; X}N .

Encryption:

1. Input message m ∈ {0; 1}.

2. Generate r1; : : : ; rN ∈ {0; 1}.
i.e. r = (r1; : : : ; rN) ∈ {0; 1}N .

(Cohen says pick “half of the

integers in the public key at

random”: I guess this means

N ∈ 2Z and
P
ri = N=2.)

3. Compute and send ciphertext

C = (−1)m(r1K1 + · · ·+ rNKN).

3

How can receiver decrypt?

1

Lattice-based cryptography,

day 1: simplicity

D. J. Bernstein

University of Illinois at Chicago;

Ruhr University Bochum

2

2000 Cohen cryptosystem

Public key: vector of integers

K = (K1; : : : ; KN) ∈ {−X; : : : ; X}N .

Encryption:

1. Input message m ∈ {0; 1}.

2. Generate r1; : : : ; rN ∈ {0; 1}.
i.e. r = (r1; : : : ; rN) ∈ {0; 1}N .

(Cohen says pick “half of the

integers in the public key at

random”: I guess this means

N ∈ 2Z and
P
ri = N=2.)

3. Compute and send ciphertext

C = (−1)m(r1K1 + · · ·+ rNKN).

3

How can receiver decrypt?

2

2000 Cohen cryptosystem

Public key: vector of integers

K = (K1; : : : ; KN) ∈ {−X; : : : ; X}N .

Encryption:

1. Input message m ∈ {0; 1}.

2. Generate r1; : : : ; rN ∈ {0; 1}.
i.e. r = (r1; : : : ; rN) ∈ {0; 1}N .

(Cohen says pick “half of the

integers in the public key at

random”: I guess this means

N ∈ 2Z and
P
ri = N=2.)

3. Compute and send ciphertext

C = (−1)m(r1K1 + · · ·+ rNKN).

3

How can receiver decrypt?

2

2000 Cohen cryptosystem

Public key: vector of integers

K = (K1; : : : ; KN) ∈ {−X; : : : ; X}N .

Encryption:

1. Input message m ∈ {0; 1}.

2. Generate r1; : : : ; rN ∈ {0; 1}.
i.e. r = (r1; : : : ; rN) ∈ {0; 1}N .

(Cohen says pick “half of the

integers in the public key at

random”: I guess this means

N ∈ 2Z and
P
ri = N=2.)

3. Compute and send ciphertext

C = (−1)m(r1K1 + · · ·+ rNKN).

3

How can receiver decrypt?

Key generation:

Generate s ∈ {1; : : : ; Y };

u1; : : : ; uN ∈


0; : : : ;

—
s − 1

2N

�ff
;

Ki ∈ (ui + sZ) ∩ {−X; : : : ; X}.

2

2000 Cohen cryptosystem

Public key: vector of integers

K = (K1; : : : ; KN) ∈ {−X; : : : ; X}N .

Encryption:

1. Input message m ∈ {0; 1}.

2. Generate r1; : : : ; rN ∈ {0; 1}.
i.e. r = (r1; : : : ; rN) ∈ {0; 1}N .

(Cohen says pick “half of the

integers in the public key at

random”: I guess this means

N ∈ 2Z and
P
ri = N=2.)

3. Compute and send ciphertext

C = (−1)m(r1K1 + · · ·+ rNKN).

3

How can receiver decrypt?

Key generation:

Generate s ∈ {1; : : : ; Y };

u1; : : : ; uN ∈


0; : : : ;

—
s − 1

2N

�ff
;

Ki ∈ (ui + sZ) ∩ {−X; : : : ; X}.

Decryption:

m = 0 if C mod s ≤ (s − 1)=2;

otherwise m = 1.

2

2000 Cohen cryptosystem

Public key: vector of integers

K = (K1; : : : ; KN) ∈ {−X; : : : ; X}N .

Encryption:

1. Input message m ∈ {0; 1}.

2. Generate r1; : : : ; rN ∈ {0; 1}.
i.e. r = (r1; : : : ; rN) ∈ {0; 1}N .

(Cohen says pick “half of the

integers in the public key at

random”: I guess this means

N ∈ 2Z and
P
ri = N=2.)

3. Compute and send ciphertext

C = (−1)m(r1K1 + · · ·+ rNKN).

3

How can receiver decrypt?

Key generation:

Generate s ∈ {1; : : : ; Y };

u1; : : : ; uN ∈


0; : : : ;

—
s − 1

2N

�ff
;

Ki ∈ (ui + sZ) ∩ {−X; : : : ; X}.

Decryption:

m = 0 if C mod s ≤ (s − 1)=2;

otherwise m = 1.

Why this works:

Ki mod s = ui ≤ (s − 1)=2N so

r1K1 + · · ·+rNKN mod s ≤ s − 1

2
.

2

2000 Cohen cryptosystem

Public key: vector of integers

K = (K1; : : : ; KN) ∈ {−X; : : : ; X}N .

Encryption:

1. Input message m ∈ {0; 1}.

2. Generate r1; : : : ; rN ∈ {0; 1}.
i.e. r = (r1; : : : ; rN) ∈ {0; 1}N .

(Cohen says pick “half of the

integers in the public key at

random”: I guess this means

N ∈ 2Z and
P
ri = N=2.)

3. Compute and send ciphertext

C = (−1)m(r1K1 + · · ·+ rNKN).

3

How can receiver decrypt?

Key generation:

Generate s ∈ {1; : : : ; Y };

u1; : : : ; uN ∈


0; : : : ;

—
s − 1

2N

�ff
;

Ki ∈ (ui + sZ) ∩ {−X; : : : ; X}.

Decryption:

m = 0 if C mod s ≤ (s − 1)=2;

otherwise m = 1.

Why this works:

Ki mod s = ui ≤ (s − 1)=2N so

r1K1 + · · ·+rNKN mod s ≤ s − 1

2
.

(Be careful! What if all ri = 0?)

2

2000 Cohen cryptosystem

Public key: vector of integers

K = (K1; : : : ; KN) ∈ {−X; : : : ; X}N .

Encryption:

1. Input message m ∈ {0; 1}.

2. Generate r1; : : : ; rN ∈ {0; 1}.
i.e. r = (r1; : : : ; rN) ∈ {0; 1}N .

(Cohen says pick “half of the

integers in the public key at

random”: I guess this means

N ∈ 2Z and
P
ri = N=2.)

3. Compute and send ciphertext

C = (−1)m(r1K1 + · · ·+ rNKN).

3

How can receiver decrypt?

Key generation:

Generate s ∈ {1; : : : ; Y };

u1; : : : ; uN ∈


0; : : : ;

—
s − 1

2N

�ff
;

Ki ∈ (ui + sZ) ∩ {−X; : : : ; X}.

Decryption:

m = 0 if C mod s ≤ (s − 1)=2;

otherwise m = 1.

Why this works:

Ki mod s = ui ≤ (s − 1)=2N so

r1K1 + · · ·+rNKN mod s ≤ s − 1

2
.

(Be careful! What if all ri = 0?)

4

Let’s try this on the computer.

Debian: apt install sagemath

Fedora: dnf install sagemath

Source: www.sagemath.org

Web (use print(X) to see X):

sagecell.sagemath.org

Sage is Python 3

+ many math libraries

+ a few syntax differences:

sage: 10^6 # power, not xor

1000000

sage: factor(314159265358979323)

317213509 * 990371647

sage:

2

2000 Cohen cryptosystem

Public key: vector of integers

K = (K1; : : : ; KN) ∈ {−X; : : : ; X}N .

Encryption:

1. Input message m ∈ {0; 1}.

2. Generate r1; : : : ; rN ∈ {0; 1}.
i.e. r = (r1; : : : ; rN) ∈ {0; 1}N .

(Cohen says pick “half of the

integers in the public key at

random”: I guess this means

N ∈ 2Z and
P
ri = N=2.)

3. Compute and send ciphertext

C = (−1)m(r1K1 + · · ·+ rNKN).

3

How can receiver decrypt?

Key generation:

Generate s ∈ {1; : : : ; Y };

u1; : : : ; uN ∈


0; : : : ;

—
s − 1

2N

�ff
;

Ki ∈ (ui + sZ) ∩ {−X; : : : ; X}.

Decryption:

m = 0 if C mod s ≤ (s − 1)=2;

otherwise m = 1.

Why this works:

Ki mod s = ui ≤ (s − 1)=2N so

r1K1 + · · ·+rNKN mod s ≤ s − 1

2
.

(Be careful! What if all ri = 0?)

4

Let’s try this on the computer.

Debian: apt install sagemath

Fedora: dnf install sagemath

Source: www.sagemath.org

Web (use print(X) to see X):

sagecell.sagemath.org

Sage is Python 3

+ many math libraries

+ a few syntax differences:

sage: 10^6 # power, not xor

1000000

sage: factor(314159265358979323)

317213509 * 990371647

sage:

2

2000 Cohen cryptosystem

Public key: vector of integers

K = (K1; : : : ; KN) ∈ {−X; : : : ; X}N .

Encryption:

1. Input message m ∈ {0; 1}.

2. Generate r1; : : : ; rN ∈ {0; 1}.
i.e. r = (r1; : : : ; rN) ∈ {0; 1}N .

(Cohen says pick “half of the

integers in the public key at

random”: I guess this means

N ∈ 2Z and
P
ri = N=2.)

3. Compute and send ciphertext

C = (−1)m(r1K1 + · · ·+ rNKN).

3

How can receiver decrypt?

Key generation:

Generate s ∈ {1; : : : ; Y };

u1; : : : ; uN ∈


0; : : : ;

—
s − 1

2N

�ff
;

Ki ∈ (ui + sZ) ∩ {−X; : : : ; X}.

Decryption:

m = 0 if C mod s ≤ (s − 1)=2;

otherwise m = 1.

Why this works:

Ki mod s = ui ≤ (s − 1)=2N so

r1K1 + · · ·+rNKN mod s ≤ s − 1

2
.

(Be careful! What if all ri = 0?)

4

Let’s try this on the computer.

Debian: apt install sagemath

Fedora: dnf install sagemath

Source: www.sagemath.org

Web (use print(X) to see X):

sagecell.sagemath.org

Sage is Python 3

+ many math libraries

+ a few syntax differences:

sage: 10^6 # power, not xor

1000000

sage: factor(314159265358979323)

317213509 * 990371647

sage:

3

How can receiver decrypt?

Key generation:

Generate s ∈ {1; : : : ; Y };

u1; : : : ; uN ∈


0; : : : ;

—
s − 1

2N

�ff
;

Ki ∈ (ui + sZ) ∩ {−X; : : : ; X}.

Decryption:

m = 0 if C mod s ≤ (s − 1)=2;

otherwise m = 1.

Why this works:

Ki mod s = ui ≤ (s − 1)=2N so

r1K1 + · · ·+rNKN mod s ≤ s − 1

2
.

(Be careful! What if all ri = 0?)

4

Let’s try this on the computer.

Debian: apt install sagemath

Fedora: dnf install sagemath

Source: www.sagemath.org

Web (use print(X) to see X):

sagecell.sagemath.org

Sage is Python 3

+ many math libraries

+ a few syntax differences:

sage: 10^6 # power, not xor

1000000

sage: factor(314159265358979323)

317213509 * 990371647

sage:

3

How can receiver decrypt?

Key generation:

Generate s ∈ {1; : : : ; Y };

u1; : : : ; uN ∈


0; : : : ;

—
s − 1

2N

�ff
;

Ki ∈ (ui + sZ) ∩ {−X; : : : ; X}.

Decryption:

m = 0 if C mod s ≤ (s − 1)=2;

otherwise m = 1.

Why this works:

Ki mod s = ui ≤ (s − 1)=2N so

r1K1 + · · ·+rNKN mod s ≤ s − 1

2
.

(Be careful! What if all ri = 0?)

4

Let’s try this on the computer.

Debian: apt install sagemath

Fedora: dnf install sagemath

Source: www.sagemath.org

Web (use print(X) to see X):

sagecell.sagemath.org

Sage is Python 3

+ many math libraries

+ a few syntax differences:

sage: 10^6 # power, not xor

1000000

sage: factor(314159265358979323)

317213509 * 990371647

sage:

5

For integers C, s with s > 0,

Sage’s “C%s” always produces

outputs between 0 and s− 1.

Matches standard math definition:

C mod s = C − bC=scs.

3

How can receiver decrypt?

Key generation:

Generate s ∈ {1; : : : ; Y };

u1; : : : ; uN ∈


0; : : : ;

—
s − 1

2N

�ff
;

Ki ∈ (ui + sZ) ∩ {−X; : : : ; X}.

Decryption:

m = 0 if C mod s ≤ (s − 1)=2;

otherwise m = 1.

Why this works:

Ki mod s = ui ≤ (s − 1)=2N so

r1K1 + · · ·+rNKN mod s ≤ s − 1

2
.

(Be careful! What if all ri = 0?)

4

Let’s try this on the computer.

Debian: apt install sagemath

Fedora: dnf install sagemath

Source: www.sagemath.org

Web (use print(X) to see X):

sagecell.sagemath.org

Sage is Python 3

+ many math libraries

+ a few syntax differences:

sage: 10^6 # power, not xor

1000000

sage: factor(314159265358979323)

317213509 * 990371647

sage:

5

For integers C, s with s > 0,

Sage’s “C%s” always produces

outputs between 0 and s− 1.

Matches standard math definition:

C mod s = C − bC=scs.

3

How can receiver decrypt?

Key generation:

Generate s ∈ {1; : : : ; Y };

u1; : : : ; uN ∈


0; : : : ;

—
s − 1

2N

�ff
;

Ki ∈ (ui + sZ) ∩ {−X; : : : ; X}.

Decryption:

m = 0 if C mod s ≤ (s − 1)=2;

otherwise m = 1.

Why this works:

Ki mod s = ui ≤ (s − 1)=2N so

r1K1 + · · ·+rNKN mod s ≤ s − 1

2
.

(Be careful! What if all ri = 0?)

4

Let’s try this on the computer.

Debian: apt install sagemath

Fedora: dnf install sagemath

Source: www.sagemath.org

Web (use print(X) to see X):

sagecell.sagemath.org

Sage is Python 3

+ many math libraries

+ a few syntax differences:

sage: 10^6 # power, not xor

1000000

sage: factor(314159265358979323)

317213509 * 990371647

sage:

5

For integers C, s with s > 0,

Sage’s “C%s” always produces

outputs between 0 and s− 1.

Matches standard math definition:

C mod s = C − bC=scs.

4

Let’s try this on the computer.

Debian: apt install sagemath

Fedora: dnf install sagemath

Source: www.sagemath.org

Web (use print(X) to see X):

sagecell.sagemath.org

Sage is Python 3

+ many math libraries

+ a few syntax differences:

sage: 10^6 # power, not xor

1000000

sage: factor(314159265358979323)

317213509 * 990371647

sage:

5

For integers C, s with s > 0,

Sage’s “C%s” always produces

outputs between 0 and s− 1.

Matches standard math definition:

C mod s = C − bC=scs.

4

Let’s try this on the computer.

Debian: apt install sagemath

Fedora: dnf install sagemath

Source: www.sagemath.org

Web (use print(X) to see X):

sagecell.sagemath.org

Sage is Python 3

+ many math libraries

+ a few syntax differences:

sage: 10^6 # power, not xor

1000000

sage: factor(314159265358979323)

317213509 * 990371647

sage:

5

For integers C, s with s > 0,

Sage’s “C%s” always produces

outputs between 0 and s− 1.

Matches standard math definition:

C mod s = C − bC=scs.

Warning: Typically

C < 0 produces C%s < 0

in lower-level languages, so

nonzero output leaks input sign.

4

Let’s try this on the computer.

Debian: apt install sagemath

Fedora: dnf install sagemath

Source: www.sagemath.org

Web (use print(X) to see X):

sagecell.sagemath.org

Sage is Python 3

+ many math libraries

+ a few syntax differences:

sage: 10^6 # power, not xor

1000000

sage: factor(314159265358979323)

317213509 * 990371647

sage:

5

For integers C, s with s > 0,

Sage’s “C%s” always produces

outputs between 0 and s− 1.

Matches standard math definition:

C mod s = C − bC=scs.

Warning: Typically

C < 0 produces C%s < 0

in lower-level languages, so

nonzero output leaks input sign.

Warning: For polynomials C,

Sage can make the same mistake.

4

Let’s try this on the computer.

Debian: apt install sagemath

Fedora: dnf install sagemath

Source: www.sagemath.org

Web (use print(X) to see X):

sagecell.sagemath.org

Sage is Python 3

+ many math libraries

+ a few syntax differences:

sage: 10^6 # power, not xor

1000000

sage: factor(314159265358979323)

317213509 * 990371647

sage:

5

For integers C, s with s > 0,

Sage’s “C%s” always produces

outputs between 0 and s− 1.

Matches standard math definition:

C mod s = C − bC=scs.

Warning: Typically

C < 0 produces C%s < 0

in lower-level languages, so

nonzero output leaks input sign.

Warning: For polynomials C,

Sage can make the same mistake.

6

sage:

4

Let’s try this on the computer.

Debian: apt install sagemath

Fedora: dnf install sagemath

Source: www.sagemath.org

Web (use print(X) to see X):

sagecell.sagemath.org

Sage is Python 3

+ many math libraries

+ a few syntax differences:

sage: 10^6 # power, not xor

1000000

sage: factor(314159265358979323)

317213509 * 990371647

sage:

5

For integers C, s with s > 0,

Sage’s “C%s” always produces

outputs between 0 and s− 1.

Matches standard math definition:

C mod s = C − bC=scs.

Warning: Typically

C < 0 produces C%s < 0

in lower-level languages, so

nonzero output leaks input sign.

Warning: For polynomials C,

Sage can make the same mistake.

6

sage:

4

Let’s try this on the computer.

Debian: apt install sagemath

Fedora: dnf install sagemath

Source: www.sagemath.org

Web (use print(X) to see X):

sagecell.sagemath.org

Sage is Python 3

+ many math libraries

+ a few syntax differences:

sage: 10^6 # power, not xor

1000000

sage: factor(314159265358979323)

317213509 * 990371647

sage:

5

For integers C, s with s > 0,

Sage’s “C%s” always produces

outputs between 0 and s− 1.

Matches standard math definition:

C mod s = C − bC=scs.

Warning: Typically

C < 0 produces C%s < 0

in lower-level languages, so

nonzero output leaks input sign.

Warning: For polynomials C,

Sage can make the same mistake.

6

sage:

5

For integers C, s with s > 0,

Sage’s “C%s” always produces

outputs between 0 and s− 1.

Matches standard math definition:

C mod s = C − bC=scs.

Warning: Typically

C < 0 produces C%s < 0

in lower-level languages, so

nonzero output leaks input sign.

Warning: For polynomials C,

Sage can make the same mistake.

6

sage:

5

For integers C, s with s > 0,

Sage’s “C%s” always produces

outputs between 0 and s− 1.

Matches standard math definition:

C mod s = C − bC=scs.

Warning: Typically

C < 0 produces C%s < 0

in lower-level languages, so

nonzero output leaks input sign.

Warning: For polynomials C,

Sage can make the same mistake.

6

sage: N=10

sage:

5

For integers C, s with s > 0,

Sage’s “C%s” always produces

outputs between 0 and s− 1.

Matches standard math definition:

C mod s = C − bC=scs.

Warning: Typically

C < 0 produces C%s < 0

in lower-level languages, so

nonzero output leaks input sign.

Warning: For polynomials C,

Sage can make the same mistake.

6

sage: N=10

sage: X=2^50

sage:

5

For integers C, s with s > 0,

Sage’s “C%s” always produces

outputs between 0 and s− 1.

Matches standard math definition:

C mod s = C − bC=scs.

Warning: Typically

C < 0 produces C%s < 0

in lower-level languages, so

nonzero output leaks input sign.

Warning: For polynomials C,

Sage can make the same mistake.

6

sage: N=10

sage: X=2^50

sage: Y=2^20

sage:

5

For integers C, s with s > 0,

Sage’s “C%s” always produces

outputs between 0 and s− 1.

Matches standard math definition:

C mod s = C − bC=scs.

Warning: Typically

C < 0 produces C%s < 0

in lower-level languages, so

nonzero output leaks input sign.

Warning: For polynomials C,

Sage can make the same mistake.

6

sage: N=10

sage: X=2^50

sage: Y=2^20

sage: Y

1048576

sage:

5

For integers C, s with s > 0,

Sage’s “C%s” always produces

outputs between 0 and s− 1.

Matches standard math definition:

C mod s = C − bC=scs.

Warning: Typically

C < 0 produces C%s < 0

in lower-level languages, so

nonzero output leaks input sign.

Warning: For polynomials C,

Sage can make the same mistake.

6

sage: N=10

sage: X=2^50

sage: Y=2^20

sage: Y

1048576

sage: s=randrange(1,Y+1)

sage:

5

For integers C, s with s > 0,

Sage’s “C%s” always produces

outputs between 0 and s− 1.

Matches standard math definition:

C mod s = C − bC=scs.

Warning: Typically

C < 0 produces C%s < 0

in lower-level languages, so

nonzero output leaks input sign.

Warning: For polynomials C,

Sage can make the same mistake.

6

sage: N=10

sage: X=2^50

sage: Y=2^20

sage: Y

1048576

sage: s=randrange(1,Y+1)

sage: s

359512

sage:

5

For integers C, s with s > 0,

Sage’s “C%s” always produces

outputs between 0 and s− 1.

Matches standard math definition:

C mod s = C − bC=scs.

Warning: Typically

C < 0 produces C%s < 0

in lower-level languages, so

nonzero output leaks input sign.

Warning: For polynomials C,

Sage can make the same mistake.

6

sage: N=10

sage: X=2^50

sage: Y=2^20

sage: Y

1048576

sage: s=randrange(1,Y+1)

sage: s

359512

sage: u=[randrange(

....: (s-1)//(2*N)+1)

....: for i in range(N)]

sage:

5

For integers C, s with s > 0,

Sage’s “C%s” always produces

outputs between 0 and s− 1.

Matches standard math definition:

C mod s = C − bC=scs.

Warning: Typically

C < 0 produces C%s < 0

in lower-level languages, so

nonzero output leaks input sign.

Warning: For polynomials C,

Sage can make the same mistake.

6

sage: N=10

sage: X=2^50

sage: Y=2^20

sage: Y

1048576

sage: s=randrange(1,Y+1)

sage: s

359512

sage: u=[randrange(

....: (s-1)//(2*N)+1)

....: for i in range(N)]

sage: u

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

5

For integers C, s with s > 0,

Sage’s “C%s” always produces

outputs between 0 and s− 1.

Matches standard math definition:

C mod s = C − bC=scs.

Warning: Typically

C < 0 produces C%s < 0

in lower-level languages, so

nonzero output leaks input sign.

Warning: For polynomials C,

Sage can make the same mistake.

6

sage: N=10

sage: X=2^50

sage: Y=2^20

sage: Y

1048576

sage: s=randrange(1,Y+1)

sage: s

359512

sage: u=[randrange(

....: (s-1)//(2*N)+1)

....: for i in range(N)]

sage: u

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

7

sage: K=[ui+s*randrange(

....: ceil(-(X+ui)/s),

....: floor((X-ui)/s)+1)

....: for ui in u]

sage:

5

For integers C, s with s > 0,

Sage’s “C%s” always produces

outputs between 0 and s− 1.

Matches standard math definition:

C mod s = C − bC=scs.

Warning: Typically

C < 0 produces C%s < 0

in lower-level languages, so

nonzero output leaks input sign.

Warning: For polynomials C,

Sage can make the same mistake.

6

sage: N=10

sage: X=2^50

sage: Y=2^20

sage: Y

1048576

sage: s=randrange(1,Y+1)

sage: s

359512

sage: u=[randrange(

....: (s-1)//(2*N)+1)

....: for i in range(N)]

sage: u

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

7

sage: K=[ui+s*randrange(

....: ceil(-(X+ui)/s),

....: floor((X-ui)/s)+1)

....: for ui in u]

sage:

5

For integers C, s with s > 0,

Sage’s “C%s” always produces

outputs between 0 and s− 1.

Matches standard math definition:

C mod s = C − bC=scs.

Warning: Typically

C < 0 produces C%s < 0

in lower-level languages, so

nonzero output leaks input sign.

Warning: For polynomials C,

Sage can make the same mistake.

6

sage: N=10

sage: X=2^50

sage: Y=2^20

sage: Y

1048576

sage: s=randrange(1,Y+1)

sage: s

359512

sage: u=[randrange(

....: (s-1)//(2*N)+1)

....: for i in range(N)]

sage: u

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

7

sage: K=[ui+s*randrange(

....: ceil(-(X+ui)/s),

....: floor((X-ui)/s)+1)

....: for ui in u]

sage:

6

sage: N=10

sage: X=2^50

sage: Y=2^20

sage: Y

1048576

sage: s=randrange(1,Y+1)

sage: s

359512

sage: u=[randrange(

....: (s-1)//(2*N)+1)

....: for i in range(N)]

sage: u

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

7

sage: K=[ui+s*randrange(

....: ceil(-(X+ui)/s),

....: floor((X-ui)/s)+1)

....: for ui in u]

sage:

6

sage: N=10

sage: X=2^50

sage: Y=2^20

sage: Y

1048576

sage: s=randrange(1,Y+1)

sage: s

359512

sage: u=[randrange(

....: (s-1)//(2*N)+1)

....: for i in range(N)]

sage: u

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

7

sage: K=[ui+s*randrange(

....: ceil(-(X+ui)/s),

....: floor((X-ui)/s)+1)

....: for ui in u]

sage: K

[870056918917829,

822006576592695,

-294765544345815,

-669275100080982,

528958455221029,

426006001074157,

-641940176080531,

501543495923784,

-583064075392587,

46109390243834]

6

sage: N=10

sage: X=2^50

sage: Y=2^20

sage: Y

1048576

sage: s=randrange(1,Y+1)

sage: s

359512

sage: u=[randrange(

....: (s-1)//(2*N)+1)

....: for i in range(N)]

sage: u

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

7

sage: K=[ui+s*randrange(

....: ceil(-(X+ui)/s),

....: floor((X-ui)/s)+1)

....: for ui in u]

sage: K

[870056918917829,

822006576592695,

-294765544345815,

-669275100080982,

528958455221029,

426006001074157,

-641940176080531,

501543495923784,

-583064075392587,

46109390243834]

8

sage: [Ki%s for Ki in K]

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

sage: u

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

sage:

6

sage: N=10

sage: X=2^50

sage: Y=2^20

sage: Y

1048576

sage: s=randrange(1,Y+1)

sage: s

359512

sage: u=[randrange(

....: (s-1)//(2*N)+1)

....: for i in range(N)]

sage: u

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

7

sage: K=[ui+s*randrange(

....: ceil(-(X+ui)/s),

....: floor((X-ui)/s)+1)

....: for ui in u]

sage: K

[870056918917829,

822006576592695,

-294765544345815,

-669275100080982,

528958455221029,

426006001074157,

-641940176080531,

501543495923784,

-583064075392587,

46109390243834]

8

sage: [Ki%s for Ki in K]

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

sage: u

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

sage:

6

sage: N=10

sage: X=2^50

sage: Y=2^20

sage: Y

1048576

sage: s=randrange(1,Y+1)

sage: s

359512

sage: u=[randrange(

....: (s-1)//(2*N)+1)

....: for i in range(N)]

sage: u

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

7

sage: K=[ui+s*randrange(

....: ceil(-(X+ui)/s),

....: floor((X-ui)/s)+1)

....: for ui in u]

sage: K

[870056918917829,

822006576592695,

-294765544345815,

-669275100080982,

528958455221029,

426006001074157,

-641940176080531,

501543495923784,

-583064075392587,

46109390243834]

8

sage: [Ki%s for Ki in K]

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

sage: u

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

sage:

7

sage: K=[ui+s*randrange(

....: ceil(-(X+ui)/s),

....: floor((X-ui)/s)+1)

....: for ui in u]

sage: K

[870056918917829,

822006576592695,

-294765544345815,

-669275100080982,

528958455221029,

426006001074157,

-641940176080531,

501543495923784,

-583064075392587,

46109390243834]

8

sage: [Ki%s for Ki in K]

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

sage: u

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

sage:

7

sage: K=[ui+s*randrange(

....: ceil(-(X+ui)/s),

....: floor((X-ui)/s)+1)

....: for ui in u]

sage: K

[870056918917829,

822006576592695,

-294765544345815,

-669275100080982,

528958455221029,

426006001074157,

-641940176080531,

501543495923784,

-583064075392587,

46109390243834]

8

sage: [Ki%s for Ki in K]

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

sage: u

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

sage: sum(K)%s

96821

sage: sum(u)

96821

sage:

7

sage: K=[ui+s*randrange(

....: ceil(-(X+ui)/s),

....: floor((X-ui)/s)+1)

....: for ui in u]

sage: K

[870056918917829,

822006576592695,

-294765544345815,

-669275100080982,

528958455221029,

426006001074157,

-641940176080531,

501543495923784,

-583064075392587,

46109390243834]

8

sage: [Ki%s for Ki in K]

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

sage: u

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

sage: sum(K)%s

96821

sage: sum(u)

96821

sage: s//2

179756

sage:

7

sage: K=[ui+s*randrange(

....: ceil(-(X+ui)/s),

....: floor((X-ui)/s)+1)

....: for ui in u]

sage: K

[870056918917829,

822006576592695,

-294765544345815,

-669275100080982,

528958455221029,

426006001074157,

-641940176080531,

501543495923784,

-583064075392587,

46109390243834]

8

sage: [Ki%s for Ki in K]

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

sage: u

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

sage: sum(K)%s

96821

sage: sum(u)

96821

sage: s//2

179756

sage:

9

sage: m=randrange(2)

sage:

7

sage: K=[ui+s*randrange(

....: ceil(-(X+ui)/s),

....: floor((X-ui)/s)+1)

....: for ui in u]

sage: K

[870056918917829,

822006576592695,

-294765544345815,

-669275100080982,

528958455221029,

426006001074157,

-641940176080531,

501543495923784,

-583064075392587,

46109390243834]

8

sage: [Ki%s for Ki in K]

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

sage: u

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

sage: sum(K)%s

96821

sage: sum(u)

96821

sage: s//2

179756

sage:

9

sage: m=randrange(2)

sage:

7

sage: K=[ui+s*randrange(

....: ceil(-(X+ui)/s),

....: floor((X-ui)/s)+1)

....: for ui in u]

sage: K

[870056918917829,

822006576592695,

-294765544345815,

-669275100080982,

528958455221029,

426006001074157,

-641940176080531,

501543495923784,

-583064075392587,

46109390243834]

8

sage: [Ki%s for Ki in K]

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

sage: u

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

sage: sum(K)%s

96821

sage: sum(u)

96821

sage: s//2

179756

sage:

9

sage: m=randrange(2)

sage:

8

sage: [Ki%s for Ki in K]

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

sage: u

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

sage: sum(K)%s

96821

sage: sum(u)

96821

sage: s//2

179756

sage:

9

sage: m=randrange(2)

sage:

8

sage: [Ki%s for Ki in K]

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

sage: u

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

sage: sum(K)%s

96821

sage: sum(u)

96821

sage: s//2

179756

sage:

9

sage: m=randrange(2)

sage: r=[randrange(2)

....: for i in range(N)]

sage:

8

sage: [Ki%s for Ki in K]

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

sage: u

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

sage: sum(K)%s

96821

sage: sum(u)

96821

sage: s//2

179756

sage:

9

sage: m=randrange(2)

sage: r=[randrange(2)

....: for i in range(N)]

sage: C=(-1)^m*sum(r[i]*K[i]

....: for i in range(N))

sage:

8

sage: [Ki%s for Ki in K]

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

sage: u

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

sage: sum(K)%s

96821

sage: sum(u)

96821

sage: s//2

179756

sage:

9

sage: m=randrange(2)

sage: r=[randrange(2)

....: for i in range(N)]

sage: C=(-1)^m*sum(r[i]*K[i]

....: for i in range(N))

sage: C

-202215856043576

sage:

8

sage: [Ki%s for Ki in K]

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

sage: u

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

sage: sum(K)%s

96821

sage: sum(u)

96821

sage: s//2

179756

sage:

9

sage: m=randrange(2)

sage: r=[randrange(2)

....: for i in range(N)]

sage: C=(-1)^m*sum(r[i]*K[i]

....: for i in range(N))

sage: C

-202215856043576

sage: C%s

47024

sage:

8

sage: [Ki%s for Ki in K]

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

sage: u

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

sage: sum(K)%s

96821

sage: sum(u)

96821

sage: s//2

179756

sage:

9

sage: m=randrange(2)

sage: r=[randrange(2)

....: for i in range(N)]

sage: C=(-1)^m*sum(r[i]*K[i]

....: for i in range(N))

sage: C

-202215856043576

sage: C%s

47024

sage: m

0

sage:

8

sage: [Ki%s for Ki in K]

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

sage: u

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

sage: sum(K)%s

96821

sage: sum(u)

96821

sage: s//2

179756

sage:

9

sage: m=randrange(2)

sage: r=[randrange(2)

....: for i in range(N)]

sage: C=(-1)^m*sum(r[i]*K[i]

....: for i in range(N))

sage: C

-202215856043576

sage: C%s

47024

sage: m

0

sage: sum(r[i]*u[i]

....: for i in range(N))

47024

sage:

8

sage: [Ki%s for Ki in K]

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

sage: u

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

sage: sum(K)%s

96821

sage: sum(u)

96821

sage: s//2

179756

sage:

9

sage: m=randrange(2)

sage: r=[randrange(2)

....: for i in range(N)]

sage: C=(-1)^m*sum(r[i]*K[i]

....: for i in range(N))

sage: C

-202215856043576

sage: C%s

47024

sage: m

0

sage: sum(r[i]*u[i]

....: for i in range(N))

47024

sage:

10

Some problems with cryptosystem

1. Functionality problem:

System can’t encrypt messages

that have more than 1 bit.

8

sage: [Ki%s for Ki in K]

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

sage: u

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

sage: sum(K)%s

96821

sage: sum(u)

96821

sage: s//2

179756

sage:

9

sage: m=randrange(2)

sage: r=[randrange(2)

....: for i in range(N)]

sage: C=(-1)^m*sum(r[i]*K[i]

....: for i in range(N))

sage: C

-202215856043576

sage: C%s

47024

sage: m

0

sage: sum(r[i]*u[i]

....: for i in range(N))

47024

sage:

10

Some problems with cryptosystem

1. Functionality problem:

System can’t encrypt messages

that have more than 1 bit.

8

sage: [Ki%s for Ki in K]

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

sage: u

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

sage: sum(K)%s

96821

sage: sum(u)

96821

sage: s//2

179756

sage:

9

sage: m=randrange(2)

sage: r=[randrange(2)

....: for i in range(N)]

sage: C=(-1)^m*sum(r[i]*K[i]

....: for i in range(N))

sage: C

-202215856043576

sage: C%s

47024

sage: m

0

sage: sum(r[i]*u[i]

....: for i in range(N))

47024

sage:

10

Some problems with cryptosystem

1. Functionality problem:

System can’t encrypt messages

that have more than 1 bit.

9

sage: m=randrange(2)

sage: r=[randrange(2)

....: for i in range(N)]

sage: C=(-1)^m*sum(r[i]*K[i]

....: for i in range(N))

sage: C

-202215856043576

sage: C%s

47024

sage: m

0

sage: sum(r[i]*u[i]

....: for i in range(N))

47024

sage:

10

Some problems with cryptosystem

1. Functionality problem:

System can’t encrypt messages

that have more than 1 bit.

9

sage: m=randrange(2)

sage: r=[randrange(2)

....: for i in range(N)]

sage: C=(-1)^m*sum(r[i]*K[i]

....: for i in range(N))

sage: C

-202215856043576

sage: C%s

47024

sage: m

0

sage: sum(r[i]*u[i]

....: for i in range(N))

47024

sage:

10

Some problems with cryptosystem

1. Functionality problem:

System can’t encrypt messages

that have more than 1 bit.

2. Security problem:

We want cryptosystems to resist

“chosen-ciphertext attacks”

where attacker can see

decryptions of other ciphertexts.

9

sage: m=randrange(2)

sage: r=[randrange(2)

....: for i in range(N)]

sage: C=(-1)^m*sum(r[i]*K[i]

....: for i in range(N))

sage: C

-202215856043576

sage: C%s

47024

sage: m

0

sage: sum(r[i]*u[i]

....: for i in range(N))

47024

sage:

10

Some problems with cryptosystem

1. Functionality problem:

System can’t encrypt messages

that have more than 1 bit.

2. Security problem:

We want cryptosystems to resist

“chosen-ciphertext attacks”

where attacker can see

decryptions of other ciphertexts.

Chosen-ciphertext attack

against this system:

Decrypt −C. Flip result.

(Works whenever C 6= 0.)

9

sage: m=randrange(2)

sage: r=[randrange(2)

....: for i in range(N)]

sage: C=(-1)^m*sum(r[i]*K[i]

....: for i in range(N))

sage: C

-202215856043576

sage: C%s

47024

sage: m

0

sage: sum(r[i]*u[i]

....: for i in range(N))

47024

sage:

10

Some problems with cryptosystem

1. Functionality problem:

System can’t encrypt messages

that have more than 1 bit.

2. Security problem:

We want cryptosystems to resist

“chosen-ciphertext attacks”

where attacker can see

decryptions of other ciphertexts.

Chosen-ciphertext attack

against this system:

Decrypt −C. Flip result.

(Works whenever C 6= 0.)

11

2000 Cohen: cryptosystem

fixing both of these problems.

1. Transform 1-bit encryption

into multi-bit encryption by

encrypting each bit separately.

Use new randomness for each bit.

9

sage: m=randrange(2)

sage: r=[randrange(2)

....: for i in range(N)]

sage: C=(-1)^m*sum(r[i]*K[i]

....: for i in range(N))

sage: C

-202215856043576

sage: C%s

47024

sage: m

0

sage: sum(r[i]*u[i]

....: for i in range(N))

47024

sage:

10

Some problems with cryptosystem

1. Functionality problem:

System can’t encrypt messages

that have more than 1 bit.

2. Security problem:

We want cryptosystems to resist

“chosen-ciphertext attacks”

where attacker can see

decryptions of other ciphertexts.

Chosen-ciphertext attack

against this system:

Decrypt −C. Flip result.

(Works whenever C 6= 0.)

11

2000 Cohen: cryptosystem

fixing both of these problems.

1. Transform 1-bit encryption

into multi-bit encryption by

encrypting each bit separately.

Use new randomness for each bit.

9

sage: m=randrange(2)

sage: r=[randrange(2)

....: for i in range(N)]

sage: C=(-1)^m*sum(r[i]*K[i]

....: for i in range(N))

sage: C

-202215856043576

sage: C%s

47024

sage: m

0

sage: sum(r[i]*u[i]

....: for i in range(N))

47024

sage:

10

Some problems with cryptosystem

1. Functionality problem:

System can’t encrypt messages

that have more than 1 bit.

2. Security problem:

We want cryptosystems to resist

“chosen-ciphertext attacks”

where attacker can see

decryptions of other ciphertexts.

Chosen-ciphertext attack

against this system:

Decrypt −C. Flip result.

(Works whenever C 6= 0.)

11

2000 Cohen: cryptosystem

fixing both of these problems.

1. Transform 1-bit encryption

into multi-bit encryption by

encrypting each bit separately.

Use new randomness for each bit.

10

Some problems with cryptosystem

1. Functionality problem:

System can’t encrypt messages

that have more than 1 bit.

2. Security problem:

We want cryptosystems to resist

“chosen-ciphertext attacks”

where attacker can see

decryptions of other ciphertexts.

Chosen-ciphertext attack

against this system:

Decrypt −C. Flip result.

(Works whenever C 6= 0.)

11

2000 Cohen: cryptosystem

fixing both of these problems.

1. Transform 1-bit encryption

into multi-bit encryption by

encrypting each bit separately.

Use new randomness for each bit.

10

Some problems with cryptosystem

1. Functionality problem:

System can’t encrypt messages

that have more than 1 bit.

2. Security problem:

We want cryptosystems to resist

“chosen-ciphertext attacks”

where attacker can see

decryptions of other ciphertexts.

Chosen-ciphertext attack

against this system:

Decrypt −C. Flip result.

(Works whenever C 6= 0.)

11

2000 Cohen: cryptosystem

fixing both of these problems.

1. Transform 1-bit encryption

into multi-bit encryption by

encrypting each bit separately.

Use new randomness for each bit.

B-bit input message

m = (m1; : : : ; mB) ∈ {0; 1}B.

For each i ∈ {1; : : : ; B}:
Generate ri ;1; : : : ; ri ;N ∈ {0; 1}.

Ciphertext C:

(−1)m1(r1;1K1 + · · ·+ r1;NKN),

: : : ,

(−1)mB (rB;1K1 + · · ·+ rB;NKN).

10

Some problems with cryptosystem

1. Functionality problem:

System can’t encrypt messages

that have more than 1 bit.

2. Security problem:

We want cryptosystems to resist

“chosen-ciphertext attacks”

where attacker can see

decryptions of other ciphertexts.

Chosen-ciphertext attack

against this system:

Decrypt −C. Flip result.

(Works whenever C 6= 0.)

11

2000 Cohen: cryptosystem

fixing both of these problems.

1. Transform 1-bit encryption

into multi-bit encryption by

encrypting each bit separately.

Use new randomness for each bit.

B-bit input message

m = (m1; : : : ; mB) ∈ {0; 1}B.

For each i ∈ {1; : : : ; B}:
Generate ri ;1; : : : ; ri ;N ∈ {0; 1}.

Ciphertext C:

(−1)m1(r1;1K1 + · · ·+ r1;NKN),

: : : ,

(−1)mB (rB;1K1 + · · ·+ rB;NKN).

12

2. Derandomize encryption, and

reencrypt during decryption.

This is an example of “FO”, the

1999 Fujisaki–Okamoto transform.

10

Some problems with cryptosystem

1. Functionality problem:

System can’t encrypt messages

that have more than 1 bit.

2. Security problem:

We want cryptosystems to resist

“chosen-ciphertext attacks”

where attacker can see

decryptions of other ciphertexts.

Chosen-ciphertext attack

against this system:

Decrypt −C. Flip result.

(Works whenever C 6= 0.)

11

2000 Cohen: cryptosystem

fixing both of these problems.

1. Transform 1-bit encryption

into multi-bit encryption by

encrypting each bit separately.

Use new randomness for each bit.

B-bit input message

m = (m1; : : : ; mB) ∈ {0; 1}B.

For each i ∈ {1; : : : ; B}:
Generate ri ;1; : : : ; ri ;N ∈ {0; 1}.

Ciphertext C:

(−1)m1(r1;1K1 + · · ·+ r1;NKN),

: : : ,

(−1)mB (rB;1K1 + · · ·+ rB;NKN).

12

2. Derandomize encryption, and

reencrypt during decryption.

This is an example of “FO”, the

1999 Fujisaki–Okamoto transform.

10

Some problems with cryptosystem

1. Functionality problem:

System can’t encrypt messages

that have more than 1 bit.

2. Security problem:

We want cryptosystems to resist

“chosen-ciphertext attacks”

where attacker can see

decryptions of other ciphertexts.

Chosen-ciphertext attack

against this system:

Decrypt −C. Flip result.

(Works whenever C 6= 0.)

11

2000 Cohen: cryptosystem

fixing both of these problems.

1. Transform 1-bit encryption

into multi-bit encryption by

encrypting each bit separately.

Use new randomness for each bit.

B-bit input message

m = (m1; : : : ; mB) ∈ {0; 1}B.

For each i ∈ {1; : : : ; B}:
Generate ri ;1; : : : ; ri ;N ∈ {0; 1}.

Ciphertext C:

(−1)m1(r1;1K1 + · · ·+ r1;NKN),

: : : ,

(−1)mB (rB;1K1 + · · ·+ rB;NKN).

12

2. Derandomize encryption, and

reencrypt during decryption.

This is an example of “FO”, the

1999 Fujisaki–Okamoto transform.

11

2000 Cohen: cryptosystem

fixing both of these problems.

1. Transform 1-bit encryption

into multi-bit encryption by

encrypting each bit separately.

Use new randomness for each bit.

B-bit input message

m = (m1; : : : ; mB) ∈ {0; 1}B.

For each i ∈ {1; : : : ; B}:
Generate ri ;1; : : : ; ri ;N ∈ {0; 1}.

Ciphertext C:

(−1)m1(r1;1K1 + · · ·+ r1;NKN),

: : : ,

(−1)mB (rB;1K1 + · · ·+ rB;NKN).

12

2. Derandomize encryption, and

reencrypt during decryption.

This is an example of “FO”, the

1999 Fujisaki–Okamoto transform.

11

2000 Cohen: cryptosystem

fixing both of these problems.

1. Transform 1-bit encryption

into multi-bit encryption by

encrypting each bit separately.

Use new randomness for each bit.

B-bit input message

m = (m1; : : : ; mB) ∈ {0; 1}B.

For each i ∈ {1; : : : ; B}:
Generate ri ;1; : : : ; ri ;N ∈ {0; 1}.

Ciphertext C:

(−1)m1(r1;1K1 + · · ·+ r1;NKN),

: : : ,

(−1)mB (rB;1K1 + · · ·+ rB;NKN).

12

2. Derandomize encryption, and

reencrypt during decryption.

This is an example of “FO”, the

1999 Fujisaki–Okamoto transform.

Derandomization: Generate r

as cryptographic hash H(m),

using standard hash function H.

(Watch out: Is m guessable?)

11

2000 Cohen: cryptosystem

fixing both of these problems.

1. Transform 1-bit encryption

into multi-bit encryption by

encrypting each bit separately.

Use new randomness for each bit.

B-bit input message

m = (m1; : : : ; mB) ∈ {0; 1}B.

For each i ∈ {1; : : : ; B}:
Generate ri ;1; : : : ; ri ;N ∈ {0; 1}.

Ciphertext C:

(−1)m1(r1;1K1 + · · ·+ r1;NKN),

: : : ,

(−1)mB (rB;1K1 + · · ·+ rB;NKN).

12

2. Derandomize encryption, and

reencrypt during decryption.

This is an example of “FO”, the

1999 Fujisaki–Okamoto transform.

Derandomization: Generate r

as cryptographic hash H(m),

using standard hash function H.

(Watch out: Is m guessable?)

Decryption with reencryption:

1. Input C′. (Maybe C′ 6= C.)

2. Decrypt to obtain m′.
3. Recompute r ′ = H(m′).

4. Recompute C′′ from m′; r ′.
5. Abort if C′′ 6= C′.

11

2000 Cohen: cryptosystem

fixing both of these problems.

1. Transform 1-bit encryption

into multi-bit encryption by

encrypting each bit separately.

Use new randomness for each bit.

B-bit input message

m = (m1; : : : ; mB) ∈ {0; 1}B.

For each i ∈ {1; : : : ; B}:
Generate ri ;1; : : : ; ri ;N ∈ {0; 1}.

Ciphertext C:

(−1)m1(r1;1K1 + · · ·+ r1;NKN),

: : : ,

(−1)mB (rB;1K1 + · · ·+ rB;NKN).

12

2. Derandomize encryption, and

reencrypt during decryption.

This is an example of “FO”, the

1999 Fujisaki–Okamoto transform.

Derandomization: Generate r

as cryptographic hash H(m),

using standard hash function H.

(Watch out: Is m guessable?)

Decryption with reencryption:

1. Input C′. (Maybe C′ 6= C.)

2. Decrypt to obtain m′.
3. Recompute r ′ = H(m′).

4. Recompute C′′ from m′; r ′.
5. Abort if C′′ 6= C′.

13

Subset-sum attacks

Attacker searches all possibilities

for (r1; : : : ; rN),

checks r1K1 + · · ·+ rNKN
against ±C1.

This takes 2N easy operations:

e.g. 1024 operations for N = 10.

11

2000 Cohen: cryptosystem

fixing both of these problems.

1. Transform 1-bit encryption

into multi-bit encryption by

encrypting each bit separately.

Use new randomness for each bit.

B-bit input message

m = (m1; : : : ; mB) ∈ {0; 1}B.

For each i ∈ {1; : : : ; B}:
Generate ri ;1; : : : ; ri ;N ∈ {0; 1}.

Ciphertext C:

(−1)m1(r1;1K1 + · · ·+ r1;NKN),

: : : ,

(−1)mB (rB;1K1 + · · ·+ rB;NKN).

12

2. Derandomize encryption, and

reencrypt during decryption.

This is an example of “FO”, the

1999 Fujisaki–Okamoto transform.

Derandomization: Generate r

as cryptographic hash H(m),

using standard hash function H.

(Watch out: Is m guessable?)

Decryption with reencryption:

1. Input C′. (Maybe C′ 6= C.)

2. Decrypt to obtain m′.
3. Recompute r ′ = H(m′).

4. Recompute C′′ from m′; r ′.
5. Abort if C′′ 6= C′.

13

Subset-sum attacks

Attacker searches all possibilities

for (r1; : : : ; rN),

checks r1K1 + · · ·+ rNKN
against ±C1.

This takes 2N easy operations:

e.g. 1024 operations for N = 10.

11

2000 Cohen: cryptosystem

fixing both of these problems.

1. Transform 1-bit encryption

into multi-bit encryption by

encrypting each bit separately.

Use new randomness for each bit.

B-bit input message

m = (m1; : : : ; mB) ∈ {0; 1}B.

For each i ∈ {1; : : : ; B}:
Generate ri ;1; : : : ; ri ;N ∈ {0; 1}.

Ciphertext C:

(−1)m1(r1;1K1 + · · ·+ r1;NKN),

: : : ,

(−1)mB (rB;1K1 + · · ·+ rB;NKN).

12

2. Derandomize encryption, and

reencrypt during decryption.

This is an example of “FO”, the

1999 Fujisaki–Okamoto transform.

Derandomization: Generate r

as cryptographic hash H(m),

using standard hash function H.

(Watch out: Is m guessable?)

Decryption with reencryption:

1. Input C′. (Maybe C′ 6= C.)

2. Decrypt to obtain m′.
3. Recompute r ′ = H(m′).

4. Recompute C′′ from m′; r ′.
5. Abort if C′′ 6= C′.

13

Subset-sum attacks

Attacker searches all possibilities

for (r1; : : : ; rN),

checks r1K1 + · · ·+ rNKN
against ±C1.

This takes 2N easy operations:

e.g. 1024 operations for N = 10.

12

2. Derandomize encryption, and

reencrypt during decryption.

This is an example of “FO”, the

1999 Fujisaki–Okamoto transform.

Derandomization: Generate r

as cryptographic hash H(m),

using standard hash function H.

(Watch out: Is m guessable?)

Decryption with reencryption:

1. Input C′. (Maybe C′ 6= C.)

2. Decrypt to obtain m′.
3. Recompute r ′ = H(m′).

4. Recompute C′′ from m′; r ′.
5. Abort if C′′ 6= C′.

13

Subset-sum attacks

Attacker searches all possibilities

for (r1; : : : ; rN),

checks r1K1 + · · ·+ rNKN
against ±C1.

This takes 2N easy operations:

e.g. 1024 operations for N = 10.

12

2. Derandomize encryption, and

reencrypt during decryption.

This is an example of “FO”, the

1999 Fujisaki–Okamoto transform.

Derandomization: Generate r

as cryptographic hash H(m),

using standard hash function H.

(Watch out: Is m guessable?)

Decryption with reencryption:

1. Input C′. (Maybe C′ 6= C.)

2. Decrypt to obtain m′.
3. Recompute r ′ = H(m′).

4. Recompute C′′ from m′; r ′.
5. Abort if C′′ 6= C′.

13

Subset-sum attacks

Attacker searches all possibilities

for (r1; : : : ; rN),

checks r1K1 + · · ·+ rNKN
against ±C1.

This takes 2N easy operations:

e.g. 1024 operations for N = 10.

“This finds only one bit m1.”

12

2. Derandomize encryption, and

reencrypt during decryption.

This is an example of “FO”, the

1999 Fujisaki–Okamoto transform.

Derandomization: Generate r

as cryptographic hash H(m),

using standard hash function H.

(Watch out: Is m guessable?)

Decryption with reencryption:

1. Input C′. (Maybe C′ 6= C.)

2. Decrypt to obtain m′.
3. Recompute r ′ = H(m′).

4. Recompute C′′ from m′; r ′.
5. Abort if C′′ 6= C′.

13

Subset-sum attacks

Attacker searches all possibilities

for (r1; : : : ; rN),

checks r1K1 + · · ·+ rNKN
against ±C1.

This takes 2N easy operations:

e.g. 1024 operations for N = 10.

“This finds only one bit m1.”

— This is a problem in some

applications. Should design

encryption to leak no information.

12

2. Derandomize encryption, and

reencrypt during decryption.

This is an example of “FO”, the

1999 Fujisaki–Okamoto transform.

Derandomization: Generate r

as cryptographic hash H(m),

using standard hash function H.

(Watch out: Is m guessable?)

Decryption with reencryption:

1. Input C′. (Maybe C′ 6= C.)

2. Decrypt to obtain m′.
3. Recompute r ′ = H(m′).

4. Recompute C′′ from m′; r ′.
5. Abort if C′′ 6= C′.

13

Subset-sum attacks

Attacker searches all possibilities

for (r1; : : : ; rN),

checks r1K1 + · · ·+ rNKN
against ±C1.

This takes 2N easy operations:

e.g. 1024 operations for N = 10.

“This finds only one bit m1.”

— This is a problem in some

applications. Should design

encryption to leak no information.

— Also, can easily modify attack

to find all bits of message.

12

2. Derandomize encryption, and

reencrypt during decryption.

This is an example of “FO”, the

1999 Fujisaki–Okamoto transform.

Derandomization: Generate r

as cryptographic hash H(m),

using standard hash function H.

(Watch out: Is m guessable?)

Decryption with reencryption:

1. Input C′. (Maybe C′ 6= C.)

2. Decrypt to obtain m′.
3. Recompute r ′ = H(m′).

4. Recompute C′′ from m′; r ′.
5. Abort if C′′ 6= C′.

13

Subset-sum attacks

Attacker searches all possibilities

for (r1; : : : ; rN),

checks r1K1 + · · ·+ rNKN
against ±C1.

This takes 2N easy operations:

e.g. 1024 operations for N = 10.

“This finds only one bit m1.”

— This is a problem in some

applications. Should design

encryption to leak no information.

— Also, can easily modify attack

to find all bits of message.

14

Modified attack:

For each (r1; : : : ; rN), look up

r1K1 + · · · + rNKN in hash table

containing ±C1;±C2; : : : ;±CB.

12

2. Derandomize encryption, and

reencrypt during decryption.

This is an example of “FO”, the

1999 Fujisaki–Okamoto transform.

Derandomization: Generate r

as cryptographic hash H(m),

using standard hash function H.

(Watch out: Is m guessable?)

Decryption with reencryption:

1. Input C′. (Maybe C′ 6= C.)

2. Decrypt to obtain m′.
3. Recompute r ′ = H(m′).

4. Recompute C′′ from m′; r ′.
5. Abort if C′′ 6= C′.

13

Subset-sum attacks

Attacker searches all possibilities

for (r1; : : : ; rN),

checks r1K1 + · · ·+ rNKN
against ±C1.

This takes 2N easy operations:

e.g. 1024 operations for N = 10.

“This finds only one bit m1.”

— This is a problem in some

applications. Should design

encryption to leak no information.

— Also, can easily modify attack

to find all bits of message.

14

Modified attack:

For each (r1; : : : ; rN), look up

r1K1 + · · · + rNKN in hash table

containing ±C1;±C2; : : : ;±CB.

12

2. Derandomize encryption, and

reencrypt during decryption.

This is an example of “FO”, the

1999 Fujisaki–Okamoto transform.

Derandomization: Generate r

as cryptographic hash H(m),

using standard hash function H.

(Watch out: Is m guessable?)

Decryption with reencryption:

1. Input C′. (Maybe C′ 6= C.)

2. Decrypt to obtain m′.
3. Recompute r ′ = H(m′).

4. Recompute C′′ from m′; r ′.
5. Abort if C′′ 6= C′.

13

Subset-sum attacks

Attacker searches all possibilities

for (r1; : : : ; rN),

checks r1K1 + · · ·+ rNKN
against ±C1.

This takes 2N easy operations:

e.g. 1024 operations for N = 10.

“This finds only one bit m1.”

— This is a problem in some

applications. Should design

encryption to leak no information.

— Also, can easily modify attack

to find all bits of message.

14

Modified attack:

For each (r1; : : : ; rN), look up

r1K1 + · · · + rNKN in hash table

containing ±C1;±C2; : : : ;±CB.

13

Subset-sum attacks

Attacker searches all possibilities

for (r1; : : : ; rN),

checks r1K1 + · · ·+ rNKN
against ±C1.

This takes 2N easy operations:

e.g. 1024 operations for N = 10.

“This finds only one bit m1.”

— This is a problem in some

applications. Should design

encryption to leak no information.

— Also, can easily modify attack

to find all bits of message.

14

Modified attack:

For each (r1; : : : ; rN), look up

r1K1 + · · · + rNKN in hash table

containing ±C1;±C2; : : : ;±CB.

13

Subset-sum attacks

Attacker searches all possibilities

for (r1; : : : ; rN),

checks r1K1 + · · ·+ rNKN
against ±C1.

This takes 2N easy operations:

e.g. 1024 operations for N = 10.

“This finds only one bit m1.”

— This is a problem in some

applications. Should design

encryption to leak no information.

— Also, can easily modify attack

to find all bits of message.

14

Modified attack:

For each (r1; : : : ; rN), look up

r1K1 + · · · + rNKN in hash table

containing ±C1;±C2; : : : ;±CB.

Multi-target attack:

Apply this not just to B bits in

one message, but all bits in all

messages sent to this key.

13

Subset-sum attacks

Attacker searches all possibilities

for (r1; : : : ; rN),

checks r1K1 + · · ·+ rNKN
against ±C1.

This takes 2N easy operations:

e.g. 1024 operations for N = 10.

“This finds only one bit m1.”

— This is a problem in some

applications. Should design

encryption to leak no information.

— Also, can easily modify attack

to find all bits of message.

14

Modified attack:

For each (r1; : : : ; rN), look up

r1K1 + · · · + rNKN in hash table

containing ±C1;±C2; : : : ;±CB.

Multi-target attack:

Apply this not just to B bits in

one message, but all bits in all

messages sent to this key.

Finding all bits in all messages:

total 2N operations.

13

Subset-sum attacks

Attacker searches all possibilities

for (r1; : : : ; rN),

checks r1K1 + · · ·+ rNKN
against ±C1.

This takes 2N easy operations:

e.g. 1024 operations for N = 10.

“This finds only one bit m1.”

— This is a problem in some

applications. Should design

encryption to leak no information.

— Also, can easily modify attack

to find all bits of message.

14

Modified attack:

For each (r1; : : : ; rN), look up

r1K1 + · · · + rNKN in hash table

containing ±C1;±C2; : : : ;±CB.

Multi-target attack:

Apply this not just to B bits in

one message, but all bits in all

messages sent to this key.

Finding all bits in all messages:

total 2N operations.

Finding 1% of all bits in all

messages, huge information leak:

total 0:01 · 2N operations.

13

Subset-sum attacks

Attacker searches all possibilities

for (r1; : : : ; rN),

checks r1K1 + · · ·+ rNKN
against ±C1.

This takes 2N easy operations:

e.g. 1024 operations for N = 10.

“This finds only one bit m1.”

— This is a problem in some

applications. Should design

encryption to leak no information.

— Also, can easily modify attack

to find all bits of message.

14

Modified attack:

For each (r1; : : : ; rN), look up

r1K1 + · · · + rNKN in hash table

containing ±C1;±C2; : : : ;±CB.

Multi-target attack:

Apply this not just to B bits in

one message, but all bits in all

messages sent to this key.

Finding all bits in all messages:

total 2N operations.

Finding 1% of all bits in all

messages, huge information leak:

total 0:01 · 2N operations.

15

“We can stop attacks by taking

N = 128, and changing keys every

day, and applying all-or-nothing

transform to each message.”

13

Subset-sum attacks

Attacker searches all possibilities

for (r1; : : : ; rN),

checks r1K1 + · · ·+ rNKN
against ±C1.

This takes 2N easy operations:

e.g. 1024 operations for N = 10.

“This finds only one bit m1.”

— This is a problem in some

applications. Should design

encryption to leak no information.

— Also, can easily modify attack

to find all bits of message.

14

Modified attack:

For each (r1; : : : ; rN), look up

r1K1 + · · · + rNKN in hash table

containing ±C1;±C2; : : : ;±CB.

Multi-target attack:

Apply this not just to B bits in

one message, but all bits in all

messages sent to this key.

Finding all bits in all messages:

total 2N operations.

Finding 1% of all bits in all

messages, huge information leak:

total 0:01 · 2N operations.

15

“We can stop attacks by taking

N = 128, and changing keys every

day, and applying all-or-nothing

transform to each message.”

13

Subset-sum attacks

Attacker searches all possibilities

for (r1; : : : ; rN),

checks r1K1 + · · ·+ rNKN
against ±C1.

This takes 2N easy operations:

e.g. 1024 operations for N = 10.

“This finds only one bit m1.”

— This is a problem in some

applications. Should design

encryption to leak no information.

— Also, can easily modify attack

to find all bits of message.

14

Modified attack:

For each (r1; : : : ; rN), look up

r1K1 + · · · + rNKN in hash table

containing ±C1;±C2; : : : ;±CB.

Multi-target attack:

Apply this not just to B bits in

one message, but all bits in all

messages sent to this key.

Finding all bits in all messages:

total 2N operations.

Finding 1% of all bits in all

messages, huge information leak:

total 0:01 · 2N operations.

15

“We can stop attacks by taking

N = 128, and changing keys every

day, and applying all-or-nothing

transform to each message.”

14

Modified attack:

For each (r1; : : : ; rN), look up

r1K1 + · · · + rNKN in hash table

containing ±C1;±C2; : : : ;±CB.

Multi-target attack:

Apply this not just to B bits in

one message, but all bits in all

messages sent to this key.

Finding all bits in all messages:

total 2N operations.

Finding 1% of all bits in all

messages, huge information leak:

total 0:01 · 2N operations.

15

“We can stop attacks by taking

N = 128, and changing keys every

day, and applying all-or-nothing

transform to each message.”

14

Modified attack:

For each (r1; : : : ; rN), look up

r1K1 + · · · + rNKN in hash table

containing ±C1;±C2; : : : ;±CB.

Multi-target attack:

Apply this not just to B bits in

one message, but all bits in all

messages sent to this key.

Finding all bits in all messages:

total 2N operations.

Finding 1% of all bits in all

messages, huge information leak:

total 0:01 · 2N operations.

15

“We can stop attacks by taking

N = 128, and changing keys every

day, and applying all-or-nothing

transform to each message.”

— Standard subset-sum attacks

take only 2N=2 operations

to find (r1; : : : ; rN) ∈ {0; 1}N
with r1K1 + · · ·+ rNKN = C.

14

Modified attack:

For each (r1; : : : ; rN), look up

r1K1 + · · · + rNKN in hash table

containing ±C1;±C2; : : : ;±CB.

Multi-target attack:

Apply this not just to B bits in

one message, but all bits in all

messages sent to this key.

Finding all bits in all messages:

total 2N operations.

Finding 1% of all bits in all

messages, huge information leak:

total 0:01 · 2N operations.

15

“We can stop attacks by taking

N = 128, and changing keys every

day, and applying all-or-nothing

transform to each message.”

— Standard subset-sum attacks

take only 2N=2 operations

to find (r1; : : : ; rN) ∈ {0; 1}N
with r1K1 + · · ·+ rNKN = C.

Make hash table containing

C − rN=2+1KN=2+1 − · · · − rNKN
for all (rN=2+1; : : : ; rN).

Look up r1K1 + · · ·+ rN=2KN=2 in

hash table for each (r1; : : : ; rN=2).

14

Modified attack:

For each (r1; : : : ; rN), look up

r1K1 + · · · + rNKN in hash table

containing ±C1;±C2; : : : ;±CB.

Multi-target attack:

Apply this not just to B bits in

one message, but all bits in all

messages sent to this key.

Finding all bits in all messages:

total 2N operations.

Finding 1% of all bits in all

messages, huge information leak:

total 0:01 · 2N operations.

15

“We can stop attacks by taking

N = 128, and changing keys every

day, and applying all-or-nothing

transform to each message.”

— Standard subset-sum attacks

take only 2N=2 operations

to find (r1; : : : ; rN) ∈ {0; 1}N
with r1K1 + · · ·+ rNKN = C.

Make hash table containing

C − rN=2+1KN=2+1 − · · · − rNKN
for all (rN=2+1; : : : ; rN).

Look up r1K1 + · · ·+ rN=2KN=2 in

hash table for each (r1; : : : ; rN=2).

16

These attacks exploit linear

structure of problem to convert

one target C into many targets.

14

Modified attack:

For each (r1; : : : ; rN), look up

r1K1 + · · · + rNKN in hash table

containing ±C1;±C2; : : : ;±CB.

Multi-target attack:

Apply this not just to B bits in

one message, but all bits in all

messages sent to this key.

Finding all bits in all messages:

total 2N operations.

Finding 1% of all bits in all

messages, huge information leak:

total 0:01 · 2N operations.

15

“We can stop attacks by taking

N = 128, and changing keys every

day, and applying all-or-nothing

transform to each message.”

— Standard subset-sum attacks

take only 2N=2 operations

to find (r1; : : : ; rN) ∈ {0; 1}N
with r1K1 + · · ·+ rNKN = C.

Make hash table containing

C − rN=2+1KN=2+1 − · · · − rNKN
for all (rN=2+1; : : : ; rN).

Look up r1K1 + · · ·+ rN=2KN=2 in

hash table for each (r1; : : : ; rN=2).

16

These attacks exploit linear

structure of problem to convert

one target C into many targets.

14

Modified attack:

For each (r1; : : : ; rN), look up

r1K1 + · · · + rNKN in hash table

containing ±C1;±C2; : : : ;±CB.

Multi-target attack:

Apply this not just to B bits in

one message, but all bits in all

messages sent to this key.

Finding all bits in all messages:

total 2N operations.

Finding 1% of all bits in all

messages, huge information leak:

total 0:01 · 2N operations.

15

“We can stop attacks by taking

N = 128, and changing keys every

day, and applying all-or-nothing

transform to each message.”

— Standard subset-sum attacks

take only 2N=2 operations

to find (r1; : : : ; rN) ∈ {0; 1}N
with r1K1 + · · ·+ rNKN = C.

Make hash table containing

C − rN=2+1KN=2+1 − · · · − rNKN
for all (rN=2+1; : : : ; rN).

Look up r1K1 + · · ·+ rN=2KN=2 in

hash table for each (r1; : : : ; rN=2).

16

These attacks exploit linear

structure of problem to convert

one target C into many targets.

15

“We can stop attacks by taking

N = 128, and changing keys every

day, and applying all-or-nothing

transform to each message.”

— Standard subset-sum attacks

take only 2N=2 operations

to find (r1; : : : ; rN) ∈ {0; 1}N
with r1K1 + · · ·+ rNKN = C.

Make hash table containing

C − rN=2+1KN=2+1 − · · · − rNKN
for all (rN=2+1; : : : ; rN).

Look up r1K1 + · · ·+ rN=2KN=2 in

hash table for each (r1; : : : ; rN=2).

16

These attacks exploit linear

structure of problem to convert

one target C into many targets.

15

“We can stop attacks by taking

N = 128, and changing keys every

day, and applying all-or-nothing

transform to each message.”

— Standard subset-sum attacks

take only 2N=2 operations

to find (r1; : : : ; rN) ∈ {0; 1}N
with r1K1 + · · ·+ rNKN = C.

Make hash table containing

C − rN=2+1KN=2+1 − · · · − rNKN
for all (rN=2+1; : : : ; rN).

Look up r1K1 + · · ·+ rN=2KN=2 in

hash table for each (r1; : : : ; rN=2).

16

These attacks exploit linear

structure of problem to convert

one target C into many targets.

(Actually have 2B targets

±C1; : : : ;±CB for one message.

Convert into B1=22N=2 targets:

total B1=22N=2 operations

to find all B bits. Also, maybe

have more messages to attack.)

15

“We can stop attacks by taking

N = 128, and changing keys every

day, and applying all-or-nothing

transform to each message.”

— Standard subset-sum attacks

take only 2N=2 operations

to find (r1; : : : ; rN) ∈ {0; 1}N
with r1K1 + · · ·+ rNKN = C.

Make hash table containing

C − rN=2+1KN=2+1 − · · · − rNKN
for all (rN=2+1; : : : ; rN).

Look up r1K1 + · · ·+ rN=2KN=2 in

hash table for each (r1; : : : ; rN=2).

16

These attacks exploit linear

structure of problem to convert

one target C into many targets.

(Actually have 2B targets

±C1; : : : ;±CB for one message.

Convert into B1=22N=2 targets:

total B1=22N=2 operations

to find all B bits. Also, maybe

have more messages to attack.)

There are even more ways to

exploit the linear structure.

1981 Schroeppel–Shamir:

2N=2 operations, space 2N=4.

15

“We can stop attacks by taking

N = 128, and changing keys every

day, and applying all-or-nothing

transform to each message.”

— Standard subset-sum attacks

take only 2N=2 operations

to find (r1; : : : ; rN) ∈ {0; 1}N
with r1K1 + · · ·+ rNKN = C.

Make hash table containing

C − rN=2+1KN=2+1 − · · · − rNKN
for all (rN=2+1; : : : ; rN).

Look up r1K1 + · · ·+ rN=2KN=2 in

hash table for each (r1; : : : ; rN=2).

16

These attacks exploit linear

structure of problem to convert

one target C into many targets.

(Actually have 2B targets

±C1; : : : ;±CB for one message.

Convert into B1=22N=2 targets:

total B1=22N=2 operations

to find all B bits. Also, maybe

have more messages to attack.)

There are even more ways to

exploit the linear structure.

1981 Schroeppel–Shamir:

2N=2 operations, space 2N=4.

17

2010 Howgrave-Graham–Joux:

claimed 20:311N operations. 2011

May–Meurer correction: 20:337N .

15

“We can stop attacks by taking

N = 128, and changing keys every

day, and applying all-or-nothing

transform to each message.”

— Standard subset-sum attacks

take only 2N=2 operations

to find (r1; : : : ; rN) ∈ {0; 1}N
with r1K1 + · · ·+ rNKN = C.

Make hash table containing

C − rN=2+1KN=2+1 − · · · − rNKN
for all (rN=2+1; : : : ; rN).

Look up r1K1 + · · ·+ rN=2KN=2 in

hash table for each (r1; : : : ; rN=2).

16

These attacks exploit linear

structure of problem to convert

one target C into many targets.

(Actually have 2B targets

±C1; : : : ;±CB for one message.

Convert into B1=22N=2 targets:

total B1=22N=2 operations

to find all B bits. Also, maybe

have more messages to attack.)

There are even more ways to

exploit the linear structure.

1981 Schroeppel–Shamir:

2N=2 operations, space 2N=4.

17

2010 Howgrave-Graham–Joux:

claimed 20:311N operations. 2011

May–Meurer correction: 20:337N .

15

“We can stop attacks by taking

N = 128, and changing keys every

day, and applying all-or-nothing

transform to each message.”

— Standard subset-sum attacks

take only 2N=2 operations

to find (r1; : : : ; rN) ∈ {0; 1}N
with r1K1 + · · ·+ rNKN = C.

Make hash table containing

C − rN=2+1KN=2+1 − · · · − rNKN
for all (rN=2+1; : : : ; rN).

Look up r1K1 + · · ·+ rN=2KN=2 in

hash table for each (r1; : : : ; rN=2).

16

These attacks exploit linear

structure of problem to convert

one target C into many targets.

(Actually have 2B targets

±C1; : : : ;±CB for one message.

Convert into B1=22N=2 targets:

total B1=22N=2 operations

to find all B bits. Also, maybe

have more messages to attack.)

There are even more ways to

exploit the linear structure.

1981 Schroeppel–Shamir:

2N=2 operations, space 2N=4.

17

2010 Howgrave-Graham–Joux:

claimed 20:311N operations. 2011

May–Meurer correction: 20:337N .

16

These attacks exploit linear

structure of problem to convert

one target C into many targets.

(Actually have 2B targets

±C1; : : : ;±CB for one message.

Convert into B1=22N=2 targets:

total B1=22N=2 operations

to find all B bits. Also, maybe

have more messages to attack.)

There are even more ways to

exploit the linear structure.

1981 Schroeppel–Shamir:

2N=2 operations, space 2N=4.

17

2010 Howgrave-Graham–Joux:

claimed 20:311N operations. 2011

May–Meurer correction: 20:337N .

16

These attacks exploit linear

structure of problem to convert

one target C into many targets.

(Actually have 2B targets

±C1; : : : ;±CB for one message.

Convert into B1=22N=2 targets:

total B1=22N=2 operations

to find all B bits. Also, maybe

have more messages to attack.)

There are even more ways to

exploit the linear structure.

1981 Schroeppel–Shamir:

2N=2 operations, space 2N=4.

17

2010 Howgrave-Graham–Joux:

claimed 20:311N operations. 2011

May–Meurer correction: 20:337N .

2011 Becker–Coron–Joux:

20:291N operations.

16

These attacks exploit linear

structure of problem to convert

one target C into many targets.

(Actually have 2B targets

±C1; : : : ;±CB for one message.

Convert into B1=22N=2 targets:

total B1=22N=2 operations

to find all B bits. Also, maybe

have more messages to attack.)

There are even more ways to

exploit the linear structure.

1981 Schroeppel–Shamir:

2N=2 operations, space 2N=4.

17

2010 Howgrave-Graham–Joux:

claimed 20:311N operations. 2011

May–Meurer correction: 20:337N .

2011 Becker–Coron–Joux:

20:291N operations.

2016 Ozerov: 20:287N operations.

16

These attacks exploit linear

structure of problem to convert

one target C into many targets.

(Actually have 2B targets

±C1; : : : ;±CB for one message.

Convert into B1=22N=2 targets:

total B1=22N=2 operations

to find all B bits. Also, maybe

have more messages to attack.)

There are even more ways to

exploit the linear structure.

1981 Schroeppel–Shamir:

2N=2 operations, space 2N=4.

17

2010 Howgrave-Graham–Joux:

claimed 20:311N operations. 2011

May–Meurer correction: 20:337N .

2011 Becker–Coron–Joux:

20:291N operations.

2016 Ozerov: 20:287N operations.

2019 Esser–May: claimed 20:255N

operations, but withdrew claim.

16

These attacks exploit linear

structure of problem to convert

one target C into many targets.

(Actually have 2B targets

±C1; : : : ;±CB for one message.

Convert into B1=22N=2 targets:

total B1=22N=2 operations

to find all B bits. Also, maybe

have more messages to attack.)

There are even more ways to

exploit the linear structure.

1981 Schroeppel–Shamir:

2N=2 operations, space 2N=4.

17

2010 Howgrave-Graham–Joux:

claimed 20:311N operations. 2011

May–Meurer correction: 20:337N .

2011 Becker–Coron–Joux:

20:291N operations.

2016 Ozerov: 20:287N operations.

2019 Esser–May: claimed 20:255N

operations, but withdrew claim.

2020 Bonnetain–Bricout–

Schrottenloher–Shen: 20:283N .

16

These attacks exploit linear

structure of problem to convert

one target C into many targets.

(Actually have 2B targets

±C1; : : : ;±CB for one message.

Convert into B1=22N=2 targets:

total B1=22N=2 operations

to find all B bits. Also, maybe

have more messages to attack.)

There are even more ways to

exploit the linear structure.

1981 Schroeppel–Shamir:

2N=2 operations, space 2N=4.

17

2010 Howgrave-Graham–Joux:

claimed 20:311N operations. 2011

May–Meurer correction: 20:337N .

2011 Becker–Coron–Joux:

20:291N operations.

2016 Ozerov: 20:287N operations.

2019 Esser–May: claimed 20:255N

operations, but withdrew claim.

2020 Bonnetain–Bricout–

Schrottenloher–Shen: 20:283N .

Quantum attacks: various papers.

16

These attacks exploit linear

structure of problem to convert

one target C into many targets.

(Actually have 2B targets

±C1; : : : ;±CB for one message.

Convert into B1=22N=2 targets:

total B1=22N=2 operations

to find all B bits. Also, maybe

have more messages to attack.)

There are even more ways to

exploit the linear structure.

1981 Schroeppel–Shamir:

2N=2 operations, space 2N=4.

17

2010 Howgrave-Graham–Joux:

claimed 20:311N operations. 2011

May–Meurer correction: 20:337N .

2011 Becker–Coron–Joux:

20:291N operations.

2016 Ozerov: 20:287N operations.

2019 Esser–May: claimed 20:255N

operations, but withdrew claim.

2020 Bonnetain–Bricout–

Schrottenloher–Shen: 20:283N .

Quantum attacks: various papers.

Multi-target speedups: probably!

16

These attacks exploit linear

structure of problem to convert

one target C into many targets.

(Actually have 2B targets

±C1; : : : ;±CB for one message.

Convert into B1=22N=2 targets:

total B1=22N=2 operations

to find all B bits. Also, maybe

have more messages to attack.)

There are even more ways to

exploit the linear structure.

1981 Schroeppel–Shamir:

2N=2 operations, space 2N=4.

17

2010 Howgrave-Graham–Joux:

claimed 20:311N operations. 2011

May–Meurer correction: 20:337N .

2011 Becker–Coron–Joux:

20:291N operations.

2016 Ozerov: 20:287N operations.

2019 Esser–May: claimed 20:255N

operations, but withdrew claim.

2020 Bonnetain–Bricout–

Schrottenloher–Shen: 20:283N .

Quantum attacks: various papers.

Multi-target speedups: probably!

18

Variants of cryptosystem

2003 Regev: Cohen cryptosystem

(without credit), but replace

(−1)m(r1K1 + · · · + rNKN) with

m(K1=2) + r1K1 + · · ·+ rNKN .

16

These attacks exploit linear

structure of problem to convert

one target C into many targets.

(Actually have 2B targets

±C1; : : : ;±CB for one message.

Convert into B1=22N=2 targets:

total B1=22N=2 operations

to find all B bits. Also, maybe

have more messages to attack.)

There are even more ways to

exploit the linear structure.

1981 Schroeppel–Shamir:

2N=2 operations, space 2N=4.

17

2010 Howgrave-Graham–Joux:

claimed 20:311N operations. 2011

May–Meurer correction: 20:337N .

2011 Becker–Coron–Joux:

20:291N operations.

2016 Ozerov: 20:287N operations.

2019 Esser–May: claimed 20:255N

operations, but withdrew claim.

2020 Bonnetain–Bricout–

Schrottenloher–Shen: 20:283N .

Quantum attacks: various papers.

Multi-target speedups: probably!

18

Variants of cryptosystem

2003 Regev: Cohen cryptosystem

(without credit), but replace

(−1)m(r1K1 + · · · + rNKN) with

m(K1=2) + r1K1 + · · ·+ rNKN .

16

These attacks exploit linear

structure of problem to convert

one target C into many targets.

(Actually have 2B targets

±C1; : : : ;±CB for one message.

Convert into B1=22N=2 targets:

total B1=22N=2 operations

to find all B bits. Also, maybe

have more messages to attack.)

There are even more ways to

exploit the linear structure.

1981 Schroeppel–Shamir:

2N=2 operations, space 2N=4.

17

2010 Howgrave-Graham–Joux:

claimed 20:311N operations. 2011

May–Meurer correction: 20:337N .

2011 Becker–Coron–Joux:

20:291N operations.

2016 Ozerov: 20:287N operations.

2019 Esser–May: claimed 20:255N

operations, but withdrew claim.

2020 Bonnetain–Bricout–

Schrottenloher–Shen: 20:283N .

Quantum attacks: various papers.

Multi-target speedups: probably!

18

Variants of cryptosystem

2003 Regev: Cohen cryptosystem

(without credit), but replace

(−1)m(r1K1 + · · · + rNKN) with

m(K1=2) + r1K1 + · · ·+ rNKN .

17

2010 Howgrave-Graham–Joux:

claimed 20:311N operations. 2011

May–Meurer correction: 20:337N .

2011 Becker–Coron–Joux:

20:291N operations.

2016 Ozerov: 20:287N operations.

2019 Esser–May: claimed 20:255N

operations, but withdrew claim.

2020 Bonnetain–Bricout–

Schrottenloher–Shen: 20:283N .

Quantum attacks: various papers.

Multi-target speedups: probably!

18

Variants of cryptosystem

2003 Regev: Cohen cryptosystem

(without credit), but replace

(−1)m(r1K1 + · · · + rNKN) with

m(K1=2) + r1K1 + · · ·+ rNKN .

17

2010 Howgrave-Graham–Joux:

claimed 20:311N operations. 2011

May–Meurer correction: 20:337N .

2011 Becker–Coron–Joux:

20:291N operations.

2016 Ozerov: 20:287N operations.

2019 Esser–May: claimed 20:255N

operations, but withdrew claim.

2020 Bonnetain–Bricout–

Schrottenloher–Shen: 20:283N .

Quantum attacks: various papers.

Multi-target speedups: probably!

18

Variants of cryptosystem

2003 Regev: Cohen cryptosystem

(without credit), but replace

(−1)m(r1K1 + · · · + rNKN) with

m(K1=2) + r1K1 + · · ·+ rNKN .

To make this work,

modify keygen to force K1 ∈ 2Z

and (K1 − u1)=s ∈ 1 + 2Z.

Also be careful with ui bounds.

17

2010 Howgrave-Graham–Joux:

claimed 20:311N operations. 2011

May–Meurer correction: 20:337N .

2011 Becker–Coron–Joux:

20:291N operations.

2016 Ozerov: 20:287N operations.

2019 Esser–May: claimed 20:255N

operations, but withdrew claim.

2020 Bonnetain–Bricout–

Schrottenloher–Shen: 20:283N .

Quantum attacks: various papers.

Multi-target speedups: probably!

18

Variants of cryptosystem

2003 Regev: Cohen cryptosystem

(without credit), but replace

(−1)m(r1K1 + · · · + rNKN) with

m(K1=2) + r1K1 + · · ·+ rNKN .

To make this work,

modify keygen to force K1 ∈ 2Z

and (K1 − u1)=s ∈ 1 + 2Z.

Also be careful with ui bounds.

2009 van Dijk–Gentry–Halevi–

Vaikuntanathan: Ki ∈ 2ui + sZ;

C = m + r1K1 + · · ·+ rNKN ;

m = (C mod s) mod 2.

Be careful to take s ∈ 1 + 2Z.

17

2010 Howgrave-Graham–Joux:

claimed 20:311N operations. 2011

May–Meurer correction: 20:337N .

2011 Becker–Coron–Joux:

20:291N operations.

2016 Ozerov: 20:287N operations.

2019 Esser–May: claimed 20:255N

operations, but withdrew claim.

2020 Bonnetain–Bricout–

Schrottenloher–Shen: 20:283N .

Quantum attacks: various papers.

Multi-target speedups: probably!

18

Variants of cryptosystem

2003 Regev: Cohen cryptosystem

(without credit), but replace

(−1)m(r1K1 + · · · + rNKN) with

m(K1=2) + r1K1 + · · ·+ rNKN .

To make this work,

modify keygen to force K1 ∈ 2Z

and (K1 − u1)=s ∈ 1 + 2Z.

Also be careful with ui bounds.

2009 van Dijk–Gentry–Halevi–

Vaikuntanathan: Ki ∈ 2ui + sZ;

C = m + r1K1 + · · ·+ rNKN ;

m = (C mod s) mod 2.

Be careful to take s ∈ 1 + 2Z.

19

Homomorphic encryption

If ui=s is small enough then 2009

DGHV system is homomorphic.

17

2010 Howgrave-Graham–Joux:

claimed 20:311N operations. 2011

May–Meurer correction: 20:337N .

2011 Becker–Coron–Joux:

20:291N operations.

2016 Ozerov: 20:287N operations.

2019 Esser–May: claimed 20:255N

operations, but withdrew claim.

2020 Bonnetain–Bricout–

Schrottenloher–Shen: 20:283N .

Quantum attacks: various papers.

Multi-target speedups: probably!

18

Variants of cryptosystem

2003 Regev: Cohen cryptosystem

(without credit), but replace

(−1)m(r1K1 + · · · + rNKN) with

m(K1=2) + r1K1 + · · ·+ rNKN .

To make this work,

modify keygen to force K1 ∈ 2Z

and (K1 − u1)=s ∈ 1 + 2Z.

Also be careful with ui bounds.

2009 van Dijk–Gentry–Halevi–

Vaikuntanathan: Ki ∈ 2ui + sZ;

C = m + r1K1 + · · ·+ rNKN ;

m = (C mod s) mod 2.

Be careful to take s ∈ 1 + 2Z.

19

Homomorphic encryption

If ui=s is small enough then 2009

DGHV system is homomorphic.

17

2010 Howgrave-Graham–Joux:

claimed 20:311N operations. 2011

May–Meurer correction: 20:337N .

2011 Becker–Coron–Joux:

20:291N operations.

2016 Ozerov: 20:287N operations.

2019 Esser–May: claimed 20:255N

operations, but withdrew claim.

2020 Bonnetain–Bricout–

Schrottenloher–Shen: 20:283N .

Quantum attacks: various papers.

Multi-target speedups: probably!

18

Variants of cryptosystem

2003 Regev: Cohen cryptosystem

(without credit), but replace

(−1)m(r1K1 + · · · + rNKN) with

m(K1=2) + r1K1 + · · ·+ rNKN .

To make this work,

modify keygen to force K1 ∈ 2Z

and (K1 − u1)=s ∈ 1 + 2Z.

Also be careful with ui bounds.

2009 van Dijk–Gentry–Halevi–

Vaikuntanathan: Ki ∈ 2ui + sZ;

C = m + r1K1 + · · ·+ rNKN ;

m = (C mod s) mod 2.

Be careful to take s ∈ 1 + 2Z.

19

Homomorphic encryption

If ui=s is small enough then 2009

DGHV system is homomorphic.

18

Variants of cryptosystem

2003 Regev: Cohen cryptosystem

(without credit), but replace

(−1)m(r1K1 + · · · + rNKN) with

m(K1=2) + r1K1 + · · ·+ rNKN .

To make this work,

modify keygen to force K1 ∈ 2Z

and (K1 − u1)=s ∈ 1 + 2Z.

Also be careful with ui bounds.

2009 van Dijk–Gentry–Halevi–

Vaikuntanathan: Ki ∈ 2ui + sZ;

C = m + r1K1 + · · ·+ rNKN ;

m = (C mod s) mod 2.

Be careful to take s ∈ 1 + 2Z.

19

Homomorphic encryption

If ui=s is small enough then 2009

DGHV system is homomorphic.

18

Variants of cryptosystem

2003 Regev: Cohen cryptosystem

(without credit), but replace

(−1)m(r1K1 + · · · + rNKN) with

m(K1=2) + r1K1 + · · ·+ rNKN .

To make this work,

modify keygen to force K1 ∈ 2Z

and (K1 − u1)=s ∈ 1 + 2Z.

Also be careful with ui bounds.

2009 van Dijk–Gentry–Halevi–

Vaikuntanathan: Ki ∈ 2ui + sZ;

C = m + r1K1 + · · ·+ rNKN ;

m = (C mod s) mod 2.

Be careful to take s ∈ 1 + 2Z.

19

Homomorphic encryption

If ui=s is small enough then 2009

DGHV system is homomorphic.

Take two ciphertexts:

C = m + 2›+ sq,

C′ = m′ + 2›′ + sq′

with small ›; ›′ ∈ Z.

18

Variants of cryptosystem

2003 Regev: Cohen cryptosystem

(without credit), but replace

(−1)m(r1K1 + · · · + rNKN) with

m(K1=2) + r1K1 + · · ·+ rNKN .

To make this work,

modify keygen to force K1 ∈ 2Z

and (K1 − u1)=s ∈ 1 + 2Z.

Also be careful with ui bounds.

2009 van Dijk–Gentry–Halevi–

Vaikuntanathan: Ki ∈ 2ui + sZ;

C = m + r1K1 + · · ·+ rNKN ;

m = (C mod s) mod 2.

Be careful to take s ∈ 1 + 2Z.

19

Homomorphic encryption

If ui=s is small enough then 2009

DGHV system is homomorphic.

Take two ciphertexts:

C = m + 2›+ sq,

C′ = m′ + 2›′ + sq′

with small ›; ›′ ∈ Z.

C + C′ = m +m′ + 2(›+ ›′) +

s(q + q′). This decrypts to

m +m′ mod 2 if ›+ ›′ is small.

18

Variants of cryptosystem

2003 Regev: Cohen cryptosystem

(without credit), but replace

(−1)m(r1K1 + · · · + rNKN) with

m(K1=2) + r1K1 + · · ·+ rNKN .

To make this work,

modify keygen to force K1 ∈ 2Z

and (K1 − u1)=s ∈ 1 + 2Z.

Also be careful with ui bounds.

2009 van Dijk–Gentry–Halevi–

Vaikuntanathan: Ki ∈ 2ui + sZ;

C = m + r1K1 + · · ·+ rNKN ;

m = (C mod s) mod 2.

Be careful to take s ∈ 1 + 2Z.

19

Homomorphic encryption

If ui=s is small enough then 2009

DGHV system is homomorphic.

Take two ciphertexts:

C = m + 2›+ sq,

C′ = m′ + 2›′ + sq′

with small ›; ›′ ∈ Z.

C + C′ = m +m′ + 2(›+ ›′) +

s(q + q′). This decrypts to

m +m′ mod 2 if ›+ ›′ is small.

CC′ = mm′+2(›m′+›′m+2››′)+

s(· · ·). This decrypts to

mm′ if ›m′ + ›′m + 2››′ is small.

18

Variants of cryptosystem

2003 Regev: Cohen cryptosystem

(without credit), but replace

(−1)m(r1K1 + · · · + rNKN) with

m(K1=2) + r1K1 + · · ·+ rNKN .

To make this work,

modify keygen to force K1 ∈ 2Z

and (K1 − u1)=s ∈ 1 + 2Z.

Also be careful with ui bounds.

2009 van Dijk–Gentry–Halevi–

Vaikuntanathan: Ki ∈ 2ui + sZ;

C = m + r1K1 + · · ·+ rNKN ;

m = (C mod s) mod 2.

Be careful to take s ∈ 1 + 2Z.

19

Homomorphic encryption

If ui=s is small enough then 2009

DGHV system is homomorphic.

Take two ciphertexts:

C = m + 2›+ sq,

C′ = m′ + 2›′ + sq′

with small ›; ›′ ∈ Z.

C + C′ = m +m′ + 2(›+ ›′) +

s(q + q′). This decrypts to

m +m′ mod 2 if ›+ ›′ is small.

CC′ = mm′+2(›m′+›′m+2››′)+

s(· · ·). This decrypts to

mm′ if ›m′ + ›′m + 2››′ is small.

20

sage: N=10

sage:

18

Variants of cryptosystem

2003 Regev: Cohen cryptosystem

(without credit), but replace

(−1)m(r1K1 + · · · + rNKN) with

m(K1=2) + r1K1 + · · ·+ rNKN .

To make this work,

modify keygen to force K1 ∈ 2Z

and (K1 − u1)=s ∈ 1 + 2Z.

Also be careful with ui bounds.

2009 van Dijk–Gentry–Halevi–

Vaikuntanathan: Ki ∈ 2ui + sZ;

C = m + r1K1 + · · ·+ rNKN ;

m = (C mod s) mod 2.

Be careful to take s ∈ 1 + 2Z.

19

Homomorphic encryption

If ui=s is small enough then 2009

DGHV system is homomorphic.

Take two ciphertexts:

C = m + 2›+ sq,

C′ = m′ + 2›′ + sq′

with small ›; ›′ ∈ Z.

C + C′ = m +m′ + 2(›+ ›′) +

s(q + q′). This decrypts to

m +m′ mod 2 if ›+ ›′ is small.

CC′ = mm′+2(›m′+›′m+2››′)+

s(· · ·). This decrypts to

mm′ if ›m′ + ›′m + 2››′ is small.

20

sage: N=10

sage:

18

Variants of cryptosystem

2003 Regev: Cohen cryptosystem

(without credit), but replace

(−1)m(r1K1 + · · · + rNKN) with

m(K1=2) + r1K1 + · · ·+ rNKN .

To make this work,

modify keygen to force K1 ∈ 2Z

and (K1 − u1)=s ∈ 1 + 2Z.

Also be careful with ui bounds.

2009 van Dijk–Gentry–Halevi–

Vaikuntanathan: Ki ∈ 2ui + sZ;

C = m + r1K1 + · · ·+ rNKN ;

m = (C mod s) mod 2.

Be careful to take s ∈ 1 + 2Z.

19

Homomorphic encryption

If ui=s is small enough then 2009

DGHV system is homomorphic.

Take two ciphertexts:

C = m + 2›+ sq,

C′ = m′ + 2›′ + sq′

with small ›; ›′ ∈ Z.

C + C′ = m +m′ + 2(›+ ›′) +

s(q + q′). This decrypts to

m +m′ mod 2 if ›+ ›′ is small.

CC′ = mm′+2(›m′+›′m+2››′)+

s(· · ·). This decrypts to

mm′ if ›m′ + ›′m + 2››′ is small.

20

sage: N=10

sage:

19

Homomorphic encryption

If ui=s is small enough then 2009

DGHV system is homomorphic.

Take two ciphertexts:

C = m + 2›+ sq,

C′ = m′ + 2›′ + sq′

with small ›; ›′ ∈ Z.

C + C′ = m +m′ + 2(›+ ›′) +

s(q + q′). This decrypts to

m +m′ mod 2 if ›+ ›′ is small.

CC′ = mm′+2(›m′+›′m+2››′)+

s(· · ·). This decrypts to

mm′ if ›m′ + ›′m + 2››′ is small.

20

sage: N=10

sage:

19

Homomorphic encryption

If ui=s is small enough then 2009

DGHV system is homomorphic.

Take two ciphertexts:

C = m + 2›+ sq,

C′ = m′ + 2›′ + sq′

with small ›; ›′ ∈ Z.

C + C′ = m +m′ + 2(›+ ›′) +

s(q + q′). This decrypts to

m +m′ mod 2 if ›+ ›′ is small.

CC′ = mm′+2(›m′+›′m+2››′)+

s(· · ·). This decrypts to

mm′ if ›m′ + ›′m + 2››′ is small.

20

sage: N=10

sage: E=2^10

sage:

19

Homomorphic encryption

If ui=s is small enough then 2009

DGHV system is homomorphic.

Take two ciphertexts:

C = m + 2›+ sq,

C′ = m′ + 2›′ + sq′

with small ›; ›′ ∈ Z.

C + C′ = m +m′ + 2(›+ ›′) +

s(q + q′). This decrypts to

m +m′ mod 2 if ›+ ›′ is small.

CC′ = mm′+2(›m′+›′m+2››′)+

s(· · ·). This decrypts to

mm′ if ›m′ + ›′m + 2››′ is small.

20

sage: N=10

sage: E=2^10

sage: Y=2^50

sage:

19

Homomorphic encryption

If ui=s is small enough then 2009

DGHV system is homomorphic.

Take two ciphertexts:

C = m + 2›+ sq,

C′ = m′ + 2›′ + sq′

with small ›; ›′ ∈ Z.

C + C′ = m +m′ + 2(›+ ›′) +

s(q + q′). This decrypts to

m +m′ mod 2 if ›+ ›′ is small.

CC′ = mm′+2(›m′+›′m+2››′)+

s(· · ·). This decrypts to

mm′ if ›m′ + ›′m + 2››′ is small.

20

sage: N=10

sage: E=2^10

sage: Y=2^50

sage: X=2^80

sage:

19

Homomorphic encryption

If ui=s is small enough then 2009

DGHV system is homomorphic.

Take two ciphertexts:

C = m + 2›+ sq,

C′ = m′ + 2›′ + sq′

with small ›; ›′ ∈ Z.

C + C′ = m +m′ + 2(›+ ›′) +

s(q + q′). This decrypts to

m +m′ mod 2 if ›+ ›′ is small.

CC′ = mm′+2(›m′+›′m+2››′)+

s(· · ·). This decrypts to

mm′ if ›m′ + ›′m + 2››′ is small.

20

sage: N=10

sage: E=2^10

sage: Y=2^50

sage: X=2^80

sage: s=1+2*randrange(Y/4,Y/2)

sage: s

984887308997925

sage:

19

Homomorphic encryption

If ui=s is small enough then 2009

DGHV system is homomorphic.

Take two ciphertexts:

C = m + 2›+ sq,

C′ = m′ + 2›′ + sq′

with small ›; ›′ ∈ Z.

C + C′ = m +m′ + 2(›+ ›′) +

s(q + q′). This decrypts to

m +m′ mod 2 if ›+ ›′ is small.

CC′ = mm′+2(›m′+›′m+2››′)+

s(· · ·). This decrypts to

mm′ if ›m′ + ›′m + 2››′ is small.

20

sage: N=10

sage: E=2^10

sage: Y=2^50

sage: X=2^80

sage: s=1+2*randrange(Y/4,Y/2)

sage: s

984887308997925

sage: u=[randrange(E)

....: for i in range(N)]

sage: u

[247, 418, 365, 738, 123, 735,

772, 209, 673, 47]

sage:

19

Homomorphic encryption

If ui=s is small enough then 2009

DGHV system is homomorphic.

Take two ciphertexts:

C = m + 2›+ sq,

C′ = m′ + 2›′ + sq′

with small ›; ›′ ∈ Z.

C + C′ = m +m′ + 2(›+ ›′) +

s(q + q′). This decrypts to

m +m′ mod 2 if ›+ ›′ is small.

CC′ = mm′+2(›m′+›′m+2››′)+

s(· · ·). This decrypts to

mm′ if ›m′ + ›′m + 2››′ is small.

20

sage: N=10

sage: E=2^10

sage: Y=2^50

sage: X=2^80

sage: s=1+2*randrange(Y/4,Y/2)

sage: s

984887308997925

sage: u=[randrange(E)

....: for i in range(N)]

sage: u

[247, 418, 365, 738, 123, 735,

772, 209, 673, 47]

sage:

21

sage:

19

Homomorphic encryption

If ui=s is small enough then 2009

DGHV system is homomorphic.

Take two ciphertexts:

C = m + 2›+ sq,

C′ = m′ + 2›′ + sq′

with small ›; ›′ ∈ Z.

C + C′ = m +m′ + 2(›+ ›′) +

s(q + q′). This decrypts to

m +m′ mod 2 if ›+ ›′ is small.

CC′ = mm′+2(›m′+›′m+2››′)+

s(· · ·). This decrypts to

mm′ if ›m′ + ›′m + 2››′ is small.

20

sage: N=10

sage: E=2^10

sage: Y=2^50

sage: X=2^80

sage: s=1+2*randrange(Y/4,Y/2)

sage: s

984887308997925

sage: u=[randrange(E)

....: for i in range(N)]

sage: u

[247, 418, 365, 738, 123, 735,

772, 209, 673, 47]

sage:

21

sage:

19

Homomorphic encryption

If ui=s is small enough then 2009

DGHV system is homomorphic.

Take two ciphertexts:

C = m + 2›+ sq,

C′ = m′ + 2›′ + sq′

with small ›; ›′ ∈ Z.

C + C′ = m +m′ + 2(›+ ›′) +

s(q + q′). This decrypts to

m +m′ mod 2 if ›+ ›′ is small.

CC′ = mm′+2(›m′+›′m+2››′)+

s(· · ·). This decrypts to

mm′ if ›m′ + ›′m + 2››′ is small.

20

sage: N=10

sage: E=2^10

sage: Y=2^50

sage: X=2^80

sage: s=1+2*randrange(Y/4,Y/2)

sage: s

984887308997925

sage: u=[randrange(E)

....: for i in range(N)]

sage: u

[247, 418, 365, 738, 123, 735,

772, 209, 673, 47]

sage:

21

sage:

20

sage: N=10

sage: E=2^10

sage: Y=2^50

sage: X=2^80

sage: s=1+2*randrange(Y/4,Y/2)

sage: s

984887308997925

sage: u=[randrange(E)

....: for i in range(N)]

sage: u

[247, 418, 365, 738, 123, 735,

772, 209, 673, 47]

sage:

21

sage:

20

sage: N=10

sage: E=2^10

sage: Y=2^50

sage: X=2^80

sage: s=1+2*randrange(Y/4,Y/2)

sage: s

984887308997925

sage: u=[randrange(E)

....: for i in range(N)]

sage: u

[247, 418, 365, 738, 123, 735,

772, 209, 673, 47]

sage:

21

sage: K=[2*ui+s*randrange(

....: ceil(-(X+2*ui)/s),

....: floor((X-2*ui)/s)+1)

....: for ui in u]

sage:

20

sage: N=10

sage: E=2^10

sage: Y=2^50

sage: X=2^80

sage: s=1+2*randrange(Y/4,Y/2)

sage: s

984887308997925

sage: u=[randrange(E)

....: for i in range(N)]

sage: u

[247, 418, 365, 738, 123, 735,

772, 209, 673, 47]

sage:

21

sage: K=[2*ui+s*randrange(

....: ceil(-(X+2*ui)/s),

....: floor((X-2*ui)/s)+1)

....: for ui in u]

sage: K

[587473338058640662659869,

-1111539179100720083770339,

794301459533783434896055,

68817802108374958901751,

742362470968200823035396,

1023345827831539515054795,

-357168679398558876730006,

1121421619119964601051443,

-1109674862276222495587129,

-235628937785003770523381]

20

sage: N=10

sage: E=2^10

sage: Y=2^50

sage: X=2^80

sage: s=1+2*randrange(Y/4,Y/2)

sage: s

984887308997925

sage: u=[randrange(E)

....: for i in range(N)]

sage: u

[247, 418, 365, 738, 123, 735,

772, 209, 673, 47]

sage:

21

sage: K=[2*ui+s*randrange(

....: ceil(-(X+2*ui)/s),

....: floor((X-2*ui)/s)+1)

....: for ui in u]

sage: K

[587473338058640662659869,

-1111539179100720083770339,

794301459533783434896055,

68817802108374958901751,

742362470968200823035396,

1023345827831539515054795,

-357168679398558876730006,

1121421619119964601051443,

-1109674862276222495587129,

-235628937785003770523381]

22

sage: m=randrange(2)

sage: r=[randrange(2)

....: for i in range(N)]

sage:

20

sage: N=10

sage: E=2^10

sage: Y=2^50

sage: X=2^80

sage: s=1+2*randrange(Y/4,Y/2)

sage: s

984887308997925

sage: u=[randrange(E)

....: for i in range(N)]

sage: u

[247, 418, 365, 738, 123, 735,

772, 209, 673, 47]

sage:

21

sage: K=[2*ui+s*randrange(

....: ceil(-(X+2*ui)/s),

....: floor((X-2*ui)/s)+1)

....: for ui in u]

sage: K

[587473338058640662659869,

-1111539179100720083770339,

794301459533783434896055,

68817802108374958901751,

742362470968200823035396,

1023345827831539515054795,

-357168679398558876730006,

1121421619119964601051443,

-1109674862276222495587129,

-235628937785003770523381]

22

sage: m=randrange(2)

sage: r=[randrange(2)

....: for i in range(N)]

sage:

20

sage: N=10

sage: E=2^10

sage: Y=2^50

sage: X=2^80

sage: s=1+2*randrange(Y/4,Y/2)

sage: s

984887308997925

sage: u=[randrange(E)

....: for i in range(N)]

sage: u

[247, 418, 365, 738, 123, 735,

772, 209, 673, 47]

sage:

21

sage: K=[2*ui+s*randrange(

....: ceil(-(X+2*ui)/s),

....: floor((X-2*ui)/s)+1)

....: for ui in u]

sage: K

[587473338058640662659869,

-1111539179100720083770339,

794301459533783434896055,

68817802108374958901751,

742362470968200823035396,

1023345827831539515054795,

-357168679398558876730006,

1121421619119964601051443,

-1109674862276222495587129,

-235628937785003770523381]

22

sage: m=randrange(2)

sage: r=[randrange(2)

....: for i in range(N)]

sage:

21

sage: K=[2*ui+s*randrange(

....: ceil(-(X+2*ui)/s),

....: floor((X-2*ui)/s)+1)

....: for ui in u]

sage: K

[587473338058640662659869,

-1111539179100720083770339,

794301459533783434896055,

68817802108374958901751,

742362470968200823035396,

1023345827831539515054795,

-357168679398558876730006,

1121421619119964601051443,

-1109674862276222495587129,

-235628937785003770523381]

22

sage: m=randrange(2)

sage: r=[randrange(2)

....: for i in range(N)]

sage:

21

sage: K=[2*ui+s*randrange(

....: ceil(-(X+2*ui)/s),

....: floor((X-2*ui)/s)+1)

....: for ui in u]

sage: K

[587473338058640662659869,

-1111539179100720083770339,

794301459533783434896055,

68817802108374958901751,

742362470968200823035396,

1023345827831539515054795,

-357168679398558876730006,

1121421619119964601051443,

-1109674862276222495587129,

-235628937785003770523381]

22

sage: m=randrange(2)

sage: r=[randrange(2)

....: for i in range(N)]

sage: C=m+sum(r[i]*K[i]

....: for i in range(N))

sage: C

2094088748748247210016703

sage:

21

sage: K=[2*ui+s*randrange(

....: ceil(-(X+2*ui)/s),

....: floor((X-2*ui)/s)+1)

....: for ui in u]

sage: K

[587473338058640662659869,

-1111539179100720083770339,

794301459533783434896055,

68817802108374958901751,

742362470968200823035396,

1023345827831539515054795,

-357168679398558876730006,

1121421619119964601051443,

-1109674862276222495587129,

-235628937785003770523381]

22

sage: m=randrange(2)

sage: r=[randrange(2)

....: for i in range(N)]

sage: C=m+sum(r[i]*K[i]

....: for i in range(N))

sage: C

2094088748748247210016703

sage: C%s

2703

sage:

21

sage: K=[2*ui+s*randrange(

....: ceil(-(X+2*ui)/s),

....: floor((X-2*ui)/s)+1)

....: for ui in u]

sage: K

[587473338058640662659869,

-1111539179100720083770339,

794301459533783434896055,

68817802108374958901751,

742362470968200823035396,

1023345827831539515054795,

-357168679398558876730006,

1121421619119964601051443,

-1109674862276222495587129,

-235628937785003770523381]

22

sage: m=randrange(2)

sage: r=[randrange(2)

....: for i in range(N)]

sage: C=m+sum(r[i]*K[i]

....: for i in range(N))

sage: C

2094088748748247210016703

sage: C%s

2703

sage: (C%s)%2

1

sage:

21

sage: K=[2*ui+s*randrange(

....: ceil(-(X+2*ui)/s),

....: floor((X-2*ui)/s)+1)

....: for ui in u]

sage: K

[587473338058640662659869,

-1111539179100720083770339,

794301459533783434896055,

68817802108374958901751,

742362470968200823035396,

1023345827831539515054795,

-357168679398558876730006,

1121421619119964601051443,

-1109674862276222495587129,

-235628937785003770523381]

22

sage: m=randrange(2)

sage: r=[randrange(2)

....: for i in range(N)]

sage: C=m+sum(r[i]*K[i]

....: for i in range(N))

sage: C

2094088748748247210016703

sage: C%s

2703

sage: (C%s)%2

1

sage: m

1

sage:

21

sage: K=[2*ui+s*randrange(

....: ceil(-(X+2*ui)/s),

....: floor((X-2*ui)/s)+1)

....: for ui in u]

sage: K

[587473338058640662659869,

-1111539179100720083770339,

794301459533783434896055,

68817802108374958901751,

742362470968200823035396,

1023345827831539515054795,

-357168679398558876730006,

1121421619119964601051443,

-1109674862276222495587129,

-235628937785003770523381]

22

sage: m=randrange(2)

sage: r=[randrange(2)

....: for i in range(N)]

sage: C=m+sum(r[i]*K[i]

....: for i in range(N))

sage: C

2094088748748247210016703

sage: C%s

2703

sage: (C%s)%2

1

sage: m

1

sage:

23

sage: m2=randrange(2)

sage: r2=[randrange(2)

....: for i in range(N)]

sage:

21

sage: K=[2*ui+s*randrange(

....: ceil(-(X+2*ui)/s),

....: floor((X-2*ui)/s)+1)

....: for ui in u]

sage: K

[587473338058640662659869,

-1111539179100720083770339,

794301459533783434896055,

68817802108374958901751,

742362470968200823035396,

1023345827831539515054795,

-357168679398558876730006,

1121421619119964601051443,

-1109674862276222495587129,

-235628937785003770523381]

22

sage: m=randrange(2)

sage: r=[randrange(2)

....: for i in range(N)]

sage: C=m+sum(r[i]*K[i]

....: for i in range(N))

sage: C

2094088748748247210016703

sage: C%s

2703

sage: (C%s)%2

1

sage: m

1

sage:

23

sage: m2=randrange(2)

sage: r2=[randrange(2)

....: for i in range(N)]

sage:

21

sage: K=[2*ui+s*randrange(

....: ceil(-(X+2*ui)/s),

....: floor((X-2*ui)/s)+1)

....: for ui in u]

sage: K

[587473338058640662659869,

-1111539179100720083770339,

794301459533783434896055,

68817802108374958901751,

742362470968200823035396,

1023345827831539515054795,

-357168679398558876730006,

1121421619119964601051443,

-1109674862276222495587129,

-235628937785003770523381]

22

sage: m=randrange(2)

sage: r=[randrange(2)

....: for i in range(N)]

sage: C=m+sum(r[i]*K[i]

....: for i in range(N))

sage: C

2094088748748247210016703

sage: C%s

2703

sage: (C%s)%2

1

sage: m

1

sage:

23

sage: m2=randrange(2)

sage: r2=[randrange(2)

....: for i in range(N)]

sage:

22

sage: m=randrange(2)

sage: r=[randrange(2)

....: for i in range(N)]

sage: C=m+sum(r[i]*K[i]

....: for i in range(N))

sage: C

2094088748748247210016703

sage: C%s

2703

sage: (C%s)%2

1

sage: m

1

sage:

23

sage: m2=randrange(2)

sage: r2=[randrange(2)

....: for i in range(N)]

sage:

22

sage: m=randrange(2)

sage: r=[randrange(2)

....: for i in range(N)]

sage: C=m+sum(r[i]*K[i]

....: for i in range(N))

sage: C

2094088748748247210016703

sage: C%s

2703

sage: (C%s)%2

1

sage: m

1

sage:

23

sage: m2=randrange(2)

sage: r2=[randrange(2)

....: for i in range(N)]

sage: C2=m2+sum(r2[i]*K[i]

....: for i in range(N))

sage: C2

-51722353737982737270129

sage:

22

sage: m=randrange(2)

sage: r=[randrange(2)

....: for i in range(N)]

sage: C=m+sum(r[i]*K[i]

....: for i in range(N))

sage: C

2094088748748247210016703

sage: C%s

2703

sage: (C%s)%2

1

sage: m

1

sage:

23

sage: m2=randrange(2)

sage: r2=[randrange(2)

....: for i in range(N)]

sage: C2=m2+sum(r2[i]*K[i]

....: for i in range(N))

sage: C2

-51722353737982737270129

sage: C2%s

4971

sage:

22

sage: m=randrange(2)

sage: r=[randrange(2)

....: for i in range(N)]

sage: C=m+sum(r[i]*K[i]

....: for i in range(N))

sage: C

2094088748748247210016703

sage: C%s

2703

sage: (C%s)%2

1

sage: m

1

sage:

23

sage: m2=randrange(2)

sage: r2=[randrange(2)

....: for i in range(N)]

sage: C2=m2+sum(r2[i]*K[i]

....: for i in range(N))

sage: C2

-51722353737982737270129

sage: C2%s

4971

sage: (C2%s)%2

1

sage:

22

sage: m=randrange(2)

sage: r=[randrange(2)

....: for i in range(N)]

sage: C=m+sum(r[i]*K[i]

....: for i in range(N))

sage: C

2094088748748247210016703

sage: C%s

2703

sage: (C%s)%2

1

sage: m

1

sage:

23

sage: m2=randrange(2)

sage: r2=[randrange(2)

....: for i in range(N)]

sage: C2=m2+sum(r2[i]*K[i]

....: for i in range(N))

sage: C2

-51722353737982737270129

sage: C2%s

4971

sage: (C2%s)%2

1

sage: m2

1

sage:

22

sage: m=randrange(2)

sage: r=[randrange(2)

....: for i in range(N)]

sage: C=m+sum(r[i]*K[i]

....: for i in range(N))

sage: C

2094088748748247210016703

sage: C%s

2703

sage: (C%s)%2

1

sage: m

1

sage:

23

sage: m2=randrange(2)

sage: r2=[randrange(2)

....: for i in range(N)]

sage: C2=m2+sum(r2[i]*K[i]

....: for i in range(N))

sage: C2

-51722353737982737270129

sage: C2%s

4971

sage: (C2%s)%2

1

sage: m2

1

sage:

24

sage: (C+C2)%s

7674

sage: (C*C2)%s

13436613

sage:

22

sage: m=randrange(2)

sage: r=[randrange(2)

....: for i in range(N)]

sage: C=m+sum(r[i]*K[i]

....: for i in range(N))

sage: C

2094088748748247210016703

sage: C%s

2703

sage: (C%s)%2

1

sage: m

1

sage:

23

sage: m2=randrange(2)

sage: r2=[randrange(2)

....: for i in range(N)]

sage: C2=m2+sum(r2[i]*K[i]

....: for i in range(N))

sage: C2

-51722353737982737270129

sage: C2%s

4971

sage: (C2%s)%2

1

sage: m2

1

sage:

24

sage: (C+C2)%s

7674

sage: (C*C2)%s

13436613

sage:

22

sage: m=randrange(2)

sage: r=[randrange(2)

....: for i in range(N)]

sage: C=m+sum(r[i]*K[i]

....: for i in range(N))

sage: C

2094088748748247210016703

sage: C%s

2703

sage: (C%s)%2

1

sage: m

1

sage:

23

sage: m2=randrange(2)

sage: r2=[randrange(2)

....: for i in range(N)]

sage: C2=m2+sum(r2[i]*K[i]

....: for i in range(N))

sage: C2

-51722353737982737270129

sage: C2%s

4971

sage: (C2%s)%2

1

sage: m2

1

sage:

24

sage: (C+C2)%s

7674

sage: (C*C2)%s

13436613

sage:

23

sage: m2=randrange(2)

sage: r2=[randrange(2)

....: for i in range(N)]

sage: C2=m2+sum(r2[i]*K[i]

....: for i in range(N))

sage: C2

-51722353737982737270129

sage: C2%s

4971

sage: (C2%s)%2

1

sage: m2

1

sage:

24

sage: (C+C2)%s

7674

sage: (C*C2)%s

13436613

sage:

23

sage: m2=randrange(2)

sage: r2=[randrange(2)

....: for i in range(N)]

sage: C2=m2+sum(r2[i]*K[i]

....: for i in range(N))

sage: C2

-51722353737982737270129

sage: C2%s

4971

sage: (C2%s)%2

1

sage: m2

1

sage:

24

sage: (C+C2)%s

7674

sage: (C*C2)%s

13436613

sage:

Because C mod s and C′ mod s

are small enough compared to s,

have C +C′ mod s = (C mod s) +

(C′ mod s) and CC′ mod s =

(C mod s)(C′ mod s).

23

sage: m2=randrange(2)

sage: r2=[randrange(2)

....: for i in range(N)]

sage: C2=m2+sum(r2[i]*K[i]

....: for i in range(N))

sage: C2

-51722353737982737270129

sage: C2%s

4971

sage: (C2%s)%2

1

sage: m2

1

sage:

24

sage: (C+C2)%s

7674

sage: (C*C2)%s

13436613

sage:

Because C mod s and C′ mod s

are small enough compared to s,

have C +C′ mod s = (C mod s) +

(C′ mod s) and CC′ mod s =

(C mod s)(C′ mod s).

Refinements: add more noise

to ciphertexts, bootstrap (2009

Gentry) to control noise, etc.

23

sage: m2=randrange(2)

sage: r2=[randrange(2)

....: for i in range(N)]

sage: C2=m2+sum(r2[i]*K[i]

....: for i in range(N))

sage: C2

-51722353737982737270129

sage: C2%s

4971

sage: (C2%s)%2

1

sage: m2

1

sage:

24

sage: (C+C2)%s

7674

sage: (C*C2)%s

13436613

sage:

Because C mod s and C′ mod s

are small enough compared to s,

have C +C′ mod s = (C mod s) +

(C′ mod s) and CC′ mod s =

(C mod s)(C′ mod s).

Refinements: add more noise

to ciphertexts, bootstrap (2009

Gentry) to control noise, etc.

25

Lattices

23

sage: m2=randrange(2)

sage: r2=[randrange(2)

....: for i in range(N)]

sage: C2=m2+sum(r2[i]*K[i]

....: for i in range(N))

sage: C2

-51722353737982737270129

sage: C2%s

4971

sage: (C2%s)%2

1

sage: m2

1

sage:

24

sage: (C+C2)%s

7674

sage: (C*C2)%s

13436613

sage:

Because C mod s and C′ mod s

are small enough compared to s,

have C +C′ mod s = (C mod s) +

(C′ mod s) and CC′ mod s =

(C mod s)(C′ mod s).

Refinements: add more noise

to ciphertexts, bootstrap (2009

Gentry) to control noise, etc.

25

Lattices

23

sage: m2=randrange(2)

sage: r2=[randrange(2)

....: for i in range(N)]

sage: C2=m2+sum(r2[i]*K[i]

....: for i in range(N))

sage: C2

-51722353737982737270129

sage: C2%s

4971

sage: (C2%s)%2

1

sage: m2

1

sage:

24

sage: (C+C2)%s

7674

sage: (C*C2)%s

13436613

sage:

Because C mod s and C′ mod s

are small enough compared to s,

have C +C′ mod s = (C mod s) +

(C′ mod s) and CC′ mod s =

(C mod s)(C′ mod s).

Refinements: add more noise

to ciphertexts, bootstrap (2009

Gentry) to control noise, etc.

25

Lattices

24

sage: (C+C2)%s

7674

sage: (C*C2)%s

13436613

sage:

Because C mod s and C′ mod s

are small enough compared to s,

have C +C′ mod s = (C mod s) +

(C′ mod s) and CC′ mod s =

(C mod s)(C′ mod s).

Refinements: add more noise

to ciphertexts, bootstrap (2009

Gentry) to control noise, etc.

25

Lattices

24

sage: (C+C2)%s

7674

sage: (C*C2)%s

13436613

sage:

Because C mod s and C′ mod s

are small enough compared to s,

have C +C′ mod s = (C mod s) +

(C′ mod s) and CC′ mod s =

(C mod s)(C′ mod s).

Refinements: add more noise

to ciphertexts, bootstrap (2009

Gentry) to control noise, etc.

25

Lattices

This is a lettuce:

24

sage: (C+C2)%s

7674

sage: (C*C2)%s

13436613

sage:

Because C mod s and C′ mod s

are small enough compared to s,

have C +C′ mod s = (C mod s) +

(C′ mod s) and CC′ mod s =

(C mod s)(C′ mod s).

Refinements: add more noise

to ciphertexts, bootstrap (2009

Gentry) to control noise, etc.

25

Lattices

This is a lettuce:

This is a lattice:

24

sage: (C+C2)%s

7674

sage: (C*C2)%s

13436613

sage:

Because C mod s and C′ mod s

are small enough compared to s,

have C +C′ mod s = (C mod s) +

(C′ mod s) and CC′ mod s =

(C mod s)(C′ mod s).

Refinements: add more noise

to ciphertexts, bootstrap (2009

Gentry) to control noise, etc.

25

Lattices

This is a lettuce:

This is a lattice:

26

Lattices, mathematically

Assume that V1; : : : ; VD ∈ RN

are R-linearly independent,

i.e., RV1 + · · ·+ RVD =

{r1V1 + · · ·+ rDVD : r1; : : : ; rD ∈ R}
is a D-dimensional vector space.

24

sage: (C+C2)%s

7674

sage: (C*C2)%s

13436613

sage:

Because C mod s and C′ mod s

are small enough compared to s,

have C +C′ mod s = (C mod s) +

(C′ mod s) and CC′ mod s =

(C mod s)(C′ mod s).

Refinements: add more noise

to ciphertexts, bootstrap (2009

Gentry) to control noise, etc.

25

Lattices

This is a lettuce:

This is a lattice:

26

Lattices, mathematically

Assume that V1; : : : ; VD ∈ RN

are R-linearly independent,

i.e., RV1 + · · ·+ RVD =

{r1V1 + · · ·+ rDVD : r1; : : : ; rD ∈ R}
is a D-dimensional vector space.

24

sage: (C+C2)%s

7674

sage: (C*C2)%s

13436613

sage:

Because C mod s and C′ mod s

are small enough compared to s,

have C +C′ mod s = (C mod s) +

(C′ mod s) and CC′ mod s =

(C mod s)(C′ mod s).

Refinements: add more noise

to ciphertexts, bootstrap (2009

Gentry) to control noise, etc.

25

Lattices

This is a lettuce:

This is a lattice:

26

Lattices, mathematically

Assume that V1; : : : ; VD ∈ RN

are R-linearly independent,

i.e., RV1 + · · ·+ RVD =

{r1V1 + · · ·+ rDVD : r1; : : : ; rD ∈ R}
is a D-dimensional vector space.

25

Lattices

This is a lettuce:

This is a lattice:

26

Lattices, mathematically

Assume that V1; : : : ; VD ∈ RN

are R-linearly independent,

i.e., RV1 + · · ·+ RVD =

{r1V1 + · · ·+ rDVD : r1; : : : ; rD ∈ R}
is a D-dimensional vector space.

25

Lattices

This is a lettuce:

This is a lattice:

26

Lattices, mathematically

Assume that V1; : : : ; VD ∈ RN

are R-linearly independent,

i.e., RV1 + · · ·+ RVD =

{r1V1 + · · ·+ rDVD : r1; : : : ; rD ∈ R}
is a D-dimensional vector space.

ZV1 + · · ·+ ZVD =

{r1V1 + · · ·+ rDVD : r1; : : : ; rD ∈ Z}
is a rank-D length-N lattice.

25

Lattices

This is a lettuce:

This is a lattice:

26

Lattices, mathematically

Assume that V1; : : : ; VD ∈ RN

are R-linearly independent,

i.e., RV1 + · · ·+ RVD =

{r1V1 + · · ·+ rDVD : r1; : : : ; rD ∈ R}
is a D-dimensional vector space.

ZV1 + · · ·+ ZVD =

{r1V1 + · · ·+ rDVD : r1; : : : ; rD ∈ Z}
is a rank-D length-N lattice.

V1; : : : ; VD
is a basis of this lattice.

25

Lattices

This is a lettuce:

This is a lattice:

26

Lattices, mathematically

Assume that V1; : : : ; VD ∈ RN

are R-linearly independent,

i.e., RV1 + · · ·+ RVD =

{r1V1 + · · ·+ rDVD : r1; : : : ; rD ∈ R}
is a D-dimensional vector space.

ZV1 + · · ·+ ZVD =

{r1V1 + · · ·+ rDVD : r1; : : : ; rD ∈ Z}
is a rank-D length-N lattice.

V1; : : : ; VD
is a basis of this lattice.

27

Short vectors in lattices

Given V1; V2; : : : ; VD ∈ ZN ,

what is shortest vector

in L = ZV1 + · · ·+ ZVD?

25

Lattices

This is a lettuce:

This is a lattice:

26

Lattices, mathematically

Assume that V1; : : : ; VD ∈ RN

are R-linearly independent,

i.e., RV1 + · · ·+ RVD =

{r1V1 + · · ·+ rDVD : r1; : : : ; rD ∈ R}
is a D-dimensional vector space.

ZV1 + · · ·+ ZVD =

{r1V1 + · · ·+ rDVD : r1; : : : ; rD ∈ Z}
is a rank-D length-N lattice.

V1; : : : ; VD
is a basis of this lattice.

27

Short vectors in lattices

Given V1; V2; : : : ; VD ∈ ZN ,

what is shortest vector

in L = ZV1 + · · ·+ ZVD?

25

Lattices

This is a lettuce:

This is a lattice:

26

Lattices, mathematically

Assume that V1; : : : ; VD ∈ RN

are R-linearly independent,

i.e., RV1 + · · ·+ RVD =

{r1V1 + · · ·+ rDVD : r1; : : : ; rD ∈ R}
is a D-dimensional vector space.

ZV1 + · · ·+ ZVD =

{r1V1 + · · ·+ rDVD : r1; : : : ; rD ∈ Z}
is a rank-D length-N lattice.

V1; : : : ; VD
is a basis of this lattice.

27

Short vectors in lattices

Given V1; V2; : : : ; VD ∈ ZN ,

what is shortest vector

in L = ZV1 + · · ·+ ZVD?

26

Lattices, mathematically

Assume that V1; : : : ; VD ∈ RN

are R-linearly independent,

i.e., RV1 + · · ·+ RVD =

{r1V1 + · · ·+ rDVD : r1; : : : ; rD ∈ R}
is a D-dimensional vector space.

ZV1 + · · ·+ ZVD =

{r1V1 + · · ·+ rDVD : r1; : : : ; rD ∈ Z}
is a rank-D length-N lattice.

V1; : : : ; VD
is a basis of this lattice.

27

Short vectors in lattices

Given V1; V2; : : : ; VD ∈ ZN ,

what is shortest vector

in L = ZV1 + · · ·+ ZVD?

26

Lattices, mathematically

Assume that V1; : : : ; VD ∈ RN

are R-linearly independent,

i.e., RV1 + · · ·+ RVD =

{r1V1 + · · ·+ rDVD : r1; : : : ; rD ∈ R}
is a D-dimensional vector space.

ZV1 + · · ·+ ZVD =

{r1V1 + · · ·+ rDVD : r1; : : : ; rD ∈ Z}
is a rank-D length-N lattice.

V1; : : : ; VD
is a basis of this lattice.

27

Short vectors in lattices

Given V1; V2; : : : ; VD ∈ ZN ,

what is shortest vector

in L = ZV1 + · · ·+ ZVD?

0.

26

Lattices, mathematically

Assume that V1; : : : ; VD ∈ RN

are R-linearly independent,

i.e., RV1 + · · ·+ RVD =

{r1V1 + · · ·+ rDVD : r1; : : : ; rD ∈ R}
is a D-dimensional vector space.

ZV1 + · · ·+ ZVD =

{r1V1 + · · ·+ rDVD : r1; : : : ; rD ∈ Z}
is a rank-D length-N lattice.

V1; : : : ; VD
is a basis of this lattice.

27

Short vectors in lattices

Given V1; V2; : : : ; VD ∈ ZN ,

what is shortest vector

in L = ZV1 + · · ·+ ZVD?

0.

“SVP: shortest-vector problem”:

What is shortest nonzero vector?

26

Lattices, mathematically

Assume that V1; : : : ; VD ∈ RN

are R-linearly independent,

i.e., RV1 + · · ·+ RVD =

{r1V1 + · · ·+ rDVD : r1; : : : ; rD ∈ R}
is a D-dimensional vector space.

ZV1 + · · ·+ ZVD =

{r1V1 + · · ·+ rDVD : r1; : : : ; rD ∈ Z}
is a rank-D length-N lattice.

V1; : : : ; VD
is a basis of this lattice.

27

Short vectors in lattices

Given V1; V2; : : : ; VD ∈ ZN ,

what is shortest vector

in L = ZV1 + · · ·+ ZVD?

0.

“SVP: shortest-vector problem”:

What is shortest nonzero vector?

1982 Lenstra–Lenstra–Lovász

(LLL) algorithm runs in poly time,

computes a nonzero vector in L

with length at most 2D=2 times

length of shortest nonzero vector.

Typically ≈1:02D instead of 2D=2.

26

Lattices, mathematically

Assume that V1; : : : ; VD ∈ RN

are R-linearly independent,

i.e., RV1 + · · ·+ RVD =

{r1V1 + · · ·+ rDVD : r1; : : : ; rD ∈ R}
is a D-dimensional vector space.

ZV1 + · · ·+ ZVD =

{r1V1 + · · ·+ rDVD : r1; : : : ; rD ∈ Z}
is a rank-D length-N lattice.

V1; : : : ; VD
is a basis of this lattice.

27

Short vectors in lattices

Given V1; V2; : : : ; VD ∈ ZN ,

what is shortest vector

in L = ZV1 + · · ·+ ZVD?

0.

“SVP: shortest-vector problem”:

What is shortest nonzero vector?

1982 Lenstra–Lenstra–Lovász

(LLL) algorithm runs in poly time,

computes a nonzero vector in L

with length at most 2D=2 times

length of shortest nonzero vector.

Typically ≈1:02D instead of 2D=2.

28

Subset-sum lattices

One way to find (r1; : : : ; rN)

where C = r1K1 + · · ·+ rNKN :

26

Lattices, mathematically

Assume that V1; : : : ; VD ∈ RN

are R-linearly independent,

i.e., RV1 + · · ·+ RVD =

{r1V1 + · · ·+ rDVD : r1; : : : ; rD ∈ R}
is a D-dimensional vector space.

ZV1 + · · ·+ ZVD =

{r1V1 + · · ·+ rDVD : r1; : : : ; rD ∈ Z}
is a rank-D length-N lattice.

V1; : : : ; VD
is a basis of this lattice.

27

Short vectors in lattices

Given V1; V2; : : : ; VD ∈ ZN ,

what is shortest vector

in L = ZV1 + · · ·+ ZVD?

0.

“SVP: shortest-vector problem”:

What is shortest nonzero vector?

1982 Lenstra–Lenstra–Lovász

(LLL) algorithm runs in poly time,

computes a nonzero vector in L

with length at most 2D=2 times

length of shortest nonzero vector.

Typically ≈1:02D instead of 2D=2.

28

Subset-sum lattices

One way to find (r1; : : : ; rN)

where C = r1K1 + · · ·+ rNKN :

26

Lattices, mathematically

Assume that V1; : : : ; VD ∈ RN

are R-linearly independent,

i.e., RV1 + · · ·+ RVD =

{r1V1 + · · ·+ rDVD : r1; : : : ; rD ∈ R}
is a D-dimensional vector space.

ZV1 + · · ·+ ZVD =

{r1V1 + · · ·+ rDVD : r1; : : : ; rD ∈ Z}
is a rank-D length-N lattice.

V1; : : : ; VD
is a basis of this lattice.

27

Short vectors in lattices

Given V1; V2; : : : ; VD ∈ ZN ,

what is shortest vector

in L = ZV1 + · · ·+ ZVD?

0.

“SVP: shortest-vector problem”:

What is shortest nonzero vector?

1982 Lenstra–Lenstra–Lovász

(LLL) algorithm runs in poly time,

computes a nonzero vector in L

with length at most 2D=2 times

length of shortest nonzero vector.

Typically ≈1:02D instead of 2D=2.

28

Subset-sum lattices

One way to find (r1; : : : ; rN)

where C = r1K1 + · · ·+ rNKN :

27

Short vectors in lattices

Given V1; V2; : : : ; VD ∈ ZN ,

what is shortest vector

in L = ZV1 + · · ·+ ZVD?

0.

“SVP: shortest-vector problem”:

What is shortest nonzero vector?

1982 Lenstra–Lenstra–Lovász

(LLL) algorithm runs in poly time,

computes a nonzero vector in L

with length at most 2D=2 times

length of shortest nonzero vector.

Typically ≈1:02D instead of 2D=2.

28

Subset-sum lattices

One way to find (r1; : : : ; rN)

where C = r1K1 + · · ·+ rNKN :

27

Short vectors in lattices

Given V1; V2; : : : ; VD ∈ ZN ,

what is shortest vector

in L = ZV1 + · · ·+ ZVD?

0.

“SVP: shortest-vector problem”:

What is shortest nonzero vector?

1982 Lenstra–Lenstra–Lovász

(LLL) algorithm runs in poly time,

computes a nonzero vector in L

with length at most 2D=2 times

length of shortest nonzero vector.

Typically ≈1:02D instead of 2D=2.

28

Subset-sum lattices

One way to find (r1; : : : ; rN)

where C = r1K1 + · · ·+ rNKN :

Choose –. Define

V0 = (−C; 0; 0; : : : ; 0),

V1 = (K1; –; 0; : : : ; 0),

V2 = (K2; 0; –; : : : ; 0),

: : : ,

VN = (KN ; 0; 0; : : : ; –).

27

Short vectors in lattices

Given V1; V2; : : : ; VD ∈ ZN ,

what is shortest vector

in L = ZV1 + · · ·+ ZVD?

0.

“SVP: shortest-vector problem”:

What is shortest nonzero vector?

1982 Lenstra–Lenstra–Lovász

(LLL) algorithm runs in poly time,

computes a nonzero vector in L

with length at most 2D=2 times

length of shortest nonzero vector.

Typically ≈1:02D instead of 2D=2.

28

Subset-sum lattices

One way to find (r1; : : : ; rN)

where C = r1K1 + · · ·+ rNKN :

Choose –. Define

V0 = (−C; 0; 0; : : : ; 0),

V1 = (K1; –; 0; : : : ; 0),

V2 = (K2; 0; –; : : : ; 0),

: : : ,

VN = (KN ; 0; 0; : : : ; –).

Define L = ZV0 + · · ·+ ZVN .

L contains the short vector

V0 + r1V1 + · · ·+ rNVN =

(0; r1–; : : : ; rN–).

27

Short vectors in lattices

Given V1; V2; : : : ; VD ∈ ZN ,

what is shortest vector

in L = ZV1 + · · ·+ ZVD?

0.

“SVP: shortest-vector problem”:

What is shortest nonzero vector?

1982 Lenstra–Lenstra–Lovász

(LLL) algorithm runs in poly time,

computes a nonzero vector in L

with length at most 2D=2 times

length of shortest nonzero vector.

Typically ≈1:02D instead of 2D=2.

28

Subset-sum lattices

One way to find (r1; : : : ; rN)

where C = r1K1 + · · ·+ rNKN :

Choose –. Define

V0 = (−C; 0; 0; : : : ; 0),

V1 = (K1; –; 0; : : : ; 0),

V2 = (K2; 0; –; : : : ; 0),

: : : ,

VN = (KN ; 0; 0; : : : ; –).

Define L = ZV0 + · · ·+ ZVN .

L contains the short vector

V0 + r1V1 + · · ·+ rNVN =

(0; r1–; : : : ; rN–).

29

LLL is fast but almost never

finds this short vector in L.

27

Short vectors in lattices

Given V1; V2; : : : ; VD ∈ ZN ,

what is shortest vector

in L = ZV1 + · · ·+ ZVD?

0.

“SVP: shortest-vector problem”:

What is shortest nonzero vector?

1982 Lenstra–Lenstra–Lovász

(LLL) algorithm runs in poly time,

computes a nonzero vector in L

with length at most 2D=2 times

length of shortest nonzero vector.

Typically ≈1:02D instead of 2D=2.

28

Subset-sum lattices

One way to find (r1; : : : ; rN)

where C = r1K1 + · · ·+ rNKN :

Choose –. Define

V0 = (−C; 0; 0; : : : ; 0),

V1 = (K1; –; 0; : : : ; 0),

V2 = (K2; 0; –; : : : ; 0),

: : : ,

VN = (KN ; 0; 0; : : : ; –).

Define L = ZV0 + · · ·+ ZVN .

L contains the short vector

V0 + r1V1 + · · ·+ rNVN =

(0; r1–; : : : ; rN–).

29

LLL is fast but almost never

finds this short vector in L.

27

Short vectors in lattices

Given V1; V2; : : : ; VD ∈ ZN ,

what is shortest vector

in L = ZV1 + · · ·+ ZVD?

0.

“SVP: shortest-vector problem”:

What is shortest nonzero vector?

1982 Lenstra–Lenstra–Lovász

(LLL) algorithm runs in poly time,

computes a nonzero vector in L

with length at most 2D=2 times

length of shortest nonzero vector.

Typically ≈1:02D instead of 2D=2.

28

Subset-sum lattices

One way to find (r1; : : : ; rN)

where C = r1K1 + · · ·+ rNKN :

Choose –. Define

V0 = (−C; 0; 0; : : : ; 0),

V1 = (K1; –; 0; : : : ; 0),

V2 = (K2; 0; –; : : : ; 0),

: : : ,

VN = (KN ; 0; 0; : : : ; –).

Define L = ZV0 + · · ·+ ZVN .

L contains the short vector

V0 + r1V1 + · · ·+ rNVN =

(0; r1–; : : : ; rN–).

29

LLL is fast but almost never

finds this short vector in L.

28

Subset-sum lattices

One way to find (r1; : : : ; rN)

where C = r1K1 + · · ·+ rNKN :

Choose –. Define

V0 = (−C; 0; 0; : : : ; 0),

V1 = (K1; –; 0; : : : ; 0),

V2 = (K2; 0; –; : : : ; 0),

: : : ,

VN = (KN ; 0; 0; : : : ; –).

Define L = ZV0 + · · ·+ ZVN .

L contains the short vector

V0 + r1V1 + · · ·+ rNVN =

(0; r1–; : : : ; rN–).

29

LLL is fast but almost never

finds this short vector in L.

28

Subset-sum lattices

One way to find (r1; : : : ; rN)

where C = r1K1 + · · ·+ rNKN :

Choose –. Define

V0 = (−C; 0; 0; : : : ; 0),

V1 = (K1; –; 0; : : : ; 0),

V2 = (K2; 0; –; : : : ; 0),

: : : ,

VN = (KN ; 0; 0; : : : ; –).

Define L = ZV0 + · · ·+ ZVN .

L contains the short vector

V0 + r1V1 + · · ·+ rNVN =

(0; r1–; : : : ; rN–).

29

LLL is fast but almost never

finds this short vector in L.

1991 Schnorr–Euchner “BKZ”

algorithm spends more time than

LLL finding shorter vectors in any

lattice. Many subsequent time-

vs.-shortness improvements.

28

Subset-sum lattices

One way to find (r1; : : : ; rN)

where C = r1K1 + · · ·+ rNKN :

Choose –. Define

V0 = (−C; 0; 0; : : : ; 0),

V1 = (K1; –; 0; : : : ; 0),

V2 = (K2; 0; –; : : : ; 0),

: : : ,

VN = (KN ; 0; 0; : : : ; –).

Define L = ZV0 + · · ·+ ZVN .

L contains the short vector

V0 + r1V1 + · · ·+ rNVN =

(0; r1–; : : : ; rN–).

29

LLL is fast but almost never

finds this short vector in L.

1991 Schnorr–Euchner “BKZ”

algorithm spends more time than

LLL finding shorter vectors in any

lattice. Many subsequent time-

vs.-shortness improvements.

2012 Schnorr–Shevchenko claim

that modern form of BKZ solves

subset-sum problems faster than

2011 Becker–Coron–Joux.

28

Subset-sum lattices

One way to find (r1; : : : ; rN)

where C = r1K1 + · · ·+ rNKN :

Choose –. Define

V0 = (−C; 0; 0; : : : ; 0),

V1 = (K1; –; 0; : : : ; 0),

V2 = (K2; 0; –; : : : ; 0),

: : : ,

VN = (KN ; 0; 0; : : : ; –).

Define L = ZV0 + · · ·+ ZVN .

L contains the short vector

V0 + r1V1 + · · ·+ rNVN =

(0; r1–; : : : ; rN–).

29

LLL is fast but almost never

finds this short vector in L.

1991 Schnorr–Euchner “BKZ”

algorithm spends more time than

LLL finding shorter vectors in any

lattice. Many subsequent time-

vs.-shortness improvements.

2012 Schnorr–Shevchenko claim

that modern form of BKZ solves

subset-sum problems faster than

2011 Becker–Coron–Joux.

Is this true? Open: What’s the

exponent of this algorithm?

28

Subset-sum lattices

One way to find (r1; : : : ; rN)

where C = r1K1 + · · ·+ rNKN :

Choose –. Define

V0 = (−C; 0; 0; : : : ; 0),

V1 = (K1; –; 0; : : : ; 0),

V2 = (K2; 0; –; : : : ; 0),

: : : ,

VN = (KN ; 0; 0; : : : ; –).

Define L = ZV0 + · · ·+ ZVN .

L contains the short vector

V0 + r1V1 + · · ·+ rNVN =

(0; r1–; : : : ; rN–).

29

LLL is fast but almost never

finds this short vector in L.

1991 Schnorr–Euchner “BKZ”

algorithm spends more time than

LLL finding shorter vectors in any

lattice. Many subsequent time-

vs.-shortness improvements.

2012 Schnorr–Shevchenko claim

that modern form of BKZ solves

subset-sum problems faster than

2011 Becker–Coron–Joux.

Is this true? Open: What’s the

exponent of this algorithm?

30

Lattice attacks on DGHV keys

Recall Ki = 2ui + sqi ≈ sqi .
Each ui is small: ui < E.

Note qjKi − qiKj = 2qjui − 2qiuj .

28

Subset-sum lattices

One way to find (r1; : : : ; rN)

where C = r1K1 + · · ·+ rNKN :

Choose –. Define

V0 = (−C; 0; 0; : : : ; 0),

V1 = (K1; –; 0; : : : ; 0),

V2 = (K2; 0; –; : : : ; 0),

: : : ,

VN = (KN ; 0; 0; : : : ; –).

Define L = ZV0 + · · ·+ ZVN .

L contains the short vector

V0 + r1V1 + · · ·+ rNVN =

(0; r1–; : : : ; rN–).

29

LLL is fast but almost never

finds this short vector in L.

1991 Schnorr–Euchner “BKZ”

algorithm spends more time than

LLL finding shorter vectors in any

lattice. Many subsequent time-

vs.-shortness improvements.

2012 Schnorr–Shevchenko claim

that modern form of BKZ solves

subset-sum problems faster than

2011 Becker–Coron–Joux.

Is this true? Open: What’s the

exponent of this algorithm?

30

Lattice attacks on DGHV keys

Recall Ki = 2ui + sqi ≈ sqi .
Each ui is small: ui < E.

Note qjKi − qiKj = 2qjui − 2qiuj .

28

Subset-sum lattices

One way to find (r1; : : : ; rN)

where C = r1K1 + · · ·+ rNKN :

Choose –. Define

V0 = (−C; 0; 0; : : : ; 0),

V1 = (K1; –; 0; : : : ; 0),

V2 = (K2; 0; –; : : : ; 0),

: : : ,

VN = (KN ; 0; 0; : : : ; –).

Define L = ZV0 + · · ·+ ZVN .

L contains the short vector

V0 + r1V1 + · · ·+ rNVN =

(0; r1–; : : : ; rN–).

29

LLL is fast but almost never

finds this short vector in L.

1991 Schnorr–Euchner “BKZ”

algorithm spends more time than

LLL finding shorter vectors in any

lattice. Many subsequent time-

vs.-shortness improvements.

2012 Schnorr–Shevchenko claim

that modern form of BKZ solves

subset-sum problems faster than

2011 Becker–Coron–Joux.

Is this true? Open: What’s the

exponent of this algorithm?

30

Lattice attacks on DGHV keys

Recall Ki = 2ui + sqi ≈ sqi .
Each ui is small: ui < E.

Note qjKi − qiKj = 2qjui − 2qiuj .

29

LLL is fast but almost never

finds this short vector in L.

1991 Schnorr–Euchner “BKZ”

algorithm spends more time than

LLL finding shorter vectors in any

lattice. Many subsequent time-

vs.-shortness improvements.

2012 Schnorr–Shevchenko claim

that modern form of BKZ solves

subset-sum problems faster than

2011 Becker–Coron–Joux.

Is this true? Open: What’s the

exponent of this algorithm?

30

Lattice attacks on DGHV keys

Recall Ki = 2ui + sqi ≈ sqi .
Each ui is small: ui < E.

Note qjKi − qiKj = 2qjui − 2qiuj .

29

LLL is fast but almost never

finds this short vector in L.

1991 Schnorr–Euchner “BKZ”

algorithm spends more time than

LLL finding shorter vectors in any

lattice. Many subsequent time-

vs.-shortness improvements.

2012 Schnorr–Shevchenko claim

that modern form of BKZ solves

subset-sum problems faster than

2011 Becker–Coron–Joux.

Is this true? Open: What’s the

exponent of this algorithm?

30

Lattice attacks on DGHV keys

Recall Ki = 2ui + sqi ≈ sqi .
Each ui is small: ui < E.

Note qjKi − qiKj = 2qjui − 2qiuj .

Define

V1 = (E;K2; K3; : : : ; KN);

V2 = (0;−K1; 0; : : : ; 0);

V3 = (0; 0;−K1; : : : ; 0);

: : : ;

VN = (0; 0; 0; : : : ;−K1).

29

LLL is fast but almost never

finds this short vector in L.

1991 Schnorr–Euchner “BKZ”

algorithm spends more time than

LLL finding shorter vectors in any

lattice. Many subsequent time-

vs.-shortness improvements.

2012 Schnorr–Shevchenko claim

that modern form of BKZ solves

subset-sum problems faster than

2011 Becker–Coron–Joux.

Is this true? Open: What’s the

exponent of this algorithm?

30

Lattice attacks on DGHV keys

Recall Ki = 2ui + sqi ≈ sqi .
Each ui is small: ui < E.

Note qjKi − qiKj = 2qjui − 2qiuj .

Define

V1 = (E;K2; K3; : : : ; KN);

V2 = (0;−K1; 0; : : : ; 0);

V3 = (0; 0;−K1; : : : ; 0);

: : : ;

VN = (0; 0; 0; : : : ;−K1).

Define L = ZV1 + · · ·+ ZVN .

L contains q1V1 + · · ·+ qNVN =

(q1E; q1K2 − q2K1; : : :) =

(q1E; 2q1u2 − 2q2u1; : : :).

29

LLL is fast but almost never

finds this short vector in L.

1991 Schnorr–Euchner “BKZ”

algorithm spends more time than

LLL finding shorter vectors in any

lattice. Many subsequent time-

vs.-shortness improvements.

2012 Schnorr–Shevchenko claim

that modern form of BKZ solves

subset-sum problems faster than

2011 Becker–Coron–Joux.

Is this true? Open: What’s the

exponent of this algorithm?

30

Lattice attacks on DGHV keys

Recall Ki = 2ui + sqi ≈ sqi .
Each ui is small: ui < E.

Note qjKi − qiKj = 2qjui − 2qiuj .

Define

V1 = (E;K2; K3; : : : ; KN);

V2 = (0;−K1; 0; : : : ; 0);

V3 = (0; 0;−K1; : : : ; 0);

: : : ;

VN = (0; 0; 0; : : : ;−K1).

Define L = ZV1 + · · ·+ ZVN .

L contains q1V1 + · · ·+ qNVN =

(q1E; q1K2 − q2K1; : : :) =

(q1E; 2q1u2 − 2q2u1; : : :).

31

sage: V=matrix.identity(N)

sage:

29

LLL is fast but almost never

finds this short vector in L.

1991 Schnorr–Euchner “BKZ”

algorithm spends more time than

LLL finding shorter vectors in any

lattice. Many subsequent time-

vs.-shortness improvements.

2012 Schnorr–Shevchenko claim

that modern form of BKZ solves

subset-sum problems faster than

2011 Becker–Coron–Joux.

Is this true? Open: What’s the

exponent of this algorithm?

30

Lattice attacks on DGHV keys

Recall Ki = 2ui + sqi ≈ sqi .
Each ui is small: ui < E.

Note qjKi − qiKj = 2qjui − 2qiuj .

Define

V1 = (E;K2; K3; : : : ; KN);

V2 = (0;−K1; 0; : : : ; 0);

V3 = (0; 0;−K1; : : : ; 0);

: : : ;

VN = (0; 0; 0; : : : ;−K1).

Define L = ZV1 + · · ·+ ZVN .

L contains q1V1 + · · ·+ qNVN =

(q1E; q1K2 − q2K1; : : :) =

(q1E; 2q1u2 − 2q2u1; : : :).

31

sage: V=matrix.identity(N)

sage:

29

LLL is fast but almost never

finds this short vector in L.

1991 Schnorr–Euchner “BKZ”

algorithm spends more time than

LLL finding shorter vectors in any

lattice. Many subsequent time-

vs.-shortness improvements.

2012 Schnorr–Shevchenko claim

that modern form of BKZ solves

subset-sum problems faster than

2011 Becker–Coron–Joux.

Is this true? Open: What’s the

exponent of this algorithm?

30

Lattice attacks on DGHV keys

Recall Ki = 2ui + sqi ≈ sqi .
Each ui is small: ui < E.

Note qjKi − qiKj = 2qjui − 2qiuj .

Define

V1 = (E;K2; K3; : : : ; KN);

V2 = (0;−K1; 0; : : : ; 0);

V3 = (0; 0;−K1; : : : ; 0);

: : : ;

VN = (0; 0; 0; : : : ;−K1).

Define L = ZV1 + · · ·+ ZVN .

L contains q1V1 + · · ·+ qNVN =

(q1E; q1K2 − q2K1; : : :) =

(q1E; 2q1u2 − 2q2u1; : : :).

31

sage: V=matrix.identity(N)

sage:

30

Lattice attacks on DGHV keys

Recall Ki = 2ui + sqi ≈ sqi .
Each ui is small: ui < E.

Note qjKi − qiKj = 2qjui − 2qiuj .

Define

V1 = (E;K2; K3; : : : ; KN);

V2 = (0;−K1; 0; : : : ; 0);

V3 = (0; 0;−K1; : : : ; 0);

: : : ;

VN = (0; 0; 0; : : : ;−K1).

Define L = ZV1 + · · ·+ ZVN .

L contains q1V1 + · · ·+ qNVN =

(q1E; q1K2 − q2K1; : : :) =

(q1E; 2q1u2 − 2q2u1; : : :).

31

sage: V=matrix.identity(N)

sage:

30

Lattice attacks on DGHV keys

Recall Ki = 2ui + sqi ≈ sqi .
Each ui is small: ui < E.

Note qjKi − qiKj = 2qjui − 2qiuj .

Define

V1 = (E;K2; K3; : : : ; KN);

V2 = (0;−K1; 0; : : : ; 0);

V3 = (0; 0;−K1; : : : ; 0);

: : : ;

VN = (0; 0; 0; : : : ;−K1).

Define L = ZV1 + · · ·+ ZVN .

L contains q1V1 + · · ·+ qNVN =

(q1E; q1K2 − q2K1; : : :) =

(q1E; 2q1u2 − 2q2u1; : : :).

31

sage: V=matrix.identity(N)

sage: V=-K[0]*V

sage:

30

Lattice attacks on DGHV keys

Recall Ki = 2ui + sqi ≈ sqi .
Each ui is small: ui < E.

Note qjKi − qiKj = 2qjui − 2qiuj .

Define

V1 = (E;K2; K3; : : : ; KN);

V2 = (0;−K1; 0; : : : ; 0);

V3 = (0; 0;−K1; : : : ; 0);

: : : ;

VN = (0; 0; 0; : : : ;−K1).

Define L = ZV1 + · · ·+ ZVN .

L contains q1V1 + · · ·+ qNVN =

(q1E; q1K2 − q2K1; : : :) =

(q1E; 2q1u2 − 2q2u1; : : :).

31

sage: V=matrix.identity(N)

sage: V=-K[0]*V

sage: Vtop=copy(K)

sage:

30

Lattice attacks on DGHV keys

Recall Ki = 2ui + sqi ≈ sqi .
Each ui is small: ui < E.

Note qjKi − qiKj = 2qjui − 2qiuj .

Define

V1 = (E;K2; K3; : : : ; KN);

V2 = (0;−K1; 0; : : : ; 0);

V3 = (0; 0;−K1; : : : ; 0);

: : : ;

VN = (0; 0; 0; : : : ;−K1).

Define L = ZV1 + · · ·+ ZVN .

L contains q1V1 + · · ·+ qNVN =

(q1E; q1K2 − q2K1; : : :) =

(q1E; 2q1u2 − 2q2u1; : : :).

31

sage: V=matrix.identity(N)

sage: V=-K[0]*V

sage: Vtop=copy(K)

sage: Vtop[0]=E

sage:

30

Lattice attacks on DGHV keys

Recall Ki = 2ui + sqi ≈ sqi .
Each ui is small: ui < E.

Note qjKi − qiKj = 2qjui − 2qiuj .

Define

V1 = (E;K2; K3; : : : ; KN);

V2 = (0;−K1; 0; : : : ; 0);

V3 = (0; 0;−K1; : : : ; 0);

: : : ;

VN = (0; 0; 0; : : : ;−K1).

Define L = ZV1 + · · ·+ ZVN .

L contains q1V1 + · · ·+ qNVN =

(q1E; q1K2 − q2K1; : : :) =

(q1E; 2q1u2 − 2q2u1; : : :).

31

sage: V=matrix.identity(N)

sage: V=-K[0]*V

sage: Vtop=copy(K)

sage: Vtop[0]=E

sage: V[0]=Vtop

sage:

30

Lattice attacks on DGHV keys

Recall Ki = 2ui + sqi ≈ sqi .
Each ui is small: ui < E.

Note qjKi − qiKj = 2qjui − 2qiuj .

Define

V1 = (E;K2; K3; : : : ; KN);

V2 = (0;−K1; 0; : : : ; 0);

V3 = (0; 0;−K1; : : : ; 0);

: : : ;

VN = (0; 0; 0; : : : ;−K1).

Define L = ZV1 + · · ·+ ZVN .

L contains q1V1 + · · ·+ qNVN =

(q1E; q1K2 − q2K1; : : :) =

(q1E; 2q1u2 − 2q2u1; : : :).

31

sage: V=matrix.identity(N)

sage: V=-K[0]*V

sage: Vtop=copy(K)

sage: Vtop[0]=E

sage: V[0]=Vtop

sage: q0=V.LLL()[0][0]/E

sage: q0

596487875

sage:

30

Lattice attacks on DGHV keys

Recall Ki = 2ui + sqi ≈ sqi .
Each ui is small: ui < E.

Note qjKi − qiKj = 2qjui − 2qiuj .

Define

V1 = (E;K2; K3; : : : ; KN);

V2 = (0;−K1; 0; : : : ; 0);

V3 = (0; 0;−K1; : : : ; 0);

: : : ;

VN = (0; 0; 0; : : : ;−K1).

Define L = ZV1 + · · ·+ ZVN .

L contains q1V1 + · · ·+ qNVN =

(q1E; q1K2 − q2K1; : : :) =

(q1E; 2q1u2 − 2q2u1; : : :).

31

sage: V=matrix.identity(N)

sage: V=-K[0]*V

sage: Vtop=copy(K)

sage: Vtop[0]=E

sage: V[0]=Vtop

sage: q0=V.LLL()[0][0]/E

sage: q0

596487875

sage: round(K[0]/q0)

984887308997925

sage:

30

Lattice attacks on DGHV keys

Recall Ki = 2ui + sqi ≈ sqi .
Each ui is small: ui < E.

Note qjKi − qiKj = 2qjui − 2qiuj .

Define

V1 = (E;K2; K3; : : : ; KN);

V2 = (0;−K1; 0; : : : ; 0);

V3 = (0; 0;−K1; : : : ; 0);

: : : ;

VN = (0; 0; 0; : : : ;−K1).

Define L = ZV1 + · · ·+ ZVN .

L contains q1V1 + · · ·+ qNVN =

(q1E; q1K2 − q2K1; : : :) =

(q1E; 2q1u2 − 2q2u1; : : :).

31

sage: V=matrix.identity(N)

sage: V=-K[0]*V

sage: Vtop=copy(K)

sage: Vtop[0]=E

sage: V[0]=Vtop

sage: q0=V.LLL()[0][0]/E

sage: q0

596487875

sage: round(K[0]/q0)

984887308997925

sage: s

984887308997925

sage:

30

Lattice attacks on DGHV keys

Recall Ki = 2ui + sqi ≈ sqi .
Each ui is small: ui < E.

Note qjKi − qiKj = 2qjui − 2qiuj .

Define

V1 = (E;K2; K3; : : : ; KN);

V2 = (0;−K1; 0; : : : ; 0);

V3 = (0; 0;−K1; : : : ; 0);

: : : ;

VN = (0; 0; 0; : : : ;−K1).

Define L = ZV1 + · · ·+ ZVN .

L contains q1V1 + · · ·+ qNVN =

(q1E; q1K2 − q2K1; : : :) =

(q1E; 2q1u2 − 2q2u1; : : :).

31

sage: V=matrix.identity(N)

sage: V=-K[0]*V

sage: Vtop=copy(K)

sage: Vtop[0]=E

sage: V[0]=Vtop

sage: q0=V.LLL()[0][0]/E

sage: q0

596487875

sage: round(K[0]/q0)

984887308997925

sage: s

984887308997925

sage:

32

sage: V[0]

(1024,

-1111539179100720083770339,

794301459533783434896055,

68817802108374958901751,

742362470968200823035396,

1023345827831539515054795,

-357168679398558876730006,

1121421619119964601051443,

-1109674862276222495587129,

-235628937785003770523381)

sage:

30

Lattice attacks on DGHV keys

Recall Ki = 2ui + sqi ≈ sqi .
Each ui is small: ui < E.

Note qjKi − qiKj = 2qjui − 2qiuj .

Define

V1 = (E;K2; K3; : : : ; KN);

V2 = (0;−K1; 0; : : : ; 0);

V3 = (0; 0;−K1; : : : ; 0);

: : : ;

VN = (0; 0; 0; : : : ;−K1).

Define L = ZV1 + · · ·+ ZVN .

L contains q1V1 + · · ·+ qNVN =

(q1E; q1K2 − q2K1; : : :) =

(q1E; 2q1u2 − 2q2u1; : : :).

31

sage: V=matrix.identity(N)

sage: V=-K[0]*V

sage: Vtop=copy(K)

sage: Vtop[0]=E

sage: V[0]=Vtop

sage: q0=V.LLL()[0][0]/E

sage: q0

596487875

sage: round(K[0]/q0)

984887308997925

sage: s

984887308997925

sage:

32

sage: V[0]

(1024,

-1111539179100720083770339,

794301459533783434896055,

68817802108374958901751,

742362470968200823035396,

1023345827831539515054795,

-357168679398558876730006,

1121421619119964601051443,

-1109674862276222495587129,

-235628937785003770523381)

sage:

30

Lattice attacks on DGHV keys

Recall Ki = 2ui + sqi ≈ sqi .
Each ui is small: ui < E.

Note qjKi − qiKj = 2qjui − 2qiuj .

Define

V1 = (E;K2; K3; : : : ; KN);

V2 = (0;−K1; 0; : : : ; 0);

V3 = (0; 0;−K1; : : : ; 0);

: : : ;

VN = (0; 0; 0; : : : ;−K1).

Define L = ZV1 + · · ·+ ZVN .

L contains q1V1 + · · ·+ qNVN =

(q1E; q1K2 − q2K1; : : :) =

(q1E; 2q1u2 − 2q2u1; : : :).

31

sage: V=matrix.identity(N)

sage: V=-K[0]*V

sage: Vtop=copy(K)

sage: Vtop[0]=E

sage: V[0]=Vtop

sage: q0=V.LLL()[0][0]/E

sage: q0

596487875

sage: round(K[0]/q0)

984887308997925

sage: s

984887308997925

sage:

32

sage: V[0]

(1024,

-1111539179100720083770339,

794301459533783434896055,

68817802108374958901751,

742362470968200823035396,

1023345827831539515054795,

-357168679398558876730006,

1121421619119964601051443,

-1109674862276222495587129,

-235628937785003770523381)

sage:

31

sage: V=matrix.identity(N)

sage: V=-K[0]*V

sage: Vtop=copy(K)

sage: Vtop[0]=E

sage: V[0]=Vtop

sage: q0=V.LLL()[0][0]/E

sage: q0

596487875

sage: round(K[0]/q0)

984887308997925

sage: s

984887308997925

sage:

32

sage: V[0]

(1024,

-1111539179100720083770339,

794301459533783434896055,

68817802108374958901751,

742362470968200823035396,

1023345827831539515054795,

-357168679398558876730006,

1121421619119964601051443,

-1109674862276222495587129,

-235628937785003770523381)

sage:

31

sage: V=matrix.identity(N)

sage: V=-K[0]*V

sage: Vtop=copy(K)

sage: Vtop[0]=E

sage: V[0]=Vtop

sage: q0=V.LLL()[0][0]/E

sage: q0

596487875

sage: round(K[0]/q0)

984887308997925

sage: s

984887308997925

sage:

32

sage: V[0]

(1024,

-1111539179100720083770339,

794301459533783434896055,

68817802108374958901751,

742362470968200823035396,

1023345827831539515054795,

-357168679398558876730006,

1121421619119964601051443,

-1109674862276222495587129,

-235628937785003770523381)

sage: V[1]

(0, -587473338058640662659869,

0, 0, 0, 0, 0, 0, 0, 0)

sage:

31

sage: V=matrix.identity(N)

sage: V=-K[0]*V

sage: Vtop=copy(K)

sage: Vtop[0]=E

sage: V[0]=Vtop

sage: q0=V.LLL()[0][0]/E

sage: q0

596487875

sage: round(K[0]/q0)

984887308997925

sage: s

984887308997925

sage:

32

sage: V[0]

(1024,

-1111539179100720083770339,

794301459533783434896055,

68817802108374958901751,

742362470968200823035396,

1023345827831539515054795,

-357168679398558876730006,

1121421619119964601051443,

-1109674862276222495587129,

-235628937785003770523381)

sage: V[1]

(0, -587473338058640662659869,

0, 0, 0, 0, 0, 0, 0, 0)

sage:

33

sage: V.LLL()[0]

(610803584000, 1056189937254,

37030242384, 845898454698,

-225618319442, 363547143644,

1100126026284, -313150978512,

1359463649048, 174256676348)

sage:

31

sage: V=matrix.identity(N)

sage: V=-K[0]*V

sage: Vtop=copy(K)

sage: Vtop[0]=E

sage: V[0]=Vtop

sage: q0=V.LLL()[0][0]/E

sage: q0

596487875

sage: round(K[0]/q0)

984887308997925

sage: s

984887308997925

sage:

32

sage: V[0]

(1024,

-1111539179100720083770339,

794301459533783434896055,

68817802108374958901751,

742362470968200823035396,

1023345827831539515054795,

-357168679398558876730006,

1121421619119964601051443,

-1109674862276222495587129,

-235628937785003770523381)

sage: V[1]

(0, -587473338058640662659869,

0, 0, 0, 0, 0, 0, 0, 0)

sage:

33

sage: V.LLL()[0]

(610803584000, 1056189937254,

37030242384, 845898454698,

-225618319442, 363547143644,

1100126026284, -313150978512,

1359463649048, 174256676348)

sage:

31

sage: V=matrix.identity(N)

sage: V=-K[0]*V

sage: Vtop=copy(K)

sage: Vtop[0]=E

sage: V[0]=Vtop

sage: q0=V.LLL()[0][0]/E

sage: q0

596487875

sage: round(K[0]/q0)

984887308997925

sage: s

984887308997925

sage:

32

sage: V[0]

(1024,

-1111539179100720083770339,

794301459533783434896055,

68817802108374958901751,

742362470968200823035396,

1023345827831539515054795,

-357168679398558876730006,

1121421619119964601051443,

-1109674862276222495587129,

-235628937785003770523381)

sage: V[1]

(0, -587473338058640662659869,

0, 0, 0, 0, 0, 0, 0, 0)

sage:

33

sage: V.LLL()[0]

(610803584000, 1056189937254,

37030242384, 845898454698,

-225618319442, 363547143644,

1100126026284, -313150978512,

1359463649048, 174256676348)

sage:

32

sage: V[0]

(1024,

-1111539179100720083770339,

794301459533783434896055,

68817802108374958901751,

742362470968200823035396,

1023345827831539515054795,

-357168679398558876730006,

1121421619119964601051443,

-1109674862276222495587129,

-235628937785003770523381)

sage: V[1]

(0, -587473338058640662659869,

0, 0, 0, 0, 0, 0, 0, 0)

sage:

33

sage: V.LLL()[0]

(610803584000, 1056189937254,

37030242384, 845898454698,

-225618319442, 363547143644,

1100126026284, -313150978512,

1359463649048, 174256676348)

sage:

32

sage: V[0]

(1024,

-1111539179100720083770339,

794301459533783434896055,

68817802108374958901751,

742362470968200823035396,

1023345827831539515054795,

-357168679398558876730006,

1121421619119964601051443,

-1109674862276222495587129,

-235628937785003770523381)

sage: V[1]

(0, -587473338058640662659869,

0, 0, 0, 0, 0, 0, 0, 0)

sage:

33

sage: V.LLL()[0]

(610803584000, 1056189937254,

37030242384, 845898454698,

-225618319442, 363547143644,

1100126026284, -313150978512,

1359463649048, 174256676348)

sage: q=[Ki//s for Ki in K]

sage:

32

sage: V[0]

(1024,

-1111539179100720083770339,

794301459533783434896055,

68817802108374958901751,

742362470968200823035396,

1023345827831539515054795,

-357168679398558876730006,

1121421619119964601051443,

-1109674862276222495587129,

-235628937785003770523381)

sage: V[1]

(0, -587473338058640662659869,

0, 0, 0, 0, 0, 0, 0, 0)

sage:

33

sage: V.LLL()[0]

(610803584000, 1056189937254,

37030242384, 845898454698,

-225618319442, 363547143644,

1100126026284, -313150978512,

1359463649048, 174256676348)

sage: q=[Ki//s for Ki in K]

sage: q[0]*E

610803584000

sage:

32

sage: V[0]

(1024,

-1111539179100720083770339,

794301459533783434896055,

68817802108374958901751,

742362470968200823035396,

1023345827831539515054795,

-357168679398558876730006,

1121421619119964601051443,

-1109674862276222495587129,

-235628937785003770523381)

sage: V[1]

(0, -587473338058640662659869,

0, 0, 0, 0, 0, 0, 0, 0)

sage:

33

sage: V.LLL()[0]

(610803584000, 1056189937254,

37030242384, 845898454698,

-225618319442, 363547143644,

1100126026284, -313150978512,

1359463649048, 174256676348)

sage: q=[Ki//s for Ki in K]

sage: q[0]*E

610803584000

sage: q[0]*K[1]-q[1]*K[0]

1056189937254

sage:

32

sage: V[0]

(1024,

-1111539179100720083770339,

794301459533783434896055,

68817802108374958901751,

742362470968200823035396,

1023345827831539515054795,

-357168679398558876730006,

1121421619119964601051443,

-1109674862276222495587129,

-235628937785003770523381)

sage: V[1]

(0, -587473338058640662659869,

0, 0, 0, 0, 0, 0, 0, 0)

sage:

33

sage: V.LLL()[0]

(610803584000, 1056189937254,

37030242384, 845898454698,

-225618319442, 363547143644,

1100126026284, -313150978512,

1359463649048, 174256676348)

sage: q=[Ki//s for Ki in K]

sage: q[0]*E

610803584000

sage: q[0]*K[1]-q[1]*K[0]

1056189937254

sage: q[0]*K[9]-q[9]*K[0]

174256676348

sage:

32

sage: V[0]

(1024,

-1111539179100720083770339,

794301459533783434896055,

68817802108374958901751,

742362470968200823035396,

1023345827831539515054795,

-357168679398558876730006,

1121421619119964601051443,

-1109674862276222495587129,

-235628937785003770523381)

sage: V[1]

(0, -587473338058640662659869,

0, 0, 0, 0, 0, 0, 0, 0)

sage:

33

sage: V.LLL()[0]

(610803584000, 1056189937254,

37030242384, 845898454698,

-225618319442, 363547143644,

1100126026284, -313150978512,

1359463649048, 174256676348)

sage: q=[Ki//s for Ki in K]

sage: q[0]*E

610803584000

sage: q[0]*K[1]-q[1]*K[0]

1056189937254

sage: q[0]*K[9]-q[9]*K[0]

174256676348

sage:

34

2009 DGHV analysis:

can choose key sizes where

these lattice attacks fail.

32

sage: V[0]

(1024,

-1111539179100720083770339,

794301459533783434896055,

68817802108374958901751,

742362470968200823035396,

1023345827831539515054795,

-357168679398558876730006,

1121421619119964601051443,

-1109674862276222495587129,

-235628937785003770523381)

sage: V[1]

(0, -587473338058640662659869,

0, 0, 0, 0, 0, 0, 0, 0)

sage:

33

sage: V.LLL()[0]

(610803584000, 1056189937254,

37030242384, 845898454698,

-225618319442, 363547143644,

1100126026284, -313150978512,

1359463649048, 174256676348)

sage: q=[Ki//s for Ki in K]

sage: q[0]*E

610803584000

sage: q[0]*K[1]-q[1]*K[0]

1056189937254

sage: q[0]*K[9]-q[9]*K[0]

174256676348

sage:

34

2009 DGHV analysis:

can choose key sizes where

these lattice attacks fail.

32

sage: V[0]

(1024,

-1111539179100720083770339,

794301459533783434896055,

68817802108374958901751,

742362470968200823035396,

1023345827831539515054795,

-357168679398558876730006,

1121421619119964601051443,

-1109674862276222495587129,

-235628937785003770523381)

sage: V[1]

(0, -587473338058640662659869,

0, 0, 0, 0, 0, 0, 0, 0)

sage:

33

sage: V.LLL()[0]

(610803584000, 1056189937254,

37030242384, 845898454698,

-225618319442, 363547143644,

1100126026284, -313150978512,

1359463649048, 174256676348)

sage: q=[Ki//s for Ki in K]

sage: q[0]*E

610803584000

sage: q[0]*K[1]-q[1]*K[0]

1056189937254

sage: q[0]*K[9]-q[9]*K[0]

174256676348

sage:

34

2009 DGHV analysis:

can choose key sizes where

these lattice attacks fail.

33

sage: V.LLL()[0]

(610803584000, 1056189937254,

37030242384, 845898454698,

-225618319442, 363547143644,

1100126026284, -313150978512,

1359463649048, 174256676348)

sage: q=[Ki//s for Ki in K]

sage: q[0]*E

610803584000

sage: q[0]*K[1]-q[1]*K[0]

1056189937254

sage: q[0]*K[9]-q[9]*K[0]

174256676348

sage:

34

2009 DGHV analysis:

can choose key sizes where

these lattice attacks fail.

33

sage: V.LLL()[0]

(610803584000, 1056189937254,

37030242384, 845898454698,

-225618319442, 363547143644,

1100126026284, -313150978512,

1359463649048, 174256676348)

sage: q=[Ki//s for Ki in K]

sage: q[0]*E

610803584000

sage: q[0]*K[1]-q[1]*K[0]

1056189937254

sage: q[0]*K[9]-q[9]*K[0]

174256676348

sage:

34

2009 DGHV analysis:

can choose key sizes where

these lattice attacks fail.

2011 Coron–Mandal–Naccache–

Tibouchi: reduce key sizes

by modifying DGHV. “This

shows that fully homomorphic

encryption can be implemented

with a simple scheme.”

33

sage: V.LLL()[0]

(610803584000, 1056189937254,

37030242384, 845898454698,

-225618319442, 363547143644,

1100126026284, -313150978512,

1359463649048, 174256676348)

sage: q=[Ki//s for Ki in K]

sage: q[0]*E

610803584000

sage: q[0]*K[1]-q[1]*K[0]

1056189937254

sage: q[0]*K[9]-q[9]*K[0]

174256676348

sage:

34

2009 DGHV analysis:

can choose key sizes where

these lattice attacks fail.

2011 Coron–Mandal–Naccache–

Tibouchi: reduce key sizes

by modifying DGHV. “This

shows that fully homomorphic

encryption can be implemented

with a simple scheme.”

e.g. all attacks take ≥272 cycles

with public keys only

33

sage: V.LLL()[0]

(610803584000, 1056189937254,

37030242384, 845898454698,

-225618319442, 363547143644,

1100126026284, -313150978512,

1359463649048, 174256676348)

sage: q=[Ki//s for Ki in K]

sage: q[0]*E

610803584000

sage: q[0]*K[1]-q[1]*K[0]

1056189937254

sage: q[0]*K[9]-q[9]*K[0]

174256676348

sage:

34

2009 DGHV analysis:

can choose key sizes where

these lattice attacks fail.

2011 Coron–Mandal–Naccache–

Tibouchi: reduce key sizes

by modifying DGHV. “This

shows that fully homomorphic

encryption can be implemented

with a simple scheme.”

e.g. all attacks take ≥272 cycles

with public keys only 802MB.

33

sage: V.LLL()[0]

(610803584000, 1056189937254,

37030242384, 845898454698,

-225618319442, 363547143644,

1100126026284, -313150978512,

1359463649048, 174256676348)

sage: q=[Ki//s for Ki in K]

sage: q[0]*E

610803584000

sage: q[0]*K[1]-q[1]*K[0]

1056189937254

sage: q[0]*K[9]-q[9]*K[0]

174256676348

sage:

34

2009 DGHV analysis:

can choose key sizes where

these lattice attacks fail.

2011 Coron–Mandal–Naccache–

Tibouchi: reduce key sizes

by modifying DGHV. “This

shows that fully homomorphic

encryption can be implemented

with a simple scheme.”

e.g. all attacks take ≥272 cycles

with public keys only 802MB.

2012 Chen–Nguyen: faster attack.

Need bigger DGHV/CMNT keys.

33

sage: V.LLL()[0]

(610803584000, 1056189937254,

37030242384, 845898454698,

-225618319442, 363547143644,

1100126026284, -313150978512,

1359463649048, 174256676348)

sage: q=[Ki//s for Ki in K]

sage: q[0]*E

610803584000

sage: q[0]*K[1]-q[1]*K[0]

1056189937254

sage: q[0]*K[9]-q[9]*K[0]

174256676348

sage:

34

2009 DGHV analysis:

can choose key sizes where

these lattice attacks fail.

2011 Coron–Mandal–Naccache–

Tibouchi: reduce key sizes

by modifying DGHV. “This

shows that fully homomorphic

encryption can be implemented

with a simple scheme.”

e.g. all attacks take ≥272 cycles

with public keys only 802MB.

2012 Chen–Nguyen: faster attack.

Need bigger DGHV/CMNT keys.

35

Big attack surfaces are dangerous

1991 Chaum–van Heijst–

Pfitzmann: choose p sensibly;

define C(x; y) = 4x9y mod p

for suitable ranges of x and y .

Simple, beautiful, structured.

Very easy security reduction:

finding C collision implies

computing a discrete logarithm.

33

sage: V.LLL()[0]

(610803584000, 1056189937254,

37030242384, 845898454698,

-225618319442, 363547143644,

1100126026284, -313150978512,

1359463649048, 174256676348)

sage: q=[Ki//s for Ki in K]

sage: q[0]*E

610803584000

sage: q[0]*K[1]-q[1]*K[0]

1056189937254

sage: q[0]*K[9]-q[9]*K[0]

174256676348

sage:

34

2009 DGHV analysis:

can choose key sizes where

these lattice attacks fail.

2011 Coron–Mandal–Naccache–

Tibouchi: reduce key sizes

by modifying DGHV. “This

shows that fully homomorphic

encryption can be implemented

with a simple scheme.”

e.g. all attacks take ≥272 cycles

with public keys only 802MB.

2012 Chen–Nguyen: faster attack.

Need bigger DGHV/CMNT keys.

35

Big attack surfaces are dangerous

1991 Chaum–van Heijst–

Pfitzmann: choose p sensibly;

define C(x; y) = 4x9y mod p

for suitable ranges of x and y .

Simple, beautiful, structured.

Very easy security reduction:

finding C collision implies

computing a discrete logarithm.

33

sage: V.LLL()[0]

(610803584000, 1056189937254,

37030242384, 845898454698,

-225618319442, 363547143644,

1100126026284, -313150978512,

1359463649048, 174256676348)

sage: q=[Ki//s for Ki in K]

sage: q[0]*E

610803584000

sage: q[0]*K[1]-q[1]*K[0]

1056189937254

sage: q[0]*K[9]-q[9]*K[0]

174256676348

sage:

34

2009 DGHV analysis:

can choose key sizes where

these lattice attacks fail.

2011 Coron–Mandal–Naccache–

Tibouchi: reduce key sizes

by modifying DGHV. “This

shows that fully homomorphic

encryption can be implemented

with a simple scheme.”

e.g. all attacks take ≥272 cycles

with public keys only 802MB.

2012 Chen–Nguyen: faster attack.

Need bigger DGHV/CMNT keys.

35

Big attack surfaces are dangerous

1991 Chaum–van Heijst–

Pfitzmann: choose p sensibly;

define C(x; y) = 4x9y mod p

for suitable ranges of x and y .

Simple, beautiful, structured.

Very easy security reduction:

finding C collision implies

computing a discrete logarithm.

34

2009 DGHV analysis:

can choose key sizes where

these lattice attacks fail.

2011 Coron–Mandal–Naccache–

Tibouchi: reduce key sizes

by modifying DGHV. “This

shows that fully homomorphic

encryption can be implemented

with a simple scheme.”

e.g. all attacks take ≥272 cycles

with public keys only 802MB.

2012 Chen–Nguyen: faster attack.

Need bigger DGHV/CMNT keys.

35

Big attack surfaces are dangerous

1991 Chaum–van Heijst–

Pfitzmann: choose p sensibly;

define C(x; y) = 4x9y mod p

for suitable ranges of x and y .

Simple, beautiful, structured.

Very easy security reduction:

finding C collision implies

computing a discrete logarithm.

34

2009 DGHV analysis:

can choose key sizes where

these lattice attacks fail.

2011 Coron–Mandal–Naccache–

Tibouchi: reduce key sizes

by modifying DGHV. “This

shows that fully homomorphic

encryption can be implemented

with a simple scheme.”

e.g. all attacks take ≥272 cycles

with public keys only 802MB.

2012 Chen–Nguyen: faster attack.

Need bigger DGHV/CMNT keys.

35

Big attack surfaces are dangerous

1991 Chaum–van Heijst–

Pfitzmann: choose p sensibly;

define C(x; y) = 4x9y mod p

for suitable ranges of x and y .

Simple, beautiful, structured.

Very easy security reduction:

finding C collision implies

computing a discrete logarithm.

Typical exaggerations:

C is “provably secure”; C is

“cryptographically collision-free”;

“security follows from rigorous

mathematical proofs”.

34

2009 DGHV analysis:

can choose key sizes where

these lattice attacks fail.

2011 Coron–Mandal–Naccache–

Tibouchi: reduce key sizes

by modifying DGHV. “This

shows that fully homomorphic

encryption can be implemented

with a simple scheme.”

e.g. all attacks take ≥272 cycles

with public keys only 802MB.

2012 Chen–Nguyen: faster attack.

Need bigger DGHV/CMNT keys.

35

Big attack surfaces are dangerous

1991 Chaum–van Heijst–

Pfitzmann: choose p sensibly;

define C(x; y) = 4x9y mod p

for suitable ranges of x and y .

Simple, beautiful, structured.

Very easy security reduction:

finding C collision implies

computing a discrete logarithm.

Typical exaggerations:

C is “provably secure”; C is

“cryptographically collision-free”;

“security follows from rigorous

mathematical proofs”.

36

Security losses in C include

1922 Kraitchik (index calculus);

1986 Coppersmith–Odlyzko–

Schroeppel (NFS predecessor);

1993 Gordon (general DL NFS);

1993 Schirokauer (faster NFS);

1994 Shor (quantum poly time);

many subsequent attack speedups

from people who care about

pre-quantum security.

C is very bad cryptography.

No matter what user’s cost limit

is, obtain better security with

“unstructured” compression-

function designs such as BLAKE.

34

2009 DGHV analysis:

can choose key sizes where

these lattice attacks fail.

2011 Coron–Mandal–Naccache–

Tibouchi: reduce key sizes

by modifying DGHV. “This

shows that fully homomorphic

encryption can be implemented

with a simple scheme.”

e.g. all attacks take ≥272 cycles

with public keys only 802MB.

2012 Chen–Nguyen: faster attack.

Need bigger DGHV/CMNT keys.

35

Big attack surfaces are dangerous

1991 Chaum–van Heijst–

Pfitzmann: choose p sensibly;

define C(x; y) = 4x9y mod p

for suitable ranges of x and y .

Simple, beautiful, structured.

Very easy security reduction:

finding C collision implies

computing a discrete logarithm.

Typical exaggerations:

C is “provably secure”; C is

“cryptographically collision-free”;

“security follows from rigorous

mathematical proofs”.

36

Security losses in C include

1922 Kraitchik (index calculus);

1986 Coppersmith–Odlyzko–

Schroeppel (NFS predecessor);

1993 Gordon (general DL NFS);

1993 Schirokauer (faster NFS);

1994 Shor (quantum poly time);

many subsequent attack speedups

from people who care about

pre-quantum security.

C is very bad cryptography.

No matter what user’s cost limit

is, obtain better security with

“unstructured” compression-

function designs such as BLAKE.

34

2009 DGHV analysis:

can choose key sizes where

these lattice attacks fail.

2011 Coron–Mandal–Naccache–

Tibouchi: reduce key sizes

by modifying DGHV. “This

shows that fully homomorphic

encryption can be implemented

with a simple scheme.”

e.g. all attacks take ≥272 cycles

with public keys only 802MB.

2012 Chen–Nguyen: faster attack.

Need bigger DGHV/CMNT keys.

35

Big attack surfaces are dangerous

1991 Chaum–van Heijst–

Pfitzmann: choose p sensibly;

define C(x; y) = 4x9y mod p

for suitable ranges of x and y .

Simple, beautiful, structured.

Very easy security reduction:

finding C collision implies

computing a discrete logarithm.

Typical exaggerations:

C is “provably secure”; C is

“cryptographically collision-free”;

“security follows from rigorous

mathematical proofs”.

36

Security losses in C include

1922 Kraitchik (index calculus);

1986 Coppersmith–Odlyzko–

Schroeppel (NFS predecessor);

1993 Gordon (general DL NFS);

1993 Schirokauer (faster NFS);

1994 Shor (quantum poly time);

many subsequent attack speedups

from people who care about

pre-quantum security.

C is very bad cryptography.

No matter what user’s cost limit

is, obtain better security with

“unstructured” compression-

function designs such as BLAKE.

35

Big attack surfaces are dangerous

1991 Chaum–van Heijst–

Pfitzmann: choose p sensibly;

define C(x; y) = 4x9y mod p

for suitable ranges of x and y .

Simple, beautiful, structured.

Very easy security reduction:

finding C collision implies

computing a discrete logarithm.

Typical exaggerations:

C is “provably secure”; C is

“cryptographically collision-free”;

“security follows from rigorous

mathematical proofs”.

36

Security losses in C include

1922 Kraitchik (index calculus);

1986 Coppersmith–Odlyzko–

Schroeppel (NFS predecessor);

1993 Gordon (general DL NFS);

1993 Schirokauer (faster NFS);

1994 Shor (quantum poly time);

many subsequent attack speedups

from people who care about

pre-quantum security.

C is very bad cryptography.

No matter what user’s cost limit

is, obtain better security with

“unstructured” compression-

function designs such as BLAKE.

35

Big attack surfaces are dangerous

1991 Chaum–van Heijst–

Pfitzmann: choose p sensibly;

define C(x; y) = 4x9y mod p

for suitable ranges of x and y .

Simple, beautiful, structured.

Very easy security reduction:

finding C collision implies

computing a discrete logarithm.

Typical exaggerations:

C is “provably secure”; C is

“cryptographically collision-free”;

“security follows from rigorous

mathematical proofs”.

36

Security losses in C include

1922 Kraitchik (index calculus);

1986 Coppersmith–Odlyzko–

Schroeppel (NFS predecessor);

1993 Gordon (general DL NFS);

1993 Schirokauer (faster NFS);

1994 Shor (quantum poly time);

many subsequent attack speedups

from people who care about

pre-quantum security.

C is very bad cryptography.

No matter what user’s cost limit

is, obtain better security with

“unstructured” compression-

function designs such as BLAKE.

37

For public-key encryption:

Some mathematical structure

seems to be unavoidable,

but pursuing simple structures

often leads to security disasters.

35

Big attack surfaces are dangerous

1991 Chaum–van Heijst–

Pfitzmann: choose p sensibly;

define C(x; y) = 4x9y mod p

for suitable ranges of x and y .

Simple, beautiful, structured.

Very easy security reduction:

finding C collision implies

computing a discrete logarithm.

Typical exaggerations:

C is “provably secure”; C is

“cryptographically collision-free”;

“security follows from rigorous

mathematical proofs”.

36

Security losses in C include

1922 Kraitchik (index calculus);

1986 Coppersmith–Odlyzko–

Schroeppel (NFS predecessor);

1993 Gordon (general DL NFS);

1993 Schirokauer (faster NFS);

1994 Shor (quantum poly time);

many subsequent attack speedups

from people who care about

pre-quantum security.

C is very bad cryptography.

No matter what user’s cost limit

is, obtain better security with

“unstructured” compression-

function designs such as BLAKE.

37

For public-key encryption:

Some mathematical structure

seems to be unavoidable,

but pursuing simple structures

often leads to security disasters.

35

Big attack surfaces are dangerous

1991 Chaum–van Heijst–

Pfitzmann: choose p sensibly;

define C(x; y) = 4x9y mod p

for suitable ranges of x and y .

Simple, beautiful, structured.

Very easy security reduction:

finding C collision implies

computing a discrete logarithm.

Typical exaggerations:

C is “provably secure”; C is

“cryptographically collision-free”;

“security follows from rigorous

mathematical proofs”.

36

Security losses in C include

1922 Kraitchik (index calculus);

1986 Coppersmith–Odlyzko–

Schroeppel (NFS predecessor);

1993 Gordon (general DL NFS);

1993 Schirokauer (faster NFS);

1994 Shor (quantum poly time);

many subsequent attack speedups

from people who care about

pre-quantum security.

C is very bad cryptography.

No matter what user’s cost limit

is, obtain better security with

“unstructured” compression-

function designs such as BLAKE.

37

For public-key encryption:

Some mathematical structure

seems to be unavoidable,

but pursuing simple structures

often leads to security disasters.

36

Security losses in C include

1922 Kraitchik (index calculus);

1986 Coppersmith–Odlyzko–

Schroeppel (NFS predecessor);

1993 Gordon (general DL NFS);

1993 Schirokauer (faster NFS);

1994 Shor (quantum poly time);

many subsequent attack speedups

from people who care about

pre-quantum security.

C is very bad cryptography.

No matter what user’s cost limit

is, obtain better security with

“unstructured” compression-

function designs such as BLAKE.

37

For public-key encryption:

Some mathematical structure

seems to be unavoidable,

but pursuing simple structures

often leads to security disasters.

36

Security losses in C include

1922 Kraitchik (index calculus);

1986 Coppersmith–Odlyzko–

Schroeppel (NFS predecessor);

1993 Gordon (general DL NFS);

1993 Schirokauer (faster NFS);

1994 Shor (quantum poly time);

many subsequent attack speedups

from people who care about

pre-quantum security.

C is very bad cryptography.

No matter what user’s cost limit

is, obtain better security with

“unstructured” compression-

function designs such as BLAKE.

37

For public-key encryption:

Some mathematical structure

seems to be unavoidable,

but pursuing simple structures

often leads to security disasters.

Pre-quantum example: DH is

simpler than ECDH, but DH has

suffered many more security losses

than ECDH. State-of-the-art DH

attacks are very complicated.

36

Security losses in C include

1922 Kraitchik (index calculus);

1986 Coppersmith–Odlyzko–

Schroeppel (NFS predecessor);

1993 Gordon (general DL NFS);

1993 Schirokauer (faster NFS);

1994 Shor (quantum poly time);

many subsequent attack speedups

from people who care about

pre-quantum security.

C is very bad cryptography.

No matter what user’s cost limit

is, obtain better security with

“unstructured” compression-

function designs such as BLAKE.

37

For public-key encryption:

Some mathematical structure

seems to be unavoidable,

but pursuing simple structures

often leads to security disasters.

Pre-quantum example: DH is

simpler than ECDH, but DH has

suffered many more security losses

than ECDH. State-of-the-art DH

attacks are very complicated.

2013 Barbulescu–Gaudry–Joux–

Thomé: pre-quantum quasi-poly

break of small-characteristic DH.

36

Security losses in C include

1922 Kraitchik (index calculus);

1986 Coppersmith–Odlyzko–

Schroeppel (NFS predecessor);

1993 Gordon (general DL NFS);

1993 Schirokauer (faster NFS);

1994 Shor (quantum poly time);

many subsequent attack speedups

from people who care about

pre-quantum security.

C is very bad cryptography.

No matter what user’s cost limit

is, obtain better security with

“unstructured” compression-

function designs such as BLAKE.

37

For public-key encryption:

Some mathematical structure

seems to be unavoidable,

but pursuing simple structures

often leads to security disasters.

Pre-quantum example: DH is

simpler than ECDH, but DH has

suffered many more security losses

than ECDH. State-of-the-art DH

attacks are very complicated.

2013 Barbulescu–Gaudry–Joux–

Thomé: pre-quantum quasi-poly

break of small-characteristic DH.

38

The state-of-the-art attacks

against Cohen’s cryptosystem

are much more complicated

than the cryptosystem is. Scary!

36

Security losses in C include

1922 Kraitchik (index calculus);

1986 Coppersmith–Odlyzko–

Schroeppel (NFS predecessor);

1993 Gordon (general DL NFS);

1993 Schirokauer (faster NFS);

1994 Shor (quantum poly time);

many subsequent attack speedups

from people who care about

pre-quantum security.

C is very bad cryptography.

No matter what user’s cost limit

is, obtain better security with

“unstructured” compression-

function designs such as BLAKE.

37

For public-key encryption:

Some mathematical structure

seems to be unavoidable,

but pursuing simple structures

often leads to security disasters.

Pre-quantum example: DH is

simpler than ECDH, but DH has

suffered many more security losses

than ECDH. State-of-the-art DH

attacks are very complicated.

2013 Barbulescu–Gaudry–Joux–

Thomé: pre-quantum quasi-poly

break of small-characteristic DH.

38

The state-of-the-art attacks

against Cohen’s cryptosystem

are much more complicated

than the cryptosystem is. Scary!

36

Security losses in C include

1922 Kraitchik (index calculus);

1986 Coppersmith–Odlyzko–

Schroeppel (NFS predecessor);

1993 Gordon (general DL NFS);

1993 Schirokauer (faster NFS);

1994 Shor (quantum poly time);

many subsequent attack speedups

from people who care about

pre-quantum security.

C is very bad cryptography.

No matter what user’s cost limit

is, obtain better security with

“unstructured” compression-

function designs such as BLAKE.

37

For public-key encryption:

Some mathematical structure

seems to be unavoidable,

but pursuing simple structures

often leads to security disasters.

Pre-quantum example: DH is

simpler than ECDH, but DH has

suffered many more security losses

than ECDH. State-of-the-art DH

attacks are very complicated.

2013 Barbulescu–Gaudry–Joux–

Thomé: pre-quantum quasi-poly

break of small-characteristic DH.

38

The state-of-the-art attacks

against Cohen’s cryptosystem

are much more complicated

than the cryptosystem is. Scary!

37

For public-key encryption:

Some mathematical structure

seems to be unavoidable,

but pursuing simple structures

often leads to security disasters.

Pre-quantum example: DH is

simpler than ECDH, but DH has

suffered many more security losses

than ECDH. State-of-the-art DH

attacks are very complicated.

2013 Barbulescu–Gaudry–Joux–

Thomé: pre-quantum quasi-poly

break of small-characteristic DH.

38

The state-of-the-art attacks

against Cohen’s cryptosystem

are much more complicated

than the cryptosystem is. Scary!

37

For public-key encryption:

Some mathematical structure

seems to be unavoidable,

but pursuing simple structures

often leads to security disasters.

Pre-quantum example: DH is

simpler than ECDH, but DH has

suffered many more security losses

than ECDH. State-of-the-art DH

attacks are very complicated.

2013 Barbulescu–Gaudry–Joux–

Thomé: pre-quantum quasi-poly

break of small-characteristic DH.

38

The state-of-the-art attacks

against Cohen’s cryptosystem

are much more complicated

than the cryptosystem is. Scary!

Lattice-based cryptosystems are

advertised as “algorithmically

simple”, consisting mainly of

“linear operations on vectors”.

Attacks exploit this structure!

37

For public-key encryption:

Some mathematical structure

seems to be unavoidable,

but pursuing simple structures

often leads to security disasters.

Pre-quantum example: DH is

simpler than ECDH, but DH has

suffered many more security losses

than ECDH. State-of-the-art DH

attacks are very complicated.

2013 Barbulescu–Gaudry–Joux–

Thomé: pre-quantum quasi-poly

break of small-characteristic DH.

38

The state-of-the-art attacks

against Cohen’s cryptosystem

are much more complicated

than the cryptosystem is. Scary!

Lattice-based cryptosystems are

advertised as “algorithmically

simple”, consisting mainly of

“linear operations on vectors”.

Attacks exploit this structure!

For efficiency, lattice-based

cryptosystems usually have

features that expand the attack

surface even more: e.g.,

rings and decryption failures.

37

For public-key encryption:

Some mathematical structure

seems to be unavoidable,

but pursuing simple structures

often leads to security disasters.

Pre-quantum example: DH is

simpler than ECDH, but DH has

suffered many more security losses

than ECDH. State-of-the-art DH

attacks are very complicated.

2013 Barbulescu–Gaudry–Joux–

Thomé: pre-quantum quasi-poly

break of small-characteristic DH.

38

The state-of-the-art attacks

against Cohen’s cryptosystem

are much more complicated

than the cryptosystem is. Scary!

Lattice-based cryptosystems are

advertised as “algorithmically

simple”, consisting mainly of

“linear operations on vectors”.

Attacks exploit this structure!

For efficiency, lattice-based

cryptosystems usually have

features that expand the attack

surface even more: e.g.,

rings and decryption failures.

39

NISTPQC

NIST received 82 submissions.

69 submissions in round 1,

from hundreds of people;

22 signature submissions,

47 encryption submissions.

37

For public-key encryption:

Some mathematical structure

seems to be unavoidable,

but pursuing simple structures

often leads to security disasters.

Pre-quantum example: DH is

simpler than ECDH, but DH has

suffered many more security losses

than ECDH. State-of-the-art DH

attacks are very complicated.

2013 Barbulescu–Gaudry–Joux–

Thomé: pre-quantum quasi-poly

break of small-characteristic DH.

38

The state-of-the-art attacks

against Cohen’s cryptosystem

are much more complicated

than the cryptosystem is. Scary!

Lattice-based cryptosystems are

advertised as “algorithmically

simple”, consisting mainly of

“linear operations on vectors”.

Attacks exploit this structure!

For efficiency, lattice-based

cryptosystems usually have

features that expand the attack

surface even more: e.g.,

rings and decryption failures.

39

NISTPQC

NIST received 82 submissions.

69 submissions in round 1,

from hundreds of people;

22 signature submissions,

47 encryption submissions.

37

For public-key encryption:

Some mathematical structure

seems to be unavoidable,

but pursuing simple structures

often leads to security disasters.

Pre-quantum example: DH is

simpler than ECDH, but DH has

suffered many more security losses

than ECDH. State-of-the-art DH

attacks are very complicated.

2013 Barbulescu–Gaudry–Joux–

Thomé: pre-quantum quasi-poly

break of small-characteristic DH.

38

The state-of-the-art attacks

against Cohen’s cryptosystem

are much more complicated

than the cryptosystem is. Scary!

Lattice-based cryptosystems are

advertised as “algorithmically

simple”, consisting mainly of

“linear operations on vectors”.

Attacks exploit this structure!

For efficiency, lattice-based

cryptosystems usually have

features that expand the attack

surface even more: e.g.,

rings and decryption failures.

39

NISTPQC

NIST received 82 submissions.

69 submissions in round 1,

from hundreds of people;

22 signature submissions,

47 encryption submissions.

38

The state-of-the-art attacks

against Cohen’s cryptosystem

are much more complicated

than the cryptosystem is. Scary!

Lattice-based cryptosystems are

advertised as “algorithmically

simple”, consisting mainly of

“linear operations on vectors”.

Attacks exploit this structure!

For efficiency, lattice-based

cryptosystems usually have

features that expand the attack

surface even more: e.g.,

rings and decryption failures.

39

NISTPQC

NIST received 82 submissions.

69 submissions in round 1,

from hundreds of people;

22 signature submissions,

47 encryption submissions.

38

The state-of-the-art attacks

against Cohen’s cryptosystem

are much more complicated

than the cryptosystem is. Scary!

Lattice-based cryptosystems are

advertised as “algorithmically

simple”, consisting mainly of

“linear operations on vectors”.

Attacks exploit this structure!

For efficiency, lattice-based

cryptosystems usually have

features that expand the attack

surface even more: e.g.,

rings and decryption failures.

39

NISTPQC

NIST received 82 submissions.

69 submissions in round 1,

from hundreds of people;

22 signature submissions,

47 encryption submissions.

26 submissions in round 2:

9 signature submissions;

17 encryption submissions.

38

The state-of-the-art attacks

against Cohen’s cryptosystem

are much more complicated

than the cryptosystem is. Scary!

Lattice-based cryptosystems are

advertised as “algorithmically

simple”, consisting mainly of

“linear operations on vectors”.

Attacks exploit this structure!

For efficiency, lattice-based

cryptosystems usually have

features that expand the attack

surface even more: e.g.,

rings and decryption failures.

39

NISTPQC

NIST received 82 submissions.

69 submissions in round 1,

from hundreds of people;

22 signature submissions,

47 encryption submissions.

26 submissions in round 2:

9 signature submissions;

17 encryption submissions.

Round 3 starting soon.

My guesses: NIST will announce

short list of planned standards

+ short backup list; and will

overemphasize speed.

38

The state-of-the-art attacks

against Cohen’s cryptosystem

are much more complicated

than the cryptosystem is. Scary!

Lattice-based cryptosystems are

advertised as “algorithmically

simple”, consisting mainly of

“linear operations on vectors”.

Attacks exploit this structure!

For efficiency, lattice-based

cryptosystems usually have

features that expand the attack

surface even more: e.g.,

rings and decryption failures.

39

NISTPQC

NIST received 82 submissions.

69 submissions in round 1,

from hundreds of people;

22 signature submissions,

47 encryption submissions.

26 submissions in round 2:

9 signature submissions;

17 encryption submissions.

Round 3 starting soon.

My guesses: NIST will announce

short list of planned standards

+ short backup list; and will

overemphasize speed.

40

Lattice-based signature submissions:

• Dilithium: round 2.

• DRS: broken; eliminated.

• FALCONj: round 2.

• pqNTRUSignj: eliminated.

• qTESLA: mistaken security

“theorems”; round 2; some

parameters broken.

38

The state-of-the-art attacks

against Cohen’s cryptosystem

are much more complicated

than the cryptosystem is. Scary!

Lattice-based cryptosystems are

advertised as “algorithmically

simple”, consisting mainly of

“linear operations on vectors”.

Attacks exploit this structure!

For efficiency, lattice-based

cryptosystems usually have

features that expand the attack

surface even more: e.g.,

rings and decryption failures.

39

NISTPQC

NIST received 82 submissions.

69 submissions in round 1,

from hundreds of people;

22 signature submissions,

47 encryption submissions.

26 submissions in round 2:

9 signature submissions;

17 encryption submissions.

Round 3 starting soon.

My guesses: NIST will announce

short list of planned standards

+ short backup list; and will

overemphasize speed.

40

Lattice-based signature submissions:

• Dilithium: round 2.

• DRS: broken; eliminated.

• FALCONj: round 2.

• pqNTRUSignj: eliminated.

• qTESLA: mistaken security

“theorems”; round 2; some

parameters broken.

38

The state-of-the-art attacks

against Cohen’s cryptosystem

are much more complicated

than the cryptosystem is. Scary!

Lattice-based cryptosystems are

advertised as “algorithmically

simple”, consisting mainly of

“linear operations on vectors”.

Attacks exploit this structure!

For efficiency, lattice-based

cryptosystems usually have

features that expand the attack

surface even more: e.g.,

rings and decryption failures.

39

NISTPQC

NIST received 82 submissions.

69 submissions in round 1,

from hundreds of people;

22 signature submissions,

47 encryption submissions.

26 submissions in round 2:

9 signature submissions;

17 encryption submissions.

Round 3 starting soon.

My guesses: NIST will announce

short list of planned standards

+ short backup list; and will

overemphasize speed.

40

Lattice-based signature submissions:

• Dilithium: round 2.

• DRS: broken; eliminated.

• FALCONj: round 2.

• pqNTRUSignj: eliminated.

• qTESLA: mistaken security

“theorems”; round 2; some

parameters broken.

39

NISTPQC

NIST received 82 submissions.

69 submissions in round 1,

from hundreds of people;

22 signature submissions,

47 encryption submissions.

26 submissions in round 2:

9 signature submissions;

17 encryption submissions.

Round 3 starting soon.

My guesses: NIST will announce

short list of planned standards

+ short backup list; and will

overemphasize speed.

40

Lattice-based signature submissions:

• Dilithium: round 2.

• DRS: broken; eliminated.

• FALCONj: round 2.

• pqNTRUSignj: eliminated.

• qTESLA: mistaken security

“theorems”; round 2; some

parameters broken.

39

NISTPQC

NIST received 82 submissions.

69 submissions in round 1,

from hundreds of people;

22 signature submissions,

47 encryption submissions.

26 submissions in round 2:

9 signature submissions;

17 encryption submissions.

Round 3 starting soon.

My guesses: NIST will announce

short list of planned standards

+ short backup list; and will

overemphasize speed.

40

Lattice-based signature submissions:

• Dilithium: round 2.

• DRS: broken; eliminated.

• FALCONj: round 2.

• pqNTRUSignj: eliminated.

• qTESLA: mistaken security

“theorems”; round 2; some

parameters broken.

j: submitter claims patent on

this submission. Warning: even

without j, submission could be

covered by other patents!

39

NISTPQC

NIST received 82 submissions.

69 submissions in round 1,

from hundreds of people;

22 signature submissions,

47 encryption submissions.

26 submissions in round 2:

9 signature submissions;

17 encryption submissions.

Round 3 starting soon.

My guesses: NIST will announce

short list of planned standards

+ short backup list; and will

overemphasize speed.

40

Lattice-based signature submissions:

• Dilithium: round 2.

• DRS: broken; eliminated.

• FALCONj: round 2.

• pqNTRUSignj: eliminated.

• qTESLA: mistaken security

“theorems”; round 2; some

parameters broken.

j: submitter claims patent on

this submission. Warning: even

without j, submission could be

covered by other patents!

41

Lattice-based encryption

submissions in round 2: Frodo,

Kyber, LAC, NewHope, NTRU,

NTRU Prime, Round5j, SABER,

ThreeBears (≈lattice).

39

NISTPQC

NIST received 82 submissions.

69 submissions in round 1,

from hundreds of people;

22 signature submissions,

47 encryption submissions.

26 submissions in round 2:

9 signature submissions;

17 encryption submissions.

Round 3 starting soon.

My guesses: NIST will announce

short list of planned standards

+ short backup list; and will

overemphasize speed.

40

Lattice-based signature submissions:

• Dilithium: round 2.

• DRS: broken; eliminated.

• FALCONj: round 2.

• pqNTRUSignj: eliminated.

• qTESLA: mistaken security

“theorems”; round 2; some

parameters broken.

j: submitter claims patent on

this submission. Warning: even

without j, submission could be

covered by other patents!

41

Lattice-based encryption

submissions in round 2: Frodo,

Kyber, LAC, NewHope, NTRU,

NTRU Prime, Round5j, SABER,

ThreeBears (≈lattice).

39

NISTPQC

NIST received 82 submissions.

69 submissions in round 1,

from hundreds of people;

22 signature submissions,

47 encryption submissions.

26 submissions in round 2:

9 signature submissions;

17 encryption submissions.

Round 3 starting soon.

My guesses: NIST will announce

short list of planned standards

+ short backup list; and will

overemphasize speed.

40

Lattice-based signature submissions:

• Dilithium: round 2.

• DRS: broken; eliminated.

• FALCONj: round 2.

• pqNTRUSignj: eliminated.

• qTESLA: mistaken security

“theorems”; round 2; some

parameters broken.

j: submitter claims patent on

this submission. Warning: even

without j, submission could be

covered by other patents!

41

Lattice-based encryption

submissions in round 2: Frodo,

Kyber, LAC, NewHope, NTRU,

NTRU Prime, Round5j, SABER,

ThreeBears (≈lattice).

40

Lattice-based signature submissions:

• Dilithium: round 2.

• DRS: broken; eliminated.

• FALCONj: round 2.

• pqNTRUSignj: eliminated.

• qTESLA: mistaken security

“theorems”; round 2; some

parameters broken.

j: submitter claims patent on

this submission. Warning: even

without j, submission could be

covered by other patents!

41

Lattice-based encryption

submissions in round 2: Frodo,

Kyber, LAC, NewHope, NTRU,

NTRU Prime, Round5j, SABER,

ThreeBears (≈lattice).

40

Lattice-based signature submissions:

• Dilithium: round 2.

• DRS: broken; eliminated.

• FALCONj: round 2.

• pqNTRUSignj: eliminated.

• qTESLA: mistaken security

“theorems”; round 2; some

parameters broken.

j: submitter claims patent on

this submission. Warning: even

without j, submission could be

covered by other patents!

41

Lattice-based encryption

submissions in round 2: Frodo,

Kyber, LAC, NewHope, NTRU,

NTRU Prime, Round5j, SABER,

ThreeBears (≈lattice).

Other round-1 lattice-based

encryption submissions:

Compact LWEj (broken),

Dingj, EMBLEM, KINDI,

LIMA, Lizardj, LOTUS,

Mersenne (≈lattice, big keys),

Odd Manhattan (big keys),

OKCN/AKCN/CNKE/KCLj,

Ramstake (≈lattice, big keys),

Titanium.

40

Lattice-based signature submissions:

• Dilithium: round 2.

• DRS: broken; eliminated.

• FALCONj: round 2.

• pqNTRUSignj: eliminated.

• qTESLA: mistaken security

“theorems”; round 2; some

parameters broken.

j: submitter claims patent on

this submission. Warning: even

without j, submission could be

covered by other patents!

41

Lattice-based encryption

submissions in round 2: Frodo,

Kyber, LAC, NewHope, NTRU,

NTRU Prime, Round5j, SABER,

ThreeBears (≈lattice).

Other round-1 lattice-based

encryption submissions:

Compact LWEj (broken),

Dingj, EMBLEM, KINDI,

LIMA, Lizardj, LOTUS,

Mersenne (≈lattice, big keys),

Odd Manhattan (big keys),

OKCN/AKCN/CNKE/KCLj,

Ramstake (≈lattice, big keys),

Titanium.

42

NTRU is merge of NTRUEncrypt

with NTRU HRSS.

40

Lattice-based signature submissions:

• Dilithium: round 2.

• DRS: broken; eliminated.

• FALCONj: round 2.

• pqNTRUSignj: eliminated.

• qTESLA: mistaken security

“theorems”; round 2; some

parameters broken.

j: submitter claims patent on

this submission. Warning: even

without j, submission could be

covered by other patents!

41

Lattice-based encryption

submissions in round 2: Frodo,

Kyber, LAC, NewHope, NTRU,

NTRU Prime, Round5j, SABER,

ThreeBears (≈lattice).

Other round-1 lattice-based

encryption submissions:

Compact LWEj (broken),

Dingj, EMBLEM, KINDI,

LIMA, Lizardj, LOTUS,

Mersenne (≈lattice, big keys),

Odd Manhattan (big keys),

OKCN/AKCN/CNKE/KCLj,

Ramstake (≈lattice, big keys),

Titanium.

42

NTRU is merge of NTRUEncrypt

with NTRU HRSS.

40

Lattice-based signature submissions:

• Dilithium: round 2.

• DRS: broken; eliminated.

• FALCONj: round 2.

• pqNTRUSignj: eliminated.

• qTESLA: mistaken security

“theorems”; round 2; some

parameters broken.

j: submitter claims patent on

this submission. Warning: even

without j, submission could be

covered by other patents!

41

Lattice-based encryption

submissions in round 2: Frodo,

Kyber, LAC, NewHope, NTRU,

NTRU Prime, Round5j, SABER,

ThreeBears (≈lattice).

Other round-1 lattice-based

encryption submissions:

Compact LWEj (broken),

Dingj, EMBLEM, KINDI,

LIMA, Lizardj, LOTUS,

Mersenne (≈lattice, big keys),

Odd Manhattan (big keys),

OKCN/AKCN/CNKE/KCLj,

Ramstake (≈lattice, big keys),

Titanium.

42

NTRU is merge of NTRUEncrypt

with NTRU HRSS.

41

Lattice-based encryption

submissions in round 2: Frodo,

Kyber, LAC, NewHope, NTRU,

NTRU Prime, Round5j, SABER,

ThreeBears (≈lattice).

Other round-1 lattice-based

encryption submissions:

Compact LWEj (broken),

Dingj, EMBLEM, KINDI,

LIMA, Lizardj, LOTUS,

Mersenne (≈lattice, big keys),

Odd Manhattan (big keys),

OKCN/AKCN/CNKE/KCLj,

Ramstake (≈lattice, big keys),

Titanium.

42

NTRU is merge of NTRUEncrypt

with NTRU HRSS.

41

Lattice-based encryption

submissions in round 2: Frodo,

Kyber, LAC, NewHope, NTRU,

NTRU Prime, Round5j, SABER,

ThreeBears (≈lattice).

Other round-1 lattice-based

encryption submissions:

Compact LWEj (broken),

Dingj, EMBLEM, KINDI,

LIMA, Lizardj, LOTUS,

Mersenne (≈lattice, big keys),

Odd Manhattan (big keys),

OKCN/AKCN/CNKE/KCLj,

Ramstake (≈lattice, big keys),

Titanium.

42

NTRU is merge of NTRUEncrypt

with NTRU HRSS.

Round5j is merge of HILA5

with Round2j. HILA5 CCA

security claim broken. First

Round5 version broken before

round 2 began. Round2 broken

after round 2 began.

41

Lattice-based encryption

submissions in round 2: Frodo,

Kyber, LAC, NewHope, NTRU,

NTRU Prime, Round5j, SABER,

ThreeBears (≈lattice).

Other round-1 lattice-based

encryption submissions:

Compact LWEj (broken),

Dingj, EMBLEM, KINDI,

LIMA, Lizardj, LOTUS,

Mersenne (≈lattice, big keys),

Odd Manhattan (big keys),

OKCN/AKCN/CNKE/KCLj,

Ramstake (≈lattice, big keys),

Titanium.

42

NTRU is merge of NTRUEncrypt

with NTRU HRSS.

Round5j is merge of HILA5

with Round2j. HILA5 CCA

security claim broken. First

Round5 version broken before

round 2 began. Round2 broken

after round 2 began.

Mistaken security “theorems”

have been identified for Frodo,

Kyber, NewHope, Round5.

41

Lattice-based encryption

submissions in round 2: Frodo,

Kyber, LAC, NewHope, NTRU,

NTRU Prime, Round5j, SABER,

ThreeBears (≈lattice).

Other round-1 lattice-based

encryption submissions:

Compact LWEj (broken),

Dingj, EMBLEM, KINDI,

LIMA, Lizardj, LOTUS,

Mersenne (≈lattice, big keys),

Odd Manhattan (big keys),

OKCN/AKCN/CNKE/KCLj,

Ramstake (≈lattice, big keys),

Titanium.

42

NTRU is merge of NTRUEncrypt

with NTRU HRSS.

Round5j is merge of HILA5

with Round2j. HILA5 CCA

security claim broken. First

Round5 version broken before

round 2 began. Round2 broken

after round 2 began.

Mistaken security “theorems”

have been identified for Frodo,

Kyber, NewHope, Round5.

All lattice submissions have

suffered security losses.

41

Lattice-based encryption

submissions in round 2: Frodo,

Kyber, LAC, NewHope, NTRU,

NTRU Prime, Round5j, SABER,

ThreeBears (≈lattice).

Other round-1 lattice-based

encryption submissions:

Compact LWEj (broken),

Dingj, EMBLEM, KINDI,

LIMA, Lizardj, LOTUS,

Mersenne (≈lattice, big keys),

Odd Manhattan (big keys),

OKCN/AKCN/CNKE/KCLj,

Ramstake (≈lattice, big keys),

Titanium.

42

NTRU is merge of NTRUEncrypt

with NTRU HRSS.

Round5j is merge of HILA5

with Round2j. HILA5 CCA

security claim broken. First

Round5 version broken before

round 2 began. Round2 broken

after round 2 began.

Mistaken security “theorems”

have been identified for Frodo,

Kyber, NewHope, Round5.

All lattice submissions have

suffered security losses.

43

Examples of attack improvements

after beginning of round 1:

2018 Laarhoven–Mariano: saves

“between a factor 20 to 40” in

sieving, asymptotically fastest

SVP attack known.

2018 Bai–Stehlé–Wen: new BKZ

variant, “bases of better quality”

for the “same cost” of SVP.

2018 Aono–Nguyen–Shen:

quantum enumeration. For

cryptographic sizes, costs less

than sieving in some cost metrics.

41

Lattice-based encryption

submissions in round 2: Frodo,

Kyber, LAC, NewHope, NTRU,

NTRU Prime, Round5j, SABER,

ThreeBears (≈lattice).

Other round-1 lattice-based

encryption submissions:

Compact LWEj (broken),

Dingj, EMBLEM, KINDI,

LIMA, Lizardj, LOTUS,

Mersenne (≈lattice, big keys),

Odd Manhattan (big keys),

OKCN/AKCN/CNKE/KCLj,

Ramstake (≈lattice, big keys),

Titanium.

42

NTRU is merge of NTRUEncrypt

with NTRU HRSS.

Round5j is merge of HILA5

with Round2j. HILA5 CCA

security claim broken. First

Round5 version broken before

round 2 began. Round2 broken

after round 2 began.

Mistaken security “theorems”

have been identified for Frodo,

Kyber, NewHope, Round5.

All lattice submissions have

suffered security losses.

43

Examples of attack improvements

after beginning of round 1:

2018 Laarhoven–Mariano: saves

“between a factor 20 to 40” in

sieving, asymptotically fastest

SVP attack known.

2018 Bai–Stehlé–Wen: new BKZ

variant, “bases of better quality”

for the “same cost” of SVP.

2018 Aono–Nguyen–Shen:

quantum enumeration. For

cryptographic sizes, costs less

than sieving in some cost metrics.

41

Lattice-based encryption

submissions in round 2: Frodo,

Kyber, LAC, NewHope, NTRU,

NTRU Prime, Round5j, SABER,

ThreeBears (≈lattice).

Other round-1 lattice-based

encryption submissions:

Compact LWEj (broken),

Dingj, EMBLEM, KINDI,

LIMA, Lizardj, LOTUS,

Mersenne (≈lattice, big keys),

Odd Manhattan (big keys),

OKCN/AKCN/CNKE/KCLj,

Ramstake (≈lattice, big keys),

Titanium.

42

NTRU is merge of NTRUEncrypt

with NTRU HRSS.

Round5j is merge of HILA5

with Round2j. HILA5 CCA

security claim broken. First

Round5 version broken before

round 2 began. Round2 broken

after round 2 began.

Mistaken security “theorems”

have been identified for Frodo,

Kyber, NewHope, Round5.

All lattice submissions have

suffered security losses.

43

Examples of attack improvements

after beginning of round 1:

2018 Laarhoven–Mariano: saves

“between a factor 20 to 40” in

sieving, asymptotically fastest

SVP attack known.

2018 Bai–Stehlé–Wen: new BKZ

variant, “bases of better quality”

for the “same cost” of SVP.

2018 Aono–Nguyen–Shen:

quantum enumeration. For

cryptographic sizes, costs less

than sieving in some cost metrics.

42

NTRU is merge of NTRUEncrypt

with NTRU HRSS.

Round5j is merge of HILA5

with Round2j. HILA5 CCA

security claim broken. First

Round5 version broken before

round 2 began. Round2 broken

after round 2 began.

Mistaken security “theorems”

have been identified for Frodo,

Kyber, NewHope, Round5.

All lattice submissions have

suffered security losses.

43

Examples of attack improvements

after beginning of round 1:

2018 Laarhoven–Mariano: saves

“between a factor 20 to 40” in

sieving, asymptotically fastest

SVP attack known.

2018 Bai–Stehlé–Wen: new BKZ

variant, “bases of better quality”

for the “same cost” of SVP.

2018 Aono–Nguyen–Shen:

quantum enumeration. For

cryptographic sizes, costs less

than sieving in some cost metrics.

42

NTRU is merge of NTRUEncrypt

with NTRU HRSS.

Round5j is merge of HILA5

with Round2j. HILA5 CCA

security claim broken. First

Round5 version broken before

round 2 began. Round2 broken

after round 2 began.

Mistaken security “theorems”

have been identified for Frodo,

Kyber, NewHope, Round5.

All lattice submissions have

suffered security losses.

43

Examples of attack improvements

after beginning of round 1:

2018 Laarhoven–Mariano: saves

“between a factor 20 to 40” in

sieving, asymptotically fastest

SVP attack known.

2018 Bai–Stehlé–Wen: new BKZ

variant, “bases of better quality”

for the “same cost” of SVP.

2018 Aono–Nguyen–Shen:

quantum enumeration. For

cryptographic sizes, costs less

than sieving in some cost metrics.

44

2018 Anvers–Vercauteren–

Verbauwhede: “an attacker can

significantly reduce the security of

(Ring/Module)-LWE/LWR based

schemes that have a relatively

high failure rate”.

Frodo, Kyber, LAC, NewHope,

Round5, SABER, ThreeBears

have nonzero failure rates.

For LAC-128, “the failure rate is

248 times bigger than estimated”.

Failure rate is also what broke

first version of Round5.

42

NTRU is merge of NTRUEncrypt

with NTRU HRSS.

Round5j is merge of HILA5

with Round2j. HILA5 CCA

security claim broken. First

Round5 version broken before

round 2 began. Round2 broken

after round 2 began.

Mistaken security “theorems”

have been identified for Frodo,

Kyber, NewHope, Round5.

All lattice submissions have

suffered security losses.

43

Examples of attack improvements

after beginning of round 1:

2018 Laarhoven–Mariano: saves

“between a factor 20 to 40” in

sieving, asymptotically fastest

SVP attack known.

2018 Bai–Stehlé–Wen: new BKZ

variant, “bases of better quality”

for the “same cost” of SVP.

2018 Aono–Nguyen–Shen:

quantum enumeration. For

cryptographic sizes, costs less

than sieving in some cost metrics.

44

2018 Anvers–Vercauteren–

Verbauwhede: “an attacker can

significantly reduce the security of

(Ring/Module)-LWE/LWR based

schemes that have a relatively

high failure rate”.

Frodo, Kyber, LAC, NewHope,

Round5, SABER, ThreeBears

have nonzero failure rates.

For LAC-128, “the failure rate is

248 times bigger than estimated”.

Failure rate is also what broke

first version of Round5.

42

NTRU is merge of NTRUEncrypt

with NTRU HRSS.

Round5j is merge of HILA5

with Round2j. HILA5 CCA

security claim broken. First

Round5 version broken before

round 2 began. Round2 broken

after round 2 began.

Mistaken security “theorems”

have been identified for Frodo,

Kyber, NewHope, Round5.

All lattice submissions have

suffered security losses.

43

Examples of attack improvements

after beginning of round 1:

2018 Laarhoven–Mariano: saves

“between a factor 20 to 40” in

sieving, asymptotically fastest

SVP attack known.

2018 Bai–Stehlé–Wen: new BKZ

variant, “bases of better quality”

for the “same cost” of SVP.

2018 Aono–Nguyen–Shen:

quantum enumeration. For

cryptographic sizes, costs less

than sieving in some cost metrics.

44

2018 Anvers–Vercauteren–

Verbauwhede: “an attacker can

significantly reduce the security of

(Ring/Module)-LWE/LWR based

schemes that have a relatively

high failure rate”.

Frodo, Kyber, LAC, NewHope,

Round5, SABER, ThreeBears

have nonzero failure rates.

For LAC-128, “the failure rate is

248 times bigger than estimated”.

Failure rate is also what broke

first version of Round5.

43

Examples of attack improvements

after beginning of round 1:

2018 Laarhoven–Mariano: saves

“between a factor 20 to 40” in

sieving, asymptotically fastest

SVP attack known.

2018 Bai–Stehlé–Wen: new BKZ

variant, “bases of better quality”

for the “same cost” of SVP.

2018 Aono–Nguyen–Shen:

quantum enumeration. For

cryptographic sizes, costs less

than sieving in some cost metrics.

44

2018 Anvers–Vercauteren–

Verbauwhede: “an attacker can

significantly reduce the security of

(Ring/Module)-LWE/LWR based

schemes that have a relatively

high failure rate”.

Frodo, Kyber, LAC, NewHope,

Round5, SABER, ThreeBears

have nonzero failure rates.

For LAC-128, “the failure rate is

248 times bigger than estimated”.

Failure rate is also what broke

first version of Round5.

43

Examples of attack improvements

after beginning of round 1:

2018 Laarhoven–Mariano: saves

“between a factor 20 to 40” in

sieving, asymptotically fastest

SVP attack known.

2018 Bai–Stehlé–Wen: new BKZ

variant, “bases of better quality”

for the “same cost” of SVP.

2018 Aono–Nguyen–Shen:

quantum enumeration. For

cryptographic sizes, costs less

than sieving in some cost metrics.

44

2018 Anvers–Vercauteren–

Verbauwhede: “an attacker can

significantly reduce the security of

(Ring/Module)-LWE/LWR based

schemes that have a relatively

high failure rate”.

Frodo, Kyber, LAC, NewHope,

Round5, SABER, ThreeBears

have nonzero failure rates.

For LAC-128, “the failure rate is

248 times bigger than estimated”.

Failure rate is also what broke

first version of Round5.

45

2019 Albrecht–Ducas–Herold–

Kirshanova–Postlethwaite–

Stevens: “Our solution for

the SVP-151 challenge was

found 400 times faster than the

time reported for the SVP-150

challenge, the previous record.”

2019 Pellet-Mary–Hanrot–Stehlé

broke claimed half-exponential

approximation-factor barrier for

number-theoretic attacks against

Ideal-SVP. (These attacks broke

cyclotomic STOC 2009 Gentry

FHE in quantum poly time.)

43

Examples of attack improvements

after beginning of round 1:

2018 Laarhoven–Mariano: saves

“between a factor 20 to 40” in

sieving, asymptotically fastest

SVP attack known.

2018 Bai–Stehlé–Wen: new BKZ

variant, “bases of better quality”

for the “same cost” of SVP.

2018 Aono–Nguyen–Shen:

quantum enumeration. For

cryptographic sizes, costs less

than sieving in some cost metrics.

44

2018 Anvers–Vercauteren–

Verbauwhede: “an attacker can

significantly reduce the security of

(Ring/Module)-LWE/LWR based

schemes that have a relatively

high failure rate”.

Frodo, Kyber, LAC, NewHope,

Round5, SABER, ThreeBears

have nonzero failure rates.

For LAC-128, “the failure rate is

248 times bigger than estimated”.

Failure rate is also what broke

first version of Round5.

45

2019 Albrecht–Ducas–Herold–

Kirshanova–Postlethwaite–

Stevens: “Our solution for

the SVP-151 challenge was

found 400 times faster than the

time reported for the SVP-150

challenge, the previous record.”

2019 Pellet-Mary–Hanrot–Stehlé

broke claimed half-exponential

approximation-factor barrier for

number-theoretic attacks against

Ideal-SVP. (These attacks broke

cyclotomic STOC 2009 Gentry

FHE in quantum poly time.)

43

Examples of attack improvements

after beginning of round 1:

2018 Laarhoven–Mariano: saves

“between a factor 20 to 40” in

sieving, asymptotically fastest

SVP attack known.

2018 Bai–Stehlé–Wen: new BKZ

variant, “bases of better quality”

for the “same cost” of SVP.

2018 Aono–Nguyen–Shen:

quantum enumeration. For

cryptographic sizes, costs less

than sieving in some cost metrics.

44

2018 Anvers–Vercauteren–

Verbauwhede: “an attacker can

significantly reduce the security of

(Ring/Module)-LWE/LWR based

schemes that have a relatively

high failure rate”.

Frodo, Kyber, LAC, NewHope,

Round5, SABER, ThreeBears

have nonzero failure rates.

For LAC-128, “the failure rate is

248 times bigger than estimated”.

Failure rate is also what broke

first version of Round5.

45

2019 Albrecht–Ducas–Herold–

Kirshanova–Postlethwaite–

Stevens: “Our solution for

the SVP-151 challenge was

found 400 times faster than the

time reported for the SVP-150

challenge, the previous record.”

2019 Pellet-Mary–Hanrot–Stehlé

broke claimed half-exponential

approximation-factor barrier for

number-theoretic attacks against

Ideal-SVP. (These attacks broke

cyclotomic STOC 2009 Gentry

FHE in quantum poly time.)

44

2018 Anvers–Vercauteren–

Verbauwhede: “an attacker can

significantly reduce the security of

(Ring/Module)-LWE/LWR based

schemes that have a relatively

high failure rate”.

Frodo, Kyber, LAC, NewHope,

Round5, SABER, ThreeBears

have nonzero failure rates.

For LAC-128, “the failure rate is

248 times bigger than estimated”.

Failure rate is also what broke

first version of Round5.

45

2019 Albrecht–Ducas–Herold–

Kirshanova–Postlethwaite–

Stevens: “Our solution for

the SVP-151 challenge was

found 400 times faster than the

time reported for the SVP-150

challenge, the previous record.”

2019 Pellet-Mary–Hanrot–Stehlé

broke claimed half-exponential

approximation-factor barrier for

number-theoretic attacks against

Ideal-SVP. (These attacks broke

cyclotomic STOC 2009 Gentry

FHE in quantum poly time.)

44

2018 Anvers–Vercauteren–

Verbauwhede: “an attacker can

significantly reduce the security of

(Ring/Module)-LWE/LWR based

schemes that have a relatively

high failure rate”.

Frodo, Kyber, LAC, NewHope,

Round5, SABER, ThreeBears

have nonzero failure rates.

For LAC-128, “the failure rate is

248 times bigger than estimated”.

Failure rate is also what broke

first version of Round5.

45

2019 Albrecht–Ducas–Herold–

Kirshanova–Postlethwaite–

Stevens: “Our solution for

the SVP-151 challenge was

found 400 times faster than the

time reported for the SVP-150

challenge, the previous record.”

2019 Pellet-Mary–Hanrot–Stehlé

broke claimed half-exponential

approximation-factor barrier for

number-theoretic attacks against

Ideal-SVP. (These attacks broke

cyclotomic STOC 2009 Gentry

FHE in quantum poly time.)

46

2019 Guo–Johansson–Yang:

faster attacks against some

systems that use error correction

to reduce decryption failures.

(Violates security claims for LAC.)

2020 Dachman-Soled–Ducas–

Gong–Rossi: slightly faster

attacks against constant-sum

secrets (LAC, NTRU, Round5).

2020 Albrecht–Bai–Fouque–

Kirchner–Stehlé–Wen: better

exponent for enumeration and

quantum enumeration.

44

2018 Anvers–Vercauteren–

Verbauwhede: “an attacker can

significantly reduce the security of

(Ring/Module)-LWE/LWR based

schemes that have a relatively

high failure rate”.

Frodo, Kyber, LAC, NewHope,

Round5, SABER, ThreeBears

have nonzero failure rates.

For LAC-128, “the failure rate is

248 times bigger than estimated”.

Failure rate is also what broke

first version of Round5.

45

2019 Albrecht–Ducas–Herold–

Kirshanova–Postlethwaite–

Stevens: “Our solution for

the SVP-151 challenge was

found 400 times faster than the

time reported for the SVP-150

challenge, the previous record.”

2019 Pellet-Mary–Hanrot–Stehlé

broke claimed half-exponential

approximation-factor barrier for

number-theoretic attacks against

Ideal-SVP. (These attacks broke

cyclotomic STOC 2009 Gentry

FHE in quantum poly time.)

46

2019 Guo–Johansson–Yang:

faster attacks against some

systems that use error correction

to reduce decryption failures.

(Violates security claims for LAC.)

2020 Dachman-Soled–Ducas–

Gong–Rossi: slightly faster

attacks against constant-sum

secrets (LAC, NTRU, Round5).

2020 Albrecht–Bai–Fouque–

Kirchner–Stehlé–Wen: better

exponent for enumeration and

quantum enumeration.

44

2018 Anvers–Vercauteren–

Verbauwhede: “an attacker can

significantly reduce the security of

(Ring/Module)-LWE/LWR based

schemes that have a relatively

high failure rate”.

Frodo, Kyber, LAC, NewHope,

Round5, SABER, ThreeBears

have nonzero failure rates.

For LAC-128, “the failure rate is

248 times bigger than estimated”.

Failure rate is also what broke

first version of Round5.

45

2019 Albrecht–Ducas–Herold–

Kirshanova–Postlethwaite–

Stevens: “Our solution for

the SVP-151 challenge was

found 400 times faster than the

time reported for the SVP-150

challenge, the previous record.”

2019 Pellet-Mary–Hanrot–Stehlé

broke claimed half-exponential

approximation-factor barrier for

number-theoretic attacks against

Ideal-SVP. (These attacks broke

cyclotomic STOC 2009 Gentry

FHE in quantum poly time.)

46

2019 Guo–Johansson–Yang:

faster attacks against some

systems that use error correction

to reduce decryption failures.

(Violates security claims for LAC.)

2020 Dachman-Soled–Ducas–

Gong–Rossi: slightly faster

attacks against constant-sum

secrets (LAC, NTRU, Round5).

2020 Albrecht–Bai–Fouque–

Kirchner–Stehlé–Wen: better

exponent for enumeration and

quantum enumeration.

45

2019 Albrecht–Ducas–Herold–

Kirshanova–Postlethwaite–

Stevens: “Our solution for

the SVP-151 challenge was

found 400 times faster than the

time reported for the SVP-150

challenge, the previous record.”

2019 Pellet-Mary–Hanrot–Stehlé

broke claimed half-exponential

approximation-factor barrier for

number-theoretic attacks against

Ideal-SVP. (These attacks broke

cyclotomic STOC 2009 Gentry

FHE in quantum poly time.)

46

2019 Guo–Johansson–Yang:

faster attacks against some

systems that use error correction

to reduce decryption failures.

(Violates security claims for LAC.)

2020 Dachman-Soled–Ducas–

Gong–Rossi: slightly faster

attacks against constant-sum

secrets (LAC, NTRU, Round5).

2020 Albrecht–Bai–Fouque–

Kirchner–Stehlé–Wen: better

exponent for enumeration and

quantum enumeration.

45

2019 Albrecht–Ducas–Herold–

Kirshanova–Postlethwaite–

Stevens: “Our solution for

the SVP-151 challenge was

found 400 times faster than the

time reported for the SVP-150

challenge, the previous record.”

2019 Pellet-Mary–Hanrot–Stehlé

broke claimed half-exponential

approximation-factor barrier for

number-theoretic attacks against

Ideal-SVP. (These attacks broke

cyclotomic STOC 2009 Gentry

FHE in quantum poly time.)

46

2019 Guo–Johansson–Yang:

faster attacks against some

systems that use error correction

to reduce decryption failures.

(Violates security claims for LAC.)

2020 Dachman-Soled–Ducas–

Gong–Rossi: slightly faster

attacks against constant-sum

secrets (LAC, NTRU, Round5).

2020 Albrecht–Bai–Fouque–

Kirchner–Stehlé–Wen: better

exponent for enumeration and

quantum enumeration.

47

2020 Doulgerakis–Laarhoven–

de Weger: “faster [sieving]

methods for solving the shortest

vector problem (SVP) on high-

dimensional lattices”.

45

2019 Albrecht–Ducas–Herold–

Kirshanova–Postlethwaite–

Stevens: “Our solution for

the SVP-151 challenge was

found 400 times faster than the

time reported for the SVP-150

challenge, the previous record.”

2019 Pellet-Mary–Hanrot–Stehlé

broke claimed half-exponential

approximation-factor barrier for

number-theoretic attacks against

Ideal-SVP. (These attacks broke

cyclotomic STOC 2009 Gentry

FHE in quantum poly time.)

46

2019 Guo–Johansson–Yang:

faster attacks against some

systems that use error correction

to reduce decryption failures.

(Violates security claims for LAC.)

2020 Dachman-Soled–Ducas–

Gong–Rossi: slightly faster

attacks against constant-sum

secrets (LAC, NTRU, Round5).

2020 Albrecht–Bai–Fouque–

Kirchner–Stehlé–Wen: better

exponent for enumeration and

quantum enumeration.

47

2020 Doulgerakis–Laarhoven–

de Weger: “faster [sieving]

methods for solving the shortest

vector problem (SVP) on high-

dimensional lattices”.

45

2019 Albrecht–Ducas–Herold–

Kirshanova–Postlethwaite–

Stevens: “Our solution for

the SVP-151 challenge was

found 400 times faster than the

time reported for the SVP-150

challenge, the previous record.”

2019 Pellet-Mary–Hanrot–Stehlé

broke claimed half-exponential

approximation-factor barrier for

number-theoretic attacks against

Ideal-SVP. (These attacks broke

cyclotomic STOC 2009 Gentry

FHE in quantum poly time.)

46

2019 Guo–Johansson–Yang:

faster attacks against some

systems that use error correction

to reduce decryption failures.

(Violates security claims for LAC.)

2020 Dachman-Soled–Ducas–

Gong–Rossi: slightly faster

attacks against constant-sum

secrets (LAC, NTRU, Round5).

2020 Albrecht–Bai–Fouque–

Kirchner–Stehlé–Wen: better

exponent for enumeration and

quantum enumeration.

47

2020 Doulgerakis–Laarhoven–

de Weger: “faster [sieving]

methods for solving the shortest

vector problem (SVP) on high-

dimensional lattices”.

46

2019 Guo–Johansson–Yang:

faster attacks against some

systems that use error correction

to reduce decryption failures.

(Violates security claims for LAC.)

2020 Dachman-Soled–Ducas–

Gong–Rossi: slightly faster

attacks against constant-sum

secrets (LAC, NTRU, Round5).

2020 Albrecht–Bai–Fouque–

Kirchner–Stehlé–Wen: better

exponent for enumeration and

quantum enumeration.

47

2020 Doulgerakis–Laarhoven–

de Weger: “faster [sieving]

methods for solving the shortest

vector problem (SVP) on high-

dimensional lattices”.

46

2019 Guo–Johansson–Yang:

faster attacks against some

systems that use error correction

to reduce decryption failures.

(Violates security claims for LAC.)

2020 Dachman-Soled–Ducas–

Gong–Rossi: slightly faster

attacks against constant-sum

secrets (LAC, NTRU, Round5).

2020 Albrecht–Bai–Fouque–

Kirchner–Stehlé–Wen: better

exponent for enumeration and

quantum enumeration.

47

2020 Doulgerakis–Laarhoven–

de Weger: “faster [sieving]

methods for solving the shortest

vector problem (SVP) on high-

dimensional lattices”.

“Conservative lower bound”

on cost of BKZ was claimed in

various submission documents in

2017 (round 1), 2019 (round 2).

46

2019 Guo–Johansson–Yang:

faster attacks against some

systems that use error correction

to reduce decryption failures.

(Violates security claims for LAC.)

2020 Dachman-Soled–Ducas–

Gong–Rossi: slightly faster

attacks against constant-sum

secrets (LAC, NTRU, Round5).

2020 Albrecht–Bai–Fouque–

Kirchner–Stehlé–Wen: better

exponent for enumeration and

quantum enumeration.

47

2020 Doulgerakis–Laarhoven–

de Weger: “faster [sieving]

methods for solving the shortest

vector problem (SVP) on high-

dimensional lattices”.

“Conservative lower bound”

on cost of BKZ was claimed in

various submission documents in

2017 (round 1), 2019 (round 2).

This “bound” was broken in 2018

for high-dimensional lattices.

46

2019 Guo–Johansson–Yang:

faster attacks against some

systems that use error correction

to reduce decryption failures.

(Violates security claims for LAC.)

2020 Dachman-Soled–Ducas–

Gong–Rossi: slightly faster

attacks against constant-sum

secrets (LAC, NTRU, Round5).

2020 Albrecht–Bai–Fouque–

Kirchner–Stehlé–Wen: better

exponent for enumeration and

quantum enumeration.

47

2020 Doulgerakis–Laarhoven–

de Weger: “faster [sieving]

methods for solving the shortest

vector problem (SVP) on high-

dimensional lattices”.

“Conservative lower bound”

on cost of BKZ was claimed in

various submission documents in

2017 (round 1), 2019 (round 2).

This “bound” was broken in 2018

for high-dimensional lattices.

Apparently nobody noticed

until I pointed this out in 2020.

46

2019 Guo–Johansson–Yang:

faster attacks against some

systems that use error correction

to reduce decryption failures.

(Violates security claims for LAC.)

2020 Dachman-Soled–Ducas–

Gong–Rossi: slightly faster

attacks against constant-sum

secrets (LAC, NTRU, Round5).

2020 Albrecht–Bai–Fouque–

Kirchner–Stehlé–Wen: better

exponent for enumeration and

quantum enumeration.

47

2020 Doulgerakis–Laarhoven–

de Weger: “faster [sieving]

methods for solving the shortest

vector problem (SVP) on high-

dimensional lattices”.

“Conservative lower bound”

on cost of BKZ was claimed in

various submission documents in

2017 (round 1), 2019 (round 2).

This “bound” was broken in 2018

for high-dimensional lattices.

Apparently nobody noticed

until I pointed this out in 2020.

48

Lattice marketing

“Strong security guarantees from

worst-case hardness” of problems

that “have been deeply studied by

some of the great mathematicians

and computer scientists going

back at least to Gauss”.

46

2019 Guo–Johansson–Yang:

faster attacks against some

systems that use error correction

to reduce decryption failures.

(Violates security claims for LAC.)

2020 Dachman-Soled–Ducas–

Gong–Rossi: slightly faster

attacks against constant-sum

secrets (LAC, NTRU, Round5).

2020 Albrecht–Bai–Fouque–

Kirchner–Stehlé–Wen: better

exponent for enumeration and

quantum enumeration.

47

2020 Doulgerakis–Laarhoven–

de Weger: “faster [sieving]

methods for solving the shortest

vector problem (SVP) on high-

dimensional lattices”.

“Conservative lower bound”

on cost of BKZ was claimed in

various submission documents in

2017 (round 1), 2019 (round 2).

This “bound” was broken in 2018

for high-dimensional lattices.

Apparently nobody noticed

until I pointed this out in 2020.

48

Lattice marketing

“Strong security guarantees from

worst-case hardness” of problems

that “have been deeply studied by

some of the great mathematicians

and computer scientists going

back at least to Gauss”.

46

2019 Guo–Johansson–Yang:

faster attacks against some

systems that use error correction

to reduce decryption failures.

(Violates security claims for LAC.)

2020 Dachman-Soled–Ducas–

Gong–Rossi: slightly faster

attacks against constant-sum

secrets (LAC, NTRU, Round5).

2020 Albrecht–Bai–Fouque–

Kirchner–Stehlé–Wen: better

exponent for enumeration and

quantum enumeration.

47

2020 Doulgerakis–Laarhoven–

de Weger: “faster [sieving]

methods for solving the shortest

vector problem (SVP) on high-

dimensional lattices”.

“Conservative lower bound”

on cost of BKZ was claimed in

various submission documents in

2017 (round 1), 2019 (round 2).

This “bound” was broken in 2018

for high-dimensional lattices.

Apparently nobody noticed

until I pointed this out in 2020.

48

Lattice marketing

“Strong security guarantees from

worst-case hardness” of problems

that “have been deeply studied by

some of the great mathematicians

and computer scientists going

back at least to Gauss”.

47

2020 Doulgerakis–Laarhoven–

de Weger: “faster [sieving]

methods for solving the shortest

vector problem (SVP) on high-

dimensional lattices”.

“Conservative lower bound”

on cost of BKZ was claimed in

various submission documents in

2017 (round 1), 2019 (round 2).

This “bound” was broken in 2018

for high-dimensional lattices.

Apparently nobody noticed

until I pointed this out in 2020.

48

Lattice marketing

“Strong security guarantees from

worst-case hardness” of problems

that “have been deeply studied by

some of the great mathematicians

and computer scientists going

back at least to Gauss”.

47

2020 Doulgerakis–Laarhoven–

de Weger: “faster [sieving]

methods for solving the shortest

vector problem (SVP) on high-

dimensional lattices”.

“Conservative lower bound”

on cost of BKZ was claimed in

various submission documents in

2017 (round 1), 2019 (round 2).

This “bound” was broken in 2018

for high-dimensional lattices.

Apparently nobody noticed

until I pointed this out in 2020.

48

Lattice marketing

“Strong security guarantees from

worst-case hardness” of problems

that “have been deeply studied by

some of the great mathematicians

and computer scientists going

back at least to Gauss”. Plus:

fully homomorphic encryption.

47

2020 Doulgerakis–Laarhoven–

de Weger: “faster [sieving]

methods for solving the shortest

vector problem (SVP) on high-

dimensional lattices”.

“Conservative lower bound”

on cost of BKZ was claimed in

various submission documents in

2017 (round 1), 2019 (round 2).

This “bound” was broken in 2018

for high-dimensional lattices.

Apparently nobody noticed

until I pointed this out in 2020.

48

Lattice marketing

“Strong security guarantees from

worst-case hardness” of problems

that “have been deeply studied by

some of the great mathematicians

and computer scientists going

back at least to Gauss”. Plus:

fully homomorphic encryption.

Facts: No NISTPQC submissions

are homomorphic.

47

2020 Doulgerakis–Laarhoven–

de Weger: “faster [sieving]

methods for solving the shortest

vector problem (SVP) on high-

dimensional lattices”.

“Conservative lower bound”

on cost of BKZ was claimed in

various submission documents in

2017 (round 1), 2019 (round 2).

This “bound” was broken in 2018

for high-dimensional lattices.

Apparently nobody noticed

until I pointed this out in 2020.

48

Lattice marketing

“Strong security guarantees from

worst-case hardness” of problems

that “have been deeply studied by

some of the great mathematicians

and computer scientists going

back at least to Gauss”. Plus:

fully homomorphic encryption.

Facts: No NISTPQC submissions

are homomorphic. Gauss never

attacked these problems.

47

2020 Doulgerakis–Laarhoven–

de Weger: “faster [sieving]

methods for solving the shortest

vector problem (SVP) on high-

dimensional lattices”.

“Conservative lower bound”

on cost of BKZ was claimed in

various submission documents in

2017 (round 1), 2019 (round 2).

This “bound” was broken in 2018

for high-dimensional lattices.

Apparently nobody noticed

until I pointed this out in 2020.

48

Lattice marketing

“Strong security guarantees from

worst-case hardness” of problems

that “have been deeply studied by

some of the great mathematicians

and computer scientists going

back at least to Gauss”. Plus:

fully homomorphic encryption.

Facts: No NISTPQC submissions

are homomorphic. Gauss never

attacked these problems. Our

attacks keep getting better.

47

2020 Doulgerakis–Laarhoven–

de Weger: “faster [sieving]

methods for solving the shortest

vector problem (SVP) on high-

dimensional lattices”.

“Conservative lower bound”

on cost of BKZ was claimed in

various submission documents in

2017 (round 1), 2019 (round 2).

This “bound” was broken in 2018

for high-dimensional lattices.

Apparently nobody noticed

until I pointed this out in 2020.

48

Lattice marketing

“Strong security guarantees from

worst-case hardness” of problems

that “have been deeply studied by

some of the great mathematicians

and computer scientists going

back at least to Gauss”. Plus:

fully homomorphic encryption.

Facts: No NISTPQC submissions

are homomorphic. Gauss never

attacked these problems. Our

attacks keep getting better.

The guarantees do not apply

to any NISTPQC submissions.

