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K = (K1; : : : ; KN) ∈ {−X; : : : ; X}N .
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1. Input message m ∈ {0; 1}.

2. Generate r1; : : : ; rN ∈ {0; 1}.
i.e. r = (r1; : : : ; rN) ∈ {0; 1}N .

(Cohen says pick “half of the

integers in the public key at

random”: I guess this means

N ∈ 2Z and
P
ri = N=2.)

3. Compute and send ciphertext

C = (−1)m(r1K1 + · · ·+ rNKN).
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Some problems with cryptosystem

1. Functionality problem:

System can’t encrypt messages

that have more than 1 bit.

2. Security problem:
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sage: V=matrix.identity(N)

sage:
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LLL finding shorter vectors in any

lattice. Many subsequent time-

vs.-shortness improvements.

2012 Schnorr–Shevchenko claim

that modern form of BKZ solves

subset-sum problems faster than

2011 Becker–Coron–Joux.

Is this true? Open: What’s the

exponent of this algorithm?
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Thomé: pre-quantum quasi-poly

break of small-characteristic DH.

38

The state-of-the-art attacks

against Cohen’s cryptosystem

are much more complicated

than the cryptosystem is. Scary!

Lattice-based cryptosystems are

advertised as “algorithmically

simple”, consisting mainly of

“linear operations on vectors”.

Attacks exploit this structure!

For efficiency, lattice-based

cryptosystems usually have

features that expand the attack

surface even more: e.g.,

rings and decryption failures.



37

For public-key encryption:

Some mathematical structure

seems to be unavoidable,

but pursuing simple structures

often leads to security disasters.

Pre-quantum example: DH is

simpler than ECDH, but DH has

suffered many more security losses

than ECDH. State-of-the-art DH

attacks are very complicated.

2013 Barbulescu–Gaudry–Joux–
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broke claimed half-exponential

approximation-factor barrier for

number-theoretic attacks against

Ideal-SVP. (These attacks broke

cyclotomic STOC 2009 Gentry

FHE in quantum poly time.)



44

2018 Anvers–Vercauteren–

Verbauwhede: “an attacker can

significantly reduce the security of

(Ring/Module)-LWE/LWR based

schemes that have a relatively

high failure rate”.

Frodo, Kyber, LAC, NewHope,

Round5, SABER, ThreeBears

have nonzero failure rates.

For LAC-128, “the failure rate is

248 times bigger than estimated”.

Failure rate is also what broke

first version of Round5.

45

2019 Albrecht–Ducas–Herold–

Kirshanova–Postlethwaite–

Stevens: “Our solution for

the SVP-151 challenge was

found 400 times faster than the

time reported for the SVP-150

challenge, the previous record.”

2019 Pellet-Mary–Hanrot–Stehlé
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exponent for enumeration and

quantum enumeration.



44

2018 Anvers–Vercauteren–

Verbauwhede: “an attacker can

significantly reduce the security of

(Ring/Module)-LWE/LWR based

schemes that have a relatively

high failure rate”.

Frodo, Kyber, LAC, NewHope,

Round5, SABER, ThreeBears

have nonzero failure rates.

For LAC-128, “the failure rate is

248 times bigger than estimated”.

Failure rate is also what broke

first version of Round5.

45

2019 Albrecht–Ducas–Herold–

Kirshanova–Postlethwaite–

Stevens: “Our solution for

the SVP-151 challenge was

found 400 times faster than the

time reported for the SVP-150

challenge, the previous record.”

2019 Pellet-Mary–Hanrot–Stehlé
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exponent for enumeration and

quantum enumeration.

47

2020 Doulgerakis–Laarhoven–

de Weger: “faster [sieving]

methods for solving the shortest

vector problem (SVP) on high-

dimensional lattices”.



45

2019 Albrecht–Ducas–Herold–

Kirshanova–Postlethwaite–

Stevens: “Our solution for

the SVP-151 challenge was

found 400 times faster than the

time reported for the SVP-150

challenge, the previous record.”

2019 Pellet-Mary–Hanrot–Stehlé
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