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Take two ciphertexts:
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m+m +2(e+¢€)+

s(qg + q'). This decrypts to

m+ m' mod 2 if e + € is small.
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LLL i1s fast but almost never
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vs.-shortness improvements.
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that modern form of BKZ solves

subset-sum problems faster than
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Is this true? Open: What's the
exponent of this algorithm?
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Lattice attacks on DGHV keys

Recall K; = 2u; 4+ sq; = sq;.
Each u; is small: u; < E.

Note qu,' — q,-Kj — 2qju,- — 2q,-uj.

Define
Vi = (E, Ky, K3, ..., Ky)
V2 = (0, =K1

30
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LLL is fast but almost never Lattice attacks on DGHV keys

finds this short vector in L.

Recall K; = 2u; 4+ sq; = sq;.
1991 Schnorr—Euchner “BKZ" Each u; is small: u; < E.
algorithm spends more time than Note q;K; — q;K; = 2q;u; — 2q;u;.

LLL finding shorter vectors in any Define

lattice. Many subsequent time-
vs.-shortness improvements.
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Lattice attacks on DGHV keys

Recall K; = 2u; 4+ sq; = sq;.
Each u; is small: u; < E.
Note qu,' — q,-Kj = 2qju,' — 2q,-uj.

Define

Define L = ZV] + - - - 4+ ZV).
[ contains g1V1 + -+ gV =

(1E, g1 Ko — oK1, ...) =
((71E, 2q1U> — 2gou1, . . )

sage:

sage:

V:
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Lattice attacks on DGHV keys

Recall K; = 2u; 4+ sq; = sq;.
Each u; is small: u; < E.
Note qu,' — q,-Kj — 2qju,- — 2q,-uj.

Define

Vy = (0,0,0, ..., —K1).

Define L = ZVy + - - - + ZV).
[ contains g1V1 + - -+ gyVy =

(1E, 1Ko — oK1, ...) =
(Q1E,2CI1U2 — 2qoUu1, .. )

sage:

sage:

V=matrix.1i
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Lattice attacks on DGHV keys

Recall K; = 2u; 4+ sq; = sq;.
Each u; is small: u; < E.
Note qu,' — q,-Kj = 2qju,' — 2q,-uj.

Define

Vy = (0,0,0, ..., —K1).

Define L = ZV] + - - - 4+ ZV).
[ contains g1V1 + -+ gyVy =

(1E, g1 Ko — oK1, ...) =
((71E, 2q1U> — 2gou, . . )

sage: V=matrix.identity (N

sage:



Lattice attacks on DGHV keys

Recall K; = 2u; 4+ sq; = sq;.
Each u; is small: u; < E.
Note qu,' — q,-Kj — 2qju,- — 2q,-uj.

Define

Vy = (0,0,0, ..., —Ki).

Define L = ZVy + - - - + ZV).
[ contains g1V1 + - -+ gyVy =

(1E, 1Ko — oK1, ...) =
(Q1E,2CI1U2 — 2qou1, .. )

30

sage: V=matrix.identity(N)

sage:
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Lattice attacks on DGHV keys

Recall K; = 2u; 4+ sq; = sq;.
Each u; is small: u; < E.
Note qu,' — q,-Kj — 2qju,- — 2q,-uj.

Define

Vy = (0,0,0, ..., —Ki).

Define L = ZVy + - - - + ZV).
[ contains g1V1 + - -+ gyVy =

(1E, 1Ko — oK1, ...) =
(Q1E,2CI1U2 — 2qou1, .. )

30

sage: V=matrix.identity(N)
sage: V=-K[0]*V

sage:
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Lattice attacks on DGHV keys

Recall K; = 2u; 4+ sq; = sq;.
Each u; is small: u; < E.
Note qu,' — q,-Kj — 2qju,- — 2q,-uj.

Define

Vy = (0,0,0, ..., —Ki).

Define L = ZVy + - - - + ZV).
[ contains g1V1 + - -+ gyVy =

(1E, 1Ko — oK1, ...) =
(Q1E,2CI1U2 — 2qou1, .. )

30

sage:
sage:
sage:

sage:

V=matrix.identity(N)
V=-K[0]*V
Vtop=copy (K)
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(1E, 1Ko — oK1, ...) =
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30

sage: V=matrix.identity(N)
sage: V=-K[0]*V

sage: Vtop=copy(K)

sage: Vtop[O]=E

sage: V[0]=Vtop

sage: qO0=V.LLL() [0][0]/E
sage: qO

596437375

sage:
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(Q1E,2CI1U2 — 2qou1, .. )
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sage: Vtop[O]=E

sage: V[0]=Vtop

sage: qO0=V.LLL() [0][0]/E
sage: qO

596437375

sage: round(K[0]/q0)
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Lattice attacks on DGHV keys

Recall K; = 2u; 4+ sq; = sq;.
Each u; is small: u; < E.

Note qu,' — q,-Kj — 2qju,- — 2q,-uj.

Define

Define L = ZVy + - - - + ZV).
[ contains g1V1 + - -+ gyVy =

(1E, 1Ko — oK1, ...) =
(Q1E,2CI1U2 — 2qou1, .. )

30

sage: V=matrix.identity(N)
sage: V=-K[0]*V

sage: Vtop=copy(K)

sage: Vtop[O]=E

sage: V[0]=Vtop

sage: qO0=V.LLL() [0][0]/E
sage: qO

596437375

sage: round(K[0]/q0)
9843373038997925

sage: s
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ittacks on DGHV keys

= 2U; + 5q; ~ sq;.
s small: u; < E.
i —qiKj = 2qju; — 2q;u;.

1K21K31 7KN)1
—K1,0,...,0);
0,—Ki,...,0);

0,0, ,—%(1)

—ZVi + -+ ZVy

ns g1Vi +---+gnWn =
Ko —qoKy,...) =

Uy — 2qou, .. .).
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V=matrix.identity(N)
V=-K[0]*V

sage:
sage:
Vtop=copy (K)
Vtop[0]=E
V[0]=Vtop
q0=V.LLL() [0] [0]/E
sage: qO

596487875

sage: round(K[0]/q0)
984887308997925

sage:
sage:
sage:

sage:

sage: S
984887308997925

sage:

31

sage: V
(1024,
-11115.
794301
688178
742362
102334
-35716:
112142
-11096°
—-23562.

sage:



DGHV keys

59, =~ Sq;.
1 < E.
— 2qju,- — 2q,-uj.
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V=matrix.identity(N)
V=—K[0]*V
Vtop=copy (K)
Vtop[0]=E

V[0]=Vtop
q0=V.LLL() [0] [0] /E
sage: qO

596487875

sage: round(K[0]/q0)
084887308997925

sage:
sage:
sage:
sage:
sage:

sage:

sage: S
984887308997925

sage:
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sage: V[O]

(1024,
-11115391791007
794301459533783
633178021083749
742362470968200
102334582783153
-357163867939855
112142161911996
-11096748622762
—-23562893773500

sage:
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sage: V=matrix.identity(N)
sage: V=-K[0]*V

sage: Vtop=copy(K)

sage: Vtopl[O]=E

sage: V[0]=Vtop

sage: qO0=V.LLL()[0] [0]/E
sage: qO

596437375

sage: round(K[0]/q0)
98438373038997925

sage: s

9843837308997925

sage:

31

sage: V[O]

(1024,
-11115391791007200837703
79430145953378343489605%
63817802108374958901751,
742362470968200823035396
10233458273315395150547C
-35716386793985588767300C
112142161911996460105144
-11096748622762224955871
—-23562893773500377052338

sage:



sage: V=matrix.identity(N)
sage: V=-K[0]*V

sage: Vtop=copy(K)

sage: Vtopl[O]=E

sage: V[0]=Vtop

sage: qO0=V.LLL() [0][0]/E
sage: qO

596437375

sage: round(K[0]/q0)
9843373038997925

sage: s

984337308997925

sage:
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sage: V[O]

(1024,
-1111539179100720083770339,
794301459533783434896055,
68817802108374958901751,
742362470968200823035396,
1023345827331539515054795,
-357168679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
-235628937785003770523381)

sage:
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sage: V=matrix.identity(N)
sage: V=-K[0]*V

sage: Vtop=copy(K)

sage: Vtopl[O]=E

sage: V[0]=Vtop

sage: qO0=V.LLL() [0][0]/E
sage: qO

596437375

sage: round(K[0]/q0)
9843373038997925

sage: s

984337308997925

sage:

31

sage: V[O]

(1024,
-1111539179100720083770339,
794301459533783434896055,
68817802108374958901751,
742362470968200823035396,
1023345827831539515054795,
-357168679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
-235628937785003770523381)

sage: V[1]

(0, -587473338058640662659869,
o, 0, 0, 0, 0, 0, 0, O)

sage:

32



=matrix.identity(N)
=-K[0] *V
top=copy (K)
top[0] =E

[0]=Vtop
0=V.LLL() [0] [0]/E

)

(5

ound (K [0] /q0)
08997925

08997925
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sage: V[O]

(1024,
-1111539179100720083770339,
794301459533783434896055,
68817802108374958901751,
742362470968200823035396,
1023345827831539515054795,
-357168679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
-235628937785003770523381)

sage: VI[1]

(0, -587473338058640662659869,
o, 0, 0, 0, 0, 0, 0, O)

sage:
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sage: V
(610803
370302
—-22561
110012
135946.

sage:



dentity (N)

K)

[0] [O]/E
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sage: V[O]

(1024,
-1111539179100720083770339,
794301459533783434896055,
68817802108374958901751,
742362470968200823035396,
1023345827831539515054795,
-357168679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
-235628937785003770523381)

sage: V[1]

(0, -587473338058640662659869,
o, 0, 0, 0, 0, 0, 0, O)

sage:

32

sage: V.LLL(Q) [0]
(610803584000, 1
37030242384, 84
-225618319442,
1100126026234,
1359463649043,

sage:
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sage: V[O]

(1024,
-1111539179100720083770339,
794301459533783434896055,
68817802108374958901751,
742362470968200823035396,
1023345827831539515054795,
-357168679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
-235628937785003770523381)

sage: VI[1]

(0, -587473338058640662659869,
o, 0, 0, 0, O, 0, 0, O)

sage:

32

sage: V.LLLQ) [0]
(610803584000, 1056189937
37030242384, 34589845469
-2256138319442, 363547143
1100126026284, -31315097
1359463649048, 17425667¢C

sage:



sage: V[O]

(1024,
-1111539179100720083770339,
794301459533783434896055,
68817802108374958901751,
742362470968200823035396,
1023345827831539515054795,
-357168679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
-235628937785003770523381)

sage: V[1]

(0, -587473338058640662659869,
o, 0, 0, 0, 0, 0, 0, O)

sage:

32

sage: V.LLL(Q) [0]
(610803584000, 1056189937254,
37030242384, 3845898454698,
-225618319442, 363547143644,
1100126026284, -313150978512,
1359463649048, 174256676348)

sage:

33



sage: V[O]

(1024,
-1111539179100720083770339,
794301459533783434896055,
68817802108374958901751,
742362470968200823035396,
1023345827831539515054795,
-357168679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
-235628937785003770523381)

sage: V[1]

(0, -587473338058640662659869,
o, 0, 0, 0, 0, 0, 0, O)

sage:

32

sage: V.LLL(Q) [0]
(610803584000, 1056189937254,
37030242384, 845898454693,
—-2205618319442, 363547143644,
1100126026284, -313150978512,
1359463649048, 174256676348)
sage: g=[Ki//s for Ki in K]

sage:
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sage: V[O]

(1024,
-1111539179100720083770339,
794301459533783434896055,
68817802108374958901751,
742362470968200823035396,
1023345827831539515054795,
-357168679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
-235628937785003770523381)

sage: V[1]

(0, -587473338058640662659869,
o, 0, 0, 0, 0, 0, 0, O)

sage:

32

33
sage: V.LLL(Q) [0]

(610803584000, 1056189937254,
37030242384, 845898454698,
-225618319442, 363547143644,
1100126026284, -313150978512,
1359463649048, 174256676348)

sage: g=[Ki//s for Ki in K]

sage: qlO]*E

610803584000

sage:



sage: V[O]

(1024,
-1111539179100720083770339,
794301459533783434896055,
68817802108374958901751,
742362470968200823035396,
1023345827831539515054795,
-357168679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
-235628937785003770523381)

sage: V[1]

(0, -587473338058640662659869,
o, 0, 0, 0, 0, 0, 0, O)

sage:

32

33
sage: V.LLL(Q) [0]

(610803584000, 1056189937254,
37030242384, 845898454698,
-225618319442, 363547143644,
1100126026284, -313150978512,
1359463649048, 174256676348)
sage: g=[Ki//s for Ki in K]
sage: qlO]*E

610803584000

sage: qlO]*K[1]-q[1]*K[O]
1056189937254

sage:



sage: V[O]

(1024,
-1111539179100720083770339,
794301459533783434896055,
68817802108374958901751,
742362470968200823035396,
1023345827831539515054795,
-357168679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
-235628937785003770523381)

sage: V[1]

(0, -587473338058640662659869,
o, 0, 0, 0, 0, 0, 0, O)

sage:

32

33
sage: V.LLL(Q) [0]

(610803584000, 1056189937254,
37030242384, 845898454693,
—-2205618319442, 363547143644,
1100126026284, -313150978512,
1359463649048, 174256676348)

sage: g=[Ki//s for Ki in K]

sage: qlO]*E

610803584000

sage: qlO]*K[1]-q[1]*K[O]

1056189937254

sage: qlO0]J*K[9]-q[9]*K[O]

174256676343

sage:



[O] . sage: V.LLL(Q) [0] : 2009 DC
(610803584000, 1056189937254, can cho

39179100720083770339, 37030242334, 845898454693, these |af

159533783434896055, -2256138319442, 363547143644,
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