Lattice-based cryptography,
day 1: simplicity

D. J. Bernstein

University of lllinois at Chicago;
Ruhr University Bochum

2000 Cohen cryptosystem

Public key: vector of integers

Encryption:
1. Input message m € {0, 1}.

2. Generate rq, ..., ry €40, 1}
l.e. & = (r1 I’/\/) - {0, 1}N.

(Cohen says pick “half of the

integers in the public key at
random’: | guess this means

Ne2Zand Y ri = N/2.)

3. Compute and send ciphertext
C=(-1)"(nKi+ -+ ryKpn).

based cryptography,
implicity

rnstein

ty of lllinois at Chicago;
Iversity Bochum

2000 Cohen cryptosystem

Public key: vector of integers

Encryption:
1. Input message m € {0, 1}.

2. Generate rq, ..., ry €40, 1},
l.e. & = (r1 I’/\/) - {O, 1}N.

(Cohen says pick “half of the

integers in the public key at
random”: | guess this means

Ne2Zand Y ri = N/2.)

3. Compute and send ciphertext
C=(-1)"(nKi+ -+ ryKpn).

How car

tography,

is at Chicago;
ochum

2000 Cohen cryptosystem

Public key: vector of integers

Encryption:
1. Input message m € {0, 1}.

2. Generate rq, ..., ry €40, 1}
l.e. & = (r1 I’/\/) - {0, 1}N.

(Cohen says pick “half of the

integers in the public key at
random’ : | guess this means

Ne2Zand Y ri = N/2.)

3. Compute and send ciphertext

C=(-1)™(nKi+ -+ rmKp).

How can receiver

2000 Cohen cryptosystem How can receiver decrypt?

Public key: vector of integers

1g0; Encryption:
1. Input message m € {0, 1}.

2. Generate rq, ..., ry €40, 1},
l.e. & = (r1 I’/\/) - {O, 1}N.

(Cohen says pick “half of the

integers in the public key at
random’”: | guess this means

Ne2Zand Y ri = N/2.)

3. Compute and send ciphertext
C=(-1)"(nKi+ -+ ryKpn).

2000 Cohen cryptosystem

Public key: vector of integers

Encryption:
1. Input message m € {0, 1}.

2. Generate rq, ..., ry € 40,1}
l.e. & = (r1 I’/\/) - {0, 1}N.

(Cohen says pick “half of the

integers in the public key at
random’ : | guess this means

Ne2Zand Y ri = N/2.)

3. Compute and send ciphertext

C=(-1)™(nKi+ -+ rmKp).

How can receiver decrypt?

2000 Cohen cryptosystem

Public key: vector of integers

Encryption:
1. Input message m € {0, 1}.

2. Generate rq, ..., ry € 40,1}
l.e. & = (r1 I’/\/) - {0, 1}N.

(Cohen says pick “half of the

integers in the public key at
random’ : | guess this means

Ne2Zand Y ri = N/2.)

3. Compute and send ciphertext
C=(-1)"(nKi+ -+ ryKpn).

How can receiver decrypt?

Key generation:

2000 Cohen cryptosystem

Public key: vector of integers

Encryption:
1. Input message m € {0, 1}.

2. Generate rq, ..., ry € 40,1}
l.e. & = (r1 I’/\/) - {0, 1}N.

(Cohen says pick “half of the

integers in the public key at
random’ : | guess this means

Ne2Zand Y ri = N/2.)

3. Compute and send ciphertext
C=(-1)"(nKi+ -+ ryKpn).

How can receiver decrypt?

Key generation:
Generate s € {1, ..., Y}

1o s —1
ui, ..., uny € S U, ..., ,
1 N 2N_

K; € (uj+sZ)N{-X,...,X}.

Decryption:
m=0if Cmods < (s—1)/2;
otherwise m = 1.

2000 Cohen cryptosystem

Public key: vector of integers

Encryption:
1. Input message m € {0, 1}.

2. Generate rq, ..., ry € 40,1}
l.e. & = (r1 I’/\/) - {0, 1}N.

(Cohen says pick “half of the

integers in the public key at
random’ : | guess this means

Ne2Zand Y ri = N/2.)

3. Compute and send ciphertext
C=(-1)"(nKi+ -+ ryKpn).

How can receiver decrypt?

Key generation:
Generate s € {1, ..., Y}

1o s —1
ui, ..., uny € S U, ..., ,
1 N N

K; € (uj+sZ)N{-X,...,X}.

Decryption:
m=0if Cmods < (s—1)/2;
otherwise m = 1.

Why this works:

Kimods=u; <(s—1)/2N so
—1

nKi+--+ryKy mod5§5 .

2000 Cohen cryptosystem

Public key: vector of integers

Encryption:
1. Input message m € {0, 1}.

2. Generate rq, ..., ry € 40,1}
l.e. & = (r1 I’/\/) - {0, 1}N.

(Cohen says pick “half of the

integers in the public key at
random’ : | guess this means

Ne2Zand Y ri = N/2.)

3. Compute and send ciphertext
C=(-1)"(nKi+ -+ ryKpn).

How can receiver decrypt?

Key generation:
Generate s € {1, ..., Y}

1o s —1
ui, ..., uny € S U, ..., ,
1 N N

K; € (uj+sZ)N{-X,...,X}.

Decryption:
m=0if Cmods < (s—1)/2;
otherwise m = 1.

Why this works:

Kimods=u; <(s—1)/2N so
—1

nKi+--+ryKy mod5§5 .

(Be careful! What if all r; = 07)

hen cryptosystem

ey: vector of integers

says pick “half of the

in the public key at
| guess this means

and Z Fi — /V/2.)

bute and send ciphertext

)M (K + -+ rnKpn).

How can receiver decrypt?

Key generation:

Decryption:
m=0if Cmods<(s—1)/2;
otherwise m = 1.

Why this works:
Kimods=u; <(s—1)/2N so

nKi+---+ryKy mods <

(Be careful! What if all r;, = 07)

s—1

Let's try

Debian:

Fedora:
Source:
Web (us

sagecel

Sage is |
+ many

+ a few

sage: 1
1000000
sage: T
3172135

sage:

DSsystem

of integers

‘half of the
olic key at

this means
= N/2.)

end ciphertext
o+ rvKpy).

How can receiver decrypt?

Key generation:
Generate s € {1, ..., Y}

U c<0 s 1
..... u ,
1 N >N

K; € (uj+sZ)N{-X,...,X}.

Decryption:
m=0if Cmods<(s—1)/2;
otherwise m = 1.

Why this works:
Kimods=u; <(s—1)/2N so

nKi+---+ryKy mods <

(Be careful! What if all r; = 07)

s—1

Let's try this on tl

Debian: apt inst
Fedora: dnf inst
Source: www.sage
Web (use print (.

sagecell.sagem:

Sage is Python 3
-+ many math libr

+ a few syntax di

sage: 1076 # pow
1000000

sage: factor(314
317213509 * 9903

sage:

How can receiver decrypt?

Key generation:
Generate s € {1,...,Y};

- 1o s—1
ui,...,Uu ,
1 N N

K; € (ui+sZ)N{-X,...,X}

Decryption:
m=0if Cmods<(s—1)/2;
otherwise m = 1.

Why this works:
Kimods=u; <(s—1)/2N so

s—1

nKi+---+ryKy mods <

(Be careful! What if all r;, = 07)

Let's try this on the comput

Debian: apt install sage
Fedora: dnf install sage:
Source: www.sagemath.org
Web (use print (X) to see .

sagecell.sagemath.org

Sage is Python 3
+ many math libraries

+ a few syntax differences:

sage: 1076 # power, not X
1000000

sage: factor(314159265358
317213509 * 990371647

sage:

How can receiver decrypt?

Key generation:

Generate s € {1,...,Y};

u1,...,uNE{O,...,

s—1

2N

Iy

K; € (uj+sZ)N{-X,..., X}

Decryption:

m=0ifCmods<(s—1)/2;

otherwise m = 1.

Why this works:

Kimods=u; <(s—1)/2N so

s—1

nKi+---+ryKy mods <

(Be careful! What if all r; = 07)

Let's try this on the computer.

Debian: apt install sagemath
Fedora: dnf install sagemath
Source: www.sagemath.org
Web (use print (X) to see X):

sagecell.sagemath.org

Sage is Python 3
-+ many math libraries

+ a few syntax differences:

sage: 1076 # power, not xor
1000000

sage: factor(314159265358979323)
317213509 * 990371647

sage:

| receiver decrypt?

eration:
2 secd{l,.... Y}

s —1
' 0, ..., ;
1N € { SN _:}

+sZ)N{—X, ... X}

on:
"Cmods <(s—1)/2;
em=1.

s works:

s=u; <(s—1)/2N so

— 1
oy Ky mOdSSS .

full What if all r; = 07)

Let's try this on the computer.

Debian: apt install sagemath
Fedora: dnf install sagemath
Source: www.sagemath.org
Web (use print (X) to see X):

sagecell.sagemath.org

Sage is Python 3
+ many math libraries

+ a few syntax differences:

sage: 1076 # power, not xor
1000000

sage: factor(314159265358979323)
317213509 * 990371647

sage:

For inte;

Sage's
outputs

Matches
C mod s

decrypt?

(s —1)/2N so
s—1

mod s <

1f all Fi — O?)

Let's try this on the computer.

Debian: apt install sagemath
Fedora: dnf install sagemath
Source: www.sagemath.org
Web (use print (X) to see X):

sagecell.sagemath.org

Sage is Python 3
-+ many math libraries

+ a few syntax differences:

sage: 1076 # power, not xor
1000000

sage: factor(314159265358979323)
317213509 * 990371647

sage:

For integers C, s v
Sage's “Cls” alwe
outputs between (

Matches standard
C mods=C— |(

\/ so

s—1

- 0?)

Let's try this on the computer.

Debian: apt install sagemath
Fedora: dnf install sagemath
Source: www.sagemath.org
Web (use print (X) to see X):

sagecell.sagemath.org

Sage is Python 3
+ many math libraries

+ a few syntax differences:

sage: 1076 # power, not xor
1000000

sage: factor(314159265358979323)
317213509 * 990371647

sage:

For integers C, s with s > 0
Sage's “Cls"” always produc
outputs between 0 and s —

Matches standard math defi
Cmods=C-—|C/s]s.

Let's try this on the computer.

Debian: apt install sagemath
Fedora: dnf install sagemath
Source: www.sagemath.org
Web (use print (X) to see X):

sagecell.sagemath.org

Sage is Python 3
-+ many math libraries

+ a few syntax differences:

sage: 1076 # power, not xor
1000000

sage: factor(314159265358979323)
317213509 * 990371647

sage:

For integers C, s with s > 0,
Sage's “Cls"” always produces
outputs between 0 and s — 1.

Matches standard math definition:
Cmods=C-—|C/s]s.

Let's try this on the computer.

Debian: apt install sagemath
Fedora: dnf install sagemath
Source: www.sagemath.org
Web (use print (X) to see X):

sagecell.sagemath.org

Sage is Python 3
-+ many math libraries

+ a few syntax differences:

sage: 1076 # power, not xor
1000000

sage: factor(314159265358979323)
317213509 * 990371647

sage:

For integers C, s with s > 0,
Sage's “Cls"” always produces
outputs between 0 and s — 1.

Matches standard math definition:
Cmods=C-—|C/s]s.

Warning: Typically

C < 0 produces C%s < 0

in lower-level languages, so
nonzero output leaks input sign.

Let's try this on the computer.

Debian: apt install sagemath
Fedora: dnf install sagemath
Source: www.sagemath.org
Web (use print (X) to see X):

sagecell.sagemath.org

Sage is Python 3
-+ many math libraries

+ a few syntax differences:

sage: 1076 # power, not xor
1000000

sage: factor(314159265358979323)
317213509 * 990371647

sage:

For integers C, s

with s > 0,

Sage's “Cls"” always produces

outputs between

0 and s — 1.

Matches standard math definition:
Cmods=C-—|C/s]s.

Warning: Typically
C < 0 produces C%s < 0
in lower-level languages, so

nonzero output leaks input sign.

Warning: For po
Sage can make t

ynomials C,

ne same mistake.

this on the computer.

apt 1nstall sagemath
dnf install sagemath
WWW.sagemath.org

e print (X) to see X):
1.sagemath.org

Python 3
math libraries
syntax differences:

0"6 # power, not xor

actor(314159265358979323)
09 * 990371647

For integers C, s

with s > 0,

Sage's “Cls"” always produces

outputs between

Matches standard math definition:

0 and s — 1.

Cmods=C-—|C/s]s.

Warning: Typically
C < 0 produces C%s < 0
in lower-level languages, so

nonzero output leaks input sign.

Warning: For po
Sage can make t

ynomials C,

ne same mistake.

sage:

1e computer. For integers C, s with s > 0, sage:

Sage's “Cls" always produces
all sagemath & hs' always produ

outputs between 0 and s — 1.
all sagemath HHPU W y

math.org Matches standard math definition:
X) to see X): Cmods=C-—|C/s]s.
1th.org

Warning: Typically
C < 0 produces C%s < 0

aries in lower-level languages, so
ferences: nonzero output leaks input sign.
er, not xor Warning: For polynomials C,

Sage can make the same mistake.
159265358979323)
71647

er.

math
nath

V™

or

979323)

For integers C, s with s > 0,
Sage's “Cls"” always produces
outputs between 0 and s — 1.

Matches standard math definition:
Cmods=C-—|C/s]s.

Warning: Typically

C < 0 produces C%s < 0

in lower-level languages, so
nonzero output leaks input sign.

Warning: For polynomials C,

Sage can make the same mistake.

sage:

For integers C, s with s > 0, sage:
Sage's “Cls"” always produces
outputs between 0 and s — 1.

Matches standard math definition:
Cmods=C-—|C/s]s.

Warning: Typically

C < 0 produces C%s < 0

in lower-level languages, so
nonzero output leaks Iinput sign.

Warning: For polynomials C,

Sage can make the same mistake.

For integers C, s with s > 0, sage: N=10
Sage's “Cls"” always produces sage:
outputs between 0 and s — 1.

Matches standard math definition:
Cmods=C-—|C/s]s.

Warning: Typically

C < 0 produces C%s < 0

in lower-level languages, so
nonzero output leaks Iinput sign.

Warning: For polynomials C,

Sage can make the same mistake.

For integers C, s with s > 0, sage: N=10
Sage's “Cls"” always produces sage: X=2"50
outputs between 0 and s — 1. sage:

Matches standard math definition:
Cmods=C-—|C/s]s.

Warning: Typically

C < 0 produces C%s < 0

in lower-level languages, so
nonzero output leaks Iinput sign.

Warning: For polynomials C,

Sage can make the same mistake.

For integers C, s with s > 0,
Sage's “Cls"” always produces
outputs between 0 and s — 1.

Matches standard math definition:
Cmods=C-—|C/s]s.

Warning: Typically

C < 0 produces C%s < 0

in lower-level languages, so
nonzero output leaks Iinput sign.

Warning: For polynomials C,

Sage can make the same mistake.

sage:
sage:
sage:

sage:

N=10
X=2"50
Y=2"20

For integers C, s with s > 0, sage: N=10

Sage's “Cls"” always produces sage: X=2"50
outputs between 0 and s — 1. sage: Y=2"20
CoL Y
Matches standard math definition: Sage
1048576
Cmods=C-—|C/s]s.
sage:

Warning: Typically

C < 0 produces C%s < 0

in lower-level languages, so
nonzero output leaks Iinput sign.

Warning: For polynomials C,

Sage can make the same mistake.

For integers C, s with s > 0, sage: N=10

Sage's “Cls"” always produces sage: X=2"50
outputs between 0 and s — 1. sage: Y=2"20
Matches standard math definition: sage: I
Cmods=C— |C/s|s. 1048576
sage: s=randrange(1l,Y+1)
Warning: Typically sage:

C < 0 produces C%s < 0
in lower-level languages, so
nonzero output leaks Iinput sign.

Warning: For polynomials C,

Sage can make the same mistake.

For integers C, s with s > 0, sage: N=10

Sage's “Cls"” always produces sage: X=2"50
outputs between 0 and s — 1. sage: Y=2"20
Matches standard math definition: sage: ¥
Cmods=C— |C/s|s. H028576
sage: s=randrange(1l,Y+1)
Warning: Typically sage: s
C < 0 produces C%s < 0 359519
in lower-level languages, so sage:

nonzero output leaks Iinput sign.

Warning: For polynomials C,

Sage can make the same mistake.

For integers C, s

with s > 0,

Sage's “Cls"” always produces

outputs between

Matches standard math definition:

0 and s — 1.

Cmods=C-—|C/s]s.

Warning: Typically
C < 0 produces C%s < 0
in lower-level languages, so

nonzero output leaks Iinput sign.

Warning: For po
Sage can make t

ynomials C,

ne same mistake.

sage: N=10
sage: X=2"50
sage: Y=2"20
sage: Y
1048576

sage: s=randrange(1l,Y+1)
sage: s

359512

sage: u=[randrange(

- (s-1)//(2*%N)+1)

- for i in range(N)]

For integers C, s with s > 0,
Sage's “Cls"” always produces
outputs between 0 and s — 1.

Matches standard math definition:

Cmods=C-—|C/s]s.

Warning: Typically

C < 0 produces C%s < 0

in lower-level languages, so
nonzero output leaks Iinput sign.

Warning: For polynomials C,

Sage can make the same mistake.

sage: N=10
sage: X=2"50
sage: Y=2"20
sage: Y
1048576

sage: s=randrange(1l,Y+1)

sage: s

359512

sage: u=[randrange(

Cee (s-1)//(2*xN)+1)
- for i in range(N)]

sage: u

[14485, 7039, 6945, 15890,
10493, 17333, 1397, 8656,
8213, 6370]

yers C, s with s > 0,
C%s’ always produces
between 0 and s — 1.

- standard math definition:

=C — |C/s]s.

. Typically

oduces C%s < 0

level languages, so
output leaks input sign.

. For polynomials C,

1 make the same mistake.

sage: N=10
sage: X=27"50
sage: Y=2"20
sage: Y
1048576

sage: s=randrange(1l,Y+1)

sage: s

359512

sage: u=[randrange (

Cee (s-1)//(2*xN)+1)
- for i in range(N)]

sage: u

[14485, 7039, 6945, 15890,
10493, 17333, 1397, 8656,
8213, 6370]

vith s > 0, sage: N=10 sage: K=[ui+s*ra
ys produces sage: X=2"50 R ceil(
) and s — 1. sage: Y=2"20 . floor
Co sage: Y - for ui
math definition: 5
- 1048576 sage:
_/s|s.
sage: s=randrange(1l,Y+1)
y sage: s
s <0
0 359512
Uages, so sage: u=[randrange(

ks Input sign. (s-1)//(2%N) +1)

nomials C. Cee for i in range(N)]

sage: u

[14485, 7039, 6945, 15890,
10493, 17333, 1397, 8656,

8213, 6370]

o same mistake.

es
1.

nition:

S1gn.

stake.

sage: N=10

sage: X=2750

sage: Y=2"20

sage: Y

1048576

sage: s=randrange(1l,Y+1)

sage: s

359512

sage: u=[randrange (

- (s=1)//(2xN)+1)
- for i in range(N)]

sage: u

[14485, 7039, 6945, 15890,
10493, 17333, 1397, 8656,
8213, 6370]

sage: K=[uit+s*randrange (
- ceil (- (X+ui)/s
- floor ((X-ui)/s

. for ui in ul

sage: N=10

sage: X=2"50

sage: Y=2"20

sage: Y

1048576

sage: s=randrange(1l,Y+1)

sage: s

359512

sage: u=[randrange(

Cee (s=1)//(2xN)+1)
- for i in range(N)]

sage: u

[14485, 7039, 6945, 15890,
10493, 17333, 1397, 8656,
8213, 6370]

sage: K=[ui+s*randrange (
Ce ceil (- (X+ui)/s),
Cee floor ((X-ui)/s)+1)

. for ui in ul

sage: N=10 6 sage: K=[ui+s*randrange (
sage: X=2"50 - ceil (- (X+ui)/s),
sage: Y=2720 Cee floor ((X-ui)/s)+1)
sage: Y Cee for ui in u]
1048576 sage: K
sage: s=randrange(1l,Y+1) [870056918917829,
sage: s 822006576592695,
359512 -294765544345815,
sage: u=[randrange(-669275100080982,

Co (s=1)//(2*N)+1) 528958455221029,

- for i in range(N)] 426006001074157,
sage: u -6419401760380531,

[14485, 7039, 6945, 15890, 501543495923784,

10493, 17333, 1397, 8656, -583064075392587,

8213, 6370] 46109390243834]

=250
=2"20

=randrange (1,Y+1)

=[randrange (

(s-1)//(2%N)+1)

for i in range(N)]

7039, 6945, 15890,
17333, 1397, 8656,
5370]

sage: K=[uit+s*randrange (

Ce ceil (- (X+ui)/s),
- floor ((X-ui)/s)+1)
- for ui in ul

sage: K

[870056918917829,
322006576592695,
-2947655443453815,
-669275100080982,
528958455221029,
426006001074157,
-641940176080531,
5015434959237384,
-583064075392587,
46109390243834]

sage: [
[14485,
10493,
3213, |
sage: u
[14485,
10493,
3213, |

sage:

6 sage: K=[ui+s*randrange (7 sage: [KiJ/s for

et ceil(—(X+ui)/s), [14485, 7039, 69
Cee floor ((X-ui)/s)+1) 10493, 17333, 1
C for ui in u] 8213, 6370]
sage: K sage: u

e(1,Y+1) [870056918917829, [14485, 7039, 69
322006576592695, 10493, 17333, 1
-294765544345815, 8213, 6370]

ge (-669275100080982, sage:

// (2%N)+1) 528958455221029,

n range (N)] 426006001074157,
-641940176080531,

45, 15890, 501543495923734,

397, 38656, -583064075392587,
46109390243834]

sage: K=[uit+s*randrange (

Ce ceil (- (X+ui)/s),
- floor ((X-ui)/s)+1)
- for ui in ul

sage: K

[870056918917829,
322006576592695,
-294765544345315,
-669275100080982,
528958455221029,
426006001074157,
-6419401760380531,
5015434959237384,
-583064075392587,
46109390243834]

sage: [KiY/s for Ki in K]
[14485, 7039, 6945, 1589C
10493, 17333, 1397, 865¢€
8213, 6370]

sage: u

[14485, 7039, 6945, 1589C
10493, 17333, 1397, 8656
8213, 6370]

sage:

sage: K=[ui+s*randrange (7 sage: [KiY/s for Ki in K]
Cee et ceil(-(X+ui)/s), [14485, 7039, 6945, 15890,
Cee floor((X-ui)/s)+1) 10493, 17333, 1397, 8656,
C for ui in u] 8213, 6370]

sage: K sage: u

[870056918917829, [14485, 7039, 6945, 15890,
822006576592695, 10493, 17333, 1397, 8656,
-2947655443453815, 8213, 6370]
-669275100080982, sage:

528958455221029,

426006001074157,

-6419401760380531,

501543495923784,

-583064075392587,

46109390243834]

sage: K=[ui+s*randrange (7 sage: [KiY/s for Ki in K]
Cee et ceil (- (X+ui)/s), [14485, 7039, 6945, 15890,
Cee floor((X-ui)/s)+1) 10493, 17333, 1397, 8656,
C for ui in u] 8213, 6370]

sage: K sage: u

[870056918917829, [14485, 7039, 6945, 15890,
822006576592695, 10493, 17333, 1397, 8656,
-2947655443453815, 8213, 6370]
-669275100080982, sage: sum(K)7s
528958455221029, 96821

426006001074157, sage: sum(u)
-6419401760380531, 96321

501543495923784, sage:

-583064075392587,

46109390243834]

sage: K=[ui+s*randrange (

Ce ceil (- (X+ui)/s),
Cee floor ((X-ui)/s)+1)
Ceel for ui in ul

sage: K

[870056918917829,
322006576592695,
-294765544345815,
-669275100080982,
5238958455221029,
426006001074157,
-641940176080531,
501543495923734,
-533064075392537,
46109390243834]

sage: [KiY/s for Ki in K]
[14485, 7039, 6945, 15890,

10493, 17333,

8213, 6370]

sage: u

1397, 8656,

[14485, 7039, 6945, 15890,

10493, 17333,

8213, 6370]

sage: sum(K)%s

96821

sage: sum(u)
96321

sage: s//2
179756

sage:

1397, 8656,

=[ui+s*randrange(
ceil (- (X+ui)/s),
floor ((X-ui)/s)+1)

for ui in ul

018917829,
576592695,
544345815,
5100080982,
155221029,
001074157,
0176080531,
195923784,
1075392587,
00243834]

sage: [KiY/s for Ki in K]
[14485, 7039, 6945, 15890,
10493, 17333, 1397, 8656,
8213, 6370]

sage: u

[14485, 7039, 6945, 15890,
10493, 17333, 1397, 8656,
8213, 6370]

sage: sum(K)%s

96821

sage: sum(u)

96321

sage: s//2

179756

sage:

sage:

sage:

m:

ndrange (
-(X+ui)/s),
((X-ui)/s)+1)

in ul

sage: [KiY/s for Ki in K]

[14485, 7039, 6945, 15890,
10493, 17333,

8213, 6370]

sage: u

1397, 8656,

[14485, 7039, 6945, 15890,

10493, 17333,

8213, 6370]

sage: sum(K)%s

96821

sage: sum(u)
96321

sage: s//2
179756

sage:

1397, 8656,

sage: m=randrang

sage:

)+1)

sage: [KiY/s for Ki in K]
[14485, 7039, 6945, 15890,

10493, 17333,

8213, 6370]

sage: u

1397, 8656,

[14485, 7039, 6945, 15890,

10493, 17333,

8213, 6370]

sage: sum(K)%s

96821

sage: sum(u)
96321

sage: s//2
179756

sage:

1397, 8656,

sage: m=randrange(2)

sage:

sage: [KiY/s for Ki in K]
[14485, 7039, 6945, 15890,

10493, 17333,

8213, 6370]

sage: u

1397, 8656,

[14485, 7039, 6945, 15890,

10493, 17333,

8213, 6370]

sage: sum(K)%s

96821

sage: sum(u)
96321

sage: s//2
179756

sage:

1397, 8656,

sage: m=randrange (2)

sage:

sage: [KiY/s for Ki in K]
[14485, 7039, 6945, 15890,

10493, 17333,

8213, 6370]

sage: u

1397, 8656,

[14485, 7039, 6945, 15890,

10493, 17333,

8213, 6370]

sage: sum(K)%s

96821

sage: sum(u)
96321

sage: s//2
179756

sage:

1397, 8656,

sage: m=randrange (2)

sage: r=[randrange(2)

for i in range(N)]

sage: [KiY/s for Ki in K]
[14485, 7039, 6945, 15890,

10493, 17333,

8213, 6370]

sage: u

1397, 8656,

[14485, 7039, 6945, 15890,

10493, 17333,

8213, 6370]

sage: sum(K)%s

96821

sage: sum(u)
96321

sage: s//2
179756

sage:

1397, 8656,

: m=randrange (2)

: r=[randrange(2)

for i in range(N)]

. C=(-1) "m*xsum(r[i]*K[i]

for i in range(N))

sage: [KiY/s for Ki in K]
[14485, 7039, 6945, 15890,

10493, 17333,

8213, 6370]

sage: u

1397, 8656,

[14485, 7039, 6945, 15890,

10493, 17333,

8213, 6370]

sage: sum(K)%s

96821

sage: sum(u)
96321

sage: s//2
179756

sage:

1397, 8656,

sage: m=randrange (2)

sage: r=[randrange(2)

Cee for i in range(N)]
sage: C=(-1) m*sum(r[i]*K[i]
....: for i in range(N))
sage: C

—-202215856043576

sage:

sage: [KiY/s for Ki in K]
[14485, 7039, 6945, 15890,

10493, 17333,

8213, 6370]

sage: u

1397, 8656,

[14485, 7039, 6945, 15890,

10493, 17333,

8213, 6370]

sage: sum(K)%s

96821

sage: sum(u)
96321

sage: s//2
179756

sage:

1397, 8656,

sage: m=randrange (2)

sage: r=[randrange(2)

Cee for i in range(N)]
sage: C=(-1) m*sum(r[i]*K[i]
....: for i in range(N))
sage: C

—-202215856043576

sage: C/s

47024

sage:

sage: [KiY/s for Ki in K]
[14485, 7039, 6945, 15890,

10493, 17333,

8213, 6370]

sage: u

1397, 8656,

[14485, 7039, 6945, 15890,

10493, 17333,

8213, 6370]

sage: sum(K)%s

96821

sage: sum(u)
96321

sage: s//2
179756

sage:

1397, 8656,

sage: m=randrange (2)

sage: r=[randrange(2)

Cee for i in range(N)]
sage: C=(-1) m*sum(r[i]*K[i]
....: for i in range(N))
sage: C

—-202215856043576

sage: C/s

47024

sage: m

0

sage:

sage: [KiY/s for Ki in K]
[14485, 7039, 6945, 15890,
10493, 17333, 1397, 8656,
8213, 6370]

sage: u

[14485, 7039, 6945, 15890,
10493, 17333, 1397, 8656,
8213, 6370]

sage: sum(K)%s

96821

sage: sum(u)

96321

sage: s//2

179756

sage:

sage: m=randrange (2)

sage: r=[randrange(2)

Cee for i in range(N)]
sage: C=(-1) m*sum(r[i]*K[i]
....: for i in range(N))
sage: C

—-202215856043576

sage: C/s

47024

sage: m

0

sage: sum(r[i]*ul[il

Cee for i in range(N))

Ki’hs for Ki in K]
7039, 6945, 15890,
17333, 1397, 8656,

5370]

7039, 6945, 15890,
17333, 1397, 8656,
5370]

um (K) %s

am (u)

//2

sage: m=randrange(2)

sage: r=[randrange(2)

Cee for i in range(N)]
sage: C=(-1) m*sum(r[i]*K[i]
....: for i in range(N))
sage: C

—-202215856043576

sage: C/s

47024

sage: m

0

sage: sum(r[i]*ul[il

Cee for i in range(N))

Some pr

1. Func
System
that hav

Ki in K]
45, 15390,
397, 8656,

45, 15890,
397, 8656,

sage: m=randrange (2)

sage: r=[randrange(2)

Cee for i in range(N)]
sage: C=(-1) m*sum(r[i]*K[i]
....: for i in range(N))
sage: C

—-202215856043576

sage: C/s

47024

sage: m

0

sage: sum(r[i]*ul[il

Cee for i in range(N))

Some problems wi

1. Functionality p
System can't encr
that have more th

sage: m=randrange(2)

sage: r=[randrange(2)

Ceel for i in range(N)]
sage: C=(-1) m*sum(r[i]*K[i]
....: for i in range(N))
sage: C

-202215856043576

sage: C/s

47024

sage: m

0

sage: sum(r[i]*ul[il

Cee for i in range(N))

Some problems with cryptos

1. Functionality problem:
System can't encrypt messa
that have more than 1 bit.

sage: m=randrange (2)

sage: r=[randrange(2)

Cee for i in range(N)]
sage: C=(-1) m*sum(r[i]*K[i]
....: for i in range(N))
sage: C

—-202215856043576

sage: C/s

47024

sage: m

0

sage: sum(r[i]*ul[il

Cee for i in range(N))

Some problems with cryptosystem

1. Functionality problem:
System can'’t encrypt messages
that have more than 1 bit.

10

sage: m=randrange (2)

sage: r=[randrange(2)

Cee for i in range(N)]
sage: C=(-1) m*sum(r[i]*K[i]
....: for i in range(N))
sage: C

—-202215856043576

sage: C/s

47024

sage: m

0

sage: sum(r[i]*ul[il

Cee for i in range(N))

10
Some problems with cryptosystem

1. Functionality problem:
System can'’t encrypt messages
that have more than 1 bit.

2. Security problem:

We want cryptosystems to resist
“chosen-ciphertext attacks”
where attacker can see
decryptions of other ciphertexts.

sage: m=randrange (2)

sage: r=[randrange(2)

Cee for i in range(N)]
sage: C=(-1) m*sum(r[i]*K[i]
....: for i in range(N))
sage: C

—-202215856043576

sage: C/s

47024

sage: m

0

sage: sum(r[i]*ul[il

Cee for i in range(N))

10
Some problems with cryptosystem

1. Functionality problem:
System can'’t encrypt messages
that have more than 1 bit.

2. Security problem:

We want cryptosystems to resist
“chosen-ciphertext attacks”
where attacker can see
decryptions of other ciphertexts.

Chosen-ciphertext attack
against this system:
Decrypt —C. Flip result.

(Works whenever C £ 0.)

=randrange (2)
=[randrange (2)

for i in range(N)]
=(-1) "m*sum(r [i] *K[i]

for i in range(N))

356043576

LS

am (r [i] *u[i]

for i in range(N))

Some problems with cryptosystem

1. Functionality problem:
System can’t encrypt messages
that have more than 1 bit.

2. Security problem:

We want cryptosystems to resist
“chosen-ciphertext attacks”
where attacker can see
decryptions of other ciphertexts.

Chosen-ciphertext attack
against this system:
Decrypt —C. Flip result.

(Works whenever C £ 0.)

10

2000 Co
fixing bc

1. Tran:
into mul
encrypti
Use new

e(2)

ge(2)
n range(N)]

um (r [i]*K [i]
range(N))

[i]
in range(N))

Some problems with cryptosystem

1. Functionality problem:
System can’t encrypt messages
that have more than 1 bit.

2. Security problem:

We want cryptosystems to resist
“chosen-ciphertext attacks”
where attacker can see
decryptions of other ciphertexts.

Chosen-ciphertext attack
against this system:
Decrypt —C. Flip result.

(Works whenever C £ 0.)

10

2000 Cohen: cryp
fixing both of thes

1. Transform 1-bi
iInto multi-bit encr
encrypting each bl
Use new randomn

)]
[i]

Some problems with cryptosystem

1. Functionality problem:
System can'’t encrypt messages
that have more than 1 bit.

2. Security problem:

We want cryptosystems to resist
“chosen-ciphertext attacks”
where attacker can see
decryptions of other ciphertexts.

Chosen-ciphertext attack
against this system:
Decrypt —C. Flip result.

(Works whenever C £ 0.)

10

2000 Cohen: cryptosystem
fixing both of these problem

1. Transftorm 1-bit encryptic
into multi-bit encryption by
encrypting each bit separate
Use new randomness for eac

Some problems with cryptosystem

1. Functionality problem:
System can'’t encrypt messages
that have more than 1 bit.

2. Security problem:

We want cryptosystems to resist
“chosen-ciphertext attacks”
where attacker can see
decryptions of other ciphertexts.

Chosen-ciphertext attack
against this system:
Decrypt —C. Flip result.

(Works whenever C £ 0.)

10

2000 Cohen: cryptosystem
fixing both of these problems.

1. Transform 1-bit encryption
into multi-bit encryption by
encrypting each bit separately.

Use new randomness for each bit.

11

Some problems with cryptosystem

1. Functionality problem:
System can'’t encrypt messages
that have more than 1 bit.

2. Security problem:

We want cryptosystems to resist
“chosen-ciphertext attacks”
where attacker can see
decryptions of other ciphertexts.

Chosen-ciphertext attack
against this system:
Decrypt —C. Flip result.

(Works whenever C £ 0.)

10

2000 Cohen: cryptosystem
fixing both of these problems.

1. Transform 1-bit encryption
into multi-bit encryption by
encrypting each bit separately.

Use new randomness for each bit.

B-bit input message

m:(ml,...,mg) E{O,l}B.
For each i € {1,..., B}:
Generate rj1,...,rin € {0, 1}.

Ciphertext C:
(—1)m1(r1,1K1 + - T r].,NKN)1

.(;i)mB(fB,1K1

re NKn).

11

oblems with cryptosystem

tionality problem:
can't encrypt messages
e more than 1 bit.

Ity problem:

t cryptosystems to resist
-ciphertext attacks”
tacker can see

ons of other ciphertexts.

ciphertext attack
this system:
—C. Flip result.

whenever C = 0.)

10

2000 Cohen: cryptosystem
fixing both of these problems.

1. Transform 1-bit encryption
into multi-bit encryption by
encrypting each bit separately.

Use new randomness for each bit.

B-bit input message

m:(ml,...,mg) 6{0,1}8.
For each i € {1,..., B}:
Generate rj1,...,rin € {0, 1}.

Ciphertext C:
(—1)m1(r1,1K1 + - r].,NKN)7

-(—1)m5(f5,1K1

re nKn).

11

2. Deral
reencryp
This Is ¢
1999 Fu

th cryptosystem

roblem:
ypt messages
an 1 bit.

m:
stems to resist
- attacks”

1 see

er ciphertexts.

attack
n:

result.

C #0.)

10

2000 Cohen: cryptosystem
fixing both of these problems.

1. Transform 1-bit encryption
into multi-bit encryption by
encrypting each bit separately.
Use new randomness for each bit.

B-bit input message
m:(ml,...,mg) E{O,l}B.
Foreach i € {1,...,B}:
Generate rj1, ..., rin € {0, 1}.

Ciphertext C:
(—1)m1(r1,1K1 + - T r].,NKN)1

(=1)"B(rg 1K1+ -+ re,nKn):

11

2. Derandomize e
reencrypt during ¢

This Is an example
1999 Fujisaki—Oka

ystem

oes

esist

X tS.

10

2000 Cohen: cryptosystem

fixing both of these problems.

1. Transform 1-bit encryption

into multi-bit encryption by

encrypting each bit separately.

Use new randomness for each bit.

B-bit input message

m:(ml,...,mB)G{O,l}B.

For each i € {1,..., B}:
NS {O,].}.

Generate rj 1, . .

Ciphertext C:

(—1)m1(r1,1K1 + - r].,NKN)7

-(—1)m5(f5,1K1

re NKn).

11

2. Derandomize encryption,
reencrypt during decryption.

This is an example of “FO",
1999 Fujisaki-Okamoto tran

11 12

2000 Cohen: cryptosystem 2. Derandomize encryption, and
fixing both of these problems. reencrypt during decryption.

1. Transform 1-bit encryption This is an example of “FO", the
into multi-bit encryption by 1999 Fujisaki-Okamoto transform.

encrypting each bit separately.
Use new randomness for each bit.

B-bit input message
m:(ml,...,mg) E{O,l}B.
For each i € {1,..., B}:
Generate rj1,...,rin € {0, 1}.

Ciphertext C:
(—1)m1(r1,1K1 + - T r].,NKN)1

(=1)"B(rg, 1K1+ -+ re,nKn):

2000 Cohen: cryptosystem
fixing both of these problems.

1. Transform 1-bit encryption
into multi-bit encryption by
encrypting each bit separately.

Use new randomness for each bit.

B-bit input message
m:(ml,...,mg) E{O,l}B.
For each i € {1,..., B}:
Generate rj1,...,rin € {0, 1}.

Ciphertext C:
(—1)m1(r1,1K1 + - T r].,NKN)1

(=1)"B(rg, 1K1+ -+ re,nKn):

11

2. Derandomize encryption, and
reencrypt during decryption.

This is an example of “FO”, the

1999 Fujisaki-Okamoto transform.

Derandomization: Generate r
as cryptographic hash H(m),
using standard hash function H.
(Watch out: Is m guessable?)

12

2000 Cohen: cryptosystem
fixing both of these problems.

1. Transform 1-bit encryption
into multi-bit encryption by
encrypting each bit separately.

Use new randomness for each bit.

B-bit input message

m:(ml,...,mg) E{O,l}B.
For each i € {1,..., B}:
Generate rj1,...,rin € {0, 1}.

Ciphertext C:
(—1)m1(r1,1K1 + - T r].,NKN)1

.(;i)mB(fB,1K1

re NKn).

11

12
2. Derandomize encryption, and

reencrypt during decryption.

This is an example of “FO”, the
1999 Fujisaki-Okamoto transform.

Derandomization: Generate r
as cryptographic hash H(m),
using standard hash function H.
(Watch out: Is m guessable?)

Decryption with reencryption:
1. Input C'. (Maybe C' # C.)
2. Decrypt to obtain m’.

3. Recompute r' = H(m').

4. Recompute C" from m', r'.

5. Abort if C" £ C'.

hen: cryptosystem
th of these problems.

form 1-bit encryption
ti-bit encryption by
ng each bit separately.

"randomness for each bit.

DUt message
1,...,mg) € {0,115

i e41,...,B}:
N AT o VIS {0,1}.
xt C:

:r1,1K1 + 0+ rl,NKN)y

(r1 K1+ -+ rgnKn).

11

2. Derandomize encryption, and
reencrypt during decryption.

This is an example of “FO”, the

1999 Fujisaki-Okamoto transform.

Derandomization: Generate r
as cryptographic hash H(m),
using standard hash function H.
(Watch out: Is m guessable?)

Decryption with reencryption:
1. Input C'. (Maybe C' # C.)
2. Decrypt to obtain m'.

3. Recompute r' = H(m').

4. Recompute C" from m’, r'.

5. Abort if C" £ C'.

12

Subset-s

Attacker
for (rq, .
checks r
against

This tak
e.g. 102.

tosystem
e problems.

. encryption
yption by
t separately.

ess for each bit.

ge
) € {0,1}5.
., B}:

ri N € {O,].}.

-+ nKpn),

re NKn).

11

2. Derandomize encryption, and

reencrypt during decryption.

This is an

1999 Fujisaki-Okamoto transform.

example of “FO", the

Derandomization: Generate r

as cryptographic hash H(m),

using standard hash function H.

(Watch out: Is m guessable?)

Decryption with reencryption:
1. Input C'. (Maybe C' # C.)
2. Decrypt to obtain m’.

3. Recom
4. Recom

oute r' = H(m').

oute C" from m', r'.

5. Abort if C" £ C'.

12

Subset-sum attack

Attacker searches

for (ri,...,ry),
checks n K1 + - --
against =(Cj.

This takes 2V eas
e.g. 1024 operatio

n

h bit.

11

2. Derandomize encryption, and
reencrypt during decryption.

This is an example of “FO”, the

1999 Fujisaki-Okamoto transform.

Derandomization: Generate r
as cryptographic hash H(m),
using standard hash function H.
(Watch out: Is m guessable?)

Decryption with reencryption:
1. Input C'. (Maybe C' # C.)
2. Decrypt to obtain m'.

3. Recompute r' = H(m').

4. Recompute C" from m’, r'.

5. Abort if C" £ C'.

12

Subset-sum attacks

Attacker searches all possibi
for (ry,...,ry),

checks n Ky + -+ ryKpyy
against +=Cj.

This takes 2V easy operatio
e.g. 1024 operations for N =

2. Derandomize encryption, and

reencrypt during decryption.

This is an

1999 Fujisaki-Okamoto transform.

example of “FO", the

Derandomization: Generate r

as cryptographic hash H(m),

using standard hash function H.

(Watch out: Is m guessable?)

Decryption with reencryption:
1. Input C'. (Maybe C' # C.)
2. Decrypt to obtain m’.

3. Recom
4. Recom

oute r' = H(m').

oute C" from m', r'.

5. Abort if C" £ C'.

12

13
Subset-sum attacks

Attacker searches all possibilities

for (ri,...,ry),
checks n Ky + -+ ryKpy
against +=Cj.

This takes 2V easy operations:
e.g. 1024 operations for N = 10.

2. Derandomize encryption, and

reencrypt during decryption.

This is an

1999 Fujisaki-Okamoto transform.

example of “FO", the

Derandomization: Generate r

as cryptographic hash H(m),

using standard hash function H.

(Watch out: Is m guessable?)

Decryption with reencryption:
1. Input C'. (Maybe C' # C.)
2. Decrypt to obtain m’.

3. Recom
4. Recom

oute r' = H(m').

oute C" from m', r'.

5. Abort if C" £ C'.

12

13
Subset-sum attacks

Attacker searches all possibilities

for (ri,...,ry),
checks n Ky + -+ ryKpy
against +=Cj.

This takes 2V easy operations:
e.g. 1024 operations for N = 10.

“This finds only one bit my."

2. Derandomize encryption, and

reencrypt during decryption.

This is an

1999 Fujisaki-Okamoto transform.

example of “FO", the

Derandomization: Generate r

as cryptographic hash H(m),

using standard hash function H.

(Watch out: Is m guessable?)

Decryption with reencryption:
1. Input C'. (Maybe C' # C.)
2. Decrypt to obtain m’.

3. Recom
4. Recom

oute r' = H(m').

oute C" from m', r'.

5. Abort if C" £ C'.

12

13
Subset-sum attacks

Attacker searches all possibilities

for (ri,...,ry),
checks n Ky + -+ ryKpy
against +=Cj.

This takes 2V easy operations:
e.g. 1024 operations for N = 10.

“This finds only one bit my."

— This is a problem in some
applications. Should design
encryption to leak no information.

2. Derandomize encryption, and
reencrypt during decryption.

This is an example of “FO”, the
1999 Fujisaki-Okamoto transform.

Derandomization: Generate r
as cryptographic hash H(m),
using standard hash function H.
(Watch out: Is m guessable?)

Decryption with reencryption:
1. Input C'. (Maybe C' # C.)
2. Decrypt to obtain m’.

3. Recompute r' = H(m').

4. Recompute C" from m', r'.

5. Abort if C" £ C'.

12

13
Subset-sum attacks

Attacker searches all possibilities

for (ri,...,ry),
checks n Ky + -+ ryKpy
against +=Cj.

This takes 2V easy operations:
e.g. 1024 operations for N = 10.

“This finds only one bit my."

— This is a problem in some
applications. Should design
encryption to leak no information.

— Also, can easily modify attack
to find all bits of message.

1domize encryption, and
t during decryption.

n example of “FO", the
jisaki-Okamoto transform.

mization: Generate r
ographic hash H(m),
aindard hash function H.
out: Is m guessable?)

on with reencryption:
C'. (Maybe C' # C.)
/pt to obtain m’.
mpute r' = H(m').

mpute C"” from m’, r'.

if € £ C

12

Subset-sum attacks

Attacker

for (rq, ..

searches all possibilities
o rN)1

checks n Ky + -+ ryKpy

against -

(1.

This takes 2V easy operations:
e.g. 1024 operations for N = 10.

“This fin
— This |

ds only one bit my.”

s a problem in some

applications. Should design

encryption to leak no information.

— Also, can easily modify attack

to find all bits of message.

13

Modifiec
For eacl

rnKy +-
containi

ncryption, and
ecryption.

> of “FO", the
moto transform.

Generate r
ash H(m),
sh function H.
guessable?)

encryption:
be C' £ C.)
ain m'.

= H(m'").

from m' r'

~/

' []

12

Subset-sum attacks

Attacker searches all possibilities
for (ri,...,ry),

checks n Ky + -+ ryKpy
against +=Cj.

This takes 2V easy operations:
e.g. 1024 operations for N = 10.

“This finds only one bit my."

— This is a problem in some
applications. Should design
encryption to leak no information.

— Also, can easily moditfy attack
to find all bits of message.

13

Modified attack:
For each (r1,...,1

nKiy+ -+ ryK
containing =Cq, =+

and

the

sform.

r

1 H.
?)

.

)

12

Subset-sum attacks

Attacker searches all possibilities
for (ri,...,ry),

checks n Ky + - -+ ryKpy
against +=Cj.

This takes 2V easy operations:
e.g. 1024 operations for N = 10.

“This finds only one bit my."

— This is a problem in some
applications. Should design
encryption to leak no information.

— Also, can easily modify attack
to find all bits of message.

13

Modified attack:

For each (r1,..., ry), look
rnKy+---+ riyKy in hash

containing -

-Cq, 2

:CQ,...,:

Subset-sum attacks

Attacker searches all possibilities
for (ri,...,ry),

checks n Ky + -+ ryKpy
against +=Cj.

This takes 2V easy operations:
e.g. 1024 operations for N = 10.

“This finds only one bit my."

— This is a problem in some
applications. Should design
encryption to leak no information.

— Also, can easily modify attack
to find all bits of message.

13

14

Modified attack:

For each (r1,..., ry), look up
rnKiy+ -+ ryKpy in hash table
containing =Cq1, £Co, ..., x(Cp.

Subset-sum attacks

Attacker searches all possibilities
for (ri,...,ry),

checks n Ky + -+ ryKpy
against +=Cj.

This takes 2V easy operations:
e.g. 1024 operations for N = 10.

“This finds only one bit my."

— This is a problem in some
applications. Should design
encryption to leak no information.

— Also, can easily modify attack
to find all bits of message.

13

Modified attack:

For each (r1,..., ry), look up
rnKiy+ -+ ryKpy in hash table
containing =Cq1, £Co, ..., x(Cp.

Multi-target attack:

Apply this not just to B bits In
one message, but all bits in all
messages sent to this key.

14

Subset-sum attacks

Attacker searches all possibilities
for (ri,...,ry),

checks n Ky + -+ ryKpy
against +=Cj.

This takes 2V easy operations:
e.g. 1024 operations for N = 10.

“This finds only one bit my."

— This is a problem in some
applications. Should design
encryption to leak no information.

— Also, can easily modify attack
to find all bits of message.

13

Modified attack:

For each (r1,..., ry), look up
rnKiy+ -+ ryKpy in hash table
containing =Cq1, £Co, ..., x(Cp.

Multi-target attack:

Apply this not just to B bits In
one message, but all bits in all
messages sent to this key.

Finding all bits in all messages:
total 2V operations.

14

Subset-sum attacks

Attacker searches all possibilities
for (ri,...,ry),

checks n Ky + -+ ryKpy
against +=Cj.

This takes 2V easy operations:
e.g. 1024 operations for N = 10.

“This finds only one bit my."

— This is a problem in some
applications. Should design

encryption to leak no information.

— Also, can easily modify attack
to find all bits of message.

13

Modified attack:

For each (r1,..., ry), look up
rnKiy+ -+ ryKpy in hash table
containing =Cq1, £Co, ..., x(Cp.

Multi-target attack:

Apply this not just to B bits In
one message, but all bits in all
messages sent to this key.

Finding all bits in all messages:
total 2V operations.

Finding 1% of all bits in all
messages, huge information leak:

total 0.01 - 2N operations.

14

um attacks

- searches all possibilities
C ey I’/\/),

1K1+ -+ rvKy

::Cl.

es 2N easy operations:
A operations for N = 10.

\ds only one bit my.”

Is a problem in some
ons. Should design
on to leak no information.

can easily modify attack
|l bits of message.

13

Modified attack:

For each (rq,...,ry), look up
rnKiy+ -+ ryKpy in hash table
containing =Cq1, £Co, ..., x(Cp.

Multi-target attack:

Apply this not just to B bits In
one message, but all bits in all
messages sent to this key.

Finding all bits in all messages:
total 2N operations.

Finding 1% of all bits in all
messages, huge information leak:

total 0.01 - 2N operations.

14

“We car
N = 12¢
day, and
transfori

S

all possibilities

—|—rNK/\/

y operations:
ns for N = 10.

ne bit my."

m In some
Ild design
no information.

 modify attack
nessage.

13

Modified attack:

For each (r1,..., ry), look up
rnKiy+ -+ ryKpy in hash table
containing =Cq1, £Co, ..., x(Cp.

Multi-target attack:

Apply this not just to B bits In
one message, but all bits in all
messages sent to this key.

Finding all bits in all messages:
total 2V operations.

Finding 1% of all bits in all

messages, huge information leak:
total 0.01 - 2N operations.

14

“We can stop attz
N = 128, and cha
day, and applying
transform to each

lities

NS.

= 10.

1ation.

ttack

13

Modified attack:

For each (r1,..., ry), look up
rnKi+ -+ ryKpy in hash table
containing =Cq1, £Co, ..., x(Cp.

Multi-target attack:

Apply this not just to B bits In
one message, but all bits in all
messages sent to this key.

Finding all bits in all messages:
total 2N operations.

Finding 1% of all bits in all
messages, huge information leak:

total 0.01 - 2N operations.

14

“We can stop attacks by tal
N = 128, and changing keys
day, and applying all-or-notk
transform to each message.’

Modified attack:

For each (r1,..., ry), look up
rnKiy+ -+ ryKpy in hash table
containing =Cq1, £Co, ..., xCp.

Multi-target attack:

Apply this not just to B bits In
one message, but all bits in all
messages sent to this key.

Finding all bits in all messages:
total 2V operations.

Finding 1% of all bits in all
messages, huge information leak:

total 0.01 - 2N operations.

14

“We can stop attacks by taking

N = 128, and changing keys every
day, and applying all-or-nothing
transform to each message.”

15

Modified attack:

For each (r1,..., ry), look up
rnKiy+ -+ ryKpy in hash table
containing =Cq1, £Co, ..., xCp.

Multi-target attack:

Apply this not just to B bits In
one message, but all bits in all
messages sent to this key.

Finding all bits in all messages:
total 2V operations.

Finding 1% of all bits in all
messages, huge information leak:

total 0.01 - 2N operations.

14

15
“We can stop attacks by taking

N = 128, and changing keys every
day, and applying all-or-nothing
transform to each message.”

— Standard subset-sum attacks
take only oN/2 operations

to find (ry, ..., ry) € {0, 1}V
with Ky 4+ -4+ ryKy = C.

Modified attack:

For each (r1,..., ry), look up
rnKiy+ -+ ryKpy in hash table
containing =Cq1, £Co, ..., xCp.

Multi-target attack:

Apply this not just to B bits In
one message, but all bits in all
messages sent to this key.

Finding all bits in all messages:
total 2V operations.

Finding 1% of all bits in all
messages, huge information leak:

total 0.01 - 2N operations.

14

15
“We can stop attacks by taking

N = 128, and changing keys every
day, and applying all-or-nothing
transform to each message.”

— Standard subset-sum attacks
take only oN/2 operations

to find (ry, ..., ry) € {0, 1}V
with n K1+ -+ ryKy = C.

Make hash table containing
C—rnpv1Knrr = — IvnKi
for all (I’N/2_|_]_, C ey I’N).

Look up r Ky +--- 4+ rypKy/ in
hash table for each (rq, ..., rN/Q).

| attack:

(1, ..., ry), look up
-+ ryKpy in hash table
Ng ::Cl, CQ, Ce ey ::CB.

rget attack:

1S not just to B bits In
sage, but all bits in all
s sent to this key.

all bits in all messages:
operations.

1% of all bits in all

s, huge information leak:
1 - 2N operations.

14

“We can stop attacks by taking

N = 128, and changing keys every
day, and applying all-or-nothing
transform to each message.”

— Standard subset-sum attacks
take only oN/2 operations

to find (ry,...,ry) € {0, 1}V
with n K1+ -+ ryKy = C.

Make hash table containing
C—rnpor1Knorr = — InKi
for all (r/V/Q—I—l' C ey I’/\/).

Look up r Ky +--- 4+ rypKy/o In
hash table for each (rq, ..., rN/z).

15

These at
structure
one targ

v), look up
N In hash table
:CQ, C e ::CB.

K:

t to B bits In
all bits in all
his key.

all messages:
S.

bits in all
formation leak:
rations.

14

“We can stop attacks by taking

N = 128, and changing keys every
day, and applying all-or-nothing
transform to each message.”

— Standard subset-sum attacks
take only oN/2 operations

to find (ry, ..., ry) € {0, 1}V
with n K1+ -+ ryKy = C.

Make hash table containing
C—rnpr1Knrr = — ivnKi
for all (r/V/Z—I—l' C ey I’N).

Look up r Ky +--- 4+ rypKy/o in
hash table for each (rq, ..., rN/Q).

These attacks exp
structure of proble
one target C into

Ip
table

5 1N

all

€S

leak:

14

15
“We can stop attacks by taking

N = 128, and changing keys every
day, and applying all-or-nothing
transform to each message.”

— Standard subset-sum attacks
take only oN/2 operations

to find (ry, ..., ry) € {0, 1}V
with n K1+ -+ ryKy = C.

Make hash table containing
C—rnpr1Knorr = — InKi
for all (r/V/Q—I—l' C ey I’/\/).

Look up r Ky +---+ rypKy/o In
hash table for each (rq, ..., rN/z).

These attacks exploit linear
structure of problem to cony
one target C into many targ

“We can stop attacks by taking

N = 128, and changing keys every
day, and applying all-or-nothing
transform to each message.”

— Standard subset-sum attacks
take only oN/2 operations

to find (ry, ..., ry) € {0, 1}V
with nK;1+ -+ ryKy = C.

Make hash table containing
C—rnpr1Knorr = — inKi
for all (r/V/Z—I—l' C ey I’N).

Look up r Ky +--- 4+ rypKy/o in
hash table for each (rq, ..., rN/Q).

15

These attacks exploit linear
structure of problem to convert
one target C into many targets.

16

“We can stop attacks by taking

N = 128, and changing keys every
day, and applying all-or-nothing
transform to each message.”

— Standard subset-sum attacks
take only oN/2 operations

to find (ry, ..., ry) € {0, 1}V
with nK;1+ -+ ryKy = C.

Make hash table containing
C—rnpr1Knorr = — inKi
for all (I’N/2_|_]_, C ey I’N).

Look up r Ky +--- 4+ rypKy/o in
hash table for each (rq, ..., rN/Q).

15

These attacks exploit linear

structure of problem to convert

one target C into many targets.

(Actually have 2B targets

:Cl,...,:

Convert into B1/22N/2 targets:
total B1/22N/2 operations

to find all B bits. Also, maybe
have more messages to attack.)

-Cp for one message.

16

“We can stop attacks by taking

N = 128, and changing keys every
day, and applying all-or-nothing
transform to each message.”

— Standard subset-sum attacks
take only oN/2 operations

to find (ry, ..., ry) € {0, 1}V
with nK;1+ -+ ryKy = C.

Make hash table containing
C—rnpr1Knorr = — inKi
for all (I’N/2_|_]_, C ey I’N).

Look up r Ky +--- 4+ rypKy/o in
hash table for each (rq, ..., rN/Q).

15

These attacks exploit linear
structure of problem to convert
one target C into many targets.

(Actually have 2B targets

Convert into B1/22N/2 targets:
total B1/22N/2 operations

to find all B bits. Also, maybe
have more messages to attack.)

There are even more ways to
exploit the linear structure.

1981 Schroeppel-Shamir:
oN/2 operations, space oN/4

+(Cq,...,E£Cpg for one message.

16

' stop attacks by taking

3, and changing keys every
applying all-or-nothing

n to each message.”

lard subset-sum attacks
Y oN/2 operations

ri, .. .,r/\/) - {O, 1}N
1+ -+ ryKy =C.

sh table containing
+1KN/241 = — INKN
N/2+10 -+)

K1+ -+ rypKyps in
le for each (r1,..., ry).

15

These attacks exploit linear
structure of problem to convert
one target C into many targets.

(Actually have 2B targets

Convert into B1/22N/2 targets:
total B1/2pN/2 operations

to find all B bits. Also, maybe
have more messages to attack.)

There are even more ways to
exploit the linear structure.

1981 Schroeppel-Shamir:
oN/2 operations, space oN/4

+(Cq,...,E£Cpg for one message.

16

2010 Hc
claimed
May—Me

cks by taking
nging keys every
all-or-nothing
message."

t-sum attacks
arations

) € {0, 1}V
fNKN = C.

ontaining
1 — - — InKp
,I’/\/).

e rN/ZKN/Q In
V(e vg2).

15

These attacks exploit linear
structure of problem to convert
one target C into many targets.

(Actually have 2B targets

Convert into B1/22N/2 targets:
total B/2oN/2 operations

to find all B bits. Also, maybe
have more messages to attack.)

There are even more ways to
exploit the linear structure.

1981 Schroeppel-Shamir:
oN/2 operations, space oN/4

+(Cq,...,E£Cpg for one message.

16

2010 Howgrave-Gi
20.311N of

May—Meurer corre

claimed

INg
; every
1INg

1cks

NN

‘,N/Q N
fN/2)-

15

These attacks exploit linear
structure of problem to convert
one target C into many targets.

(Actually have 2B targets

Convert into B1/22N/2 targets:
total B1/2pN/2 operations

to find all B bits. Also, maybe
have more messages to attack.)

There are even more ways to
exploit the linear structure.

1981 Schroeppel-Shamir:
oN/2 operations, space oN/4

+(Cq,...,E£Cpg for one message.

16

2010 Howgrave-Graham—Jot

20.311N

claimed operations.

May—Meurer correction: 29-

These attacks exploit linear
structure of problem to convert
one target C into many targets.

(Actually have 2B targets

Convert into B1/22N/2 targets:
total B1/2oN/2 operations

to find all B bits. Also, maybe
have more messages to attack.)

There are even more ways to
exploit the linear structure.

1981 Schroeppel-Shamir:
oN/2 operations, space oN/4.

+(Cq,...,E£Cp for one message.

16

2010 Howgrave-Graham—Joux:

claimed 20-311N

May—Meurer correction:

operations. 2011

20.337N_

17

16

These attacks exploit linear 2010 Howgrave-Graham—Joux:
structure of problem to convert claimed 29311V gperations. 2011
one target C into many targets. May—Meurer correction: 20-337N.
(Actually have 2B targets 2011 Becker—Coron—Joux:
+(Cq,...,E£Cp for one message. 20.291N operations.

Convert into B1/22N/2 targets:
total B1/2oN/2 operations

to find all B bits. Also, maybe
have more messages to attack.)

There are even more ways to
exploit the linear structure.

1981 Schroeppel-Shamir:
oN/2 operations, space oN/4.

These attacks exploit linear
structure of problem to convert
one target C into many targets.

(Actually have 2B targets

Convert into B1/22N/2 targets:
total B1/2oN/2 operations

to find all B bits. Also, maybe
have more messages to attack.)

There are even more ways to
exploit the linear structure.

1981 Schroeppel-Shamir:
oN/2 operations, space oN/4.

+(Cq,...,E£Cp for one message.

16

2010 Howgrave-Graham—Joux:

20.31IN operations. 2011

20.337N_

claimed
May—Meurer correction:

2011 Becker—Coron—Joux:

20.291N operations.

2016 Ozerov: 29-287N gpherations.

17

These attacks exploit linear
structure of problem to convert
one target C into many targets.

(Actually have 2B targets

Convert into B1/22N/2 targets:
total B1/2oN/2 operations

to find all B bits. Also, maybe
have more messages to attack.)

There are even more ways to
exploit the linear structure.

1981 Schroeppel-Shamir:
oN/2 operations, space oN/4.

+(Cq,...,E£Cp for one message.

16

2010 Howgrave-Graham—Joux:

claimed 20-311N

May—Meurer correction:

operations. 2011

20.337N_

2011 Becker—Coron—Joux:

20.291N operations.

2016 Ozerov: 29-287N gpherations.

2019 Esser—May: c
operations, but wit

aimed 20-295N

ndrew claim.

17

These attacks exploit linear
structure of problem to convert
one target C into many targets.

(Actually have 2B targets

Convert into B1/22N/2 targets:
total B1/2oN/2 operations

to find all B bits. Also, maybe
have more messages to attack.)

There are even more ways to
exploit the linear structure.

1981 Schroeppel-Shamir:
oN/2 operations, space oN/4.

+(Cq,...,E£Cp for one message.

16

2010 Howgrave-Graham—Joux:

20.311N

claimed operations. 2011

May—Meurer correction: 29-337N.

2011 Becker—Coron—Joux:

20.291N operations.

2016 Ozerov: 29-287N gpherations.

2019 Esser—May: claimed 20-2>°N
operations, but withdrew claim.

2020 Bonnetain—Bricout—
Schrottenloher—=Shen: 20-283N

17

These attacks exploit linear
structure of problem to convert

one target C into many targets.

(Actually have 2B targets

Convert into B1/22N/2 targets:
total B1/2oN/2 operations

to find all B bits. Also, maybe
have more messages to attack.)

There are even more ways to
exploit the linear structure.

1981 Schroeppel-Shamir:
oN/2 operations, space oN/4.

+(Cq,...,E£Cp for one message.

16

2010 Howgrave-Graham—Joux:

20.311N

claimed operations. 2011

May—Meurer correction: 29-337N.

2011 Becker—Coron—Joux:

20.291N operations.

2016 Ozerov: 29-287N gpherations.

2019 Esser—May: claimed 20-2>°N
operations, but withdrew claim.

2020 Bonnetain—Bricout—
Schrottenloher—=Shen: 20-283N

Quantum attacks: various papers.

17

These attacks exploit linear
structure of problem to convert
one target C into many targets.

(Actually have 2B targets

Convert into B1/22N/2 targets:
total B1/2oN/2 operations

to find all B bits. Also, maybe
have more messages to attack.)

There are even more ways to
exploit the linear structure.

1981 Schroeppel-Shamir:
oN/2 operations, space oN/4.

+(Cq,...,E£Cp for one message.

16

2010 Howgrave-Graham—Joux:

20.311N

claimed operations. 2011

May—Meurer correction: 29-337N.

2011 Becker—Coron—Joux:

20.291N operations.

2016 Ozerov: 29-287N gpherations.

2019 Esser—May: claimed 20-2>°N
operations, but withdrew claim.

2020 Bonnetain—Bricout—
Schrottenloher—=Shen: 20-283N

Quantum attacks: various papers.

Multi-target speedups: probably!

17

'tacks exploit linear
> of problem to convert
et C Iinto many targets.

v have 25 targets

into B1/2pN/2 targets:
[29N/2 operations

Il B bits. Also, maybe
re messages to attack.)

'€ even more ways to
he linear structure.

hroeppel-Shamir:
erations, space oN/4

, £Cp for one message.

16

2010 Howgrave-Graham—Joux:

20.311N

claimed operations. 2011

May—Meurer correction: 29-337N.

2011 Becker—Coron—Joux:

20.291N operations.

2016 Ozerov: 29-287N gpherations.

2019 Esser—May: claimed 20-2>°N
operations, but withdrew claim.

2020 Bonnetain—Bricout—
Schrottenloher—=Shen: 2V-283N

Quantum attacks: various papers.

Multi-target speedups: probably!

17

Variants

2003 Re
(without

(—1)™(
m(K1/2

loit linear

'm to convert

many targets.

targets

one message.

oN/2 targets:
erations

Also, maybe
es to attack.)

re ways to
tructure.

Shamir:
pace oN/4

16

2010 Howgrave-Graham—Joux:

20.311N

claimed operations. 2011

May—Meurer correction: 29-337N.

2011 Becker—Coron—Joux:

20.291N operations.

2016 Ozerov: 29-287N gpherations.

2019 Esser—May: claimed 20-2>°N
operations, but withdrew claim.

2020 Bonnetain—Bricout—
Schrottenloher—=Shen: 20-283N,

Quantum attacks: various papers.

Multi-target speedups: probably!

17

Variants of crypto

2003 Regev: Cohe
(without credit), t
(=) (nKi+--
m(K1/2) + Ky -

/ert
ets.

age.

ts:

be
ck.)

16

2010 Howgrave-Graham—Joux:

claimed 293N gpherations. 2011

May—Meurer correction: 29-337N.

2011 Becker—Coron—Joux:

20.291N operations.

2016 Ozerov: 29-287N gpherations.

2019 Esser—May: claimed 20-2>°N
operations, but withdrew claim.

2020 Bonnetain—Bricout—
Schrottenloher—=Shen: 2V-283N

Quantum attacks: various papers.

Multi-target speedups: probably!

17

Variants of cryptosystem

2003 Regev: Cohen cryptos
(without credit), but replace
(—1)m(r1K1 + - rNKN)
m(K1/2) +nKy+ -+ ry

2010 Howgrave-Graham—Joux:
claimed 29311V gperations. 2011

May—Meurer correction: 29-337N.

2011 Becker—Coron—Joux:

20.291N operations.

2016 Ozerov: 29-287N gpherations.

2019 Esser—May: claimed 20-2>°N
operations, but withdrew claim.

2020 Bonnetain—Bricout—
Schrottenloher—=Shen: 20-283N

Quantum attacks: various papers.

Multi-target speedups: probably!

17

Variants of cryptosystem

2003 Regev: Cohen cryptosystem

(without credit), but replace
(=1)"(nK1+ -+ ryKp) with
m(K1/2) +nKi+ -+ ryKy.

18

2010 Howgrave-Graham—Joux:

20.311N

claimed operations. 2011

May—Meurer correction: 29-337N.

2011 Becker—Coron—Joux:

20.291N operations.

2016 Ozerov: 29-287N gpherations.

2019 Esser—May: claimed 20-2>°N
operations, but withdrew claim.

2020 Bonnetain—Bricout—
Schrottenloher—=Shen: 20-283N

Quantum attacks: various papers.

Multi-target speedups: probably!

17

18

Variants of cryptosystem

2003 Regev: Cohen cry
(without credit), but re

ptosystem

blace

(=1)"(nK1+ -+ ryKp) with
m(K1/2) +nKi+ -+ ryKy.

To make this work,

modify keygen to force
and (K1 —u1)/s €1+
Also be careful with u;

K, € 2Z
27
bounds.

2010 Howgrave-Graham—Joux:

20.311N

claimed operations. 2011

May—Meurer correction: 29-337N.

2011 Becker—Coron—Joux:

20.291N operations.

2016 Ozerov: 29-287N gpherations.

2019 Esser—May: claimed 20-2>°N
operations, but withdrew claim.

2020 Bonnetain—Bricout—
Schrottenloher—=Shen: 20-283N

Quantum attacks: various papers.

Multi-target speedups: probably!

17

18

Variants of cryptosystem

2003 Regev: Cohen cry

ptosystem

(without credit), but re
(—1)m(r1K1 + - N

vlace
KN) with

m(K1/2) +nKi+ -+ ryKy.

To make this work,

modify keygen to force
and (K1 —u1)/s €1+
Also be careful with u;

K, € 2Z
27
bounds.

2009 van Dijk—Gentry—Halevi—
Vaikuntanathan: K; € 2u; + sZ;

C=m+nKi+ -+ ryKpn;

m = (C mod s) mod 2.

Be careful to take s €1 + 2Z.

wgrave-Graham—Joux:
20-311N operations. 2011

urer correction: 20-337N.

cker—Coron—Joux:
operations.

20.287N

erov: operations.

ser—May: claimed 20-2°°N

ns, but withdrew claim.

nnetain—Bricout—

nloher=Shen: 20-283N.

n attacks: various papers.

rget speedups: probably!

17

Variants of cryptosystem

2003 Regev: Cohen cryptosystem
(without credit), but replace
(=1)™"(nK1+ -+ ryKpy) with
m(K1/2) +nKi+ -+ ryKy.

To make this work,

modify keygen to force Ky € 2Z
and (K1 —u1)/se€el+2Z

Also be careful with u; bounds.

2009 van Dijk—Gentry—Halevi—
Vaikuntanathan: K; € 2u; + sZ;
C=m+nKi+- -+ ryKy;

m = (C mod s) mod 2.
Be careful to take s € 1

2Z.

18

Homom:

|t u,-/s 1
DGHV s

-aham—Joux:
yerations. 2011
ction: 20-337N.

n—Joux:

87N operations.

claimed 20-295N
thdrew claim.

ricout—
en: 20.283N_

various papers.

ups: probably!

17

Variants of cryptosystem

2003 Regev: Cohen cryptosystem

(without credit), but replace
(=1)"(nK1+ -+ ryKp) with
m(K1/2) +nKi+ -+ ryKy.

To make this work,

modify keygen to force Ky € 2Z
and (K1 —u1)/sel+2Z

Also be careful with u; bounds.

2009 van Dijk—Gentry—Halevi—
Vaikuntanathan: K; € 2u; + sZ;
C=m+nKi+- -+ ryKy;
m = (C mod s) mod 2.

Be careful to take s € 1 + 2Z.

18

Homomorphic enc

If u;/s is small en
DGHYV system is f

IX.

2011
337N

tions.

).255N

m.

apers.

ably!

17

Variants of cryptosystem

2003 Regev: Cohen cryptosystem
(without credit), but replace
(=1)"(nK1+ -+ ryKpy) with
m(K1/2) +nKi+ -+ ryKy.

To make this work,

modify keygen to force Ky € 2Z
and (K1 —u1)/se€l+2Z

Also be careful with u; bounds.

2009 van Dijk—Gentry—Halevi—
Vaikuntanathan: K; € 2u; + sZ;
C=m+nKi+- -+ ryKy;
m = (C mod s) mod 2.

Be careful to take s € 1 + 2Z.

18

Homomorphic encryption

If u;/s is small enough then
DGHYV system is homomorp

Variants of cryptosystem

2003 Regev: Cohen cryptosystem

(without credit), but replace
(=1)"(nK1+ -+ ryKp) with
m(K1/2) +nKi+ -+ ryKy.

To make this work,

modify keygen to force K1 € 2Z
and (K1 —u1)/se€l+2Z

Also be careful with u; bounds.

2009 van Dijk—Gentry—Halevi—
Vaikuntanathan: K; € 2u; + sZ;
C=m+nKi+- -+ ryKy;
m = (C mod s) mod 2.

Be careful to take s €1+ 2Z.

18

Homomorphic encryption

If u;/s is small enough then 2009
DGHYV system is homomorphic.

19

18

Variants of cryptosystem Homomorphic encryption
2003 Regev: Cohen cryptosystem If u;/s is small enough then 2009
(without credit), but replace DGHV system is homomorphic.

(=1)"(nK1+ -+ ryKp) with

Take two ciphertexts:
m(K1/2) +nKi+ -+ ryKy.

C =m+2¢+ sq,
To make this work, C'=m' 42 + sd
modify keygen to force Ky € 27 with small €, ¢’ € Z.
and (K1 —u1)/se€l+2Z
Also be careful with u; bounds.

2009 van Dijk—Gentry—Halevi—
Vaikuntanathan: K; € 2u; + sZ;
C=m+nKi+- -+ ryKy;
m = (C mod s) mod 2.

Be careful to take s € 1 + 2Z.

Variants of cryptosystem

2003 Regev: Cohen cry

ptosystem
blace

(without credit), but re
(—1)m(r1K1 + - N

KN) with

m(K1/2) +nKi+ -+ ryKy.

To make this work,
modify keygen to force

and (K1 —u1)/s €1+

K, € 2Z
2L

Also be careful with u; bounds.

2009 van Dijk—Gentry—Halevi—
Vaikuntanathan: K; € 2u; + sZ;

C=m+nKi+ -+ ryKpn;

m = (C mod s) mod 2.
Be careful to take s € 1

2Z.

18

19

Homomorphic encryption

If u;j/s is

small enough then 2009

DGHYV system is homomorphic.

Take two
C=m-+

C'=m'-

ciphertexts:

2€ + sq,
- 2¢' + sq’

with sma

C+C =

le e € Z

m+m +2(e+¢€)+

s(qg + q'). This decrypts to

m+ m' mod 2 if e + € is small.

Variants of cryptosystem

2003 Regev: Cohen cry
(without credit), but re

ptosystem
blace

(=1)"(nK1+ -+ ryKp) with
m(K1/2) +nKi+ -+ ryKy.

To make this work,

modify keygen to force
and (K1 —u1)/s €1+
Also be careful with u;

K, € 2Z
27
bounds.

2009 van Dijk—Gentry—Halevi—
Vaikuntanathan: K; € 2u; + sZ;

C=m+nKi+ -+ ryKpn;

m = (C mod s) mod 2.

Be careful to take s €1+ 2Z.

18

Homomorphic encryption

If u;/s is small enough then 2009
DGHYV system is homomorphic.

Take two ciphertexts:
C = m+ 2¢+ sq,
C'=m' 42 + sd
with small €, ¢/ € Z.

C+C'=m+m +2(e+¢€)+
s(qg + q'). This decrypts to
m -+ m' mod 2 if € + € is small.

CC' = mm' +2(em' +€' m+2ee’) +
s(--+). This decrypts to

mm' if em’ + 'm <+ 2¢€’ is small.

19

of cryptosystem

gev: Cohen cryptosystem
- credit), but replace

1K1 4+ -+ ryKpy) with
)+ K1+ -+ ryKy.

» this work,

ceygen to force Ky € 2Z
—u1)/s €14+ 2Z.
careful with u; bounds.

1 Dijk—Gentry—Halevi—
anathan: K; € 2u; + sZ;
-nKy+ -+ rvK;
mod s) mod 2.

ul to take s € 1 +2Z.

18

Homomorphic encryption

If u;/s is small enough then 2009
DGHYV system is homomorphic.

Take two ciphertexts:
C =m+2¢+ sq,
C'=m+2€¢ +sq
with small €, ¢/ € Z.

C+C'=m+m +2(e+¢€)+
s(q + q'). This decrypts to
m -+ m' mod 2 if € + € is small.

CC'=mm'+2(em'+€' m+2ee’)+
s(---). This decrypts to
mm' if em’ + €'m + 2e€’ is small.

19

sage:

sage:

N:

System

N cryptosystem

yut replace

force K1 € 2Z
-1+ 2Z.
th u; bounds.

ntry—Halevi—
K; € 2u; + sZ;
-+ IvK;
od 2.
secl+2Z

18

Homomorphic encryption

If u;j/s is

small enough then 2009

DGHYV system is homomorphic.

Take two
C=m-+

C'=m'-

ciphertexts:

2€ + sq,
- 2¢' + sq’

with sma

C+C =

le e € Z

m+m +2(e+¢€)+

s(qg + q'). This decrypts to

m+ m' mod 2 if e + € is small.

CC' = mm' +2(em' +€' m+2ee’) +

s(--+). This decrypts to

mm' if em’ + 'm <+ 2¢€’ is small.

19

sage:

sage:

N=10

ystem

with

ds.
/1—

-sZ:

18

Homomorphic encryption

If u;/s is small enough then 2009
DGHYV system is homomorphic.

Take two ciphertexts:
C =m+ 2+ sq,
C'=m+2€¢ +sq
with small €, ¢/ € Z.

C+C'=m+m+2(e+¢€)+
s(q + q'). This decrypts to
m -+ m' mod 2 if € + € is small.

CC' = mm'+2(em'+€'m+2ee’)+
s(---). This decrypts to

mm' if em’ + 'm <+ 2¢€’ is small.

19

sage:

sage:

N=10

Homomorphic encryption

If u;/s is small enough then 2009
DGHYV system is homomorphic.

Take two ciphertexts:
C =m+ 2+ sq,
C'=m"+2¢ +sq
with small €, ¢/ € Z.

C+C'=m+m +2(e+¢€)+
s(g + q'). This decrypts to
m -+ m' mod 2 if € + € is small.

CC' = mm' +2(em' +€' m+2ee’) +
s(--+). This decrypts to

mm' if em’ + 'm <+ 2¢€’ is small.

19

sage:

sage:

N=10

20

Homomorphic encryption

If u;/s is small enough then 2009
DGHYV system is homomorphic.

Take two ciphertexts:
C =m+ 2+ sq,
C'=m"+2¢ +sq
with small €, ¢/ € Z.

C+C'=m+m +2(e+¢€)+
s(g + q'). This decrypts to
m -+ m' mod 2 if € + € is small.

CC' = mm' +2(em' +€' m+2ee’) +
s(--+). This decrypts to

mm' if em’ + 'm <+ 2¢€’ is small.

19

sage:
sage:

sage:

N=10
E=2710

20

Homomorphic encryption

If u;/s is small enough then 2009
DGHYV system is homomorphic.

Take two ciphertexts:
C =m+ 2+ sq,
C'=m"+2¢ +sq
with small €, ¢/ € Z.

C+C'=m+m +2(e+¢€)+
s(g + q'). This decrypts to
m -+ m' mod 2 if € + € is small.

CC' = mm' +2(em' +€' m+2ee’) +
s(--+). This decrypts to

mm' if em’ + 'm <+ 2¢€’ is small.

19

sage:
sage:
sage:

sage:

N=10
E=2710
Y=2"50

20

Homomorphic encryption

If u;/s is small enough then 2009
DGHYV system is homomorphic.

Take two ciphertexts:
C =m+ 2+ sq,
C'=m"+2¢ +sq
with small €, ¢/ € Z.

C+C'=m+m +2(e+¢€)+
s(g + q'). This decrypts to
m -+ m' mod 2 if € + € is small.

CC' = mm' +2(em' +€' m+2ee’) +
s(--+). This decrypts to

mm' if em’ + 'm <+ 2¢€’ is small.

19

sage:
sage:
sage:
sage:

sage:

N=10

E=2710
Y=2"50
X=2"80

20

Homomorphic encryption

If u;/s is small enough then 2009
DGHYV system is homomorphic.

Take two ciphertexts:
C =m+ 2+ sq,
C'=m"+2¢ +sq
with small €, ¢/ € Z.

C+C'=m+m +2(e+¢€)+
s(g + q'). This decrypts to
m -+ m' mod 2 if € + € is small.

CC' = mm' +2(em' +€' m+2ee’) +
s(--+). This decrypts to

mm' if em’ + 'm <+ 2¢€’ is small.

19

sage: N=10

sage: E=2710

sage: Y=2"50

sage: X=2"30

sage: s=1+2*randrange(Y/4,Y/2)
sage: S

984387308997925

sage:

20

Homomorphic encryption

If u;/s is small enough then 2009
DGHYV system is homomorphic.

Take two ciphertexts:
C =m+ 2+ sq,
C'=m"+2¢ +sq
with small €, ¢/ € Z.

C+C'=m+m +2(e+¢€)+
s(g + q'). This decrypts to
m -+ m' mod 2 if € + € is small.

CC' = mm' +2(em' +€' m+2ee’) +
s(--+). This decrypts to

mm' if em’ + 'm <+ 2¢€’ is small.

19

sage:
sage:
sage:
sage:
sage:

sage:

N=10

E=2710

Y=2"50

X=2"80
s=1+2*randrange(Y/4,Y/2)

S

984887303997925

sage:

sage:

[247,
772,

sage:

u=[randrange (E)
for i in range(N)]
u
418, 365, 738, 123, 735,
209, 673, 47]

20

orphic encryption

>

small enough then 2009

ystem i1s homomorphic.

O
-

ciphertexts:

2€ + sq,
- 2¢' + sq’

4

le, e € Z

m+m +2(e+¢€)+

). This decrypts to

mod 2 if € + € is small.

mm' +2(em’ +e'm+2e€’) +
[his decrypts to

m' 4+ €'m + 2¢€’ is small.

19

20

sage: N=10

sage: E=2710

sage: Y=2"50

sage: X=2"80

sage: s=1+2*randrange(Y/4,Y/2)
sage: S

984387308997925

sage: u=[randrange(E)

- for i in range(N)]
sage: u

[247, 418, 365, 738, 123, 735,
772, 209, 673, 47]

sage:

sage:

ryption

bugh then 2009
jomomorphic.

XtS:

/

q
7.

+2(e +¢€') +
Crypts to
+ €' is small.

" +e'm+2ee’)+
pts to
+ 2e€’ is small.

19

sage: N=10

sage: E=2710

sage: Y=2"50

sage: X=2730

sage: s=1+2*randrange(Y/4,Y/2)
sage: s

084887308997925

sage: u=[randrange(E)

Cee for i in range(N)]
sage: u

[247, 418, 365, 738, 123, 735,
772, 209, 673, 47]

sage:

20

sage:

2009
hic.

1all.

e’)+

mall.

19

sage: N=10

sage: E=2710

sage: Y=2"50

sage: X=2"80

sage: s=1+2*randrange(Y/4,Y/2)
sage: s

984887308997925

sage: u=[randrange(E)

- for i in range(N)]
sage: u

[247, 418, 365, 738, 123, 735,
772, 209, 673, 47]

sage:

20

sage:

sage:
sage:
sage:
sage:
sage:

sage:

N=10

E=2710

Y=2"50

X=2"80
s=1+2*randrange(Y/4,Y/2)

S

984887303997925

sage:
sage:
[247,

772,

sage:

u=[randrange (E)
for i in range(N)]
u
418, 365, 738, 123, 735,
209, 673, 47]

20

sage:

21

sage:
sage:
sage:
sage:
sage:

sage:

N=10

E=2710

Y=2"50

X=2"80
s=1+2*randrange(Y/4,Y/2)

S

984887303997925

sage:
sage:
[247,

772,

sage:

u=[randrange (E)
for i in range(N)]
u
418, 365, 738, 123, 735,
209, 673, 47]

20

sage: K=[2xui+s*randrange(

ceil (- (X+2%ui)/s),
floor ((X-2*ui)/s)+1)

for ui in ul

21

N=10

E=2710

Y=2"50

X=2"80
s=1+2*randrange(Y/4,Y/2)

sage:
sage:
sage:
sage:
sage:
sage: s
084887308997925

sage: u=[randrange(E)
..... for i in range(N)]
sage: u

[247, 418, 365, 738, 123, 735,
772, 209, 673, 47]

sage:

20

sage: K=[2*ui+s*randrange(
ceil (- (X+2%ui)/s),
floor ((X-2*ui)/s)+1)

..... for ui in ul
sage: K
[687473338058640662659869,
-1111539179100720083770339,
794301459533783434896055,
68817802108374958901751,
742362470968200823035396,
1023345827831539515054795,
-357168679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,

—-235628937785003770523381]

21

=10

=210

=250

=2"80
=1+2*randrange(Y/4,Y/2)

08997925
=[randrange (E)

for i in range(N)]

18, 365, 738,
09, 673, 47]

123, 735,

20

sage: K=[2*uit+s*randrange (
ceil (- (X+2%ui)/s),
floor ((X-2*ui)/s)+1)

..... for ui in ul
sage: K
[687473338058640662659869,
-1111539179100720083770339,
794301459533783434896055,
68817802108374958901751,
742362470968200823035396,
1023345827831539515054795,
-357168679398553876730006,
1121421619119964601051443,
-1109674862276222495587129,

-235628937785003770523381]

21

range (Y/4,Y/2)

ge (E)
n range(N)]

738, 123, 735,
47]

20

sage: K=[2*ui+s*randrange(
Ce ceil (- (X+2%ui)/s),
- floor ((X-2*ui)/s)+1)
- for ui in ul
sage: K
[5687473338058640662659869,
-1111539179100720083770339,
794301459533783434896055,
63317302108374958901751,
7142362470968200823035396,
1023345827831539515054795,
-357168679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
—-235628937785003770523381]

21

sage: m=randrang

sage: r=[randran

for 1 1

,Y/2)

)]

735,

20

sage: K=[2*ui+s*randrange (
Ce ceil (- (X+2%ui)/s),
- floor ((X-2*ui)/s)+1)
- for ui in ul
sage: K
[587473338058640662659869,
-1111539179100720083770339,
794301459533783434896055,
63317302108374958901751,
742362470968200823035396,
1023345827831539515054795,
-3571638679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
—-235628937785003770523381]

21

sage: m=randrange(2)

sage: r=[randrange(2)

for i in range(N

sage: K=[2*ui+s*randrange
Ce ceil (- (X+2%ui)/s),
- floor ((X-2*ui)/s)+1)
- for ui in ul
sage: K
[5687473338058640662659869,
-1111539179100720083770339,
794301459533783434896055,
63317302108374958901751,
7142362470968200823035396,
1023345827831539515054795,
-3571638679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
—-235628937785003770523381]

21

sage: m=randrange (2)

sage: r=[randrange(2)

for i in range(N)]

22

sage: K=[2*ui+s*randrange
Ce ceil (- (X+2%ui)/s),
- floor ((X-2*ui)/s)+1)
- for ui in ul
sage: K
[5687473338058640662659869,
-1111539179100720083770339,
794301459533783434896055,
63317302108374958901751,
7142362470968200823035396,
1023345827831539515054795,
-3571638679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
—-235628937785003770523381]

21

sage: m=randrange (2)

sage: r=[randrange(2)

Cee for i in range(N)]
sage: C=m+sum(r[i]*K[i]

Cee for i in range(N))
sage: C
2094088748748247210016703

sage:

22

sage: K=[2*ui+s*randrange
Ce ceil (- (X+2%ui)/s),
- floor ((X-2*ui)/s)+1)
- for ui in ul
sage: K
[5687473338058640662659869,
-1111539179100720083770339,
794301459533783434896055,
63317302108374958901751,
7142362470968200823035396,
1023345827831539515054795,
-3571638679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
—-235628937785003770523381]

21

sage: m=randrange (2)

sage: r=[randrange(2)

Cee for i in range(N)]
sage: C=m+sum(r[i]*K[i]

Cee for i in range(N))
sage: C
2094088748748247210016703
sage: C/s

2703

sage:

22

sage: K=[2*ui+s*randrange
Ce ceil (- (X+2%ui)/s),
- floor ((X-2*ui)/s)+1)
- for ui in ul
sage: K
[5687473338058640662659869,
-1111539179100720083770339,
794301459533783434896055,
63317302108374958901751,
7142362470968200823035396,
1023345827831539515054795,
-3571638679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
—-235628937785003770523381]

21

sage: m=randrange (2)

sage: r=[randrange(2)

Cee for i in range(N)]
sage: C=m+sum(r[i]*K[i]

Cee for i in range(N))
sage: C
2094088748748247210016703
sage: C/s

2703

sage: (C/s)h2

1

sage:

22

sage: K=[2*ui+s*randrange
Ce ceil (- (X+2%ui)/s),
- floor ((X-2*ui)/s)+1)
- for ui in ul
sage: K
[5687473338058640662659869,
-1111539179100720083770339,
794301459533783434896055,
63317302108374958901751,
7142362470968200823035396,
1023345827831539515054795,
-3571638679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
—-235628937785003770523381]

21

sage: m=randrange (2)

sage: r=[randrange(2)

Cee for i in range(N)]
sage: C=m+sum(r[i]*K[i]

Cee for i in range(N))
sage: C
2094088748748247210016703
sage: C/s

2703

sage: (C/s)h2

1

sage: m

1

sage:

22

=[2*%ui+s*randrange(
ceil (- (X+2%ui)/s),
floor ((X-2*ui)/s)+1)

for ui in ul

338058640662659369,
39179100720083770339,
159533783434396055,
02108374958901751,
170963200823035396,
827331539515054795,
3679398558876730006,
1619119964601051443,
(4862276222495587129,
3937785003770523381]

21

sage: m=randrange(2)
sage: r=[randrange(2)
..... for i in range(N)]
: C=m+sum(r[i]=*K[i]
..... for i in range(N))
sage: C
2094088748748247210016703
sage: C/s

2703
sage:

1

(C%s) %2

sage: m
1

sage:

22

randrange (
- (X+2%ui)/s),
((X-2*%ui)/s)+1)

in ul

662659869,
20083770339,
434896055,
58901751,
323035396,
9515054795,
3876730006,
4601051443,
22495587129,
3770523381]

21

sage: m=randrange (2)
sage: r=[randrange(2)
..... for i in range(N)]
: C=m+sum(r[i]*K[i]
..... for i in range(N))
sage: C
2094088748748247210016703
sage: C/s

2703
sage:

1

(C%s) %2

sage: m
1

sage:

22

sage:
sage:

m2=randran
r2=[randra

for 1

/s),
/s)+1)

21

sage: m=randrange(2)

sage: r=[randrange(2)

Ceel for i in range(N)]
sage: C=m+sum(r[i]*K[i]

- for i in range(N))

sage: C
2094088748748247210016703
sage: C/s

2703

sage: (Chs)h2

1

sage: m

1

sage:

22

sage: m2=randrange(2)

sage: r2=[randrange(2)

for i in range(

sage: m=randrange (2)

sage: r=[randrange(2)

Cee for i in range(N)]
sage: C=m+sum(r[i]*K[i]

Cee for i in range(N))

sage: C
2094088748748247210016703
sage: C/s

2703

sage: (C/s)h2

1

sage: m

1

sage:

22

sage: m2=randrange(2)

sage: r2=[randrange(2)

for i in range(N)]

23

sage: m=randrange (2)

sage: r=[randrange(2)

Cee for i in range(N)]
sage: C=m+sum(r[i]*K[i]

Cee for i in range(N))
sage: C
2094088748748247210016703
sage: C/s

2703

sage: (C/s)h2

1

sage: m

1

sage:

22

23
sage: m2=randrange(2)

sage: r2=[randrange(2)

Cee for i in range(N)]
sage: C2=m2+sum(r2[i]*K[i]
Cee for i in range(N))
sage: (2
-51722353737982737270129

sage:

sage: m=randrange (2)

sage: r=[randrange(2)

Cee for i in range(N)]
sage: C=m+sum(r[i]*K[i]

Cee for i in range(N))
sage: C
2094088748748247210016703
sage: C/s

2703

sage: (C/s)h2

1

sage: m

1

sage:

22

23
sage: m2=randrange(2)

sage: r2=[randrange(2)

Cee for i in range(N)]
sage: C2=m2+sum(r2[i]*K[i]
Cee for i in range(N))
sage: (2
-51722353737982737270129
sage: C2/s

4971

sage:

sage: m=randrange (2)

sage: r=[randrange(2)

Cee for i in range(N)]
sage: C=m+sum(r[i]*K[i]

Cee for i in range(N))
sage: C
2094088748748247210016703
sage: C/s

2703

sage: (C/s)h2

1

sage: m

1

sage:

22

23
sage: m2=randrange(2)

sage: r2=[randrange(2)

Cee for i in range(N)]
sage: C2=m2+sum(r2[i]*K[i]
Cee for i in range(N))
sage: (2
-51722353737982737270129
sage: C2/s

4971

sage: (C2%s) %2

1

sage:

sage: m=randrange (2)
sage: r=[randrange(2)
..... for i in range(N)]
: C=m+sum(r [i]*K[i]
..... for i in range(N))
sage: C
2094088748748247210016703
sage: C/s

2703
sage:

1

(C%s) %2

sage: m
1

sage:

22

23

sage: m2=randrange(2)

sage: r2=[randrange(2)

for i in range(N)]

sage: C2=m2+sum(r2[i]*K[il]

sage:

for i in range(N))

C2

—51722353737982737270129

sage:

4971

sage:

1

sage:

1

sage:

C2%s

(C2%s) %2

m2

=randrange (2)
=[randrange (2)

for i in range(N)]
=m+sum (r [i]*K[i]

for i in range(N))

(48748247210016703

LS

Chs) 1h2

22

sage: m2=randrange(2)

sage: r2=[randrange(2)

Ceel for i in range(N)]
sage: C2=m2+sum(r2[i]=*K[il]
- for i in range(N))
sage: (2
-51722353737982737270129
sage: C2/s

4971

sage: (C2%s) %2
1

sage: m2

1

sage:

23

sage: (!
7674
sage: (!
1343661.
sage:

e(2)

ge(2)
n range(N)]

i]*K [i]
n range(N))

210016703

22

sage: m2=randrange(2)

sage: r2=[randrange(2)

Cee for i in range(N)]
sage: C2=m2+sum(r2[i]*K[il]
Cee for i in range(N))
sage: (2
-51722353737982737270129
sage: C2/s

4971

sage: (C2%s) %2
1

sage: m2

1

sage:

23

sage: (C+C2)%s
7674

sage: (CxC2)7s
13436613

sage:

)]

))

22

sage: m2=randrange(2)

sage: r2=[randrange(2)

Ceel for i in range(N)]
sage: C2=m2+sum(r2[i]=*K[il]
- for i in range(N))
sage: (2
-51722353737982737270129
sage: C2/s

4971

sage: (C2%s) %2
1

sage: m2

1

sage:

23

sage: (C+C2)%s
7674

sage: (CxC2)7%s
13436613

sage:

sage: m2=randrange(2)

sage: r2=[randrange(2)

Cee for i in range(N)]
sage: C2=m2+sum(r2[i]=*K[il]
Cee for i in range(N))
sage: (2
-51722353737982737270129
sage: C2/s

4971

sage: (C2%s) %2
1

sage: m2

1

sage:

23

sage: (C+C2)%s
7674

sage: (CxC2)Ys
13436613

sage:

24

sage: m2=randrange(2)

sage: r2=[randrange(2)

Cee for i in range(N)]
sage: C2=m2+sum(r2[i]=*K[il]
Cee for i in range(N))
sage: (2
-51722353737982737270129
sage: C2/s

4971

sage: (C2%s) %2
1

sage: m2

1

sage:

23

sage: (C+C2)%s
7674

sage: (CxC2)Ys
13436613

sage:

Because C mod s and C' mod s
are small enough compared to s,
have C +C' mod s = (C mod s) +
(C'" mod s) and CC' mod s =

(C mod s)(C' mod s).

24

sage: m2=randrange(2)

sage: r2=[randrange(2)

Cee for i in range(N)]
sage: C2=m2+sum(r2[i]=*K[il]
Cee for i in range(N))
sage: (2
-51722353737982737270129
sage: C2/s

4971

sage: (C2%s) %2
1

sage: m2

1

sage:

23

sage: (C+C2)%s
7674

sage: (CxC2)Ys
13436613

sage:

Because C mod s and C' mod s
are small enough compared to s,
have C +C' mod s = (C mod s) +
(C'" mod s) and CC' mod s =

(C mod s)(C' mod s).

Refinements: add more noise
to ciphertexts, bootstrap (2009
Gentry) to control noise, etc.

24

2=randrange (2)
2=[randrange(2)
for i in range(N)]
2=m2+sum(r2 [1]*K[i]
for i in range(N))
2
53737982737270129
27%s

C2%s) %2

23

sage: (C+C2)%s
7674

sage: (CxC2)7%s
13436613

sage:

Because C mod s and C' mod s
are small enough compared to s,
have C +C' mod s = (C mod s) +
(C" mod s) and CC' mod s =

(C mod s)(C' mod s).

Refinements: add more noise
to ciphertexts, bootstrap (2009
Gentry) to control noise, etc.

24

| attices

ge(2)

nge (2)

in range(N)]
r2[i]*K[i]
in range(N))

37270129

23

sage: (C+C2)%s

7674

sage: (CxC2)7Ys
13436613

sage:

Because C mod s and C' mod s
are small enough compared to s,
have C +C' mod s = (C mod s) +
(C'" mod s) and CC' mod s =

(C mod s)(C' mod s).

Refinements: add more noise
to ciphertexts, bootstrap (2009
Gentry) to control noise, etc.

24

| attices

23

sage: (C+C2)%s
7674

sage: (CxC2)7%s
13436613

sage:

Because C mod s and C' mod s
are small enough compared to s,
have C +C' mod s = (C mod s) +
(C" mod s) and CC' mod s =

(C mod s)(C' mod s).

Refinements: add more noise
to ciphertexts, bootstrap (2009
Gentry) to control noise, etc.

24

| attices

sage: (C+C2)%s

7674

sage: (CxC2)7Ys
13436613

sage:

Because C mod s and C' mod s
are small enough compared to s,
have C +C' mod s = (C mod s) +
(C'" mod s) and CC' mod s =

(C mod s)(C' mod s).

Refinements: add more noise
to ciphertexts, bootstrap (2009
Gentry) to control noise, etc.

24

| attices

25

sage: (C+C2)%s

7674

sage: (CxC2)7Ys
13436613

sage:

Because C mod s and C' mod s
are small enough compared to s,
have C +C' mod s = (C mod s) +
(C'" mod s) and CC' mod s =

(C mod s)(C' mod s).

Refinements: add more noise
to ciphertexts, bootstrap (2009
Gentry) to control noise, etc.

24

| attices

This 1s a lettuce:

25

24

sage: (C+C2)%s Lattices
7674 -
This is a lettuce:
sage: (CxC2)7Ys
13436613
sage:

Because C mod s and C' mod s
are small enough compared to s,
have C +C' mod s = (C mod s) +
(C'" mod s) and CC' mod s =

(C mod s)(C' mod s).

Refinements: add more noise
to ciphertexts, bootstrap (2009
Gentry) to control noise, etc.

S
1§’sﬁ>x

—ea S

7 AR
N N \\\\\\
S e e /a \ D

C+C2) %s

CxC2) %s

C mod s and C' mod s

| enough compared to s,

- C' mod s = (C mod s) +
s)and CC' mod s =
s)(C' mod s).

ents: add more noise
rtexts, bootstrap (2009
to control noise, etc.

24

| attices

This 1s a lettuce:

25

| attices,

Assume
are R-lir

and C' mod s
“ompared to s,

5 = (C mod s) +
C''mod s =

| s).

more noise
tstrap (2009
noise, etc.

24

| attices

This 1s a lettuce:

25

L attices, mathems

Assume that Vg, ..
are R-linearly inde
l.e., RVi +---+F
{rtVi+-+rpV,
Is a D-dimensiona

to s,

24

| attices

This 1s a lettuce:

25

Lattices, mathematically

Assume that Vq,...,Vp € R
are R-linearly independent,
i.,e., RVi+- -4+ RVp =
{r1V1—|—---—|—rDVD 1, ...,
Is a D-dimensional vector sf

| attices

This 1s a lettuce:

_—

)

\

25

26
Lattices, mathematically

Assume that Vq,...,Vp € RN

are R-linearly independent,

l.e., RVi+ -4+ RVp =
{r1V1—|—---—|—rDVD ; r1,...,rD€R}
Is a D-dimensional vector space.

| attices

This 1s a lettuce:

25

26

Lattices, mathematically

Assume that Vq,...,Vp € RN

are R-linearly independent,

l.e., RVi+ -4+ RVp =
{r1V1—|—---—|—rDVD ; r1,...,rD€R}
Is a D-dimensional vector space.

ZVy + -+ 2ZVp =
{I’1V1—|—---——I’D\/D ' n,..., EZ}
Is a rank-D length-N lattice.

| attices

This 1s a lettuce:

25

26

Lattices, mathematically

Assume that Vq,...,Vp € RN

are R-linearly independent,

l.e., RVi+ -4+ RVp =
{r1V1—|—---—|—rDVD ; r1,...,rD€R}
Is a D-dimensional vector space.

ZVy + -+ 2ZVp =
{I’1V1—|—---——I’D\/D ' n,..., EZ}
Is a rank-D length-N lattice.

Vi,...,Vp
Is a basis of this lattice.

25 26

Lattices, mathematically Short ve
 lettuce: Assume that Vq,...,Vp € RN Given V4
are R-linearly independent, what Is :
i.,e., RV +--- +RVp = in L = 2

{r1V1—|—---—|—rDVD ' rn,...,rp < R}
Is a D-dimensional vector space.

IV + -+ ZLVp =
{rl\/l—l—---—l—rDVD ' rn,...,rp EZ}
Is a rank-D length-N lattice.

Vi,...,Vp
Is a basis of this lattice.

25

26
Lattices, mathematically

Assume that Vq,...,Vp € RN

are R-linearly independent,

l.e., RVi+ -+ RVp =
{r1V1—|—---—|—rDVD ; r1,...,rD€R}
Is a D-dimensional vector space.

ZVi + -+ ZVp =

{I’lVl—I—---——rDVD 1,...,ID EZ}
Is a rank-D length-N lattice.

Vi,...,Vp
Is a basis of this lattice.

Short vectors in la

Given \/1, \/2, C ,\
what is shortest ve
in L =2ZV] +--- -

25

26
Lattices, mathematically

Assume that Vq,...,Vp € RN

are R-linearly independent,

l.,e., RVi + -4+ RVp =
{r1V1—|—---—|—rDVD ' rn,..., < R}
Is a D-dimensional vector space.

ZVi + -+ ZVp =

{r1V1—|—---—|—rDVD ,...,ID EZ}
Is a rank-D length-N lattice.

Vi,..., Vp
Is a basis of this lattice.

Short vectors in lattices

Given V4, Vs, ...,Vp € ZNV.
what is shortest vector
inlL=2Z\Vi1+---+ 2ZVp?

Lattices, mathematically

26

Assume that Vq,...,Vp € RN
are R-linearly independent,

e, Ry +---+RVp =

{r1V1—|—---—|—rDVD:r1,..

.,I’DER}

Is a D-dimensional vector space.

ZVi + -+ ZVp =

{I’1V1—|—---—— rpVp ...

.,I’DEZ}

Is a rank-D length-N lattice.

Vi,...,Vp
Is a basis of this lattice.

Short vectors in lattices

Given V4, V5, ...,Vp € ZNV.
what iIs shortest vector
inlL=2ZV1 +---+ 2ZVp?

27

Lattices, mathematically

26

Assume that Vq,...,Vp € RN
are R-linearly independent,

e, Ry +---+RVp =

{r1V1—|—---—|—rDVD:r1,..

.,I’DER}

Is a D-dimensional vector space.

ZVi + -+ ZVp =

{I’1V1—|—---—— rpVp ...

.,I’DEZ}

Is a rank-D length-N lattice.

Vi,...,Vp
Is a basis of this lattice.

Short vectors in lattices

Given V4, V5, ...,Vp € ZNV.
what iIs shortest vector
inlL=2ZV1 +---+ 2ZVp?

0.

27

Lattices, mathematically

26

Assume that Vq,...,Vp € RN
are R-linearly independent,

e, Ry +---+RVp =

{r1V1—|—---—|—rDVD:r1,..

.,I’DER}

Is a D-dimensional vector space.

ZVi + -+ ZVp =

{I’1V1—|—---—— rpVp ...

.,I’DEZ}

Is a rank-D length-N lattice.

Vi,...,Vp
Is a basis of this lattice.

Short vectors in lattices

Given V4, V5, ...,Vp € ZNV.
what iIs shortest vector
inlL=2ZV1 +---+ 2ZVp?

0.

“SVP: shortest-vector problem”:
What is shortest nonzero vector?

27

26
Lattices, mathematically

Assume that Vq,...,Vp € RN

are R-linearly independent,

l.e., RVi+ -4+ RVp =
{r1V1—|—---—|—rDVD ' n,...,p ER}
Is a D-dimensional vector space.

ZV, ZVp —

{I’lVl—I—---——rDVD 1,...,IpD EZ}
ength-/N lattice.

IS a rank-D

Vi,...,Vp
Is a basis of this lattice.

27
Short vectors in lattices

Given V4, V5, ...,Vp € ZNV.
what iIs shortest vector
inlL=2ZV1 +---+ 2ZVp?

0.

“SVP: shortest-vector problem”:
What is shortest nonzero vector?

1982 Lenstra—Lenstra—Lovasz
(LLL) algorithm runs in poly time,
computes a nonzero vector in L
with
length of shortest nonzero vector.
Typically ~1.02P instead of 2D/2

ength at most 2D/2 times

26
~mathematically
that V{,...,Vp € RN
iearly independent,
-+ rpVpir,...,rp € R}
Imensional vector space.

LVp =

-+ rpVp : I’1,...,I’DEZ}

-D length-N lattice.

/D
s of this lattice.

Short

vectors In lattices

Given
what

Vi,Vo,...,VpeZN,
Is shortest vector

inL =2+ +ZVp?

0.

“SVP: shortest-vector problem” :
What is shortest nonzero vector?

1932

(LLL) algorithm runs in poly time,

L enstra—Lenstra—lLovasz

computes a nonzero vector in L

with
lengt

ength at most 2D/2 times

N of shortest nonzero vector.

Typically ~1.02P instead of oD/2

27

Subset-s

One way
where C

26
tically
., Vp € R
pendent,
Wp =
I M,..., D ER}
| vector space.
M, D EZ}
-N lattice.
attice.

Short vectors in lattices

Given V4, V5, ..., Vp € ZNV.
what iIs shortest vector
inlL=2Z\Vi +---+ 2ZVp?

0.

“SVP: shortest-vector problem”:
What is shortest nonzero vector?

1982 Lenstra—Lenstra—Lovasz
(LLL) algorithm runs in poly time,
computes a nonzero vector in L
with length at most 2D/2 times

length of shortest nonzero vector.
Typically ~1.02P instead of oD/2.

21

Subset-sum lattice

One way to find (.
where C = rn K1 +

26

rp < R}
)dCE.

I’DEZ}

Short vectors in lattices

Given V4, Vs, ..., Vp € ZNV.
what is shortest vector
inlL=2Z\Vi +---+ 2ZVp?

0.

“SVP: shortest-vector problem”:
What is shortest nonzero vector?

1982 Lenstra—Lenstra—Lovasz
(LLL) algorithm runs in poly time,
computes a nonzero vector in L
with length at most 2D/2 times
length of shortest nonzero vector.
Typically ~1.02P instead of 2D/2.

27

Subset-sum lattices

One way to find (r1,..., ry)
where C = n Ky + -+ ry!

Short vectors in lattices

Given V4, V5, ..., Vp € ZNV.
what iIs shortest vector
inlL=2Z\Vi+---+ 2ZVp?

0.

“SVP: shortest-vector problem”:
What is shortest nonzero vector?

1982 Lenstra—Lenstra—Lovasz
(LLL) algorithm runs in poly time,
computes a nonzero vector in L
with length at most 2D/2 times

length of shortest nonzero vector.
Typically ~1.02P instead of oD/2.

21

Subset-sum lattices

One way to find (r1,..., ry)
where C = n K1+ -+ ryKy:

23

Short vectors in lattices

Given V4, V5, .. ., Vp € ZV,
what iIs shortest vector
inlL=2Z\Vi+---+ 2ZVp?

0.

“SVP: shortest-vector problem”:
What is shortest nonzero vector?

1982 Lenstra—Lenstra—Lovasz

(LLL) algorithm runs in poly time,

computes a nonzero vector in L
with length at most 2D/2 times

length of shortest nonzero vector.

Typically ~1.02P instead of oD/2

21

Subset-sum lattices

One way to find (rq, ..., rn)

where C = n K1+ -+ ryKy:

Choose M. Define
W =(-C,0,0,...,0),

23

Short vectors in lattices

Given V4, V5, .. ., Vp € ZV,
what iIs shortest vector
inlL=2Z\Vi+---+ 2ZVp?

0.

“SVP: shortest-vector problem”:
What is shortest nonzero vector?

1982 Lenstra—Lenstra—Lovasz

(LLL) algorithm runs in poly time,

computes a nonzero vector in L
with length at most 2D/2 times

length of shortest nonzero vector.

Typically ~1.02P instead of oD/2

21

28
Subset-sum lattices

One way to find (rq, ..., rn)
where C = n K1+ -+ ryKy:

Choose M. Define
W =(-C,0,0,...,0),

Vi = (Kn,0,0,...,).

Define L = ZVg + - - - + ZV).
L contains the short vector
Vo + Wi+ + riyVWy =
(O, rl)\, C ey I’/\/)\).

ctors In lattices

shortest vector
I+ -+ LVp?

hortest-vector problem™:
shortest nonzero vector?

nstra—Lenstra—Lovasz

gorithm runs in poly time,

S @ honzero vector In L
oth at most 2D/2 times

f shortest nonzero vector.

;) ~1.020 instead of 20/2.

27

Subset-sum lattices

One way to find (rq, ..., rn)

where C = n K1+ -+ ryKy:

Choose \. Define
Woo =(-C,0,0,...,0),
Vi = (K1, M\0,..., 0),

Vi = (Kp,0,0,...,).

Define L = ZWy + - - - + ZV).

L contains the short vector
Vo + Vi + -+ riyWy =
(O, rl)\, Ce e I’NA).

28

LLL is f:
finds thi

ttices

ctor problem™:
onzero vector?

stra—Lovasz

Ins in poly time,

ro vector in L
st 2D/2 times

nonzero vector.

instead of 20/2.

21

Subset-sum lattices

One way to find (rq, ..., rn)

where C = n K1+ -+ ryKy:

Choose M. Define
Woo =(-C,0,0,...,0),
Vi = (K1, \0,..., 0),

Viy = (Kn,0,0,...,).

Define L = ZVy + - - - + ZV).

[contains the short vector
Vo + Vi + -+ riyWy =
(O, rl)\, Ce e I’/\/)\).

23

LLL is fast but alr
finds this short ve

m’

ctor?

Z

/ time,

n L

NES
ector.

2D/2.

27

Subset-sum lattices

One way to find (rq, ..., rn)

where C = n K1+ -+ ryKy:

Choose \. Define
Wo =(-C,0,0,...,0),
Vi = (K1, \0,..., 0),

Viy = (Kn, 0,0, ...,).

Define L = ZWy + - - - + ZV).

[contains the short vector
Vo + Vi + -+ riyWy =

28

LLL s fast but almost never
finds this short vector in L.

Subset-sum lattices

One way to find (rq, ..., rn)

where C = n K1+ -+ ryKy:

Choose M. Define
Woo =(-C,0,0,...,0),
Vi = (K1, \0,..., 0),

Vi = (Kn,0,0,...,).

Define L = ZVy + - - - + ZV).
[contains the short vector
Vo + Vi + -+ riyWy =

23

LLL i1s fast but almost never
finds this short vector in L.

29

Subset-sum lattices

One way to find (rq, ..., rn)

where C = n K1+ -+ ryKy:

Choose M. Define
Woo =(-C,0,0,...,0),
Vi = (K1, \0,..., 0),

Vi = (Kn,0,0,...,).

Define L = ZVg + - - - + ZV).
[contains the short vector
Vo + Wi+ + riyVWy =
(0, L, ..., ryA).

23

LLL i1s fast but almost never
finds this short vector in L.

1991 Schnorr—Euchner “BKZ"

algorithm spends more time than
LLL finding shorter vectors in any

lattice. Many subsequent time-
vs.-shortness improvements.

29

Subset-sum lattices

One way to find (rq, ..., rn)

where C = n K1+ -+ ryKy:

Choose M. Define
Woo =(-C,0,0,...,0),
Vi = (K1, \0,..., 0),

Vi = (Kn,0,0,...,).

Define L = ZVg + - - - + ZV).
[contains the short vector
Vo + Wi+ + riyVWy =
(0, L, ..., ryA).

23

LLL i1s fast but almost never
finds this short vector in L.

1991 Schnorr—Euchner “BKZ"
algorithm spends more time than
LLL finding shorter vectors in any

lattice. Many subsequent time-
vs.-shortness improvements.

2012 Schnorr—Shevchenko claim
that modern form of BKZ solves

subset-sum problems faster than
2011 Becker—Coron—Joux.

29

Subset-sum lattices

One way to find (rq, ..., rn)

where C = nKy + -+ ryKy:

Choose M. Define
Woo =(-C,0,0,...,0),
Vi = (K1, \0,..., 0),

Vi = (Kn,0,0,...,).

Define L = ZVg + - - - + ZV).
[contains the short vector
Vo + Wi+ + riyVWy =
(0, L, ..., ryA).

23

LLL i1s fast but almost never
finds this short vector in L.

1991 Schnorr—Euchner “BKZ"

algorithm spends more time than
LLL finding shorter vectors in any

lattice. Many subsequent time-
vs.-shortness improvements.

2012 Schnorr—Shevchenko claim
that modern form of BKZ solves

subset-sum problems faster than
2011 Becker—Coron—Joux.

Is this true? Open: What's the
exponent of this algorithm?

29

um lattices

rto find (rq, ..., rn)

=nKi+ -+ ryKy:

A. Define
C,0,0,...,0),

=Ly + -+ LV).
ns the short vector
1+ -+ ryVWy =

C I’NA).

28

LLL s fast but almost never
finds this short vector in L.

1991 Schnorr—Euchner “BKZ"
algorithm spends more time than
LLL finding shorter vectors in any

lattice. Many subsequent time-
vs.-shortness Improvements.

2012 Schnorr—Shevchenko claim
that modern form of BKZ solves

subset-sum problems faster than
2011 Becker—Coron—Joux.

Is this true? Open: What's the
exponent of this algorithm?

29

| attice

Recall K
Each u;

Note g

o+ ZVY.
rt vector

rnViy =

23

LLL i1s fast but almost never
finds this short vector in L.

1991 Schnorr—Euchner “BKZ"
algorithm spends more time than
LLL finding shorter vectors in any

lattice. Many subsequent time-
vs.-shortness improvements.

2012 Schnorr—Shevchenko claim
that modern form of BKZ solves

subset-sum problems faster than
2011 Becker—Coron—Joux.

Is this true? Open: What's the
exponent of this algorithm?

29

Lattice attacks on

Recall K; = 2u; +
Each u; 1s small:
Note qu,' — q,-Kj

28

LLL i1s fast but almost never
finds this short vector in L.

1991 Schnorr—Euchner “BKZ"

algorithm spends more time than
LLL finding shorter vectors in any

lattice. Many subsequent time-
vs.-shortness Improvements.

2012 Schnorr—Shevchenko claim
that modern form of BKZ solves

subset-sum problems faster than
2011 Becker—Coron—Joux.

Is this true? Open: What's the
exponent of this algorithm?

29

Lattice attacks on DGHV ke

Recall K; = 2u; 4+ sqg; = sq;
Each u; iIs small: u; < E.
Note qu,' — q,-Kj = 2qju,- —

29

LLL i1s fast but almost never

finds this short vector in L.

1991 Schnorr—Euchner “BKZ"
algorithm spends more time than

LLL finc

Ing shorter vectors In any

lattice. Many subsequent time-

vs.-shortness improvements.

2012 Schnorr—Shevchenko claim
that modern form of BKZ solves

subset-sum problems faster than
2011 Becker—Coron—Joux.

Is this true? Open: What's the
exponent of this algorithm?

Lattice attacks on DGHV keys

Recall K; = 2u; 4+ sq; = sq;.
Each u; is small: u; < E.

Note qu,' — q,-Kj — 2qju,- — 2q,-uj.

30

LLL i1s fast but almost never
finds this short vector in L.

1991 Schnorr—Euchner “BKZ"
algorithm spends more time than
LLL finding shorter vectors in any

lattice. Many subsequent time-
vs.-shortness improvements.

2012 Schnorr—Shevchenko claim
that modern form of BKZ solves

subset-sum problems faster than
2011 Becker—Coron—Joux.

Is this true? Open: What's the
exponent of this algorithm?

29

Lattice attacks on DGHV keys

Recall K; = 2u; 4+ sq; = sq;.
Each u; is small: u; < E.

Note qu,' — q,-Kj — 2qju,- — 2q,-uj.

Define
Vi = (E, Ky, K3, ..., Ky)
V2 = (0, =K1

30

29
LLL is fast but almost never Lattice attacks on DGHV keys

finds this short vector in L.

Recall K; = 2u; 4+ sq; = sq;.
1991 Schnorr—Euchner “BKZ" Each u; is small: u; < E.
algorithm spends more time than Note q;K; — q;K; = 2q;u; — 2q;u;.

LLL finding shorter vectors in any Define

lattice. Many subsequent time-
vs.-shortness improvements.

2012 Schnorr-Shevchenko claim V3 =(0,0,—Kq, ..., 0);
that modern form of BKZ solves '

subset-sum problems faster than Vw =(0,0,0,...,—K7).

2011 Becker—Coron—Joux. Define L = ZV4 + - - - + ZV)y.

Is this true? Open: What's the L contains g1V + - - + gyVWy =
exponent of this algorithm? (q1E, 1Ko — oK1, ...) =

(Q1E, 2q1U> — 2gou1, . .)

st but almost never
s short vector in L.

hnorr—Euchner "BK/Z"

n spends more time than
iIng shorter vectors In any

Many subsequent time-
ness Improvements.

hnorr—Shevchenko claim
dern form of BKZ solves
um problems faster than
cker—Coron—Joux.

ue? Open: What's the
t of this algorithm?

29

30
Lattice attacks on DGHV keys

Recall K; = 2u; 4+ sq; = sq;.
Each u; is small: u; < E.
Note qu,' — q,-Kj = 2qju,' — 2q,-uj.

Define

Define L = ZV] + - - - 4+ ZV).
[contains g1V1 + -+ gV =

(1E, g1 Ko — oK1, ...) =
((71E, 2q1U> — 2gou1, . .)

sage:

sage:

V:

NOSt never
~tor In L.

hner "BKZ"
more time than
r vectors In any
sequent time-
ovements.

vchenko claim
of BKZ solves
ms faster than

n—Joux.

- What's the
lgorithm?

29

30
Lattice attacks on DGHV keys

Recall K; = 2u; 4+ sq; = sq;.
Each u; is small: u; < E.
Note qu,' — q,-Kj — 2qju,- — 2q,-uj.

Define

Vy = (0,0,0, ..., —K1).

Define L = ZVy + - - - + ZV).
[contains g1V1 + - -+ gyVy =

(1E, 1Ko — oK1, ...) =
(Q1E,2CI1U2 — 2qoUu1, ..)

sage:

sage:

V=matrix.1i

than
n any

laim
dlves
than

the

29

30
Lattice attacks on DGHV keys

Recall K; = 2u; 4+ sq; = sq;.
Each u; is small: u; < E.
Note qu,' — q,-Kj = 2qju,' — 2q,-uj.

Define

Vy = (0,0,0, ..., —K1).

Define L = ZV] + - - - 4+ ZV).
[contains g1V1 + -+ gyVy =

(1E, g1 Ko — oK1, ...) =
((71E, 2q1U> — 2gou, . .)

sage: V=matrix.identity (N

sage:

Lattice attacks on DGHV keys

Recall K; = 2u; 4+ sq; = sq;.
Each u; is small: u; < E.
Note qu,' — q,-Kj — 2qju,- — 2q,-uj.

Define

Vy = (0,0,0, ..., —Ki).

Define L = ZVy + - - - + ZV).
[contains g1V1 + - -+ gyVy =

(1E, 1Ko — oK1, ...) =
(Q1E,2CI1U2 — 2qou1, ..)

30

sage: V=matrix.identity(N)

sage:

31

Lattice attacks on DGHV keys

Recall K; = 2u; 4+ sq; = sq;.
Each u; is small: u; < E.
Note qu,' — q,-Kj — 2qju,- — 2q,-uj.

Define

Vy = (0,0,0, ..., —Ki).

Define L = ZVy + - - - + ZV).
[contains g1V1 + - -+ gyVy =

(1E, 1Ko — oK1, ...) =
(Q1E,2CI1U2 — 2qou1, ..)

30

sage: V=matrix.identity(N)
sage: V=-K[0]*V

sage:

31

Lattice attacks on DGHV keys

Recall K; = 2u; 4+ sq; = sq;.
Each u; is small: u; < E.
Note qu,' — q,-Kj — 2qju,- — 2q,-uj.

Define

Vy = (0,0,0, ..., —Ki).

Define L = ZVy + - - - + ZV).
[contains g1V1 + - -+ gyVy =

(1E, 1Ko — oK1, ...) =
(Q1E,2CI1U2 — 2qou1, ..)

30

sage:
sage:
sage:

sage:

V=matrix.identity(N)
V=-K[0]*V
Vtop=copy (K)

31

Lattice attacks on DGHV keys

Recall K; = 2u; 4+ sq; = sq;.
Each u; is small: u; < E.
Note qu,' — q,-Kj — 2qju,- — 2q,-uj.

Define

Vy = (0,0,0, ..., —Ki).

Define L = ZVy + - - - + ZV).
[contains g1V1 + - -+ gyVy =

(1E, 1Ko — oK1, ...) =
(Q1E,2CI1U2 — 2qou1, ..)

30

sage:
sage:
sage:
sage:

sage:

V=matrix.identity(N)
V=—K[0]*V
Vtop=copy (K)
Vtop[0]=E

31

Lattice attacks on DGHV keys

Recall K; = 2u; 4+ sq; = sq;.
Each u; is small: u; < E.
Note qu,' — q,-Kj — 2qju,- — 2q,-uj.

Define

Vy = (0,0,0, ..., —Ki).

Define L = ZVy + - - - + ZV).
[contains g1V1 + - -+ gyVy =

(1E, 1Ko — oK1, ...) =
(Q1E,2CI1U2 — 2qou1, ..)

30

sage:
sage:
sage:
sage:
sage:

sage:

V=matrix.identity(N)
V=—K[0]*V
Vtop=copy (K)
Vtop[0]=E

V[0]=Vtop

31

Lattice attacks on DGHV keys

Recall K; = 2u; 4+ sq; = sq;.
Each u; is small: u; < E.
Note qu,' — q,-Kj — 2qju,- — 2q,-uj.

Define

Vy = (0,0,0, ..., —Ki).

Define L = ZVy + - - - + ZV).
[contains g1V1 + - -+ gyVy =

(1E, 1Ko — oK1, ...) =
(Q1E,2CI1U2 — 2qou1, ..)

30

sage: V=matrix.identity(N)
sage: V=-K[0]*V

sage: Vtop=copy(K)

sage: Vtop[O]=E

sage: V[0]=Vtop

sage: qO0=V.LLL() [0][0]/E
sage: qO

596437375

sage:

31

Lattice attacks on DGHV keys

Recall K; = 2u; 4+ sq; = sq;.
Each u; is small: u; < E.
Note qu,' — q,-Kj — 2qju,- — 2q,-uj.

Define

Vy = (0,0,0, ..., —Ki).

Define L = ZVy + - - - + ZV).
[contains g1V1 + - -+ gyVy =

(1E, 1Ko — oK1, ...) =
(Q1E,2CI1U2 — 2qou1, ..)

30

sage: V=matrix.identity(N)
sage: V=-K[0]*V

sage: Vtop=copy(K)

sage: Vtop[O]=E

sage: V[0]=Vtop

sage: qO0=V.LLL() [0][0]/E
sage: qO

596437375

sage: round(K[0]/q0)
9843373038997925

sage:

31

Lattice attacks on DGHV keys

Recall K; = 2u; 4+ sq; = sq;.
Each u; is small: u; < E.

Note qu,' — q,-Kj — 2qju,- — 2q,-uj.

Define

Define L = ZVy + - - - + ZV).
[contains g1V1 + - -+ gyVy =

(1E, 1Ko — oK1, ...) =
(Q1E,2CI1U2 — 2qou1, ..)

30

sage: V=matrix.identity(N)
sage: V=-K[0]*V

sage: Vtop=copy(K)

sage: Vtop[O]=E

sage: V[0]=Vtop

sage: qO0=V.LLL() [0][0]/E
sage: qO

596437375

sage: round(K[0]/q0)
9843373038997925

sage: s

984337308997925

sage:

31

ittacks on DGHV keys

= 2U; + 5q; ~ sq;.
s small: u; < E.
i —qiKj = 2qju; — 2q;u;.

1K21K31 7KN)1
—K1,0,...,0);
0,—Ki,...,0);

0,0, ,—%(1)

—ZVi + -+ ZVy

ns g1Vi +---+gnWn =
Ko —qoKy,...) =

Uy — 2qou, .. .).

30

V=matrix.identity(N)
V=-K[0]*V

sage:
sage:
Vtop=copy (K)
Vtop[0]=E
V[0]=Vtop
q0=V.LLL() [0] [0]/E
sage: qO

596487875

sage: round(K[0]/q0)
984887308997925

sage:
sage:
sage:

sage:

sage: S
984887308997925

sage:

31

sage: V
(1024,
-11115.
794301
688178
742362
102334
-35716:
112142
-11096°
—-23562.

sage:

DGHV keys

59, =~ Sq;.
1 < E.
— 2qju,- — 2q,-uj.

30

V=matrix.identity(N)
V=—K[0]*V
Vtop=copy (K)
Vtop[0]=E

V[0]=Vtop
q0=V.LLL() [0] [0] /E
sage: qO

596487875

sage: round(K[0]/q0)
084887308997925

sage:
sage:
sage:
sage:
sage:

sage:

sage: S
984887308997925

sage:

31

sage: V[O]

(1024,
-11115391791007
794301459533783
633178021083749
742362470968200
102334582783153
-357163867939855
112142161911996
-11096748622762
—-23562893773500

sage:

2quﬁ

30

sage: V=matrix.identity(N)
sage: V=-K[0]*V

sage: Vtop=copy(K)

sage: Vtopl[O]=E

sage: V[0]=Vtop

sage: qO0=V.LLL()[0] [0]/E
sage: qO

596437375

sage: round(K[0]/q0)
98438373038997925

sage: s

9843837308997925

sage:

31

sage: V[O]

(1024,
-11115391791007200837703
79430145953378343489605%
63817802108374958901751,
742362470968200823035396
10233458273315395150547C
-35716386793985588767300C
112142161911996460105144
-11096748622762224955871
—-23562893773500377052338

sage:

sage: V=matrix.identity(N)
sage: V=-K[0]*V

sage: Vtop=copy(K)

sage: Vtopl[O]=E

sage: V[0]=Vtop

sage: qO0=V.LLL() [0][0]/E
sage: qO

596437375

sage: round(K[0]/q0)
9843373038997925

sage: s

984337308997925

sage:

31

sage: V[O]

(1024,
-1111539179100720083770339,
794301459533783434896055,
68817802108374958901751,
742362470968200823035396,
1023345827331539515054795,
-357168679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
-235628937785003770523381)

sage:

32

sage: V=matrix.identity(N)
sage: V=-K[0]*V

sage: Vtop=copy(K)

sage: Vtopl[O]=E

sage: V[0]=Vtop

sage: qO0=V.LLL() [0][0]/E
sage: qO

596437375

sage: round(K[0]/q0)
9843373038997925

sage: s

984337308997925

sage:

31

sage: V[O]

(1024,
-1111539179100720083770339,
794301459533783434896055,
68817802108374958901751,
742362470968200823035396,
1023345827831539515054795,
-357168679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
-235628937785003770523381)

sage: V[1]

(0, -587473338058640662659869,
o, 0, 0, 0, 0, 0, 0, O)

sage:

32

=matrix.identity(N)
=-K[0] *V
top=copy (K)
top[0] =E

[0]=Vtop
0=V.LLL() [0] [0]/E

)

(5

ound (K [0] /q0)
08997925

08997925

31

sage: V[O]

(1024,
-1111539179100720083770339,
794301459533783434896055,
68817802108374958901751,
742362470968200823035396,
1023345827831539515054795,
-357168679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
-235628937785003770523381)

sage: VI[1]

(0, -587473338058640662659869,
o, 0, 0, 0, 0, 0, 0, O)

sage:

32

sage: V
(610803
370302
—-22561
110012
135946.

sage:

dentity (N)

K)

[0] [O]/E

31

sage: V[O]

(1024,
-1111539179100720083770339,
794301459533783434896055,
68817802108374958901751,
742362470968200823035396,
1023345827831539515054795,
-357168679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
-235628937785003770523381)

sage: V[1]

(0, -587473338058640662659869,
o, 0, 0, 0, 0, 0, 0, O)

sage:

32

sage: V.LLL(Q) [0]
(610803584000, 1
37030242384, 84
-225618319442,
1100126026234,
1359463649043,

sage:

31

sage: V[O]

(1024,
-1111539179100720083770339,
794301459533783434896055,
68817802108374958901751,
742362470968200823035396,
1023345827831539515054795,
-357168679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
-235628937785003770523381)

sage: VI[1]

(0, -587473338058640662659869,
o, 0, 0, 0, O, 0, 0, O)

sage:

32

sage: V.LLLQ) [0]
(610803584000, 1056189937
37030242384, 34589845469
-2256138319442, 363547143
1100126026284, -31315097
1359463649048, 17425667¢C

sage:

sage: V[O]

(1024,
-1111539179100720083770339,
794301459533783434896055,
68817802108374958901751,
742362470968200823035396,
1023345827831539515054795,
-357168679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
-235628937785003770523381)

sage: V[1]

(0, -587473338058640662659869,
o, 0, 0, 0, 0, 0, 0, O)

sage:

32

sage: V.LLL(Q) [0]
(610803584000, 1056189937254,
37030242384, 3845898454698,
-225618319442, 363547143644,
1100126026284, -313150978512,
1359463649048, 174256676348)

sage:

33

sage: V[O]

(1024,
-1111539179100720083770339,
794301459533783434896055,
68817802108374958901751,
742362470968200823035396,
1023345827831539515054795,
-357168679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
-235628937785003770523381)

sage: V[1]

(0, -587473338058640662659869,
o, 0, 0, 0, 0, 0, 0, O)

sage:

32

sage: V.LLL(Q) [0]
(610803584000, 1056189937254,
37030242384, 845898454693,
—-2205618319442, 363547143644,
1100126026284, -313150978512,
1359463649048, 174256676348)
sage: g=[Ki//s for Ki in K]

sage:

33

sage: V[O]

(1024,
-1111539179100720083770339,
794301459533783434896055,
68817802108374958901751,
742362470968200823035396,
1023345827831539515054795,
-357168679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
-235628937785003770523381)

sage: V[1]

(0, -587473338058640662659869,
o, 0, 0, 0, 0, 0, 0, O)

sage:

32

33
sage: V.LLL(Q) [0]

(610803584000, 1056189937254,
37030242384, 845898454698,
-225618319442, 363547143644,
1100126026284, -313150978512,
1359463649048, 174256676348)

sage: g=[Ki//s for Ki in K]

sage: qlO]*E

610803584000

sage:

sage: V[O]

(1024,
-1111539179100720083770339,
794301459533783434896055,
68817802108374958901751,
742362470968200823035396,
1023345827831539515054795,
-357168679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
-235628937785003770523381)

sage: V[1]

(0, -587473338058640662659869,
o, 0, 0, 0, 0, 0, 0, O)

sage:

32

33
sage: V.LLL(Q) [0]

(610803584000, 1056189937254,
37030242384, 845898454698,
-225618319442, 363547143644,
1100126026284, -313150978512,
1359463649048, 174256676348)
sage: g=[Ki//s for Ki in K]
sage: qlO]*E

610803584000

sage: qlO]*K[1]-q[1]*K[O]
1056189937254

sage:

sage: V[O]

(1024,
-1111539179100720083770339,
794301459533783434896055,
68817802108374958901751,
742362470968200823035396,
1023345827831539515054795,
-357168679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
-235628937785003770523381)

sage: V[1]

(0, -587473338058640662659869,
o, 0, 0, 0, 0, 0, 0, O)

sage:

32

33
sage: V.LLL(Q) [0]

(610803584000, 1056189937254,
37030242384, 845898454693,
—-2205618319442, 363547143644,
1100126026284, -313150978512,
1359463649048, 174256676348)

sage: g=[Ki//s for Ki in K]

sage: qlO]*E

610803584000

sage: qlO]*K[1]-q[1]*K[O]

1056189937254

sage: qlO0]J*K[9]-q[9]*K[O]

174256676343

sage:

[O] . sage: V.LLL(Q) [0] : 2009 DC
(610803584000, 1056189937254, can cho

39179100720083770339, 37030242334, 845898454693, these |af

159533783434896055, -2256138319442, 363547143644,

02108374958901751, 1100126026284, -3131509738512,

170963200823035396, 1359463649048, 174256676348)

5827831539515054795, sage: q=[Ki//s for Ki in K]

3679398558876730006, sage: qlO]x*E

1619119964601051443, 610803584000

(4862276222495587129, sage: qlO]*K[1]-q[1]*K[O]

3937785003770523381) 1056189937254

[1] sage: q[O0]*K[9]-q[9]*K[O]

(473338058640662659869, 174256676348

0, 0, 0, 0, 0, 0) sage:

. sage: V.LLL(Q) [0] : 2009 DGHYV analy
(610803584000, 1056189937254, can choose key siz
20083770339, 37030242334, 845898454693, these lattice attac
434896055, —-2205618319442, 363547143644,
53901751, 1100126026284, -313150978512,
323035396, 1359463649048, 174256676348)
9515054795, sage: g=[Ki//s for Ki in K]
3376730006, sage: qlO]*E
4601051443, 610803584000
22495587129, sage: q[0]*K[1]1-q[1]*K[O0]
3770523381) 1056189937254
sage: qlO0]J*K[9]-q[9]*K[O]
3640662659869, 174256676343
0, 0, 0) sage:

9869,

32

sage: V.LLL(Q) [0]
(610803584000, 1056189937254,
37030242384, 845898454698,
-2256138319442, 363547143644,
1100126026284, -313150978512,
1359463649048, 174256676348)

sage: q=[Ki//s for Ki in K]

sage: qlO]x*E

610803534000

sage: qlO]*K[1]-q[1]*K[O]
1056189937254

sage: qlO0]J*K[9]-q[9]*K[0]
174256676348

sage:

33

2009 DGHYV analysis:

can choose key sizes where
these lattice attacks fail.

sage: V.LLL(Q) [0]
(610803584000, 1056189937254,
37030242384, 845898454698,
-2256138319442, 363547143644,
1100126026284, -313150978512,
1359463649048, 174256676348)
sage: g=[Ki//s for Ki in K]

sage: qlO]*E

6103803534000

sage: qlO]*K[1]-q[1]*K[O]
1056189937254

sage: qlO0]J*K[9]-q[9]*K[O]
174256676348

sage:

33

2009 DGHYV analysis:

can choose key sizes where
these lattice attacks fail.

34

33 34

sage: V.LLL(Q) [0] 2009 DGHV analysis:
(610803584000, 1056189937254, can choose key sizes where
37030242384, 845898454698, these lattice attacks fail.

-2256138319442, 363547143644,
1100126026284, -313150978512,
1359463649048, 174256676348)
sage: g=[Ki//s for Ki in K]

2011 Coron—Mandal-Naccache-
Tibouchi: reduce key sizes

by modifying DGHV. “This
shows that fully homomorphic

sage: qlO]*E
610803584000

sage: qlO]*K[1]-q[1]*K[O]
1056189937254

sage: qlO0]J*K[9]-q[9]*K[O]
174256676343

encryption can be implemented
with a simple scheme.”

sage:

sage: V.LLL(Q) [0]
(610803584000, 1056189937254,
37030242384, 845898454698,
-2256138319442, 363547143644,
1100126026284, -313150978512,
1359463649048, 174256676348)

sage: g=[Ki//s for Ki in K]

sage: qlO]*E

6103803534000

sage: qlO]*K[1]-q[1]*K[O]
1056189937254

sage: qlO0]J*K[9]-q[9]*K[O]
174256676348

sage:

33

2009 DGHYV analysis:

can choose key sizes where
these lattice attacks fail.

2011 Coron—Mandal-Naccache-
Tibouchi: reduce key sizes

by modifying DGHV. “This
shows that fully homomorphic

encryption can be implemented
with a simple scheme.”

272

e.g. all attacks take >2'“ cycles

with public keys only

34

sage: V.LLL(Q) [0]
(610803584000, 1056189937254,
37030242384, 845898454698,
-2256138319442, 363547143644,
1100126026284, -313150978512,
1359463649048, 174256676348)

sage: g=[Ki//s for Ki in K]

sage: qlO]*E

6103803534000

sage: qlO]*K[1]-q[1]*K[O]
1056189937254

sage: qlO0]J*K[9]-q[9]*K[O]
174256676348

sage:

33

2009 DGHYV analysis:

can choose key sizes where
these lattice attacks fail.

2011 Coron—Mandal-Naccache-
Tibouchi: reduce key sizes

by modifying DGHV. “This
shows that fully homomorphic

encryption can be implemented
with a simple scheme.”

e.g. all attacks take >272 cycles

with public keys only 802MB.

34

sage: V.LLL(Q) [0]
(610803584000, 1056189937254,
37030242384, 845898454698,
-2256138319442, 363547143644,
1100126026284, -313150978512,
1359463649048, 174256676348)

sage: g=[Ki//s for Ki in K]

sage: qlO]*E

6103803534000

sage: qlO]*K[1]-q[1]*K[O]
1056189937254

sage: qlO0]J*K[9]-q[9]*K[O]
174256676348

sage:

33

34
2009 DGHYV analysis:

can choose key sizes where
these lattice attacks fail.

2011 Coron—Mandal-Naccache-
Tibouchi: reduce key sizes

by modifying DGHV. “This
shows that fully homomorphic

encryption can be implemented
with a simple scheme.”

e.g. all attacks take >272 cycles
with public keys only 802MB.

2012 Chen—Nguyen: faster attack.
Need bigger DGHV/CMNT keys.

.LLL () [0]

534000, 1056189937254,
123384, 3845898454698,
3319442, 363547143644,
5026284, -313150978512,
3649048, 174256676348)
=[Ki//s for Ki in K]
[O] *E

34000
[0]*K[1]-q[1]*K[O]
037254
[0]*K[9]-q[9]*K[O]
(6348

33

2009 DGHV analysis:
can choose key sizes where

these lattice attacks fail.

2011 Coron—Mandal-Naccache-
Tibouchi: reduce key sizes

by modifying DGHV. “This
shows that fully homomorphic

encryption can be implemented
with a simple scheme.”

e.g. all attacks take >272 cycles
with public keys only 802MB.

2012 Chen—Nguyen: faster attack.
Need bigger DGHV/CMNT keys.

34

Big atta

1991 Ch
Pfitzmai

define C
for suita

Simple,

Very eas
finding (
computl

056189937254,
58938454693,
363547143644,
-313150978512,
174256676348)

or Ki in K]

q[1]1*K[0]

q[9]1*K[0]

33

2009 DGHYV analysis:
can choose key sizes where

these lattice attacks fail.

2011 Coron—Mandal-Naccache-
Tibouchi: reduce key sizes

by modifying DGHV. “This
shows that fully homomorphic

encryption can be implemented
with a simple scheme.”

e.g. all attacks take >272 cycles
with public keys only 802MB.

2012 Chen—Nguyen: faster attack.
Need bigger DGHV/CMNT keys.

34

Big attack surface

1991 Chaum-van

Pfitzmann: choos
define C(x,y) =4
for suitable ranges

Simple, beautiful,
Very easy security
finding C collision
computing a discr:

254,

644 ,
8512,
348)

33

2009 DGHYV analysis:
can choose key sizes where
these lattice attacks fail.

2011 Coron—Mandal-Naccache-
Tibouchi: reduce key sizes

by modifying DGHV. “This
shows that fully homomorphic

encryption can be implemented
with a simple scheme.”

e.g. all attacks take >272 cycles
with public keys only 802MB.

2012 Chen—Nguyen: faster attack.
Need bigger DGHV/CMNT keys.

34

Big attack surfaces are dang

1991 Chaum—van Heijst—

Pfitzmann: choose p sensibl
define C(x, y) = 49" mod
for suitable ranges of x and

Simple, beautiful, structurec
Very easy security reduction
finding C collision implies

computing a discrete logarit

34 35
2009 DGHV analysis: Big attack surfaces are dangerous

can choose key sizes where 1991 Chaum-van Heijst—

Pfitzmann: choose p sensibly:;
2011 Coron—Mandal-Naccache- define C(x,y) = 49" mod p
Tibouchi: reduce key sizes for suitable ranges of x and y.
by modifying DGHV. “This
shows that fully homomorphic

these lattice attacks fail.

Simple, beautiful, structured.

Very easy security reduction:

encryption can be implemented L .
| YP | p finding C collision implies
with a simple scheme. . . .
computing a discrete logarithm.

e.g. all attacks take >272 cycles
with public keys only 802MB.

2012 Chen—Nguyen: faster attack.
Need bigger DGHV/CMNT keys.

34 35
2009 DGHV analysis: Big attack surfaces are dangerous

can choose key sizes where 1991 Chaum-van Heijst—

Pfitzmann: choose p sensibly:;
2011 Coron—Mandal-Naccache- define C(x,y) = 49" mod p
Tibouchi: reduce key sizes for suitable ranges of x and y.
by modifying DGHV. “This
shows that fully homomorphic

these lattice attacks fail.

Simple, beautiful, structured.
Very easy security reduction:

encryption can be implemented finding C collision implies

with a simple scheme.” . . .
computing a discrete logarithm.

e.g. all attacks take >272 cycles

Tvpical exaggerations:
with public keys only 802MB. P -

C is “provably secure™; C is
2012 Chen—Nguyen: faster attack. “cryptographically collision-free™
Need bigger DGHV/CMNT keys. “security follows from rigorous

mathematical proofs”.

;HV analysis:
bse key sizes where
tice attacks fail.

ron—Mandal-Naccache—
I: reduce key sizes
fying DGHV. “This

1at fully homomorphic
on can be implemented
imple scheme.”

ttacks take >272 cycles
lic keys only 802MB.

en—Nguyen: faster attack.

rger DGHV/CMNT keys.

34

35
Big attack surfaces are dangerous

1991 Chaum—van Heijst—
Ptitzmann: choose p sensibly:;
define C(x, y) = 49" mod p
for suitable ranges of x and y.

Simple, beautiful, structured.
Very easy security reduction:
finding C collision implies
computing a discrete logarithm.

Typical exaggerations:

C is “provably secure”; C is
“cryptographically collision-free™
“security follows from rigorous
mathematical proofs”.

Security
1922 Kr

1986 Co
Schroep
1993 Go
1993 Sc
1994 Sh
many su
from pec
pre-quar

C is ven
No matt
IS, obtal
“unstruc

function

SIS:
es where
ks fail.

al-Naccache—

Key sizes

V. “This
bomomorphic
implemented

me.

e >272 cycles
nly 802MB.

n: faster attack.

V/CMNT keys.

34

Big attack surfaces are dangerous

1991 Chaum—van Heijst—
Pfitzmann: choose p sensibly:;
define C(x,y) = 49" mod p
for suitable ranges of x and y.

Simple, beautiful, structured.

Very easy security reduction:

finding C collision implies

computing a discrete logarithm.

Typical exaggerations:

C is “provably secure™; C is

“cryptograp
“security fol

nically collision-free”;

ows from rigorous

mathematical proofs”.

35

Security losses in
1922 Kraitchik (in

1986 Coppersmith
Schroeppel (NFS
1993 Gordon (gen
1993 Schirokauer
1994 Shor (quantl
many subsequent
from people who ¢
pre-quantum secul

C is very bad cryp

No matter what u
IS, obtain better s¢
“unstructured” co
function designs s

“he—

1C
ted

icles
3.

yttack.
keys.

34

Big attack surfaces are dangerous

1991 Chaum—van Heijst—
Pfitzmann: choose p sensibly:;
define C(x, y) = 49" mod p
for suitable ranges of x and y.

Simple, beautiful, structured.
Very easy security reduction:
finding C collision implies
computing a discrete logarithm.

Typical exaggerations:

C is “provably secure”; C is
“cryptographically collision-free”
“security follows from rigorous
mathematical proofs”.

35

Security losses in C include

1922 Kraitchik (index calcul
1986 Coppersmith—Odlyzko-
Schroeppel (NFS predecessc
1993 Gordon (general DL N
1993 Schirokauer (faster NF
1994 Shor (quantum poly ti
many subsequent attack spe
from people who care about
pre-quantum security.

C is very bad cryptography.

No matter what user's cost
Is, obtain better security wit
“unstructured” compression:
function designs such as BL

Big attack surfaces are dangerous

1991 Chaum—van Heijst—
Pfitzmann: choose p sensibly:;
define C(x,y) = 49" mod p
for suitable ranges of x and y.

Simple, beautiful, structured.
Very easy security reduction:
finding C collision implies
computing a discrete logarithm.

Typical exaggerations:
C is “provably secure™; C is
“cryptographically collision-free™

“security follows from rigorous
mathematical proofs”.

35

36

Security losses in C include

1922 Kraitch

ik (index calculus);

1986 Coppersmith—Odlyzko—
Schroeppel (NFS predecessor);

1993 Gordon

(general DL NFS);

1993 Schirokauer (faster NFS);

1994 Shor (q

uantum poly time);

many subsequent attack speedups

from people who care about

pre-quantum

C is very bac

security.

cryptography.

No matter w

s, obtain better security with

nat user's cost limit

“unstructured” compression-

function designs such as BLAKE.

ck surfaces are dangerous

aum—van Heijst—

n: choose p sensibly:;
(x,y) =4%9Y mod p
ble ranges of x and y.

beautiful, structured.

y security reduction:

_ collision implies

ng a discrete logarithm.

exaggerations:

ovably secure”; C is
rraphically collision-free”;
/ follows from rigorous
atical proofs".

35

36
Security losses in C include

1922 Kraitchik (index calculus);
1986 Coppersmith—Odlyzko—
Schroeppel (NFS predecessor);
1993 Gordon (general DL NFS);
1993 Schirokauer (faster NFS);
1994 Shor (quantum poly time);
many subsequent attack speedups
from people who care about
pre-quantum security.

C is very bad cryptography.

No matter what user’'s cost limit

is, obtain better security with
“unstructured” compression-
function designs such as BLAKE.

For publ
Some m
seems tc
but purs
often le:

s are dangerous

Heljst—

> p sensibly;
*9Y mod p
of x and y.

structured.
reduction:
implies

ote logarithm.

ons:
ure': C is
collision-free” ;
‘Om rigorous

fs .

35

Security losses in C include

1922 Kraitchik (index calculus);
1986 Coppersmith—Odlyzko—
Schroeppel (NFS predecessor);
1993 Gordon (general DL NFS);
1993 Schirokauer (faster NFS);
1994 Shor (quantum poly time);
many subsequent attack speedups
from people who care about
pre-quantum security.

C is very bad cryptography.

No matter what user’'s cost limit

s, obtain better security with
“unstructured” compression-
function designs such as BLAKE.

36

For public-key enc
Some mathematic
seems to be unavc
but pursuing simp
often leads to sect

‘erous

hm.

35

Security losses in C include

1922 Kraitchik (index calculus);
1986 Coppersmith—Odlyzko—
Schroeppel (NFS predecessor);
1993 Gordon (general DL NFS);
1993 Schirokauer (faster NFS);
1994 Shor (quantum poly time);
many subsequent attack speedups
from people who care about
pre-quantum security.

C is very bad cryptography.

No matter what user’'s cost limit

is, obtain better security with
“unstructured” compression-
function designs such as BLAKE.

36

For public-key encryption:
Some mathematical structut
seems to be unavoidable,
but pursuing simple structur
often leads to security disast

Security losses in C include

1922 Kraitchik (index calculus);
1986 Coppersmith—Odlyzko—
Schroeppel (NFS predecessor);
1993 Gordon (general DL NFS);
1993 Schirokauer (faster NFS);
1994 Shor (quantum poly time);
many subsequent attack speedups
from people who care about
pre-quantum security.

C is very bad cryptography.

No matter what user’'s cost limit

s, obtain better security with
“unstructured” compression-
function designs such as BLAKE.

36

For public-key encryption:
Some mathematical structure
seems to be unavoidable,
but pursuing simple structures

often leads to security disasters.

37

Security losses in C include

1922 Kraitchik (index calculus);
1986 Coppersmith—Odlyzko—
Schroeppel (NFS predecessor);
1993 Gordon (general DL NFS);
1993 Schirokauer (faster NFS);
1994 Shor (quantum poly time);
many subsequent attack speedups
from people who care about
pre-quantum security.

C is very bad cryptography.

No matter what user’'s cost limit

s, obtain better security with
“unstructured” compression-
function designs such as BLAKE.

36

37
For public-key encryption:

Some mathematical structure
seems to be unavoidable,

but pursuing simple structures
often leads to security disasters.

Pre-quantum example: DH is
simpler than ECDH, but DH has
suffered many more security losses

than ECDH. State-of-the-art DH
attacks are very complicated.

Security losses in C include

1922 Kraitchik (index calculus);
1986 Coppersmith—Odlyzko—
Schroeppel (NFS predecessor);
1993 Gordon (general DL NFS);
1993 Schirokauer (faster NFS);
1994 Shor (quantum poly time);
many subsequent attack speedups
from people who care about

pre-quantum security.

C is very bad cryptography.

No matter what user’'s cost

Imit

s, obtain better security with
“unstructured” compression-
function designs such as BLAKE.

36

37
For public-key encryption:

Some mathematical structure
seems to be unavoidable,

but pursuing simple structures
often leads to security disasters.

Pre-quantum example: DH is
simpler than ECDH, but DH has
suffered many more security losses

than ECDH. State-of-the-art DH
attacks are very complicated.

2013 Barbulescu—Gaudry—Joux—
Thomé: pre-quantum quasi-poly
break of small-characteristic DH.

losses in C include
aitchik (index calculus);
ppersmith—Odlyzko—

pel (NFS predecessor);
rdon (general DL NFS);

hirokauer (faster NFS);

or (quantum poly time);
bsequent attack speedups
ople who care about

1tum security.

/ bad cryptography.

er what user’'s cost limit

n better security with

tured” compression-
designs such as BLAKE.

36

For public-key encryption:
Some mathematical structure
seems to be unavoidable,

but pursuing simple structures
often leads to security disasters.

Pre-quantum example: DH is
simpler than ECDH, but DH has
suffered many more security losses
than ECDH. State-of-the-art DH

attacks are very complicated.

2013 Barbulescu—Gaudry—Joux—
Thomé: pre-quantum quasi-poly
break of small-characteristic DH.

37

The stat
against
are muc
than the

C include

dex calculus);
—QOdlyzko—
predecessor);
eral DL NFS);
(faster NFS);
im poly time);
attack speedups
are about

Ity.

tography.

ser's cost limit

>curity with
mpression-
ich as BLAKE.

36

For public-key encryption:
Some mathematical structure
seems to be unavoidable,

but pursuing simple structures
often leads to security disasters.

Pre-quantum example: DH is
simpler than ECDH, but DH has
suffered many more security losses

than ECDH. State-of-the-art DH
attacks are very complicated.

2013 Barbulescu—Gaudry—Joux—
Thomé: pre-quantum quasi-poly
break of small-characteristic DH.

37

The state-of-the-a
against Cohen's ct
are much more co
than the cryptosys

edups

Imit

AKE.

36

For public-key encryption:
Some mathematical structure
seems to be unavoidable,

but pursuing simple structures
often leads to security disasters.

Pre-quantum example: DH is
simpler than ECDH, but DH has
suffered many more security losses

than ECDH. State-of-the-art DH
attacks are very complicated.

2013 Barbulescu—Gaudry—Joux—
Thomé: pre-quantum quasi-poly
break of small-characteristic DH.

37

The state-of-the-art attacks
against Cohen’s cryptosystel
are much more complicated
than the cryptosystem is. S

For public-key encryption:
Some mathematical structure
seems to be unavoidable,

but pursuing simple structures
often leads to security disasters.

Pre-quantum example: DH is
simpler than ECDH, but DH has
suffered many more security losses

than ECDH. State-of-the-art DH
attacks are very complicated.

2013 Barbulescu—Gaudry—Joux—
Thomé: pre-quantum quasi-poly
break of small-characteristic DH.

37

38
The state-of-the-art attacks

against Cohen’s cryptosystem
are much more complicated
than the cryptosystem is. Scary!

For public-key encryption:
Some mathematical structure
seems to be unavoidable,

but pursuing simple structures
often leads to security disasters.

Pre-quantum example: DH is
simpler than ECDH, but DH has
suffered many more security losses
than ECDH. State-of-the-art DH

attacks are very complicated.

2013 Barbulescu—Gaudry—Joux—
Thomé: pre-quantum quasi-poly
break of small-characteristic DH.

37

38
The state-of-the-art attacks

against Cohen’s cryptosystem
are much more complicated
than the cryptosystem is. Scary!

L attice-based cryptosystems are
advertised as “algorithmically
simple”, consisting mainly of
“linear operations on vectors' .
Attacks exploit this structure!

For public-key encryption:
Some mathematical structure
seems to be unavoidable,

but pursuing simple structures
often leads to security disasters.

Pre-quantum example: DH is
simpler than ECDH, but DH has
suffered many more security losses

than ECDH. State-of-the-art DH
attacks are very complicated.

2013 Barbulescu—Gaudry—Joux—
Thomé: pre-quantum quasi-poly
break of small-characteristic DH.

37

38
The state-of-the-art attacks

against Cohen’s cryptosystem
are much more complicated
than the cryptosystem is. Scary!

L attice-based cryptosystems are
advertised as “algorithmically
simple”, consisting mainly of
“linear operations on vectors' .
Attacks exploit this structure!

For efficiency, lattice-based
cryptosystems usually have
features that expand the attack
surface even more: e.g.,

rings and decryption failures.

ic-key encryption:
athematical structure

> be unavoidable,

uing simple structures
\ds to security disasters.

1tum example: DH is
than ECDH, but DH has
many more security losses
DH. State-of-the-art DH

are very complicated.

rbulescu—Gaudry—Joux—
pre-quantum quasi-poly
small-characteristic DH.

37

The state-of-the-art attacks
against Cohen’s cryptosystem
are much more complicated
than the cryptosystem is. Scary!

L attice-based cryptosystems are
advertised as “algorithmically
simple”, consisting mainly of
“linear operations on vectors' .
Attacks exploit this structure!

For efficiency, lattice-based
cryptosystems usually have
features that expand the attack
surface even more: e.g.,

rings and decryption failures.

38

NISTPG

NIST re
69 subm
from hui
22 signa
47 encry

ryption:

al structure
idable,

le structures
Irity disasters.

nple: DH iIs

H but DH has
‘e security losses
>-of-the-art DH

omplicated.

saudry—Joux—
um quasi-poly
racteristic DH.

37

The state-of-the-art attacks
against Cohen’s cryptosystem
are much more complicated
than the cryptosystem is. Scary!

L attice-based cryptosystems are
advertised as “algorithmically
simple”, consisting mainly of
“linear operations on vectors' .
Attacks exploit this structure!

For efficiency, lattice-based
cryptosystems usually have
features that expand the attack
surface even more: e.g.,

rings and decryption failures.

38

NISTPQC

NIST received 82
69 submissions in
from hundreds of
22 signature subm
47 encryption subi

37

€S
_EIS.

1S
| has

losses
t DH

.

UX—

poly
DH.

The state-of-the-art attacks
against Cohen’s cryptosystem
are much more complicated
than the cryptosystem is. Scary!

L attice-based cryptosystems are
advertised as “algorithmically
simple”, consisting mainly of
“linear operations on vectors' .
Attacks exploit this structure!

For efficiency, lattice-based
cryptosystems usually have
features that expand the attack
surface even more: e.g.,

rings and decryption failures.

38

NISTPQC

NIST received 82 submissior

69 submissions in round 1.
from hundreds of people;
22 signature submissions,
47 encryption submissions.

The state-of-the-art attacks
against Cohen’s cryptosystem
are much more complicated
than the cryptosystem is. Scary!

L attice-based cryptosystems are
advertised as “algorithmically
simple”, consisting mainly of
“linear operations on vectors' .
Attacks exploit this structure!

For efficiency, lattice-based
cryptosystems usually have
features that expand the attack
surface even more: e.g.,

rings and decryption failures.

38

NISTPQC

NIST received 82 submissions.

69 submissions in round 1,
from hundreds of people;
22 signature submissions,
47 encryption submissions.

39

The state-of-the-art attacks
against Cohen’s cryptosystem
are much more complicated
than the cryptosystem is. Scary!

L attice-based cryptosystems are
advertised as “algorithmically
simple”, consisting mainly of
“linear operations on vectors' .
Attacks exploit this structure!

For efficiency, lattice-based
cryptosystems usually have
features that expand the attack
surface even more: e.g.,

rings and decryption failures.

38

39
NISTPQC

NIST received 82 submissions.
69 submissions in round 1,
from hundreds of people;

22 signature submissions,

47 encryption submissions.

20 submissions In round 2:
O signature submissions;
17 encryption submissions.

The state-of-the-art attacks
against Cohen’s cryptosystem
are much more complicated
than the cryptosystem is. Scary!

L attice-based cryptosystems are
advertised as “algorithmically
simple”, consisting mainly of
“linear operations on vectors' .
Attacks exploit this structure!

For efficiency, lattice-based
cryptosystems usually have
features that expand the attack
surface even more: e.g.,

rings and decryption failures.

38

39
NISTPQC

NIST received 82 submissions.
69 submissions in round 1,
from hundreds of people;

22 signature submissions,

47 encryption submissions.

20 submissions In round 2:
O signature submissions;
17 encryption submissions.

Round 3 starting soon.

My guesses: NIST will announce
short list of planned standards
+ short backup list; and will

overemphasize speed.

e-of-the-art attacks
Cohen’s cryptosystem

h more complicated

. cryptosystem is. Scary!

based cryptosystems are
2d as “algorithmically
consisting mainly of
perations on vectors' .
exploit this structure!

lency, lattice-based
stems usually have
that expand the attack
ven more: e.g.,

d decryption failures.

38

NISTPQC

NIST received 82 submissions.
69 submissions in round 1,
from hundreds of people;

22 signature submissions,

47 encryption submissions.

20 submissions in round 2:
O signature submissions;
17 encryption submissions.

Round 3 starting soon.

My guesses: NIST will announce
short list of planned standards
+ short backup list; and will

overemphasize speed.

39

Lattice-|
e Dilithi
e DRS:

o FALC(
o paqNT

e qTESI

“theor
paran

rt attacks
yptosystem
mplicated
tem is. Scary!

tosystems are
orithmically

r mainly of
on vectors' .
s structure!

ce-based
ally have
nd the attack

. e.g.,
on failures.

38

NISTPQC

NIST received 82 submissions.
69 submissions in round 1,
from hundreds of people;

22 signature submissions,

47 encryption submissions.

20 submissions In round 2:
O signature submissions;
17 encryption submissions.

Round 3 starting soon.

My guesses: NIST will announce
short list of planned standards
+ short backup list; and will

overemphasize speed.

39

| attice-based sign
e Dilithium: rounc
e DRS: broken: e
o FALCON“%*: roL
e pgNTRUSign%*

e qTESLA: mistal

“theorems” ; rou
parameters bra

cary!

dare

ack

38

NISTPQC

NIST received 82 submissions.

69 submissions in round 1.
from hundreds of people;
22 signature submissions,
47 encryption submissions.

20 submissions in round 2:
O signature submissions;
17 encryption submissions.

Round 3 starting soon.

My guesses: NIST will announce
short list of planned standards

+ short backup list; and will

overemphasize speed.

39

L attice-based signature subr
e Dilithium: round 2.

e DRS: broken; eliminated.
e FALCON“%: round 2.

e pqNTRUSign%*: eliminate

e g ESLA: mistaken securit
“theorems’: round 2: som
parameters broken.

NISTPQC

NIST received 82 submissions.
69 submissions in round 1,
from hundreds of people;

22 signature submissions,

47 encryption submissions.

20 submissions In round 2:
O signature submissions;
17 encryption submissions.

Round 3 starting soon.

My guesses: NIST will announce
short list of planned standards
+ short backup list; and will

overemphasize speed.

39

40
L attice-based signature submissions:

e Dilithium: round 2.

e DRS: broken; eliminated.

e FALCON“%*: round 2.

e pqNTRUSIign%": eliminated.

e qTESLA: mistaken security
“theorems”; round 2; some
parameters broken.

NISTPQC

NIST received 82 submissions.
69 submissions in round 1,
from hundreds of people;

22 signature submissions,

47 encryption submissions.

20 submissions In round 2:
O signature submissions;
17 encryption submissions.

Round 3 starting soon.

My guesses: NIST will announce
short list of planned standards
+ short backup list; and will

overemphasize speed.

39

40

L attice-based signature submissions:

e Dilithium: round 2.

e DRS

- broken: eliminated.

e FALCON“%*: round 2.

e pqNTRUSign%: eliminated.

e d TESLA: mistaken security

“theorems”: round 2: some

parameters broken.

48 sy

this su

omitter claims patent on

omission. Warning: even

without %* submission could be

covered by other patents!

) C

N

ceived 82 submissions.
Issions in round 1,
ndreds of people;

ture submissions,
ption submissions.

I1ssions 1n round 2:
ure submissions:
ption submissions.

 starting soon.

ses: NIST will announce
. of planned standards
packup list; and will

nasize speed.

39

40
L attice-based signature submissions:

e Dilithium: round 2.

e DRS: broken; eliminated.

e FALCON“%": round 2.

e pqNTRUSIign%": eliminated.

e T ESLA: mistaken security
“theorems”; round 2; some
parameters broken.

%*: submitter claims patent on

this submission. Warning: even
without %*, submission could be

covered by other patents!

Lattice-I
submissi
Kyber, |
NTRU F
ThreeBe

submissions.
round 1,
people;
ISSIoNs,
nissions.

round 2:
5SI0NS;
MIssions.

00N.
“will announce
>d standards

t: and will

ed.

39

40
L attice-based signature submissions:

e Dilithium: round 2.

e DRS: broken; eliminated.

e FALCON“%: round 2.

e pqgNTRUSIign%": eliminated.

e qTESLA: mistaken security
“theorems’; round 2; some
parameters broken.

% : submitter claims patent on

this submission. Warning: even
without %* submission could be

covered by other patents!

| attice-based encr

submissions in rou

Kyber, LAC, Newl
NTRU Prime, Rot
ThreeBears (~latt

1S.

UnNce
ds

39

40

L attice-based signature submissions:

e Dilithium: round 2.

e DRS

- broken: eliminated.

e FALCON“*: round 2.

e pgNTRUSIign%": eliminated.

e d TESLA: mistaken security

“theorems”: round 2: some

parameters broken.

4t sy

this su

omitter claims patent on

omission. Warning: even

without %*, submission could be

covered by other patents!

Lattice-based encryption
submissions in round 2: Fro
Kyber, LAC, NewHope, NT|
NTRU Prime, Round5%*, S/
ThreeBears (~lattice).

40
L attice-based signature submissions:

e Dilithium: round 2.

e DRS: broken; eliminated.

e FALCON“%: round 2.

e pdNTRUSIign%": eliminated.

e qTESLA: mistaken security
“theorems”; round 2; some

parameters broken.

%*: submitter claims patent on

this submission. Warning: even
without %* submission could be

covered by other patents!

Lattice-based encryption
submissions in round 2: Frodo,
Kyber, LAC, NewHope, NTRU,
NTRU Prime, Round5%*, SABER,
ThreeBears (~lattice).

41

40
L attice-based signature submissions:

e Dilithium: round 2.

e DRS: broken; eliminated.

e FALCON“%: round 2.

e pdNTRUSIign%": eliminated.

e qTESLA: mistaken security
“theorems”; round 2; some

parameters broken.

%*: submitter claims patent on

this submission. Warning: even
without %* submission could be

covered by other patents!

41
Lattice-based encryption

submissions in round 2: Frodo,
Kyber, LAC, NewHope, NTRU,
NTRU Prime, Round5%*, SABER,
ThreeBears (~lattice).

Other round-1 lattice-based
encryption submissions:
Compact LWE%* (broken),
Ding“%*, EMBLEM, KINDI,
LIMA, Lizard%*, LOTUS,
Mersenne (~lattice, big keys),
Odd Manhattan (big keys),
OKCN/AKCN/CNKE/KCL%*,
Ramstake (~lattice, big keys),
Titanium.

40

based signature submissions:

um: round 2.

broken: eliminated.

ON“%*: round 2.

RUSign%": eliminated.

_A: mistaken security
ems : round 2: some

ieters broken.

nitter claims patent on
mission. Warning: even
4* submission could be

by other patents!

41
Lattice-based encryption

submissions in round 2: Frodo,
Kyber, LAC, NewHope, NTRU,
NTRU Prime, Round5%*, SABER,
ThreeBears (~lattice).

Other round-1 lattice-based
encryption submissions:
Compact LWE%* (broken),
Ding%*, EMBLEM, KINDI,
LIMA, Lizard%*, LOTUS,
Mersenne (~lattice, big keys),
Odd Manhattan (big keys),
OKCN/AKCN/CNKE/KCL%*,
Ramstake (~lattice, big keys),
Titanium.

NTRU i
with NT

40
ature submissions:

1 2.
Iminated.

nd 2.

 eliminated.

en security
nd 2: some
ken.

MS patent on

Varning: even
ssion could be
yatents!

41
Lattice-based encryption

submissions in round 2: Frodo,
Kyber, LAC, NewHope, NTRU,
NTRU Prime, Round5%*, SABER,
ThreeBears (~lattice).

Other round-1 lattice-based
encryption submissions:
Compact LWE%* (broken),
Ding“%*, EMBLEM, KINDI,
LIMA, Lizard%*, LOTUS,
Mersenne (=~lattice, big keys),
Odd Manhattan (big keys),
OKCN/AKCN/CNKE/KCL%*,
Ramstake (~lattice, big keys),
Titanium.

NTRU is merge of
with NTRU HRSS

40
NnissSIoNs:

1S

on
Ven

d be

Lattice-based encryption

submissions in round 2: Frodo,
Kyber, LAC, NewHope, NTRU,

NTRU Prime, Round5%*, SABER,

ThreeBears (~lattice).

Other round-1 lattice-based
encryption submissions:
Compact LWE%* (broken),
Ding%*, EMBLEM, KINDI,
LIMA, Lizard%*, LOTUS,
Mersenne (~lattice, big keys),
Odd Manhattan (big keys),
OKCN/AKCN/CNKE/KCL%*,
Ramstake (~lattice, big keys),
Titanium.

41

NTRU is merge of NTRUEn
with NTRU HRSS.

Lattice-based encryption
submissions in round 2: Frodo,
Kyber, LAC, NewHope, NTRU,
NTRU Prime, Round5%*, SABER,
ThreeBears (~lattice).

Other round-1 lattice-based
encryption submissions:
Compact LWE%* (broken),
Ding“%*, EMBLEM, KINDI,
LIMA, Lizard%*, LOTUS,
Mersenne (=~lattice, big keys),
Odd Manhattan (big keys),
OKCN/AKCN/CNKE/KCL%*,
Ramstake (~lattice, big keys),
Titanium.

41

NTRU is merge of NTRUEncrypt
with NTRU HRSS.

42

Lattice-based encryption

submissions in round 2: Frodo,
Kyber, LAC, NewHope, NTRU,

NTRU Prime, Round5%*, SABER,

ThreeBears (~lattice).

Other round-1 lattice-based
encryption submissions:
Compact LWE%* (broken),
Ding“%*, EMBLEM, KINDI,
LIMA, Lizard%*, LOTUS,
Mersenne (=~lattice, big keys),
Odd Manhattan (big keys),
OKCN/AKCN/CNKE/KCL%*,
Ramstake (~lattice, big keys),
Titanium.

41

NTRU is merge of NTRUEncrypt
with NTRU HRSS.

Round5%* is merge of HILAS
with Round2%*. HILA5 CCA
security claim broken. First
Round5 version broken before
round 2 began. Round?2 broken
after round 2 began.

42

Lattice-based encryption

submissions in round 2: Frodo,
Kyber, LAC, NewHope, NTRU,

NTRU Prime, Round5%*, SABER,

ThreeBears (~lattice).

Other round-1 lattice-based
encryption submissions:
Compact LWE%* (broken),
Ding“%*, EMBLEM, KINDI,
LIMA, Lizard%*, LOTUS,
Mersenne (=~lattice, big keys),
Odd Manhattan (big keys),
OKCN/AKCN/CNKE/KCL%*,
Ramstake (~lattice, big keys),
Titanium.

41

NTRU is merge of NTRUEncrypt
with NTRU HRSS.

Round5%* is merge of HILAS
with Round2%*. HILA5 CCA
security claim broken. First
Round5 version broken before
round 2 began. Round?2 broken
after round 2 began.

Mistaken security “theorems”

have been identified for Frodo,
Kyber, NewHope, Roundb.

42

Lattice-based encryption

submissions in round 2: Frodo,
Kyber, LAC, NewHope, NTRU,

NTRU Prime, Round5%*, SABER,

ThreeBears (~lattice).

Other round-1 lattice-based
encryption submissions:
Compact LWE%* (broken),
Ding“%*, EMBLEM, KINDI,
LIMA, Lizard%*, LOTUS,
Mersenne (=~lattice, big keys),
Odd Manhattan (big keys),
OKCN/AKCN/CNKE/KCL%*,
Ramstake (~lattice, big keys),
Titanium.

41

NTRU is merge of NTRUEncrypt
with NTRU HRSS.

Round5%* is merge of HILAS
with Round2%*. HILA5 CCA
security claim broken. First
Round5 version broken before
round 2 began. Round?2 broken
after round 2 began.

Mistaken security “theorems”

have been identified for Frodo,
Kyber, NewHope, Roundb.

All lattice submissions have
suffered security losses.

42

based encryption

ons in round 2: Frodo,
AC, NewHope, NTRU,

’rime, Roundb%* SABER,

ars (~lattice).

und-1 lattice-based
on submissions:

t LWE%* (broken),
EMBLEM, KINDI,
izard%*, LOTUS,

e (~lattice, big keys),
nhattan (big keys),
AKCN/CNKE/KCL%",
e (~lattice, big keys),
.

41

NTRU is merge of NTRUEncrypt
with NTRU HRSS.

Round5%® is merge of HILAS
with Round2%*. HILA5 CCA
security claim broken. First
Roundb version broken before
round 2 began. Round?2 broken
after round 2 began.

Mistaken security “theorems”

have been identified for Frodo,
Kyber, NewHope, Roundb.

All lattice submissions have
suffered security losses.

42

Example
after be

2018 La
"betwee
sieving,

SVP att

2018 Ba

variant,
for the °

2018 Ao

quantun

cryptogr
than sie

yption
nd 2: Frodo,
Hope, NTRU,

ind5%*, SABER,

ice).

Ice-based

SIONS:

broken),

, KINDI,
OTUS,

e, big keys),
ig keys),
IKE/KCL%,
e, big keys),

41

NTRU is merge of NTRUEncrypt
with NTRU HRSS.

Round5%* is merge of HILAS
with Round2%*. HILA5 CCA
security claim broken. First
Round5 version broken before
round 2 began. Round?2 broken
after round 2 began.

Mistaken security “theorems”

have been identified for Frodo,
Kyber, NewHope, Roundb.

All lattice submissions have
suffered security losses.

42

Examples of attac
after beginning of

2018 Laarhoven—N\
“between a factor
sieving, asymptoti
SVP attack knowr

2018 Bai—Stehlé-\
variant, “bases of
for the “same cost

2018 Aono—Nguye
quantum enumera
cryptographic size
than sieving In sor

do,
RU,

\BER,

41

NTRU is merge of NTRUEncrypt
with NTRU HRSS.

Round5%® is merge of HILAS
with Round2%*. HILA5 CCA
security claim broken. First
Roundb version broken before
round 2 began. Round?2 broken
after round 2 began.

Mistaken security “theorems”

have been identified for Frodo,
Kyber, NewHope, Roundb.

All lattice submissions have
suffered security losses.

42

Examples of attack improve
after beginning of round 1:

2018 Laarhoven—Mariano: s
“between a factor 20 to 40"
sieving, asymptotically faste
SVP attack known.

2018 Bai—Stehlé-Wen: new
variant, “bases of better qu:

for the “same cost” of SVP.

2018 Aono—Nguyen—Shen:

quantum enumeration. For
cryptographic sizes, costs le:
than sieving in some cost m

NTRU is merge of NTRUEncrypt
with NTRU HRSS.

Round5%* is merge of HILAS
with Round24%*. HILA5 CCA
security claim broken. First
Round5 version broken before
round 2 began. Round?2 broken
after round 2 began.

Mistaken security “theorems”

have been identified for Frodo,
Kyber, NewHope, Roundb.

All lattice submissions have
suffered security losses.

42

Examples of attack improvements
after beginning of round 1:

2018 Laarhoven—Mariano: saves
“between a factor 20 to 40" in
sieving, asymptotically fastest
SVP attack known.

2018 Bai—Stehlé-Wen: new BKZ
variant, “bases of better quality”

for the “same cost” of SVP.

2018 Aono—Nguyen—Shen:
quantum enumeration. For
cryptographic sizes, costs less
than sieving in some cost metrics.

43

s merge of NTRUEncrypt
RU HRSS.

2" is merge of HILAbS
ind2%*. HILAS CCA
“claim broken. First
version broken before
began. Round2 broken
ind 2 began.

1 security ‘theorems”
n identified for Frodo,
NewHope, Roundb.

ce submissions have
| security losses.

42

Examples of attack improvements
after beginning of round 1:

2018 Laarhoven—Mariano: saves
“between a factor 20 to 40" in
sieving, asymptotically fastest
SVP attack known.

2018 Bai—Stehlé-Wen: new BKZ
variant, "bases of better quality”

for the “same cost” of SVP.

2018 Aono—Nguyen—Shen:
quantum enumeration. For
cryptographic sizes, costs less
than sieving in some cost metrics.

43

2018 An
Verbauw
significa
(Ring/N
schemes
high fail

Frodo, F
Roundb,
have nol

For LAC
243 time
Failure r
first vers

" NTRUEncrypt

e of HILAbS
ILAS5 CCA
oken. First
oken before
ound? broken

1N.

“theorems”

d for Frodo,
Roundb.

ssions have
losses.

42

Examples of attack improvements
after beginning of round 1:

2018 Laarhoven—Mariano: saves
“between a factor 20 to 40" in
sieving, asymptotically fastest
SVP attack known.

2018 Bai—Stehlé-Wen: new BKZ
variant, “bases of better quality”

for the “same cost” of SVP.

2018 Aono—Nguyen—Shen:
quantum enumeration. For
cryptographic sizes, costs less
than sieving in some cost metrics.

43

2018 Anvers—Verc
Verbauwhede: “ar
significantly reduc
(Ring/Module)-LV
schemes that have
high failure rate”.

Frodo, Kyber, LA

Roundb, SABER,
have nonzero failu

For LAC-128, “the
2% times bigger t
Failure rate is also
first version of Rol

crypt

T
e
ken

Jo,

/€

42

Examples of attack improvements
after beginning of round 1:

2018 Laarhoven—Mariano: saves
“between a factor 20 to 40" in
sieving, asymptotically fastest
SVP attack known.

2018 Bai—Stehlé-Wen: new BKZ

variant, "bases of better quality”
for the “same cost” of SVP.

2018 Aono—Nguyen—Shen:
quantum enumeration. For
cryptographic sizes, costs less
than sieving in some cost metrics.

43

2018 Anvers—Vercauteren—
Verbauwhede: “an attacker
significantly reduce the secu
(Ring/Module)-LWE /LWR t
schemes that have a relative
high failure rate” .

Frodo, Kyber, LAC, NewHo

Roundb5, SABER, ThreeBeal
have nonzero failure rates.

For LAC-128, “the failure ra
248 times bigger than estim:
Failure rate i1s also what bro
first version of Round>.

Examples of attack improvements
after beginning of round 1:

2018 Laarhoven—Mariano: saves
“between a factor 20 to 40" in
sieving, asymptotically fastest
SVP attack known.

2018 Bai—Stehlée-Wen: new BKZ

variant, "bases of better quality”
for the “same cost” of SVP.

2018 Aono—Nguyen—Shen:
quantum enumeration. For
cryptographic sizes, costs less
than sieving in some cost metrics.

43

44
2018 Anvers—Vercauteren—

Verbauwhede: “an attacker can
significantly reduce the security of
(Ring/Module)-LWE /LWR based
schemes that have a relatively

high failure rate”.

Frodo, Kyber, LAC, NewHope,

Roundb5, SABER, ThreeBears
have nonzero failure rates.

For LAC-128, “the failure rate is
248 times bigger than estimated” .
Failure rate is also what broke
first version of Roundb.

s of attack improvements
xinning of round 1:

arhoven—Mariano: saves
n a factor 20 to 40" in
asymptotically fastest
ack known.

i—Stehlée-Wen: new BKZ

"bases of better quality”
'same cost” of SVP.

no—Nguyen—Shen:

) enumeration. For
aphic sizes, costs less
/INg In some cost metrics.

43

2018 Anvers—Vercauteren—
Verbauwhede: “an attacker can
significantly reduce the security of
(Ring/Module)-LWE/LWR based
schemes that have a relatively

high failure rate”.

Frodo, Kyber, LAC, NewHope,

Roundb, SABER, ThreeBears
have nonzero failure rates.

For LAC-128, “the failure rate is
248 times bigger than estimated” .
Failure rate is also what broke
first version of Round>.

44

2019 All
Kirshanc
Stevens:
the SVP
found 4(
time rep
challeng

2019 Pe
broke cl:
approxin
number-
|deal-SV

cycloton
FHE in

k Improvements
round 1:

Aariano: saves
20 to 40" In
cally fastest

).

Nen: new BKZ
better quality”
" of SVP.

n—Shen:

tion. For

s, costs less

ne cost metrics.

43

2018 Anvers—Vercauteren—
Verbauwhede: “an attacker can
significantly reduce the security of
(Ring/Module)-LWE /LWR based
schemes that have a relatively

high failure rate”.

Frodo, Kyber, LAC, NewHope,

Roundb5, SABER, ThreeBears
have nonzero failure rates.

For LAC-128, “the failure rate is
248 times bigger than estimated” .
Failure rate is also what broke
first version of Roundb.

44

2019 Albrecht—Du

Kirshanova—Postle
Stevens: “Our sol
the SVP-151 chall
found 400 times f:
time reported for 1
challenge, the pre

2019 Pellet-Mary-
broke claimed half
approximation-fac
number-theoretic
ldeal-SVP. (These
cyclotomic STOC
FHE in quantum |

ments

aves
N
St

BKZ
lity”

5S
etrics.

43

2018 Anvers—Vercauteren—
Verbauwhede: “an attacker can
significantly reduce the security of
(Ring/Module)-LWE /LWR based
schemes that have a relatively

high failure rate”.

Frodo, Kyber, LAC, NewHope,
Roundb, SABER, ThreeBears
have nonzero failure rates.

For LAC-128, “the failure rate is
248 times bigger than estimated” .
Failure rate is also what broke
first version of Round>.

44

2019 Albrecht—Ducas—Herol
Kirshanova—Postlethwaite—
Stevens: “Our solution for
the SVP-151 challenge was
found 400 times faster than
time reported for the SVP-1
challenge, the previous recor

2019 Pellet-Mary—Hanrot—5
broke claimed half-exponent
approximation-factor barrier

number-theoretic attacks ag
ldeal-SVP. (These attacks b

cyclotomic STOC 2009 Gen
FHE in quantum poly time.

2018 Anvers—Vercauteren—
Verbauwhede: “an attacker can
significantly reduce the security of
(Ring/Module)-LWE /LWR based
schemes that have a relatively

high failure rate”.

Frodo, Kyber, LAC, NewHope,

Roundb5, SABER, ThreeBears
have nonzero failure rates.

For LAC-128, “the failure rate is
248 times bigger than estimated” .
Failure rate is also what broke
first version of Roundb.

44

45
2019 Albrecht—Ducas—Herold-

Kirshanova—Postlethwaite—
Stevens: “Our solution for

the SVP-151 challenge was
found 400 times faster than the
time reported for the SVP-150
challenge, the previous record.”

2019 Pellet-Mary—Hanrot—Stehlé
broke claimed half-exponentia

approximation-factor barrier for

number-theoretic attacks against
ldeal-SVP. (These attacks broke

cyclotomic STOC 2009 Gentry
FHE in quantum poly time.)

vers—Vercauteren—
'hede:
ntly reduce the security of
lodule)-LWE /LWR based

that have a relatively

“an attacker can

ure rate’ .

Cyber, LAC, NewHope,
SABER, ThreeBears
1zero failure rates.

-128, “the failure rate is
s bigger than estimated” .
ate 1s also what broke
ion of Roundb.

44

2019 Albrecht—Ducas—Herold—

Kirshanova—Postlethwaite—
Stevens: “Our solution for
the SVP-151 challenge was
found 400 times faster than the

time reported for the SVP-150
challenge, the previous record.”

2019 Pellet-Mary—Hanrot—Stehlé
broke claimed half-exponentia

approximation-factor barrier for

number-theoretic attacks against
ldeal-SVP. (These attacks broke

cyclotomic STOC 2009 Gentry
FHE in quantum poly time.)

45

2019 Gu
faster at
systems
to reduc
(Violate:

2020 Da
Gong—R
attacks
secrets (

2020 All
Kirchnet
exponen

quantun

auteren—

1 attacker can

e the security of
VE /LWR based

a relatively

_, NewHope,
T hreeBears
re rates.

> failure rate is
han estimated' .
 what broke
und>b.

44

2019 Albrecht—Ducas—Herold-

Kirshanova—Postlethwaite—
Stevens: “Our solution for
the SVP-151 challenge was
found 400 times faster than the

time reported for the SVP-150
challenge, the previous record.”

2019 Pellet-Mary—Hanrot—Stehlé
broke claimed half-exponentia

approximation-factor barrier for

number-theoretic attacks against
ldeal-SVP. (These attacks broke

cyclotomic STOC 2009 Gentry
FHE in quantum poly time.)

45

2019 Guo—Johans:
faster attacks agai
systems that use e
to reduce decrypti
(Violates security

2020 Dachman-Sc
Gong—Rossi: sligh
attacks against co
secrets (LAC, NTF

2020 Albrecht—Ba
Kirchner—Stehlé-V
exponent for enun

quantum enumera

can
rity of
yased

te Is
ted’ .

44

2019 Albrecht—Ducas—Herold—
Kirshanova—Postlethwaite—
Stevens: “Our solution for

the SVP-151 challenge was
found 400 times faster than the
time reported for the SVP-150
challenge, the previous record.”

2019 Pellet-Mary—Hanrot—Stehlé
broke claimed half-exponentia

approximation-factor barrier for

number-theoretic attacks against
ldeal-SVP. (These attacks broke

cyclotomic STOC 2009 Gentry
FHE in quantum poly time.)

45

2019 Guo—Johansson—Yang:
faster attacks against some
systems that use error corres
to reduce decryption failures
(Violates security claims for

2020 Dachman-Soled—Duca:s
Gong—Rossi: slightly faster

attacks against constant-sur
secrets (LAC, NTRU, Rounc

2020 Albrecht—Bai—Fouque-
Kirchner—-Stehlé—\Wen: bette
exponent for enumeration al

quantum enumeration.

2019 Albrecht—Ducas—Herold-

Kirshanova—Postlethwaite—
Stevens: “Our solution for
the SVP-151 challenge was
found 400 times faster than the

time reported for the SVP-150
challenge, the previous record.”

2019 Pellet-Mary—Hanrot—-Stehlé
broke claimed half-exponentia

approximation-factor barrier for

number-theoretic attacks against
ldeal-SVP. (These attacks broke

cyclotomic STOC 2009 Gentry
FHE in quantum poly time.)

45

46
2019 Guo—Johansson—Yang:

faster attacks against some
systems that use error correction
to reduce decryption failures.
(Violates security claims for LAC.)

2020 Dachman-Soled—Ducas—
Gong—Rossi: slightly faster

attacks against constant-sum
secrets (LAC, NTRU, Roundb).

2020 Albrecht—Bai—Fouque—
Kirchner—Stehlé—Wen: better
exponent for enumeration and

quantum enumeration.

yrecht—Ducas—Herold—

va—Postlethwaite—
“Our solution for

-151 challenge was

)0 times faster than the
orted for the SVP-150
e, the previous record.”

llet-Mary—Hanrot—Stehlé

imed half-exponentia
ration-factor barrier for

theoretic attacks against
P. (These attacks broke

1ic STOC 2009 Gentry
quantum poly time.)

45

2019 Guo—Johansson—Yang:

faster attacks against some
systems that use error correction
to reduce decryption failures.
(Violates security claims for LAC.)

2020 Dachman-Soled—Ducas—
Gong—Rossi: slightly faster
attacks against constant-sum

secrets (LAC, NTRU, Roundb).

2020 Albrecht—Bai—Fouque—
Kirchner—Stehlé—Wen: better
exponent for enumeration and

quantum enumeration.

46

2020 Dc
de Wege
methods
vector p
dimensic

cas—Herold—
thwaite—
ution for
enge was
)ster than the
the SVP-150

/lous record.”

/7

Hanrot—Stehlé

-exponentia
tor barrier for

qttacks against
attacks broke

2009 Gentry
yoly time.)

45

2019 Guo—Johansson—Yang:

faster attacks against some
systems that use error correction
to reduce decryption failures.
(Violates security claims for LAC.)

2020 Dachman-Soled—Ducas—
Gong—Rossi: slightly faster

attacks against constant-sum
secrets (LAC, NTRU, Roundb).

2020 Albrecht—Bai—Fouque—
Kirchner—Stehlé—Wen: better
exponent for enumeration and

quantum enumeration.

46

2020 Doulgerakis-
de Weger: “faster
methods for solvin
vector problem (S

dimensional lattice

the

d.”

tehlé

for
ainst
roke
try

45

2019 Guo—Johansson—Yang:

faster attacks against some
systems that use error correction
to reduce decryption failures.
(Violates security claims for LAC.)

2020 Dachman-Soled—Ducas—
Gong—Rossi: slightly faster

attacks against constant-sum
secrets (LAC, NTRU, Roundb).

2020 Albrecht—Bai—Fouque—
Kirchner—Stehlé—Wen: better
exponent for enumeration and

quantum enumeration.

46

2020 Doulgerakis—Laarhover
de Weger: “faster [sieving]

methods for solving the shot
vector problem (SVP) on hi

dimensional lattices’ .

46

2019 Guo—Johansson—Yang: 2020 Doulgerakis—Laarhoven—
faster attacks against some de Weger: “faster [sieving]
systems that use error correction methods for solving the shortest
to reduce decryption failures. vector problem (SVP) on high-
(Violates security claims for LAC.) dimensional lattices" .

2020 Dachman-Soled—Ducas—
Gong—Rossi: slightly faster

attacks against constant-sum
secrets (LAC, NTRU, Roundb).

2020 Albrecht—Bai—Fouque—
Kirchner—Stehlé—Wen: better
exponent for enumeration and

quantum enumeration.

2019 Guo—Johansson—Yang:

faster attacks against some
systems that use error correction
to reduce decryption failures.
(Violates security claims for LAC.)

2020 Dachman-Soled—Ducas—
Gong—Rossi: slightly faster

attacks against constant-sum
secrets (LAC, NTRU, Roundb).

2020 Albrecht—Bai—Fouque—
Kirchner—Stehlé—Wen: better
exponent for enumeration and

quantum enumeration.

46

2020 Doulgerakis—Laarhoven—
de Weger: “faster [sieving]
methods for solving the shortest
vector problem (SVP) on high-

dimensional lattices’ .

“Conservative lower bound”
on cost of BKZ was claimed in

various submission documents in
2017 (round 1), 2019 (round 2).

47

2019 Guo—Johansson—Yang:

faster attacks against some
systems that use error correction
to reduce decryption failures.
(Violates security claims for LAC.)

2020 Dachman-Soled—Ducas—
Gong—Rossi: slightly faster

attacks against constant-sum
secrets (LAC, NTRU, Roundb).

2020 Albrecht—Bai—Fouque—
Kirchner—Stehlé—Wen: better
exponent for enumeration and

quantum enumeration.

46

2020 Doulgerakis—Laarhoven—
de Weger: “faster [sieving]
methods for solving the shortest
vector problem (SVP) on high-

dimensional lattices’ .

“Conservative lower bound”

on cost of BKZ was claimed in
various submission documents in
2017 (round 1), 2019 (round 2).

This "bound” was broken in 2018
for high-dimensional lattices.

47

2019 Guo—Johansson—Yang:

faster attacks against some
systems that use error correction
to reduce decryption failures.
(Violates security claims for LAC.)

2020 Dachman-Soled—Ducas—
Gong—Rossi: slightly faster

attacks against constant-sum
secrets (LAC, NTRU, Roundb).

2020 Albrecht—Bai—Fouque—
Kirchner—Stehlé—Wen: better
exponent for enumeration and

quantum enumeration.

46

2020 Doulgerakis—Laarhoven—
de Weger: “faster [sieving]
methods for solving the shortest
vector problem (SVP) on high-

dimensional lattices’ .

“Conservative lower bound”

on cost of BKZ was claimed in
various submission documents in
2017 (round 1), 2019 (round 2).

This "bound” was broken in 2018
for high-dimensional lattices.

Apparently nobody noticed
until | pointed this out in 2020.

47

o—Johansson—Yang:

tacks against some

that use error correction
e decryption failures.

s security claims for LAC.)

chman-Soled—Ducas—
ossi: slightly faster

against constant-sum
LAC, NTRU, Roundb).

yrecht—Bai—Fouque—
—Stehlé—Wen: better
t for enumeration and

1 enumeration.

46

2020 Doulgerakis—Laarhoven—
de Weger: “faster [sieving]
methods for solving the shortest
vector problem (SVP) on high-

dimensional lattices’ .

“Conservative lower bound”
on cost of BKZ was claimed in

various submission documents in

2017 (round 1), 2019 (round 2).
This “bound” was broken in 2018
for high-dimensional lattices.

Apparently nobody noticed
until | pointed this out in 2020.

47

Lattice 1

“Strong
worst-ca
that “ha
some of
and comr
back at

son—Yang:
nst some
rror correction

on failures.
claims for LAC.)

led—Ducas—
tly faster
nstant-sum

RU, Roundb).

—Fouque—
\len: better
reration and
tion.

46

2020 Doulgerakis—Laarhoven—
de Weger: “faster [sieving]
methods for solving the shortest
vector problem (SVP) on high-

dimensional lattices’ .

“Conservative lower bound”
on cost of BKZ was claimed in

various submission documents in

2017 (round 1), 2019 (round 2).
This “bound” was broken in 2018
for high-dimensional lattices.

Apparently nobody noticed
until | pointed this out in 2020.

47

Lattice marketing

“Strong security g
worst-case hardne:
that “have been d
some of the great
and computer scie
back at least to G

r

d

46

2020 Doulgerakis—Laarhoven—
de Weger: “faster [sieving]
methods for solving the shortest
vector problem (SVP) on high-

dimensional lattices’ .

“Conservative lower bound”
on cost of BKZ was claimed in

various submission documents in

2017 (round 1), 2019 (round 2).
This “bound” was broken in 2018
for high-dimensional lattices.

Apparently nobody noticed
until | pointed this out in 2020.

47

Lattice marketing

“Strong security guarantees
worst-case hardness’ of prol
that "have been deeply stud
some of the great mathema
and computer scientists goir
back at least to Gauss".

47
2020 Doulgerakis—Laarhoven—

de Weger: “faster [sieving]
methods for solving the shortest
vector problem (SVP) on high-

dimensional lattices’ .

“Conservative lower bound”

on cost of BKZ was claimed in
various submission documents in
2017 (round 1), 2019 (round 2).

This "bound” was broken in 2018
for high-dimensional lattices.

Apparently nobody noticed
until | pointed this out in 2020.

Lattice marketing

“Strong security guarantees from
worst-case hardness’ of problems
that “have been deeply studied by
some of the great mathematicians
and computer scientists going
back at least to Gauss'.

47
2020 Doulgerakis—Laarhoven—

de Weger: “faster [sieving]
methods for solving the shortest
vector problem (SVP) on high-

dimensional lattices’ .

“Conservative lower bound”

on cost of BKZ was claimed in
various submission documents in
2017 (round 1), 2019 (round 2).
This “bound” was broken in 2018

for high-dimensional lattices.

Apparently nobody noticed
until | pointed this out in 2020.

Lattice marketing

“Strong security guarantees from
worst-case hardness’ of problems
that “have been deeply studied by
some of the great mathematicians
and computer scientists going
back at least to Gauss’. Plus:
fully homomorphic encryption.

2020 Doulgerakis—Laarhoven—
de Weger: “faster [sieving]
methods for solving the shortest
vector problem (SVP) on high-

dimensional lattices’ .

“Conservative lower bound”
on cost of BKZ was claimed in

various submission documents in
2017 (round 1), 2019 (round 2).
This “bound” was broken in 2018

for high-dimensional lattices.

Apparently nobody noticed
until | pointed this out in 2020.

47

Lattice marketing

“Strong security guarantees from
worst-case hardness’ of problems
that “have been deeply studied by
some of the great mathematicians
and computer scientists going
Plus:

fully homomorphic encryption.

back at least to Gauss' .

Facts: No NISTPQC submissions
are homomorphic.

43

2020 Doulgerakis—Laarhoven—

de Weger: “faster [sieving]

methods for solving the shortest

vector

problem (SVP) on high-

dimensional lattices’ .

“Conservative lower bound”

on cost of BKZ was claimed in

various submission documents in

2017 (
This *©
for hig

round 1), 2019 (round 2).
bound” was broken in 2018

n-dimensional lattices.

Apparently nobody noticed

until |

pointed this out in 2020.

47

Lattice marketing

“Strong security guarantees from
worst-case hardness’ of problems
that “have been deeply studied by
some of the great mathematicians
and computer scientists going
back at least to Gauss’. Plus:
fully homomorphic encryption.

Facts: No NISTPQC submissions

are homomorphic. Gauss never
attacked these problems.

43

47
2020 Doulgerakis—Laarhoven— Lattice marketing

de Weger: "faster [sieving] “Strong security guarantees from

methods for solving the shortest ,
worst-case hardness’ of problems

vector problem (SVP) on high- that “have been deeply studied by

dimensional lattices™ . ..
some of the great mathematicians

and computer scientists going
"Conservative lower bound” back at least to Gauss'. Plus:

on cost of BKZ was claimed in fully homomorphic encryption.
various submission documents in

2017 (round 1), 2019 (round 2).

This "bound” was broken in 2018
for high-dimensional lattices.

Facts: No NISTPQC submissions
are homomorphic. Gauss never

attacked these problems. Our

Apparently nobody noticed attacks keep getting better.

until | pointed this out in 2020.

2020 Doulgerakis—Laarhoven—
de Weger: “faster [sieving]
methods for solving the shortest
vector problem (SVP) on high-

dimensional lattices’ .

“Conservative lower bound”

on cost of BKZ was claimed in
various submission documents in
2017 (round 1), 2019 (round 2).

This "bound” was broken in 2018
for high-dimensional lattices.

Apparently nobody noticed
until | pointed this out in 2020.

47

Lattice marketing

“Strong security guarantees from
worst-case hardness’ of problems
that “have been deeply studied by
some of the great mathematicians
and computer scientists going
Plus:

fully homomorphic encryption.

back at least to Gauss' .

Facts: No NISTPQC submissions
are homomorphic. Gauss never
attacked these problems. Our
attacks keep getting better.

The guarantees do not apply

to any NISTPQC submissions.

43

