Examples of symmetric primitives

D. J. Bernstein

message len

Permutation
Compression function
Block cipher
Tweakable block cipher
Hash function

MAC (without nonce)
MAC (using nonce)
Stream cipher

Authenticated cipher

fixed

fixed

fixed

fixec

variab

variab
variab

variab

@ d® @d @d O

variab

tweak | key | encrypts | authenticates
no no |— —
yes |[no |— —
no yes | yes —
yes | yes |yes —
no no |— —
no yes | no yes
yes |yes |no yes
yes | yes |yes no
yes | yes |yes yes

1994 Wheeler—-Needham “TEA,
a tiny encryption algorithm™:

void encrypt(uint32 *b,uint32 *k)
{
uint32 x = b[0], y = b[1];
ulnt32 r, ¢ = 0;
for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9;

x += y+c ~ (y<<4)+k[O0]
- (y>>5)+k[1];

y += x+c T (x<<4)+k[2]
~ (x>>5)+k[3];

}
b[0] = x; b[1] = y;

uint32: 32 bits (b(), b1, ..., b31)
representing the “unsigned”
integer by + 2b1 + - - - + 231b31.

+: addition mod 232.
c +=d: same as c =c + d.

~: xor: @: addition of

each bit separately mod 2.
Lower precedence than + in C,
so spacing Is not misleading.

<<4: multiplication by 16, I.e.,
(0,0,0,0, by, by, ..., by7).

Functionality

TEA is a 64-bit block cipher
with a 128-bit key.

Functionality

TEA is a 64-bit block cipher
with a 128-bit key.

Input: 128-bit key (namely
k[0],k[1],k[2],k[3]);
64-bit plaintext (b[0],b[1]).

Output: 64-bit ciphertext
(final b[0],b[1]).

Functionality

TEA is a 64-bit block cipher
with a 128-bit key.

Input: 128-bit key (namely
k[0],k[1],k[2],k[3]);
64-bit plaintext (b[0],b[1]).

Output: 64-bit ciphertext
(final b[0],b[1]).

Can efficiently encrypt:
(key, plaintext) — ciphertext.

Can efficiently decrypt:
(key, ciphertext) — plaintext.

Wait, how can we decrypt?

void encrypt(uint32 *b,uint32 *k)
{
uint32 x = b[0], v = b[1];
ulint32 r, ¢ = 0;
for (r = 0;r < 32;r += 1) {
c += 0x9e3779b9;
x += y+c ~ (y<<4)+k[
= (y>>b)+k[
y += x+c T (x<<4)+k|[
~ (x>>5)+k [

le II\DI IHI IOI

}
b[0] = x; b[1] = y;

Answer: Each step is invertible.

void decrypt(uint32 *b,uint32 *k)
{
uint32 x = b[0], y = b[1];
uint32 r, ¢ = 32 * 0x9e3779b9;
for (r = 0;r < 32;r += 1) {

y —= xtc T (x<<4)+k[2]
~ (x>>5)+k[3];
x —= y+c ~ (y<<4)+k[0]
~ (y>>5)+k[1] ;
c —= 0x9e3779b9;
¥
b[0] = x; b[1] = y;

Generalization, Feistel network
(used in, e.g., “Lucifer” from
1973 Feistel-Coppersmith):

x += functionl(y,k);
y += function2(x,k);
x += function3(y,k);
y += functiond(x,k);

Decryption, inverting each step:

y —-= function4(x,k);
x —-= function3(y,k);
y —= function2(x,k);
x —= functionl(y,k);

Higher-level functionality

User's message is long sequence
of 64-bit blocks mg, m1, mo,

Higher-level functionality

User's message is long sequence
of 64-bit blocks mg, m1, mo,

TEA-CTR produces ciphertext
co = mg @ TEA,(n,0),

c1 = my & TEA,(n, 1),

co=my ® TEAL(n,2), ...
using 123-bit key k,

32-bit nonce n,

32-bit block counter 0,1, 2,

Higher-level functionality

User's message is long sequence
of 64-bit blocks mg, m1, mo,

TEA-CTR produces ciphertext
co = mg @ TEA,(n,0),

c1 = my & TEA,(n, 1),

co=my ® TEAL(n,2), ...
using 123-bit key k,

32-bit nonce n,

32-bit block counter 0,1, 2,

CTR is a mode of operation
that converts block cipher TEA
into stream cipher TEA-CTR.

User also wants to recognize
forged /modified ciphertexts.

10

10
User also wants to recognize

forged /modified ciphertexts.

Usual strategy:
append authenticator to

the ciphertext ¢ = (¢p, c1, 2, .. .).

10
User also wants to recognize

forged /modified ciphertexts.

Usual strategy:
append authenticator to

the ciphertext ¢ = (¢p, c1, 2, .. .).

TEA-XCBC-MAC computes

ag = TEAj(Co),

al] = TEAj(Cl @ ap),

ar = TEAj(C2 D 31), e

ag—1 = TEAj(ce—1 @ ag—2),

dy = TEAJ'(I' D Cp D ag_l)

using 128-bit key j, 64-bit key 1.
Authenticator I1s ay: 1.e.,

transmit (cp, 1, .. ., Cy, ap).

11
Specifying TEA-CTR-XCBC-MAC

authenticated cipher:

320-bit key (k, J, i).
Specify how this is chosen:

uniform random 320-bit string.

Specifying TEA-CTR-XCBC-MAC
authenticated cipher:

320-bit key (k, J, i).
Specify how this is chosen:

uniform random 320-bit string.

Specify set of messages:
message Is sequence of

at most 232 64-bit blocks.
(Can do some extra work

to allow sequences of bytes.)

11

Specifying TEA-CTR-XCBC-MAC
authenticated cipher:

320-bit key (k, J, i).
Specify how this is chosen:

uniform random 320-bit string.

Specify set of messages:
message Is sequence of

at most 232 64-bit blocks.
(Can do some extra work

to allow sequences of bytes.)

Specify how nonce is chosen:
message number. (Stateless

alternative: uniform random.)

11

Is this secure?

Step 1: Define security
for authenticated ciphers.

12

Is this secure?

Step 1: Define security
for authenticated ciphers.

This Is not easy to do!

12

Is this secure?

Step 1: Define security
for authenticated ciphers.

This Is not easy to do!

Useless extreme: “lt's secure
unless you show me the key."
Too weak. Many ciphers

leak plaintext or allow forgeries
without leaking key.

12

Is this secure?

Step 1: Define security
for authenticated ciphers.

This Is not easy to do!

Useless extreme: “lt's secure
unless you show me the key."
Too weak. Many ciphers

leak plaintext or allow forgeries
without leaking key.

Another useless extreme:
“Any structure Is an attack.”
Hard to define clearly.

Everything seems “attackable™.

12

Step 2: After settling on
target security definition,
prove that security follows
from simpler properties.

13

13
Step 2: After settling on

target security definition,
prove that security follows
from simpler properties.

e.g. Prove PRF security of

n+— TEAk(n, O), TEAk(n,].), C
assuming PRF security of

b— TEAL(D).

13
Step 2: After settling on

target security definition,
prove that security follows
from simpler properties.

e.g. Prove PRF security of

n+— TEAk(n, O), TEAk(n,].), C
assuming PRF security of

b— TEAL(D).

I.e. Prove that

any PRF attack against

n+— TEAk(n, O), TEAk(n,].), C
implies PRF attack against

b— TEAL(D).

14

privacy of
TEA-CTR-XCBC-MAC

privacy of
TEA-CTR

PRF security of
n— TEAk(n, O), TEAk(n, 1), C

A

PRF secL

PRP sect

authenticity of

TEA-CTR-XCBC-MAC

authenticity of
TEA-XCBC-MAC

PRF security of
TEA-XCBC-MAC

e

irity of TEA

AN

irity of TEA

Many things can go wrong here:

1. Security definition too weak.

16

16
Many things can go wrong here:

1. Security definition too weak.

2. Internal mismatch between
hypotheses and conclusions.

Many things can go wrong here:

1. Security definition too weak.

2. Internal mismatch between
hypotheses and conclusions.

3. Errors in proofs.
Did anyone write full proofs?

Did anyone check all details?

16

Many things can go wrong here:
1. Security definition too weak.

2. Internal mismatch between
hypotheses and conclusions.

3. Errors in proofs.
Did anyone write full proofs?

Did anyone check all details?

4. Quantitative problems.

e.g. 2016 Bhargavan—Leurent
sweet32.info: Triple-DES
broken in TLS: PRP-PRF switch

too weak for 64-bit block ciphers.

https://sweet32.info

Many things can go wrong here:
1. Security definition too weak.

2. Internal mismatch between
hypotheses and conclusions.

3. Errors in proofs.
Did anyone write full proofs?

Did anyone check all details?

4. Quantitative problems.

e.g. 2016 Bhargavan—Leurent
sweet32.info: Triple-DES
broken in TLS: PRP-PRF switch

too weak for 64-bit block ciphers.

5. Is TEA PRP-secure?

https://sweet32.info

One-time pad has complete
proof of privacy, but key must be
as long as total of all messages.

17

17
One-time pad has complete

proof of privacy, but key must be
as long as total of all messages.

Wegman—Carter authenticator has
complete proof of authenticity,
but key length is proportional to
number of messages.

17
One-time pad has complete

proof of privacy, but key must be
as long as total of all messages.

Wegman—Carter authenticator has
complete proof of authenticity,
but key length is proportional to
number of messages.

Short-key cipher handling many
messages: no complete proofs.

One-time pad has complete
proof of privacy, but key must be
as long as total of all messages.

Wegman—Carter authenticator has
complete proof of authenticity,
but key length is proportional to
number of messages.

Short-key cipher handling many
messages: no complete proofs.

We conjecture security
after enough failed attack efforts.

“All of these attacks fail and we
don't have better attack ideas.”

XORTEA: a bad cipher

18

void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32

for (r

C +=

XA=

”

y s

¥
b[0] =

x = b[0], y = bl1];

r, c = 0;

= 0;r < 32;r += 1) {

0x9e3779b9;
y c ~ (y<<4) k[

~ (y>>5) k[
x"c © (x<<4)°kl[

= (x>>5) "k [3]

w II\DI IHI IOI

x; b[1] = y;

19
“"Hardware-friendlier” cipher, since

xor circuit I1s cheaper than add.

19
"Hardware-friendlier” cipher, since

xor circuit I1s cheaper than add.

But output bits are linear
functions of input bits!

“"Hardware-friendlier” cipher, since
xor circuit I1s cheaper than add.

But output bits are linear
functions of input bits!

e.g. First output bit Is

1D koD ki B ks ® k1o D k11 D k1o D
koo @ ko1 @ k30 D k32 D k33 @ k35 ©
kap @ ka3 @ ks © ksp @ ki3 @ keo @
Koa D Ko7 D koo @ k76 D kg5 D kog ©
koo D koo D k101D k108D k117D k126D
b1 ®b3® b10Db12D b1 D b30D b32D
b33 P b3 P b37 D b3g D bao @ baz D
bas @ ba7 @ D52 @ bs3 D bs7 D bep.

19

20
There i1s a matrix M

with coefficients in F»
such that, for all (k, b),
XORTEAL(b) = (1, k, b)M.

20
There i1s a matrix M

with coefficients in F»
such that, for all (k, b),
XORTEAL(b) = (1, k, b)M.

XORTEA,(b1) & XORTEA,(b)
= (0,0, by & bp)M.

There 1s a matrix M

with coefficients in F»

such that, for all (k, b),
XORTEAL(b) = (1, k, b)M.

XORTEA,(b1) & XORTEA,(b)
= (0,0, by & bp)M.

Very fast attack:

if bg = b1 @ by d b3 then
XORTEA(b1) ®XORTEA,(by) =
XORTEA,(b3) & XORTEA,(bg).

There 1s a matrix M

with coefficients in F»

such that, for all (k, b),
XORTEAL(b) = (1, k, b)M.

XORTEA,(b1) & XORTEA,(b)
= (0,0, by & bp)M.

Very fast attack:

if bg = b1 @ by d b3 then
XORTEA(b1) ®XORTEA,(by) =
XORTEA,(b3) & XORTEA,(bg).

This breaks PRP (and PRF):

uniform random permutation

(or function) F almost never has
F(b1) ® F(b2) = F(b3) @ F(bs).

LEFTEA: another bad cipher

21

void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32
for (r

c +=

X +=

y +=

¥
b[0] =

x = b[0], y = bl1];

r, c =

= 0;r < 32;r += 1) {

0;

0x9e3779b9;

y+c ~ (y<<4)+k[
~ (y<<5)+k [
x+c ~ (x<<4)+k[
~ (x<<B)+k[

x; b[1]

Y

le II\DI IHI IOI

Addition is not F»-linear,
but addition mod 2 is F»-linear.

First output bit Is
1D ko @ k3o @ ks P kog P b3o.

22

Addition i1s not F»-linear,

but addition mod 2 is F»-linear.

First output bit Is

1D ko @ k3o @ ks P kog P b3o.

Higher output bits
are increasingly nonlinear
but they never affect first bit.

22

Addition is not F»-linear,
but addition mod 2 is F»-linear.

First output bit Is
1D ko @ k3o @ ks P kog P b3o.

Higher output bits
are increasingly nonlinear
but they never affect first bit.

How TEA avoids this problem:
>>5 diffuses nonlinear changes
from high bits to low bits.

22

22
Addition i1s not F»-linear,

but addition mod 2 is F»-linear.

First output bit Is
1D ko @ k3o @ ks P kog P b3o.

Higher output bits
are increasingly nonlinear
but they never affect first bit.

How TEA avoids this problem:
>>5 diffuses nonlinear changes
from high bits to low bits.

(Diffusion from low bits to high
bits: <<4; carries in addition.)

TEA4: another bad cipher

23

void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32
for (r

c +=

X +=

y +=

¥
b[0] =

x = b[0], y = bl1];

r, c =

= 0;r < 4;r +=

0;

0x9e3779b9;

y+c ~ (y<<4)+k[
= (y>>b)+k[
x+c ~ (x<<4)+k[
~ (x>>B)+k [

x; b[1]

Y

1) A

le II\DI IHI IOI

Fast attack:
TEA4,(x + 231, y) and
TEA4,(x, y) have same first bit.

24

Fast attack:
TEA4,(x + 231, y) and

TEA4,(x, y) have same first bit.

Trace x, y differences

through steps in computation.
r = 0: multiples of 231 226
r = 1: multiples of 241 216
r = 2: multiples of 211 2°,

r = 3: multiples of 21 20

24

Fast attack:
TEA4,(x + 231, y) and
TEA4,(x, y) have same first bit.

Trace x, y differences

through steps in computation.
r = 0: multiples of 231 226
r = 1: multiples of 241 216
r = 2: multiples of 211 2°,

r = 3: multiples of 21 20

Uniform random function F:

F(x + 231, y) and F(x, y) have
same first bit with probability 1/2.

24

Fast attack:
TEA4,(x + 231, y) and
TEA4,(x, y) have same first bit.

Trace x, y differences

through steps in computation.
r = 0: multiples of 231 226
r = 1: multiples of 241 216
r = 2: multiples of 211 2°,

r = 3: multiples of 21 20

Uniform random function F:

F(x + 231, y) and F(x, y) have
same first bit with probability 1/2.

PRF advantage 1/2.
Two pairs (x, y): advantage 3/4.

24

25
More sophisticated attacks:

trace probabilities of differences;
orobabilities of linear equations;

orobabilities of higher-order
differences C(x + 0 + €) —
C(x+9d)— C(x+¢€)+ C(x); etc.
Use algebra+-statistics to exploit

non-randomness in probabilities.

25
More sophisticated attacks:

trace probabilities of differences;
orobabilities of linear equations;

orobabilities of higher-order
differences C(x + 0 + €) —
C(x+9d)— C(x+¢€)+ C(x); etc.
Use algebra+-statistics to exploit

non-randomness in probabilities.

Attacks get beyond r =4

but rapidly lose effectiveness.
Very far from full TEA.

25
More sophisticated attacks:

trace probabilities of differences;
orobabilities of linear equations;

orobabilities of higher-order
differences C(x + 0 + €) —
C(x+9d)— C(x+¢€)+ C(x); etc.
Use algebra+-statistics to exploit

non-randomness in probabilities.

Attacks get beyond r =4

but rapidly lose effectiveness.
Very far from full TEA.

Hard question in cipher design:
How many “rounds’ are
really needed for security?

26
REPTEA: another bad cipher

void encrypt(uint32 *b,uint32 *k)
{
uint32 x = b[0], y = b[1];
uint32 r, ¢ = 0x9e3779b9;
for (r = 0;r < 1000;r += 1) {

x += y+c ~ (y<<4)+k[O0]
~ (y>>5)+k[1];

y += xtc ~ (x<<4)+k[2]
© (x>>5)+k[3];

}
b[0] = x; b[1] = y;

REPTEA(b) = I;°%°(b)

where I, does x+=. .

yt=...

27

REPTEA(b) = I;°%°(b)

where I, does x+=...;y+=....

Try list of 232 inputs b.
Collect outputs REPTEA,(b).

27

27
REPTEA(b) = I;°%°(b)

where I, does x+=...;y+=....

Try list of 232 inputs b.

Collect outputs REPTEA,(b).
Good chance that some b in list
also has a = I (b) in list. Then
REPTEA,(a)=Ix(REPTEAL(b)).

27
REPTEA(b) = I;°%°(b)

where I, does x+=...;y+=....

Try list of 232 inputs b.

Collect outputs REPTEA,(b).
Good chance that some b in list

also has a = I (b) in list. Then
REPTEA,(a)=I,(REPTEA,(b)).

For each (b, a) from list:

Try solving equations a = I;(b),

REPTEA,(a)=Ix(REPTEA(b))
to figure out k. (More equations:
try re-encrypting these outputs.)

27
REPTEA(b) = I;°%°(b)

where I, does x+=...;y+=....

Try list of 232 inputs b.

Collect outputs REPTEA,(b).
Good chance that some b in list

also has a = I (b) in list. Then
REPTEA,(a)=I,(REPTEA,(b)).

For each (b, a) from list:

Try solving equations a = I;(b),

REPTEA,(a)=Ix(REPTEA(b))
to figure out k. (More equations:
try re-encrypting these outputs.)

This 1s a slide attack.
TEA avoids this by varying c.

What about original TEA?

28

void encrypt(uint32 *b,uint32 *k)

{

uint32
uint32
for (r

c +=

X +=

y +=

¥
b[0] =

x = b[0], y = bl1];

r, c =

= 0;r < 32;r += 1) {

0;

0x9e3779b9;

y+c = (y<<4)+k[
~ (y>>b)+k|[
x+c ~ (x<<4)+k][

~ (x>>5)+k [

x; b[1]

Y

le II\DI IHI IOI

Related keys: e.g.,
TEA,/(b) = TEAL(b)

where (k'[0], K’

(k[0] + 231, k[1

1

K2 K

231 k2],

29

Related keys: e.g.,
TEA,/(b) = TEAL(b)

where (k'[0], K’

(k[0] + 231, k[1

Is this an attack?

1

K2 K

231 k2],

Related keys: e.g.,

TEA,/(b) = TEA,(b)

where (k'[0], k'[1], k'[2], K"[3]) =
(k[0] + 231, k[1] + 231, k[2], k[3]).

Is this an attack?

PRP attack goal: distinguish
TEA,, for one secret key k, from
uniform random permutation.

29

Related keys: e.g.,
TEA,/(b) = TEAL(b)
where (k'[0], k'[1], K'[2], K'[3]) =

(k[0] + 23%, k[1] + 231, k[2], k[3]).

Is this an attack?

PRP attack goal: distinguish
TEA,, for one secret key k, from
uniform random permutation.

Brute-force attack:
Guess key g, see if TEA,
matches TEA, on some outputs.

29

Related keys: e.g.,
TEA,/(b) = TEAL(b)

where (k'[0], K’

(k[0] + 231, k[1

Is this an attack?

1

K'[2], K

29

3]) =

231 k]2

 k[3]).

PRP attack goal: distinguish
TEA,, for one secret key k, from

uniform random permutation.

Brute-force attack:

Guess key g, see if TEA,

matches TEA, on some outputs.

Related keys = g succeeds with

chance 27126 Still very small.

30
1997 Kelsey—Schneier—Wagner:

Fancier relationship between k, k’
has chance 2711 of producing
a particular output equation.

30
1997 Kelsey—Schneier—Wagner:

Fancier relationship between k, k’
has chance 2711 of producing
a particular output equation.

No evidence in literature that
this helps brute-force attack,
or otherwise affects PRP security.

No challenge to security analysis
of TEA-CTR-XCBC-MAC.

30
1997 Kelsey—Schneier—Wagner:

Fancier relationship between k, k’
has chance 2711 of producing
a particular output equation.

No evidence in literature that
this helps brute-force attack,
or otherwise affects PRP security.

No challenge to security analysis
of TEA-CTR-XCBC-MAC.

But advertised as

related-key cryptanalysis”

and claimed to justify
recommendations for designers
regarding key scheduling.

31
Some ways to learn more

about cipher attacks,
hash-function attacks, etc.:

Take upcoming course
“Selected areas in cryptology”.
Includes symmetric attacks.

Read attack papers,

especially from FSE conference.
Try to break ciphers yourself:
e.g., find attacks on FEAL.
Reasonable starting point:

2000 Schneier “Self-study course

in block-cipher cryptanalysis’.

Some cipher history

1973, and again in 1974:

U.S. Nationa
Standards so

for a Data Encryption Standard.

Bureau of
iIcits proposals

32

32
Some cipher history

1973, and again in 1974:
U.S. National Bureau of
Standards solicits proposals

for a Data Encryption Standard.

1975: NBS publishes IBM DES
proposal. 64-bit block, 56-bit key.

32
Some cipher history

1973, and again in 1974:
U.S. National Bureau of
Standards solicits proposals

for a Data Encryption Standard.

1975: NBS publishes IBM DES
proposal. 64-bit block, 56-bit key.

1976: NSA meets Diffie and
Hellman to discuss criticism.
Claims “somewhere over
$400,000,000" to break a DES
key; “l don't think you can tell
any Congressman what's going to
be secure 25 years from now.”

https://web.archive.org/web/20170420171412/www.toad.com/des-stanford-meeting.html
https://web.archive.org/web/20170420171412/www.toad.com/des-stanford-meeting.html

33
1977: DES is standardized.

1977: Dithie and Hellman
publish detailed design of

$20000000 machine to break
hundreds of DES keys per year.

1977: DES is standardized.

1977: Dithie and Hellman
publish detailed design of
$20000000 machine to break
hundreds of DES keys per year.

1978: Congressional investigation
iInto NSA influence concludes
“NSA convinced IBM that a

reduced key size was sufficient” .

33

1977: DES is standardized.

1977: Dithie and Hellman
publish detailed design of
$20000000 machine to break
hundreds of DES keys per year.

1978: Congressional investigation
iInto NSA influence concludes

“NSA convinced IBM that a
reduced key size was sufficient” .

1983, 1988, 1993: Government
reaffirms DES standard.

33

1977: DES is standardized.

1977: Dithie and Hellman
publish detailed design of

$20000000 machine to break
hundreds of DES keys per year.

1978: Congressional investigation

iInto NSA influence concludes
“NSA convinced IBM that a
reduced key size was sufficient” .

1983, 1988, 1993: Government
reaffirms DES standard.

Researchers publish new cipher
proposals and security analysis.

33

34
1997: U.S. National Institute

of Standards and Technology
(NIST, formerly NBS) calls
for proposals for Advanced
Encryption Standard. 128-bit
block, 128/192/256-bit key.

34
1997: U.S. National Institute

of Standards and Technology
(NIST, formerly NBS) calls
for proposals for Advanced
Encryption Standard. 128-bit
block, 128/192/256-bit key.

1998: 15 AES proposals.

34
1997: U.S. National Institute

of Standards and Technology
(NIST, formerly NBS) calls
for proposals for Advanced
Encryption Standard. 128-bit
block, 128/192/256-bit key.

1998: 15 AES proposals.

1998: EFF builds “Deep Crack”
for under $250000 to break
hundreds of DES keys per year.

1997: U.S. National Institute
of Standards and Technology
(NIST, formerly NBS) calls
for proposals for Advanced
Encryption Standard. 128-bit
block, 128/192/256-bit key.

1998: 15 AES proposals.

1998: EFF builds “Deep Crack”
for under $250000 to break
hundreds of DES keys per year.

1999: NIST selects five
AES finalists: MARS, RC6,

Rijndael, Serpent, Twofish.

2000: NIST, advised by NSA,
selects Rijndael as AES.

“Security was the most important
factor in the evaluation”—Really?

35

35
2000: NIST, advised by NSA,

selects Rijndael as AES.

“Security was the most important
factor in the evaluation”—Really?

"Rijndael appears to offer an
adequate security margin. ...
Serpent appears to offer a
high security margin.”

35
2000: NIST, advised by NSA,

selects Rijndael as AES.

“Security was the most important
factor in the evaluation”—Really?

"Rijndael appears to offer an
adequate security margin. ...
Serpent appears to offer a
high security margin.”

2004-2008: eSTREAM
competition for stream ciphers.

35
2000: NIST, advised by NSA,

selects Rijndael as AES.

“Security was the most important
factor in the evaluation”—Really?

"Rijndael appears to offer an
adequate security margin. ...
Serpent appears to offer a
high security margin.”

2004-2008: eSTREAM
competition for stream ciphers.

2007-2012: SHA-3 competition.

35
2000: NIST, advised by NSA,

selects Rijndael as AES.

“Security was the most important
factor in the evaluation”—Really?

"Rijndael appears to offer an
adequate security margin. ...
Serpent appears to offer a
high security margin.”

2004-2008: eSTREAM
competition for stream ciphers.

2007-2012: SHA-3 competition.
2013—now: CAESAR competition.

Main operations in AES:
add round key to block;

apply substitution box

25

X = X 4in F256

to each byte in block;

linearly mix bits across block.

36

Main operations in AES:
add round key to block;
apply substitution box

254 in F256

X — X
to each byte in block;

linearly mix bits across block.

Extensive security analysis.
No serious threats to AES-256
multi-target SPRP security
(which implies PRP security),

even In a post-quantum world.

36

36
Main operations in AES:

add round key to block;
apply substitution box
X X254 In F256

to each byte in block;

linearly mix bits across block.

Extensive security analysis.
No serious threats to AES-256
multi-target SPRP security
(which implies PRP security),

even In a post-quantum world.

So why isn't AES-256 the end
of the symmetric-crypto story?

) Google Online Security I X | +

¢ o & (@ @ hitps:/isecurity.googleblog E @ 170% seo 5| Q Search

The latest news and insights from Google on security and safety
on the Internet

Speeding up and strengthening
HTTPS connections for Chrome on

Android
April 24,2014

Posted by Elie Bursztein, Anti-Abuse Research Lead

Earlier this year, we deployed a new TLS cipher suite in
Chrome that operates three times faster than AES-
GCM on devices that don't have AES hardware
acceleration, including most Android phones, wearable
devices such as Google Glass and older computers.
This improves user experience, reducing latency and
saving battery life by cutting down the amount of time

spent encrypting and decrypting data.

To make this happen, Adam Langley, Wan-Teh Chang,
Ben Laurie and | began implementing new algorithms

-- ChaCha 20 for symmetric encryption and Poly1305

»

37

Date: 2018-08-06 22:32:51
Message-ID: 20180806223300.11389
[Download message RAW]

From: Eric Biggers <ebiggers@google.co
Hi all,

(Please note that this patchset is a t
it to be merged quite yetl)

It was officially decided to *not* all
encryption [1]. We've been working to
storage encryption to entry-level Andr
"Android Go" devices sold in developin
these devices still ship with no encry
have to use older CPUs like ARM Cortex
Cryptography Extensions, making AES-XT

As we explained in detail earlier, e.g
challenging problem due to the lack of
the very strict performance requiremen
suitable for practical use in dm-crypt
Speck, in this day and age the choice |
has a large political element, restric

Therefore, we (well, Paul Crowley did
encryption mode, HPolyC. 1In essence, |

ChaCha stream cipher for disk encrypti
nanay hara* htftfrpne* S 'anrint 1acry oro/ 26

1-1-ebiggers () kernel ! org

mn=>

rue RFC, i.e. we're not ready for

owWw Android devices to use Speck
find an alternative way to bring
0oid devices like the inexpensive

g countries. Unfortunately, often
ption, since for cost reasons they
-A7; and these CPUs lack the ARMvS
S much too slow.

. in [2], this is a very
encryption algorithms that meet
ts, while still being secure and
and fscrypt. And as we saw with
of cryptographic primitives also
ting the options even further.

the real work) designed a new
HPolyC makes it secure to use the

on. HPolyC is specified by our
19/7208 ndf {"HPalvlC -

39

40
AES performance seems limited

iIn both hardware and software
oy small 128-bit block size,

neavy S-box design strategy.

AES performance seems limited
in both hardware and software
oy small 128-bit block size,

neavy S-box design strategy.

AES software ecosystem is
complicated and dangerous.
Fast software implementations
of AES S-box often leak

secrets through timing.

40

AES performance seems limited
in both hardware and software
oy small 128-bit block size,

neavy S-box design strategy.

AES software ecosystem is
complicated and dangerous.
Fast software implementations

of AES S-box often leak
secrets through timing.

Picture is worse for high-security
authenticated ciphers. 128-bit
block size limits PRF security.
Workarounds are hard to audit.

40

ChaCha creates safe systems
with much less work than AES.

41

ChaCha creates safe systems
with much less work than AES.

More examples of how symmetric
primitives have been improving

speed, simplicity, security:
PRESENT is better than DES.

Skinny is better than
Simon and Speck.

Keccak, BLAKE2, Ascon
are better than MD5, SHA-O,
SHA-1, SHA-256, SHA-512.

41

Next slides: reference software
from 2017 Bernstein—Kolbl—
Lucks—Massolino—Mendel-Nawaz—

Schneider—Schwabe—Standaert—
Todo—Viguier for “Gimli: a
cross-platform permutation”.

Gimli permutes {0, 1}384.

42

Next slides: reference software
from 2017 Bernstein—Kolbl—
Lucks—Massolino—Mendel-Nawaz—

Schneider—Schwabe—Standaert—
Todo—Viguier for “Gimli: a
cross-platform permutation”.

Gimli permutes {0, 1}384.

“Wait, where's the key?”

42

Next slides: reference software
from 2017 Bernstein—Kolbl—
Lucks—Massolino—Mendel-Nawaz—

Schneider—Schwabe—Standaert—
Todo—Viguier for “Gimli: a
cross-platform permutation”.

Gimli permutes {0, 1}384.
“Wait, where's the key?"

Even—Mansour SPRP mode:
Ei(m) =k & Gimli(k ® m).

Salsa/ChaCha PRF mode:
S5k(m) = (k, m) ® Gimli(k, m).

Or: (k,0) @ Gimli(k, m).

42

void gimli(uint32 *b)
{
int r,c;

uint32 x,y,z;

for (r = 24;r > 0;--r) {

for (¢ = 0;c < 4;++c) {

43

x = rotate(b[«cl, 24);

= rotate(b[4+c], 9);
Z = b[8+c];
b[8+c]=x"(2<<1) " ((y&z)<<2) ;
b[4+c]=y~x “((xlz)<<1);
bl cl=z"y ~ ((x&y)<<3);

b[0]

if ((r & 3) == 0) {
x=b[0]; b[0]=b[1]
x=b[2]; b[2]=b[3

+

if ((r & 3) == 2) {
x=b[0]; b[0]=b[2]
x=b[1]; b[1]l=b[3

+

if ((r & 3) == 0)

"= (0x9e377900 | r);

45
No additions. Nonlinear carries

are replaced by shifts of &, |.
(Idea stolen from NORX cipher.)

Big rotations diffuse changes

quickly across bit positions.

X, V, z interaction diffuses
changes quickly through columns

(0,4,8; 1,5,9; 2,6,10; 3,7,11).

Other swaps diffuse changes
through rows. Deliberately limited

swaps per round = faster rounds
on a wide range of platforms.

