
1

Examples of symmetric primitives

D. J. Bernstein

message len tweak key encrypts authenticates

Permutation fixed no no — —

Compression function fixed yes no — —

Block cipher fixed no yes yes —

Tweakable block cipher fixed yes yes yes —

Hash function variable no no — —

MAC (without nonce) variable no yes no yes

MAC (using nonce) variable yes yes no yes

Stream cipher variable yes yes yes no

Authenticated cipher variable yes yes yes yes

2

message len tweak key encrypts authenticates

Permutation fixed no no — —

Compression function fixed yes no — —

Block cipher fixed no yes yes —

Tweakable block cipher fixed yes yes yes —

Hash function variable no no — —

MAC (without nonce) variable no yes no yes

MAC (using nonce) variable yes yes no yes

Stream cipher variable yes yes yes no

Authenticated cipher variable yes yes yes yes

3

1994 Wheeler–Needham “TEA,

a tiny encryption algorithm”:

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, c = 0;

for (r = 0;r < 32;r += 1) {

c += 0x9e3779b9;

x += y+c ^ (y<<4)+k[0]

^ (y>>5)+k[1];

y += x+c ^ (x<<4)+k[2]

^ (x>>5)+k[3];

}

b[0] = x; b[1] = y;

}

4

uint32: 32 bits (b0; b1; : : : ; b31)

representing the “unsigned”

integer b0 + 2b1 + · · ·+ 231b31.

+: addition mod 232.

c += d: same as c = c + d.

^: xor; ⊕; addition of

each bit separately mod 2.

Lower precedence than + in C,

so spacing is not misleading.

<<4: multiplication by 16, i.e.,

(0; 0; 0; 0; b0; b1; : : : ; b27).

>>5: division by 32, i.e.,

(b5; b6; : : : ; b31; 0; 0; 0; 0; 0).

5

Functionality

TEA is a 64-bit block cipher

with a 128-bit key.

5

Functionality

TEA is a 64-bit block cipher

with a 128-bit key.

Input: 128-bit key (namely

k[0],k[1],k[2],k[3]);

64-bit plaintext (b[0],b[1]).

Output: 64-bit ciphertext

(final b[0],b[1]).

5

Functionality

TEA is a 64-bit block cipher

with a 128-bit key.

Input: 128-bit key (namely

k[0],k[1],k[2],k[3]);

64-bit plaintext (b[0],b[1]).

Output: 64-bit ciphertext

(final b[0],b[1]).

Can efficiently encrypt:

(key; plaintext) 7→ ciphertext.

Can efficiently decrypt:

(key; ciphertext) 7→ plaintext.

6

Wait, how can we decrypt?

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, c = 0;

for (r = 0;r < 32;r += 1) {

c += 0x9e3779b9;

x += y+c ^ (y<<4)+k[0]

^ (y>>5)+k[1];

y += x+c ^ (x<<4)+k[2]

^ (x>>5)+k[3];

}

b[0] = x; b[1] = y;

}

7

Answer: Each step is invertible.

void decrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, c = 32 * 0x9e3779b9;

for (r = 0;r < 32;r += 1) {

y -= x+c ^ (x<<4)+k[2]

^ (x>>5)+k[3];

x -= y+c ^ (y<<4)+k[0]

^ (y>>5)+k[1];

c -= 0x9e3779b9;

}

b[0] = x; b[1] = y;

}

8

Generalization, Feistel network

(used in, e.g., “Lucifer” from

1973 Feistel–Coppersmith):

x += function1(y,k);

y += function2(x,k);

x += function3(y,k);

y += function4(x,k);

...

Decryption, inverting each step:

...

y -= function4(x,k);

x -= function3(y,k);

y -= function2(x,k);

x -= function1(y,k);

9

Higher-level functionality

User’s message is long sequence

of 64-bit blocks m0; m1; m2; : : :.

9

Higher-level functionality

User’s message is long sequence

of 64-bit blocks m0; m1; m2; : : :.

TEA-CTR produces ciphertext

c0 = m0 ⊕ TEAk (n; 0);

c1 = m1 ⊕ TEAk (n; 1);

c2 = m2 ⊕ TEAk (n; 2); : : :

using 128-bit key k,

32-bit nonce n,

32-bit block counter 0; 1; 2; : : :.

9

Higher-level functionality

User’s message is long sequence

of 64-bit blocks m0; m1; m2; : : :.

TEA-CTR produces ciphertext

c0 = m0 ⊕ TEAk (n; 0);

c1 = m1 ⊕ TEAk (n; 1);

c2 = m2 ⊕ TEAk (n; 2); : : :

using 128-bit key k,

32-bit nonce n,

32-bit block counter 0; 1; 2; : : :.

CTR is a mode of operation

that converts block cipher TEA

into stream cipher TEA-CTR.

10

User also wants to recognize

forged/modified ciphertexts.

10

User also wants to recognize

forged/modified ciphertexts.

Usual strategy:

append authenticator to

the ciphertext c = (c0; c1; c2; : : :).

10

User also wants to recognize

forged/modified ciphertexts.

Usual strategy:

append authenticator to

the ciphertext c = (c0; c1; c2; : : :).

TEA-XCBC-MAC computes

a0 = TEAj (c0),

a1 = TEAj (c1 ⊕ a0),

a2 = TEAj (c2 ⊕ a1), : : : ,

a‘−1 = TEAj (c‘−1 ⊕ a‘−2),

a‘ = TEAj (i ⊕ c‘ ⊕ a‘−1)

using 128-bit key j , 64-bit key i .

Authenticator is a‘: i.e.,

transmit (c0; c1; : : : ; c‘; a‘).

11

Specifying TEA-CTR-XCBC-MAC

authenticated cipher:

320-bit key (k; j; i).

Specify how this is chosen:

uniform random 320-bit string.

11

Specifying TEA-CTR-XCBC-MAC

authenticated cipher:

320-bit key (k; j; i).

Specify how this is chosen:

uniform random 320-bit string.

Specify set of messages:

message is sequence of

at most 232 64-bit blocks.

(Can do some extra work

to allow sequences of bytes.)

11

Specifying TEA-CTR-XCBC-MAC

authenticated cipher:

320-bit key (k; j; i).

Specify how this is chosen:

uniform random 320-bit string.

Specify set of messages:

message is sequence of

at most 232 64-bit blocks.

(Can do some extra work

to allow sequences of bytes.)

Specify how nonce is chosen:

message number. (Stateless

alternative: uniform random.)

12

Is this secure?

Step 1: Define security

for authenticated ciphers.

12

Is this secure?

Step 1: Define security

for authenticated ciphers.

This is not easy to do!

12

Is this secure?

Step 1: Define security

for authenticated ciphers.

This is not easy to do!

Useless extreme: “It’s secure

unless you show me the key.”

Too weak. Many ciphers

leak plaintext or allow forgeries

without leaking key.

12

Is this secure?

Step 1: Define security

for authenticated ciphers.

This is not easy to do!

Useless extreme: “It’s secure

unless you show me the key.”

Too weak. Many ciphers

leak plaintext or allow forgeries

without leaking key.

Another useless extreme:

“Any structure is an attack.”

Hard to define clearly.

Everything seems “attackable”.

13

Step 2: After settling on

target security definition,

prove that security follows

from simpler properties.

13

Step 2: After settling on

target security definition,

prove that security follows

from simpler properties.

e.g. Prove PRF security of

n 7→ TEAk (n; 0);TEAk (n; 1); : : :

assuming PRF security of

b 7→ TEAk (b).

13

Step 2: After settling on

target security definition,

prove that security follows

from simpler properties.

e.g. Prove PRF security of

n 7→ TEAk (n; 0);TEAk (n; 1); : : :

assuming PRF security of

b 7→ TEAk (b).

i.e. Prove that

any PRF attack against

n 7→ TEAk (n; 0);TEAk (n; 1); : : :

implies PRF attack against

b 7→ TEAk (b).

14

privacy of
TEA-CTR-XCBC-MAC

authenticity of
TEA-CTR-XCBC-MAC

privacy of
TEA-CTR

KS

authenticity of
TEA-XCBC-MAC

KS

PRF security of
n 7→ TEAk (n; 0);TEAk (n; 1); : : :

KS

PRF security of
TEA-XCBC-MAC

KS

PRF security of TEA

W_ ?G

PRP security of TEA

KS

15

privacy of
TEA-CTR-XCBC-MAC

authenticity of
TEA-CTR-XCBC-MAC

privacy of
TEA-CTR

KS

authenticity of
TEA-XCBC-MAC

KS

PRF security of
n 7→ TEAk (n; 0);TEAk (n; 1); : : :

KS

PRF security of
TEA-XCBC-MAC

KS

PRF security of TEA

W_ ?G

PRP security of TEA

KS

16

Many things can go wrong here:

1. Security definition too weak.

16

Many things can go wrong here:

1. Security definition too weak.

2. Internal mismatch between

hypotheses and conclusions.

16

Many things can go wrong here:

1. Security definition too weak.

2. Internal mismatch between

hypotheses and conclusions.

3. Errors in proofs.

Did anyone write full proofs?

Did anyone check all details?

16

Many things can go wrong here:

1. Security definition too weak.

2. Internal mismatch between

hypotheses and conclusions.

3. Errors in proofs.

Did anyone write full proofs?

Did anyone check all details?

4. Quantitative problems.

e.g. 2016 Bhargavan–Leurent

sweet32.info: Triple-DES

broken in TLS; PRP-PRF switch

too weak for 64-bit block ciphers.

https://sweet32.info

16

Many things can go wrong here:

1. Security definition too weak.

2. Internal mismatch between

hypotheses and conclusions.

3. Errors in proofs.

Did anyone write full proofs?

Did anyone check all details?

4. Quantitative problems.

e.g. 2016 Bhargavan–Leurent

sweet32.info: Triple-DES

broken in TLS; PRP-PRF switch

too weak for 64-bit block ciphers.

5. Is TEA PRP-secure?

https://sweet32.info

17

One-time pad has complete

proof of privacy, but key must be

as long as total of all messages.

17

One-time pad has complete

proof of privacy, but key must be

as long as total of all messages.

Wegman–Carter authenticator has

complete proof of authenticity,

but key length is proportional to

number of messages.

17

One-time pad has complete

proof of privacy, but key must be

as long as total of all messages.

Wegman–Carter authenticator has

complete proof of authenticity,

but key length is proportional to

number of messages.

Short-key cipher handling many

messages: no complete proofs.

17

One-time pad has complete

proof of privacy, but key must be

as long as total of all messages.

Wegman–Carter authenticator has

complete proof of authenticity,

but key length is proportional to

number of messages.

Short-key cipher handling many

messages: no complete proofs.

We conjecture security

after enough failed attack efforts.

“All of these attacks fail and we

don’t have better attack ideas.”

18

XORTEA: a bad cipher

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, c = 0;

for (r = 0;r < 32;r += 1) {

c += 0x9e3779b9;

x ^= y^c ^ (y<<4)^k[0]

^ (y>>5)^k[1];

y ^= x^c ^ (x<<4)^k[2]

^ (x>>5)^k[3];

}

b[0] = x; b[1] = y;

}

19

“Hardware-friendlier” cipher, since

xor circuit is cheaper than add.

19

“Hardware-friendlier” cipher, since

xor circuit is cheaper than add.

But output bits are linear

functions of input bits!

19

“Hardware-friendlier” cipher, since

xor circuit is cheaper than add.

But output bits are linear

functions of input bits!

e.g. First output bit is

1⊕k0⊕k1⊕k3⊕k10⊕k11⊕k12⊕
k20⊕ k21⊕ k30⊕ k32⊕ k33⊕ k35⊕
k42⊕ k43⊕ k44⊕ k52⊕ k53⊕ k62⊕
k64⊕ k67⊕ k69⊕ k76⊕ k85⊕ k94⊕
k96⊕k99⊕k101⊕k108⊕k117⊕k126⊕
b1⊕b3⊕b10⊕b12⊕b21⊕b30⊕b32⊕
b33⊕b35⊕b37⊕b39⊕b42⊕b43⊕
b44 ⊕ b47 ⊕ b52 ⊕ b53 ⊕ b57 ⊕ b62.

20

There is a matrix M

with coefficients in F2

such that, for all (k; b),

XORTEAk (b) = (1; k; b)M.

20

There is a matrix M

with coefficients in F2

such that, for all (k; b),

XORTEAk (b) = (1; k; b)M.

XORTEAk (b1)⊕ XORTEAk (b2)

= (0; 0; b1 ⊕ b2)M.

20

There is a matrix M

with coefficients in F2

such that, for all (k; b),

XORTEAk (b) = (1; k; b)M.

XORTEAk (b1)⊕ XORTEAk (b2)

= (0; 0; b1 ⊕ b2)M.

Very fast attack:

if b4 = b1 ⊕ b2 ⊕ b3 then

XORTEAk (b1)⊕XORTEAk (b2) =

XORTEAk (b3)⊕ XORTEAk (b4).

20

There is a matrix M

with coefficients in F2

such that, for all (k; b),

XORTEAk (b) = (1; k; b)M.

XORTEAk (b1)⊕ XORTEAk (b2)

= (0; 0; b1 ⊕ b2)M.

Very fast attack:

if b4 = b1 ⊕ b2 ⊕ b3 then

XORTEAk (b1)⊕XORTEAk (b2) =

XORTEAk (b3)⊕ XORTEAk (b4).

This breaks PRP (and PRF):

uniform random permutation

(or function) F almost never has

F (b1)⊕ F (b2) = F (b3)⊕ F (b4).

21

LEFTEA: another bad cipher

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, c = 0;

for (r = 0;r < 32;r += 1) {

c += 0x9e3779b9;

x += y+c ^ (y<<4)+k[0]

^ (y<<5)+k[1];

y += x+c ^ (x<<4)+k[2]

^ (x<<5)+k[3];

}

b[0] = x; b[1] = y;

}

22

Addition is not F2-linear,

but addition mod 2 is F2-linear.

First output bit is

1⊕ k0 ⊕ k32 ⊕ k64 ⊕ k96 ⊕ b32.

22

Addition is not F2-linear,

but addition mod 2 is F2-linear.

First output bit is

1⊕ k0 ⊕ k32 ⊕ k64 ⊕ k96 ⊕ b32.

Higher output bits

are increasingly nonlinear

but they never affect first bit.

22

Addition is not F2-linear,

but addition mod 2 is F2-linear.

First output bit is

1⊕ k0 ⊕ k32 ⊕ k64 ⊕ k96 ⊕ b32.

Higher output bits

are increasingly nonlinear

but they never affect first bit.

How TEA avoids this problem:

>>5 diffuses nonlinear changes

from high bits to low bits.

22

Addition is not F2-linear,

but addition mod 2 is F2-linear.

First output bit is

1⊕ k0 ⊕ k32 ⊕ k64 ⊕ k96 ⊕ b32.

Higher output bits

are increasingly nonlinear

but they never affect first bit.

How TEA avoids this problem:

>>5 diffuses nonlinear changes

from high bits to low bits.

(Diffusion from low bits to high

bits: <<4; carries in addition.)

23

TEA4: another bad cipher

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, c = 0;

for (r = 0;r < 4;r += 1) {

c += 0x9e3779b9;

x += y+c ^ (y<<4)+k[0]

^ (y>>5)+k[1];

y += x+c ^ (x<<4)+k[2]

^ (x>>5)+k[3];

}

b[0] = x; b[1] = y;

}

24

Fast attack:

TEA4k (x + 231; y) and

TEA4k (x; y) have same first bit.

24

Fast attack:

TEA4k (x + 231; y) and

TEA4k (x; y) have same first bit.

Trace x; y differences

through steps in computation.

r = 0: multiples of 231; 226.

r = 1: multiples of 221; 216.

r = 2: multiples of 211; 26.

r = 3: multiples of 21; 20.

24

Fast attack:

TEA4k (x + 231; y) and

TEA4k (x; y) have same first bit.

Trace x; y differences

through steps in computation.

r = 0: multiples of 231; 226.

r = 1: multiples of 221; 216.

r = 2: multiples of 211; 26.

r = 3: multiples of 21; 20.

Uniform random function F :

F (x + 231; y) and F (x; y) have

same first bit with probability 1=2.

24

Fast attack:

TEA4k (x + 231; y) and

TEA4k (x; y) have same first bit.

Trace x; y differences

through steps in computation.

r = 0: multiples of 231; 226.

r = 1: multiples of 221; 216.

r = 2: multiples of 211; 26.

r = 3: multiples of 21; 20.

Uniform random function F :

F (x + 231; y) and F (x; y) have

same first bit with probability 1=2.

PRF advantage 1=2.

Two pairs (x; y): advantage 3=4.

25

More sophisticated attacks:

trace probabilities of differences;

probabilities of linear equations;

probabilities of higher-order

differences C(x + ‹ + ›)−
C(x + ‹)− C(x + ›) + C(x); etc.

Use algebra+statistics to exploit

non-randomness in probabilities.

25

More sophisticated attacks:

trace probabilities of differences;

probabilities of linear equations;

probabilities of higher-order

differences C(x + ‹ + ›)−
C(x + ‹)− C(x + ›) + C(x); etc.

Use algebra+statistics to exploit

non-randomness in probabilities.

Attacks get beyond r = 4

but rapidly lose effectiveness.

Very far from full TEA.

25

More sophisticated attacks:

trace probabilities of differences;

probabilities of linear equations;

probabilities of higher-order

differences C(x + ‹ + ›)−
C(x + ‹)− C(x + ›) + C(x); etc.

Use algebra+statistics to exploit

non-randomness in probabilities.

Attacks get beyond r = 4

but rapidly lose effectiveness.

Very far from full TEA.

Hard question in cipher design:

How many “rounds” are

really needed for security?

26

REPTEA: another bad cipher

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, c = 0x9e3779b9;

for (r = 0;r < 1000;r += 1) {

x += y+c ^ (y<<4)+k[0]

^ (y>>5)+k[1];

y += x+c ^ (x<<4)+k[2]

^ (x>>5)+k[3];

}

b[0] = x; b[1] = y;

}

27

REPTEAk (b) = I1000
k (b)

where Ik does x+=...;y+=....

27

REPTEAk (b) = I1000
k (b)

where Ik does x+=...;y+=....

Try list of 232 inputs b.

Collect outputs REPTEAk (b).

27

REPTEAk (b) = I1000
k (b)

where Ik does x+=...;y+=....

Try list of 232 inputs b.

Collect outputs REPTEAk (b).

Good chance that some b in list

also has a = Ik (b) in list. Then

REPTEAk (a)=Ik (REPTEAk (b)).

27

REPTEAk (b) = I1000
k (b)

where Ik does x+=...;y+=....

Try list of 232 inputs b.

Collect outputs REPTEAk (b).

Good chance that some b in list

also has a = Ik (b) in list. Then

REPTEAk (a)=Ik (REPTEAk (b)).

For each (b; a) from list:

Try solving equations a = Ik (b),

REPTEAk (a)=Ik (REPTEAk (b))

to figure out k . (More equations:

try re-encrypting these outputs.)

27

REPTEAk (b) = I1000
k (b)

where Ik does x+=...;y+=....

Try list of 232 inputs b.

Collect outputs REPTEAk (b).

Good chance that some b in list

also has a = Ik (b) in list. Then

REPTEAk (a)=Ik (REPTEAk (b)).

For each (b; a) from list:

Try solving equations a = Ik (b),

REPTEAk (a)=Ik (REPTEAk (b))

to figure out k . (More equations:

try re-encrypting these outputs.)

This is a slide attack.

TEA avoids this by varying c.

28

What about original TEA?

void encrypt(uint32 *b,uint32 *k)

{

uint32 x = b[0], y = b[1];

uint32 r, c = 0;

for (r = 0;r < 32;r += 1) {

c += 0x9e3779b9;

x += y+c ^ (y<<4)+k[0]

^ (y>>5)+k[1];

y += x+c ^ (x<<4)+k[2]

^ (x>>5)+k[3];

}

b[0] = x; b[1] = y;

}

29

Related keys: e.g.,

TEAk ′(b) = TEAk (b)

where (k ′[0]; k ′[1]; k ′[2]; k ′[3]) =

(k[0] + 231; k[1] + 231; k[2]; k[3]).

29

Related keys: e.g.,

TEAk ′(b) = TEAk (b)

where (k ′[0]; k ′[1]; k ′[2]; k ′[3]) =

(k[0] + 231; k[1] + 231; k[2]; k[3]).

Is this an attack?

29

Related keys: e.g.,

TEAk ′(b) = TEAk (b)

where (k ′[0]; k ′[1]; k ′[2]; k ′[3]) =

(k[0] + 231; k[1] + 231; k[2]; k[3]).

Is this an attack?

PRP attack goal: distinguish

TEAk , for one secret key k , from

uniform random permutation.

29

Related keys: e.g.,

TEAk ′(b) = TEAk (b)

where (k ′[0]; k ′[1]; k ′[2]; k ′[3]) =

(k[0] + 231; k[1] + 231; k[2]; k[3]).

Is this an attack?

PRP attack goal: distinguish

TEAk , for one secret key k , from

uniform random permutation.

Brute-force attack:

Guess key g , see if TEAg
matches TEAk on some outputs.

29

Related keys: e.g.,

TEAk ′(b) = TEAk (b)

where (k ′[0]; k ′[1]; k ′[2]; k ′[3]) =

(k[0] + 231; k[1] + 231; k[2]; k[3]).

Is this an attack?

PRP attack goal: distinguish

TEAk , for one secret key k , from

uniform random permutation.

Brute-force attack:

Guess key g , see if TEAg
matches TEAk on some outputs.

Related keys ⇒ g succeeds with

chance 2−126. Still very small.

30

1997 Kelsey–Schneier–Wagner:

Fancier relationship between k; k ′

has chance 2−11 of producing

a particular output equation.

30

1997 Kelsey–Schneier–Wagner:

Fancier relationship between k; k ′

has chance 2−11 of producing

a particular output equation.

No evidence in literature that

this helps brute-force attack,

or otherwise affects PRP security.

No challenge to security analysis

of TEA-CTR-XCBC-MAC.

30

1997 Kelsey–Schneier–Wagner:

Fancier relationship between k; k ′

has chance 2−11 of producing

a particular output equation.

No evidence in literature that

this helps brute-force attack,

or otherwise affects PRP security.

No challenge to security analysis

of TEA-CTR-XCBC-MAC.

But advertised as

“related-key cryptanalysis”

and claimed to justify

recommendations for designers

regarding key scheduling.

31

Some ways to learn more

about cipher attacks,

hash-function attacks, etc.:

Take upcoming course

“Selected areas in cryptology”.

Includes symmetric attacks.

Read attack papers,

especially from FSE conference.

Try to break ciphers yourself:

e.g., find attacks on FEAL.

Reasonable starting point:

2000 Schneier “Self-study course

in block-cipher cryptanalysis”.

32

Some cipher history

1973, and again in 1974:

U.S. National Bureau of

Standards solicits proposals

for a Data Encryption Standard.

32

Some cipher history

1973, and again in 1974:

U.S. National Bureau of

Standards solicits proposals

for a Data Encryption Standard.

1975: NBS publishes IBM DES

proposal. 64-bit block, 56-bit key.

32

Some cipher history

1973, and again in 1974:

U.S. National Bureau of

Standards solicits proposals

for a Data Encryption Standard.

1975: NBS publishes IBM DES

proposal. 64-bit block, 56-bit key.

1976: NSA meets Diffie and

Hellman to discuss criticism.

Claims “somewhere over

$400,000,000” to break a DES

key; “I don’t think you can tell

any Congressman what’s going to

be secure 25 years from now.”

https://web.archive.org/web/20170420171412/www.toad.com/des-stanford-meeting.html
https://web.archive.org/web/20170420171412/www.toad.com/des-stanford-meeting.html

33

1977: DES is standardized.

1977: Diffie and Hellman

publish detailed design of

$20000000 machine to break

hundreds of DES keys per year.

33

1977: DES is standardized.

1977: Diffie and Hellman

publish detailed design of

$20000000 machine to break

hundreds of DES keys per year.

1978: Congressional investigation

into NSA influence concludes

“NSA convinced IBM that a

reduced key size was sufficient”.

33

1977: DES is standardized.

1977: Diffie and Hellman

publish detailed design of

$20000000 machine to break

hundreds of DES keys per year.

1978: Congressional investigation

into NSA influence concludes

“NSA convinced IBM that a

reduced key size was sufficient”.

1983, 1988, 1993: Government

reaffirms DES standard.

33

1977: DES is standardized.

1977: Diffie and Hellman

publish detailed design of

$20000000 machine to break

hundreds of DES keys per year.

1978: Congressional investigation

into NSA influence concludes

“NSA convinced IBM that a

reduced key size was sufficient”.

1983, 1988, 1993: Government

reaffirms DES standard.

Researchers publish new cipher

proposals and security analysis.

34

1997: U.S. National Institute

of Standards and Technology

(NIST, formerly NBS) calls

for proposals for Advanced

Encryption Standard. 128-bit

block, 128/192/256-bit key.

34

1997: U.S. National Institute

of Standards and Technology

(NIST, formerly NBS) calls

for proposals for Advanced

Encryption Standard. 128-bit

block, 128/192/256-bit key.

1998: 15 AES proposals.

34

1997: U.S. National Institute

of Standards and Technology

(NIST, formerly NBS) calls

for proposals for Advanced

Encryption Standard. 128-bit

block, 128/192/256-bit key.

1998: 15 AES proposals.

1998: EFF builds “Deep Crack”

for under $250000 to break

hundreds of DES keys per year.

34

1997: U.S. National Institute

of Standards and Technology

(NIST, formerly NBS) calls

for proposals for Advanced

Encryption Standard. 128-bit

block, 128/192/256-bit key.

1998: 15 AES proposals.

1998: EFF builds “Deep Crack”

for under $250000 to break

hundreds of DES keys per year.

1999: NIST selects five

AES finalists: MARS, RC6,

Rijndael, Serpent, Twofish.

35

2000: NIST, advised by NSA,

selects Rijndael as AES.

“Security was the most important

factor in the evaluation”—Really?

35

2000: NIST, advised by NSA,

selects Rijndael as AES.

“Security was the most important

factor in the evaluation”—Really?

“Rijndael appears to offer an

adequate security margin. : : :

Serpent appears to offer a

high security margin.”

35

2000: NIST, advised by NSA,

selects Rijndael as AES.

“Security was the most important

factor in the evaluation”—Really?

“Rijndael appears to offer an

adequate security margin. : : :

Serpent appears to offer a

high security margin.”

2004–2008: eSTREAM

competition for stream ciphers.

35

2000: NIST, advised by NSA,

selects Rijndael as AES.

“Security was the most important

factor in the evaluation”—Really?

“Rijndael appears to offer an

adequate security margin. : : :

Serpent appears to offer a

high security margin.”

2004–2008: eSTREAM

competition for stream ciphers.

2007–2012: SHA-3 competition.

35

2000: NIST, advised by NSA,

selects Rijndael as AES.

“Security was the most important

factor in the evaluation”—Really?

“Rijndael appears to offer an

adequate security margin. : : :

Serpent appears to offer a

high security margin.”

2004–2008: eSTREAM

competition for stream ciphers.

2007–2012: SHA-3 competition.

2013–now: CAESAR competition.

36

Main operations in AES:

add round key to block;

apply substitution box

x 7→ x254 in F256

to each byte in block;

linearly mix bits across block.

36

Main operations in AES:

add round key to block;

apply substitution box

x 7→ x254 in F256

to each byte in block;

linearly mix bits across block.

Extensive security analysis.

No serious threats to AES-256

multi-target SPRP security

(which implies PRP security),

even in a post-quantum world.

36

Main operations in AES:

add round key to block;

apply substitution box

x 7→ x254 in F256

to each byte in block;

linearly mix bits across block.

Extensive security analysis.

No serious threats to AES-256

multi-target SPRP security

(which implies PRP security),

even in a post-quantum world.

So why isn’t AES-256 the end

of the symmetric-crypto story?

37

38

39

40

AES performance seems limited

in both hardware and software

by small 128-bit block size,

heavy S-box design strategy.

40

AES performance seems limited

in both hardware and software

by small 128-bit block size,

heavy S-box design strategy.

AES software ecosystem is

complicated and dangerous.

Fast software implementations

of AES S-box often leak

secrets through timing.

40

AES performance seems limited

in both hardware and software

by small 128-bit block size,

heavy S-box design strategy.

AES software ecosystem is

complicated and dangerous.

Fast software implementations

of AES S-box often leak

secrets through timing.

Picture is worse for high-security

authenticated ciphers. 128-bit

block size limits PRF security.

Workarounds are hard to audit.

41

ChaCha creates safe systems

with much less work than AES.

41

ChaCha creates safe systems

with much less work than AES.

More examples of how symmetric

primitives have been improving

speed, simplicity, security:

PRESENT is better than DES.

Skinny is better than

Simon and Speck.

Keccak, BLAKE2, Ascon

are better than MD5, SHA-0,

SHA-1, SHA-256, SHA-512.

42

Next slides: reference software

from 2017 Bernstein–Kölbl–

Lucks–Massolino–Mendel–Nawaz–

Schneider–Schwabe–Standaert–

Todo–Viguier for “Gimli: a

cross-platform permutation”.

Gimli permutes {0; 1}384.

42

Next slides: reference software

from 2017 Bernstein–Kölbl–

Lucks–Massolino–Mendel–Nawaz–

Schneider–Schwabe–Standaert–

Todo–Viguier for “Gimli: a

cross-platform permutation”.

Gimli permutes {0; 1}384.

“Wait, where’s the key?”

42

Next slides: reference software

from 2017 Bernstein–Kölbl–

Lucks–Massolino–Mendel–Nawaz–

Schneider–Schwabe–Standaert–

Todo–Viguier for “Gimli: a

cross-platform permutation”.

Gimli permutes {0; 1}384.

“Wait, where’s the key?”

Even–Mansour SPRP mode:

Ek (m) = k ⊕ Gimli(k ⊕m).

Salsa/ChaCha PRF mode:

Sk (m) = (k;m)⊕ Gimli(k;m).

Or: (k; 0)⊕ Gimli(k;m).

43

void gimli(uint32 *b)

{

int r,c;

uint32 x,y,z;

for (r = 24;r > 0;--r) {

for (c = 0;c < 4;++c) {

x = rotate(b[c], 24);

y = rotate(b[4+c], 9);

z = b[8+c];

b[8+c]=x^(z<<1)^((y&z)<<2);

b[4+c]=y^x ^((x|z)<<1);

b[c]=z^y ^((x&y)<<3);

}

44

if ((r & 3) == 0) {

x=b[0]; b[0]=b[1]; b[1]=x;

x=b[2]; b[2]=b[3]; b[3]=x;

}

if ((r & 3) == 2) {

x=b[0]; b[0]=b[2]; b[2]=x;

x=b[1]; b[1]=b[3]; b[3]=x;

}

if ((r & 3) == 0)

b[0] ^= (0x9e377900 | r);

}

}

45

No additions. Nonlinear carries

are replaced by shifts of &, |.

(Idea stolen from NORX cipher.)

Big rotations diffuse changes

quickly across bit positions.

x, y, z interaction diffuses

changes quickly through columns

(0; 4; 8; 1; 5; 9; 2; 6; 10; 3; 7; 11).

Other swaps diffuse changes

through rows. Deliberately limited

swaps per round ⇒ faster rounds

on a wide range of platforms.

