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Lattice-based cryptography:

Episode V:

the ring strikes back

Daniel J. Bernstein

University of Illinois at Chicago

Crypto 1999 Nguyen: “At Crypto

’97, Goldreich, Goldwasser and

Halevi proposed a public-key

cryptosystem based on the closest

vector problem in a lattice, which

is known to be NP-hard. We

show that : : : the problem of

decrypting ciphertexts can be

http://www.di.ens.fr/~pnguyen/pub_Ng99.htm
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reduced to a special closest vector

problem which is much easier

than the general problem. As an

application, we solved four out

of the five numerical challenges

proposed on the Internet by the

authors of the cryptosystem.

At least two of those four

challenges were conjectured to

be intractable. We discuss ways

to prevent the flaw, but conclude

that, even modified, the scheme

cannot provide sufficient security

without being impractical.”
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Fix would “probably need

dimension ≥ 400” for security:

“Public key ≈ 1.8 Mbytes”.

Crypto 1998 Nguyen–Stern:

“Provably secure” Ajtai–Dwork

system breakable with 20MB keys.

http://tinyurl.com/y7nxxvld
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Fix would “probably need

dimension ≥ 400” for security:

“Public key ≈ 1.8 Mbytes”.

Crypto 1998 Nguyen–Stern:

“Provably secure” Ajtai–Dwork

system breakable with 20MB keys.

Compare to 1978 McEliece

code-based cryptosystem:

much more stable security story

through dozens of attack papers.

Typical parameters: 1MB key for

>2128 post-quantum security.

http://tinyurl.com/y7nxxvld
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2017.05: Lattice student adds the

following text to Wikipedia page

“Lattice-based cryptography”:

“Lattice-based constructions are

currently the primary candidates

for post-quantum cryptography.”
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2017.05: Lattice student adds the

following text to Wikipedia page

“Lattice-based cryptography”:

“Lattice-based constructions are

currently the primary candidates

for post-quantum cryptography.”

— [citation needed]

2016.07: Google rolls out

large-scale experiment with

post-quantum crypto between

Chrome and some Google sites.

Uses lattice-based crypto.

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
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Google sent only a few KB

for public keys, ciphertexts.

How can lattice-based crypto

work within a few KB?

Combine two ingredients:

1. Do not take key sizes

large enough for theorems to

connect to “well-studied” SVP‚ .

See, e.g., 2016 Chatterjee–

Koblitz–Menezes–Sarkar.

https://eprint.iacr.org/2016/360
https://eprint.iacr.org/2016/360
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Google sent only a few KB

for public keys, ciphertexts.

How can lattice-based crypto

work within a few KB?

Combine two ingredients:

1. Do not take key sizes

large enough for theorems to

connect to “well-studied” SVP‚ .

See, e.g., 2016 Chatterjee–

Koblitz–Menezes–Sarkar.

2. Use ideal lattices.

Hope that the extra structure

doesn’t damage security.

https://eprint.iacr.org/2016/360
https://eprint.iacr.org/2016/360
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1996–1998 Hoffstein–Pipher–

Silverman “NTRU”:

Define R as the ring

Z[x ]=(x503 − 1).

Elements of R are polynomials

c0 + c1x + c2x
2 + · · ·+ c502x

502

with integer coefficients cj .

To multiply in R:

multiply polynomials;

replace x503 with 1;

replace x504 with x ; etc.

e.g.: (x100 + x300)(x200 + 7x400)

= x300 + 8x500 + 7x700

= 7x197 + x300 + 8x500 in R.

https://link.springer.com/chapter/10.1007/BFb0054868
https://link.springer.com/chapter/10.1007/BFb0054868
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Define q = 2048.

Alice’s public key: A ∈ R with

coefficients in {0; 1; : : : ; q − 1}.
This is 503 · 11 = 5533 bits.
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e.g., all coefficients in {−1; 0; 1}.
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Define q = 2048.

Alice’s public key: A ∈ R with

coefficients in {0; 1; : : : ; q − 1}.
This is 503 · 11 = 5533 bits.

Bob generates random b; c ∈ R
with small coefficients:

e.g., all coefficients in {−1; 0; 1}.

Bob computes Ab + c mod q:

multiply A by b in R; add c ;

reduce each coefficient modulo q

to the range {0; 1; : : : ; q − 1}.

Bob sends Ab + c mod q.

This is also 5533 bits.
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“Quotient NTRU” (new name),

used in original NTRU design:

Alice generated A = 3a=d in R=q

for small random a; d

(with suitable invertibility):

i.e., dA− 3a mod q = 0.
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“Quotient NTRU” (new name),

used in original NTRU design:

Alice generated A = 3a=d in R=q

for small random a; d

(with suitable invertibility):

i.e., dA− 3a mod q = 0.

Alice receives C = Ab + c mod q.

Alice computes dC mod q,

i.e., 3ab + dc mod q.

Alice reconstructs 3ab + dc,

using smallness of a; b; d; c .

Alice computes dc,

deduces c , deduces b.
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“Product NTRU” (new name),

2010 Lyubashevsky–Peikert–Regev:

Everyone knows random G ∈ R.

Alice generated A = aG+d mod q

for small random a; d .

http://tinyurl.com/y7u53hhg
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“Product NTRU” (new name),

2010 Lyubashevsky–Peikert–Regev:

Everyone knows random G ∈ R.

Alice generated A = aG+d mod q

for small random a; d .

Bob sends B = Gb + e mod q

and C = m + Ab + c mod q

where b; c; e are small and each

coefficient of m is 0 or q=2.

http://tinyurl.com/y7u53hhg
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“Product NTRU” (new name),

2010 Lyubashevsky–Peikert–Regev:

Everyone knows random G ∈ R.

Alice generated A = aG+d mod q

for small random a; d .

Bob sends B = Gb + e mod q

and C = m + Ab + c mod q

where b; c; e are small and each

coefficient of m is 0 or q=2.

Alice computes C − aB mod q,

i.e., m + db + c − ae mod q.

Alice reconstructs m,

using smallness of d; b; c; a; e.

http://tinyurl.com/y7u53hhg
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Lattice view: Define L as

the set of pairs (v; w) ∈ R × R
such that vG − w mod q = 0.
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Lattice view: Define L as

the set of pairs (v; w) ∈ R × R
such that vG − w mod q = 0.

e.g. (a; A− d) ∈ L.

(0; A) is close to a lattice point.

Try to find close lattice point.

Breaks both Product NTRU

and Quotient NTRU.
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Lattice view: Define L as

the set of pairs (v; w) ∈ R × R
such that vG − w mod q = 0.

e.g. (a; A− d) ∈ L.

(0; A) is close to a lattice point.

Try to find close lattice point.

Breaks both Product NTRU

and Quotient NTRU.

Try to exploit reuse of b

for faster Product NTRU attack.

(“Ring-LWE”: arbitrary reuse.)

Try to exploit A = 3a=d structure

for faster Quotient NTRU attack.
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2013 Lyubashevsky–Peikert–

Regev: “All of the algebraic

and algorithmic tools (including

quantum computation) that we

employ : : : can also be brought

to bear against SVP and other

problems on ideal lattices. Yet

despite considerable effort, no

significant progress in attacking

these problems has been made.

The best-known algorithms for

ideal lattices perform essentially

no better than their generic

counterparts, both in theory and

in practice.”

http://dl.acm.org/citation.cfm?doid=2555516.2535925
http://dl.acm.org/citation.cfm?doid=2555516.2535925
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Many more NTRU variants

(often not crediting NTRU).

Fully homomorphic encryption:

STOC 2009 Gentry

“Fully homomorphic encryption

using ideal lattices”.

PKC 2010 Smart–Vercauteren.

Eurocrypt 2011 Gentry–Halevi.

etc.

Multilinear maps: e.g.,

Eurocrypt 2013 Garg–Gentry–

Halevi “Candidate multilinear

maps from ideal lattices”.
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STOC 2009 Gentry system is

broken by quantum algorithms

for typical “cyclotomic rings”.
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STOC 2009 Gentry system is

broken by quantum algorithms

for typical “cyclotomic rings”.

First stage in attack:

SODA 2016 Biasse–Song

fast quantum algorithm to

compute gR 7→ ug with u ∈ R∗.

Builds upon STOC 2014

Eisenträger–Hallgren–Kitaev–Song

quantum R 7→ R∗ algorithm.

http://fangsong.info/files/pubs/BS_SODA16.pdf
http://fangsong.info/files/pubs/EHKS_STOC14.pdf
http://fangsong.info/files/pubs/EHKS_STOC14.pdf
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STOC 2009 Gentry system is

broken by quantum algorithms

for typical “cyclotomic rings”.

First stage in attack:

SODA 2016 Biasse–Song

fast quantum algorithm to

compute gR 7→ ug with u ∈ R∗.

Builds upon STOC 2014

Eisenträger–Hallgren–Kitaev–Song

quantum R 7→ R∗ algorithm.

Older pre-quantum algorithms

take subexponential time.

http://fangsong.info/files/pubs/BS_SODA16.pdf
http://fangsong.info/files/pubs/EHKS_STOC14.pdf
http://fangsong.info/files/pubs/EHKS_STOC14.pdf
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Second stage of attack: 2014.10

Campbell–Groves–Shepherd

fast pre-quantum algorithm

for typical cyclotomic ring

to compute ug 7→ short g .

http://tinyurl.com/nnaey8n
http://tinyurl.com/nnaey8n
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Second stage of attack: 2014.10

Campbell–Groves–Shepherd

fast pre-quantum algorithm

for typical cyclotomic ring

to compute ug 7→ short g .

Eurocrypt 2017 Cramer–Ducas–

Wesolowski extension of CGS:

for typical cyclotomic ring, find

fairly short element of any ideal.

http://tinyurl.com/nnaey8n
http://tinyurl.com/nnaey8n
https://eprint.iacr.org/2016/885
https://eprint.iacr.org/2016/885
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Second stage of attack: 2014.10

Campbell–Groves–Shepherd

fast pre-quantum algorithm

for typical cyclotomic ring

to compute ug 7→ short g .

Eurocrypt 2017 Cramer–Ducas–

Wesolowski extension of CGS:

for typical cyclotomic ring, find

fairly short element of any ideal.

These attacks exploit structure of

cyclotomic rings. Rescue system

by switching to another ring?

http://tinyurl.com/nnaey8n
http://tinyurl.com/nnaey8n
https://eprint.iacr.org/2016/885
https://eprint.iacr.org/2016/885
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2014.02 Bernstein: pre-quantum

attack strategy; subexponential

time for many choices of ring.

Eurocrypt 2017 Bauch–

Bernstein–de Valence–Lange–van

Vredendaal: quasipolynomial-

time pre-quantum attack for

“multiquadratic rings”.

2016 Bernstein–Chuengsatiansup–

Lange–van Vredendaal “NTRU

Prime”: use prime degree, large

Galois group, inert modulus;

reduce attack surface at low cost.

https://blog.cr.yp.to/20140213-ideal.html
https://multiquad.cr.yp.to
https://multiquad.cr.yp.to
https://multiquad.cr.yp.to
https://eprint.iacr.org/2016/461
https://eprint.iacr.org/2016/461

