Standardization for the black hat Includes joint work with

Daniel | Bernstein (in alphabetical order):

University of lllinois at Chicago & Tung Chou @
Chitchanok Chuengsatiansup @

Andreas Hulsing @

) Eran Lambooi; @
@ badab5.cr.yp.to "BADAbS Tanja Lange @ @

Crypto’ including “How to
P HEHEnS v Ruben Niederhagen @@
Christine van Vredendaal @

Technische Universiteit Eindhoven

manipulate curve standards: a

white paper for the black hat.”

Inspirational previous work:
ANSI, ANSSI, Brainpool, IETF,
1ISO, NIST, OSCCA, SECG, and

especially our buddies at NSA.

@ projectbullrun.org
including “Dual EC: a
standardized back door.”

lization for the black hat

. Bernstein

ty of lllinois at Chicago &

he Universiteit Eindhoven

ab5.cr.yp.to 'BADAbS
including “How to

ate curve standarc

S. d

per for the black

nat.”

jectbullrun.org

r “Dual EC: a
ized back door.”

Includes joint work with
(in alphabetical order):

Tung Chou @

Chitchanok Chuengsatiansup @
Andreas Hulsing @
Eran Lambooi; @

Tanja Lange @ @
Ruben Niederhagen @ @

Christine van Vredendaal @

Inspirational previous work:
ANSI, ANSSI, Brainpool, IETF,

ISO, NIST, OSCCA, SECG, and
especially our buddies at NSA.

The DE.

IBM: 12

IBM: 64
Final co

r the black hat
8

is at Chicago &
siteit Eindhoven

p.to "BADAbLS

“"How to
standards: a

e black hat.”

run.org
C: a
door.”

Includes joint work with
(in alphabetical order):

Tung Chou @

Chitchanok Chuengsatiansup @
Andreas Hulsing @
Eran Lambooil; @

Tanja Lange @ @
Ruben Niederhagen @ @

Christine van Vredendaal @

Inspirational previous work:
ANSI, ANSSI, Brainpool, IETF,
1ISO, NIST, OSCCA, SECG, and

especially our buddies at NSA.

The DES key size

IBM: 128! NSA: :
IBM: 64! NSA: 4§

Final compromise:

k hat

g0 &
hoven

DAb5

Includes joint work with
(in alphabetical order):

Tung Chou @

Chitchanok Chuengsatiansup @
Andreas Hulsing @
Eran Lambooi, @

Tanja Lange @ @
Ruben Niederhagen @ @

Christine van Vredendaal @

Inspirational previous work:
ANSI, ANSSI, Brainpool, IETF,

ISO, NIST, OSCCA, SECG, and
especially our buddies at NSA.

The DES key size

IBM: 128! NSA: 32!
IBM: 64! NSA: 48!
Final compromise: 56.

Includes joint work with The DES key size

(in alphabetical order): IBM: 1281 NSA: 32!

Tung Chou (1) IBM: 64! NSA: 48!
Chitchanok Chuengsatiansup @ Final compromise: 56.
Andreas Hulsing @
Eran Lambooi) @

Tanja Lange @ @
Ruben Niederhagen @ @

Christine van Vredendaal @

Inspirational previous work:
ANSI, ANSSI, Brainpool, IETF,

1ISO, NIST, OSCCA, SECG, and
especially our buddies at NSA.

Includes joint work with The DES key size

(in alphabetical order): IBM: 1281 NSA: 32!

Tung Chou (1) IBM: 64! NSA: 48!

Chitchanok Chuengsatiansup @ Final compromise: 56.

Andreas Hulsing @ Crypto community to NSA+NBS:
Eran Lambooi @ Your key size is too small.

Tanja Lange @ @
Ruben Niederhagen @ @

Christine van Vredendaal @

Inspirational previous work:
ANSI, ANSSI, Brainpool, IETF,
1ISO, NIST, OSCCA, SECG, and

especially our buddies at NSA.

Includes joint work with The DES key size

(in alphabetical order): IBM: 1281 NSA: 32!

Tung Chou (1) IBM: 64! NSA: 48!

Chitchanok Chuengsatiansup @ Final compromise: 56.

Andreas Hulsing @ Crypto community to NSA+NBS:

Eran Lambooi @ Your key size is too small.

Tanja L

Rar”a ;_”ge ? @ NBS: Our key is big enough!
uben Niederhagen (1) (2) And we know how to use it!

Christine van Vredendaal @

Inspirational previous work:
ANSI, ANSSI, Brainpool, IETF,
1ISO, NIST, OSCCA, SECG, and

especially our buddies at NSA.

Includes joint work with The DES key size

(in alphabetical order): IBM: 1281 NSA: 32!

Tung Chou (1) IBM: 64! NSA: 48!
Chitchanok Chuengsatiansup @ Final compromise: 56.
Andreas Hulsing @ Crypto community to NSA+NBS:
Eran Lambooi @ Your key size is too small.
Tanja L

anja -anee D NBS: Our key is big enough!
Ruben Niederhagen (1) (2) And we know how to use it!

Christine van Vredendaal @
NBS (now NIST) continues to

Inspirational previous work: oromote DES for two decades,

ANSI, ANSSI, Brainpool, IETF,
1ISO, NIST, OSCCA, SECG, and

especially our buddies at NSA.

drastically increasing cost
of the inevitable upgrade.

joint work with
betical order):

ou (D

10k Chuengsatiansup @

liederhagen @ @

> van Vredendaal @

onal previous work:
NSSI, Brainpool, IETF,

5T, OSCCA, SECG, and
y our buddies at NSA.

The DES key size

IBM: 128! NSA: 32!
IBM: 64! NSA: 48!
Final compromise: 56.

Crypto community to NSA+NBS:

Your key size Is too small.

NBS: Our key is big enough!
And we know how to use it!

NBS (now NIST) continues to
promote DES for two decades,
drastically increasing cost
of the inevitable upgrade.

Random

1992 R

given en
to hang
a standa

Standarc

< wWith

der):

us work:
inpool, IETF,
A, SECG, and
dies at NSA.

The DES key size

IBM: 128! NSA: 32!
IBM: 64! NSA: 48!

Final compromise: 56.

Crypto community to NSA+NBS:
Your key size is too small.

NBS: Our key is big enough!
And we know how to use it!

NBS (now NIST) continues to
promote DES for two decades,
drastically increasing cost
of the inevitable upgrade.

Random nonces In

1992 Rivest: “The

given enough rope
to hang himself—
a standard should

Standardize anyws

The DES key size

IBM: 128! NSA: 32!
IBM: 64! NSA: 48!
Final compromise: 56.

Crypto community to NSA+NBS:
Your key size is too small.

NBS: Our key is big enough!
And we know how to use it!

NBS (now NIST) continues to
promote DES for two decades,
drastically increasing cost
of the inevitable upgrade.

Random nonces in DSA/EC

1992 Rivest: “The poor use
given enough rope with whic
to hang himself—something
a standard should not do.”

Standardize anyway.

The DES key size

IBM: 128! NSA: 321
IBM: 64! NSA: 48!
Final compromise: 56.

Crypto community to NSA+NBS:
Your key size Is too small.

NBS: Our key is big enough!
And we know how to use it!

NBS (now NIST) continues to
promote DES for two decades,
drastically increasing cost
of the inevitable upgrade.

Random nonces in DSA/ECDSA

1992 Rivest: “The poor user is
given enough rope with which
to hang himself—something

a standard should not do.”

Standardize anyway.

The DES key size

IBM: 128! NSA: 321
IBM: 64! NSA: 48!
Final compromise: 56.

Crypto community to NSA+NBS:

Your key size Is too small.

NBS: Our key is big enough!
And we know how to use it!

NBS (now NIST) continues to
promote DES for two decades,
drastically increasing cost
of the inevitable upgrade.

Random nonces in DSA/ECDSA

1992 Rivest: “The poor user is
given enough rope with which
to hang himself—something

a standard should not do.”

Standardize anyway.

2010 Bushing—Marcan—Segher—

Sven “PS3 epic fail’: PS3
forgeries—Sony hung itself.

The DES key size

IBM: 128! NSA: 321
IBM: 64! NSA: 48!
Final compromise: 56.

Crypto community to NSA+NBS:

Your key size Is too small.

NBS: Our key is big enough!
And we know how to use it!

NBS (now NIST) continues to
promote DES for two decades,
drastically increasing cost
of the inevitable upgrade.

Random nonces in DSA/ECDSA

1992 Rivest: “The poor user is
given enough rope with which
to hang himself—something

a standard should not do.”

Standardize anyway.

2010 Bushing—Marcan—Segher—

Sven “PS3 epic fail’: PS3
forgeries—Sony hung itself.

Add complicated options
for deterministic nonces,
while preserving old options.

> key size

8! NSA: 32!
I NSA: 48!
mpromise: 56.

ommunity to NSA+NBS:

/ size 1S too small.

1r key Is big enough!
know how to use it!

ow NIST) continues to
DES for two decades,
ly Increasing cost

evitable upgrade.

Random nonces in DSA/ECDSA

Denial o

1992 Rivest: “The poor user is
given enough rope with which
to hang himself—something

a standard should not do.”

Standardize anyway.

2010 Bushing—Marcan—Segher—

Sven “PS3 epic fail’: PS3
forgeries—Sony hung itself.

Add complicated options
for deterministic nonces,
while preserving old options.

Suspect:
Bob are
“auditor
— “revie
exploital
In cryptc

Example
involved
around t
years of
How car
problem

21
|
b6.

to NSA+NBS:

o small.

Ig enough!
"to use It/

continues to
'wo decades,
ng cost
pgrade.

Random nonces in DSA/ECDSA

Denial of service v

1992 Rivest: “The poor user is
given enough rope with which
to hang himself—something

a standard should not do.”

Standardize anyway.

2010 Bushing—Marcan—Segher—

Sven “PS3 epic fail’: PS3
forgeries—Sony hung itself.

Add complicated options
for deterministic nonces,
while preserving old options.

Suspected terroris
Bob are aided and
“auditors” (= ‘“cn
= "“reviewers") ch
exploitable securit
In cryptographic s

Example: SHA-3 «
involved 200 crypt
around the world :
years of sustained
How can we slip a
problem past all o

-NBS:

to
oS,

Random nonces in DSA/ECDSA

1992 Rivest: “The poor user is
given enough rope with which
to hang himself—something

a standard should not do.”

Standardize anyway.

2010 Bushing—Marcan—Segher—

Sven “PS3 epic fail’: PS3
forgeries—Sony hung itself.

Add complicated options
for deterministic nonces,
while preserving old options.

Denial of service via floodin;

Suspected terrorists Alice ar
Bob are aided and abetted |
“auditors” (= "“cryptanalyst
= "“reviewers") checking for
exploitable security problem:
In cryptographic systems.

Example: SHA-3 competitic
involved 200 cryptographers
around the world and took

years of sustained public effc
How can we slip a security
problem past all of them?

Denial of service via flooding

Random nonces in DSA/ECDSA

1992 Rivest: “The poor user is
given enough rope with which
to hang himself—something

a standard should not do.”

Standardize anyway.

2010 Bushing—Marcan—Segher—

Sven “PS3 epic fail’: PS3
forgeries—Sony hung itself.

Add complicated options
for deterministic nonces,
while preserving old options.

Suspected terrorists Alice and
Bob are aided and abetted by
“auditors” (= “cryptanalysts”
= "“reviewers") checking for
exploitable security problems
In cryptographic systems.

Example: SHA-3 competition
involved 200 cryptographers
around the world and took

years of sustained public effort.
How can we slip a security
problem past all of them?

“nonces in DSA/ECDSA

Denial of service via flooding

/est: “The poor user Is
ough rope with which
himself—something
rd should not do.”

lize anyway.

shing—Marcan—Segher—
S3 epic fail”: PS3
—Sony hung itself.

plicated options
‘ministic nonces,
aserving old options.

Suspected terrorists Alice and
Bob are aided and abetted by
“auditors” (= “cryptanalysts”
= "“reviewers") checking for
exploitable security problems
In cryptographic systems.

Example: SHA-3 competition
involved 200 cryptographers
around the world and took

years of sustained public effort.

How can we slip a security
problem past all of them?

During t
NIST al:
FIPS 18
FIPS 19
SP 800-
SP 800-
SP 800-
SP 800-
SP 800-
SP 800-
SP 800-
SP 800-

SP 800-
and rela

sucn as

' DSA/ECDSA

Denial of service via flooding

> POOF USEr IS
- with which
something
not do.”

\V2
rcan—Segher—
11" PS3

Ing itself.
options

onces,
d options.

Suspected terrorists Alice and
Bob are aided and abetted by
“auditors” (= “cryptanalysts”
= "“reviewers") checking for
exploitable security problems
In cryptographic systems.

Example: SHA-3 competition
involved 200 cryptographers
around the world and took

years of sustained public effort.

How can we slip a security
problem past all of them?

During the same

NIST also publish
FIPS 186-3 (signa
FIPS 198-1 (authe
SP 800-38E (disk
SP 800-38F (key \
SP 800-56C (key ¢
SP 800-57 (key m
SP 800-67 (block
SP 800-108 (key c
SP 800-131A (key
SP 800-133 (key ¢
SP 800-152 (key r
and related protoc

such as SP 800-81

Denial of service via flooding

Suspected terrorists Alice and
Bob are aided and abetted by
“auditors” (= “cryptanalysts”
= "“reviewers") checking for
exploitable security problems
In cryptographic systems.

Example: SHA-3 competition
involved 200 cryptographers
around the world and took

years of sustained public effort.

How can we slip a security
problem past all of them?

During the same period,
NIST also published

FIPS 186-3 (signatures),
FIPS 198-1 (authentication)
SP 800-38E (disk encryptior
SP 800-38F (key wrapping),
SP 800-56C (key derivation
SP 800-57 (key managemen
SP 800-67 (block encryptior
SP 800-108 (key derivation)
SP 800-131A (key lengths),
SP 800-133 (key generation
SP 800-152 (key manageme
and related protocol documse
such as SP 800-81r1.

Denial of service via flooding

Suspected terrorists Alice and
Bob are aided and abetted by
“auditors” (= “cryptanalysts”
= "“reviewers") checking for
exploitable security problems
In cryptographic systems.

Example: SHA-3 competition
involved 200 cryptographers
around the world and took

years of sustained public effort.

How can we slip a security
problem past all of them?

During the same period,

NIST also published

FIPS 186-3 (signatures),

FIPS 198-1 (authentication),
SP 800-38E (disk encryption),
SP 800-38F (key wrapping),
SP 800-56C (key derivation),
SP 800-57 (key management),
SP 800-67 (block encryption),
SP 800-108 (key derivation),
SP 800-131A (key lengths),

SP 800-133 (key generation),
SP 800-152 (key management),
and related protocol documents
such as SP 800-81r1.

f service via flooding

d terrorists Alice and
alded and abetted by
s" (= “cryptanalysts”
wers”) checking for
ble security problems
bgraphic systems.

: SHA-3 competition
200 cryptographers
he world and took

sustained public effort.

' we slip a security
past all of them?

During the same period,

NIST also published

FIPS 186-3 (signatures),

FIPS 198-1 (authentication),
SP 800-38E (disk encryption),
SP 800-38F (key wrapping),
SP 800-56C (key derivation),
SP 800-57 (key management),
SP 800-67 (block encryption),
SP 800-108 (key derivation),
SP 800-131A (key lengths),

SP 800-133 (key generation),
SP 800-152 (key management),
and related protocol documents
such as SP 800-81r1.

Attentio
not enti

Auditors
security
just befc

1a flooding

ts Alice and
abetted by

yptanalysts”

ecking for

y problems

ystems.

—ompetition
ographers
and took

public effort.
security
f them?

During the same period,

NIST also published

FIPS 186-3 (signatures),

FIPS 198-1 (authentication),
SP 800-38E (disk encryption),
SP 800-38F (key wrapping),
SP 800-56C (key derivation),
SP 800-57 (key management),
SP 800-67 (block encryption),
SP 800-108 (key derivation),
SP 800-131A (key lengths),

SP 800-133 (key generation),
SP 800-152 (key management),
and related protocol documents
such as SP 800-81r1.

Attention of audit
not entirely on SH

Auditors caught a
security flaw in E/

just before NIST -«

v

d
Y

N

Ort.

During the same period,

NIST also published

FIPS 186-3 (signatures),

FIPS 198-1 (authentication),
SP 800-38E (disk encryption),
SP 800-38F (key wrapping),
SP 800-56C (key derivation),
SP 800-57 (key management),
SP 800-67 (block encryption),
SP 800-108 (key derivation),
SP 800-131A (key lengths),

SP 800-133 (key generation),
SP 800-152 (key management),
and related protocol documents

such as SP 800-81rl.

Attention of auditors was
not entirely on SHA-3.

Auditors caught a severe
security flaw in EAX Prime
just before NIST standardiz:

During the same period,

NIST also published

FIPS 186-3 (signatures),

FIPS 198-1 (authentication),
SP 800-38E (disk encryption),
SP 800-38F (key wrapping),
SP 800-56C (key derivation),
SP 800-57 (key management),
SP 800-67 (block encryption),
SP 800-108 (key derivation),
SP 800-131A (key lengths),

SP 800-133 (key generation),
SP 800-152 (key management),
and related protocol documents
such as SP 800-81r1.

Attention of auditors was
not entirely on SHA-3.

Auditors caught a severe
security flaw in EAX Prime
just before NIST standardization.

During the same period, Attention of auditors was
NIST also published not entirely on SHA-3.
FIPS 186-3 (signatures),

FIPS 198-1 (authentication),
SP 800-38E (disk encryption),
SP 800-38F (key wrapping),

Auditors caught a severe
security flaw in EAX Prime
just before NIST standardization.

SP 800-56C (key derivation), Also a troublesome flaw in
SP 800-57 (key management), the GCM security “proots”
SP 800-67 (block encryption), years after NIST standardization.

SP 800-108 (key derivation),
SP 800-131A (key lengths),

SP 800-133 (key generation),
SP 800-152 (key management),
and related protocol documents

such as SP 800-81rl.

During the same period, Attention of auditors was
NIST also published not entirely on SHA-3.
FIPS 186-3 (signatures),

FIPS 198-1 (authentication),
SP 800-38E (disk encryption),
SP 800-38F (key wrapping),

Auditors caught a severe
security flaw in EAX Prime
just before NIST standardization.

SP 800-56C (key derivation), Also a troublesome flaw in

SP 800-57 (key management), the GCM security “proots”

SP 800-67 (block encryption), years after NIST standardization.
SP 800-108 (key derivation), Why did this take years?

SP 800-131A (key lengths),

SP 800-133 (key generation),
SP 800-152 (key management),
and related protocol documents

such as SP 800-81rl.

Scientific advances? No!
We successfully denied service.

During the same period,

NIST also published

FIPS 186-3 (signatures),

FIPS 198-1 (authentication),
SP 800-38E (disk encryption),
SP 800-38F (key wrapping),
SP 800-56C (key derivation),
SP 800-57 (key management),
SP 800-67 (block encryption),
SP 800-108 (key derivation),
SP 800-131A (key lengths),

SP 800-133 (key generation),
SP 800-152 (key management),
and related protocol documents
such as SP 800-81r1.

Attention of auditors was
not entirely on SHA-3.

Auditors caught a severe
security flaw in EAX Prime
just before NIST standardization.

Also a troublesome flaw in
the GCM security “proofs”
vears after NIST standardization.

Why did this take years?

Scientific advances? No!
We successfully denied service.

And NIST is just the tip of the
crypto standardization iceberg.

he same period,

50 published

6-3 (signatures),

3-1 (authentication),
38E (disk encryption),
38F (key wrapping),
56C (key derivation),
57 (key management),
67 (block encryption),
108 (key derivation),
131A (key lengths),
133 (key generation),
152 (key management),

ted protocol documents
SP 800-81r1.

Attention of auditors was
not entirely on SHA-3.

Auditors caught a severe
security flaw in EAX Prime

just before NIST standardization.

Also a troublesome flaw in
the GCM security “proofs”

years after NIST standardization.

Why did this take years?
Scientific advances? No!

We successfully denied service.

And NIST is just the tip of the
crypto standardization iceberg.

Flooding

If we we
would te
ciphers/

yeriod,

d

tures),
ntication),
encryption),
vrapping),
Jerivation),
anagement),
encryption),
lerivation),
lengths),
reneration),
nanagement),

ol documents
rl.

Attention of auditors was
not entirely on SHA-3.

Auditors caught a severe
security flaw in EAX Prime

just before NIST standardization.

Also a troublesome flaw in
the GCM security “proofs”

vears after NIST standardization.

Why did this take years?
Scientific advances? No!

We successfully denied service.

And NIST is just the tip of the
crypto standardization iceberg.

Flooding via disho

If we were honest
would tell Alice+E
ciphers/hashes as

NS

Attention of auditors was
not entirely on SHA-3.

Auditors caught a severe
security flaw in EAX Prime
just before NIST standardization.

Also a troublesome flaw in
the GCM security “proofs”
years after NIST standardization.

Why did this take years?

Scientific advances? No!
We successfully denied service.

And NIST is just the tip of the
crypto standardization iceberg.

Flooding via dishonesty

It we were honest then we
would tell Alice4+-Bob to reu
ciphers/hashes as PRNGs.

Attention of auditors was Flooding via dishonesty
not entirely on SHA-3.

If we were honest then we
Auditors caught a severe would tell Alice4+-Bob to reuse
security flaw in EAX Prime ciphers/hashes as PRNGs.
just before NIST standardization.

Also a troublesome flaw in
the GCM security “proofs”
vears after NIST standardization.

Why did this take years?

Scientific advances? No!
We successfully denied service.

And NIST is just the tip of the
crypto standardization iceberg.

Attention of auditors was
not entirely on SHA-3.

Auditors caught a severe
security flaw in EAX Prime
just before NIST standardization.

Also a troublesome flaw in
the GCM security “proofs”
vears after NIST standardization.

Why did this take years?
Scientific advances? No!

We successfully denied service.

And NIST is just the tip of the
crypto standardization iceberg.

Flooding via dishonesty

If we were honest then we

would tell Alice4+Bob to reuse
ciphers/hashes as PRNGs.

But why should we be honest?
Let’'s build PRNGs from scratch!

Attention of auditors was
not entirely on SHA-3.

Auditors caught a severe
security flaw in EAX Prime

just before NIST standardization.

Also a troublesome flaw in
the GCM security “proofs”

vears after NIST standardization.

Why did this take years?
Scientific advances? No!

We successfully denied service.

And NIST is just the tip of the
crypto standardization iceberg.

Flooding via dishonesty

If we were honest then we

would tell Alice4+Bob to reuse
ciphers/hashes as PRNGs.

But why should we be honest?
Let’'s build PRNGs from scratch!

2004: Number-theoretic RNGs
provide “Increased assurance.”

2006: Dual EC

“Is the only DRBG mechanism
In this Recommendation

whose security Is related to a
hard problem in number theory.”

n of auditors was
ely on SHA-3.

caught a severe
flaw in EAX Prime

re NIST standardization.

roublesome flaw In
I security “proofs”
er NIST standardization.

' this take years?
c advances? Nol
cessfully denied service.

T is just the tip of the
tandardization iceberg.

Flooding via dishonesty

If we were honest then we

would tell Alice+Bob to reuse
ciphers/hashes as PRNGs.

But why should we be honest?
Let’'s build PRNGs from scratch!

2004: Number-theoretic RNGs
provide “Increased assurance.”

2006: Dual EC

“Is the only DRBG mechanism
in this Recommendation

whose security Is related to a
hard problem in number theory.”

Denial o

2006 Gj;
2006 Sc
Dual EC
definitio

Ors was
A-3.

severe
\X Prime
tandardization.

e flaw In
“proofs”
tandardization.

years?’
5?7 Nol

lenied service.

he tip of the
tion Iceberg.

Flooding via dishonesty

If we were honest then we

would tell Alice4+Bob to reuse
ciphers/hashes as PRNGs.

But why should we be honest?
Let’'s build PRNGs from scratch!

2004: Number-theoretic RNGs
provide “Increased assurance.”

2006: Dual EC

“Is the only DRBG mechanism
In this Recommendation

whose security Is related to a
hard problem in number theory.”

Denial of service v

2006 Gjgsteen, inc
2006 Schoenmake
Dual EC flunks we
definition of PRN(

ytion.

tion.

rvice.

the
rg.

Flooding via dishonesty

If we were honest then we

would tell Alice4+-Bob to reuse
ciphers/hashes as PRNGs.

But why should we be honest?
Let's build PRNGs from scratch!

2004: Number-theoretic RNGs
provide “Increased assurance.”

2006: Dual EC

“Is the only DRBG mechanism
in this Recommendation

whose security Is related to a
hard problem in number theory.”

Denial of service via hoops

2006 Gjgsteen, independent]
2006 Schoenmakers—Sidoren
Dual EC flunks well-establis|
definition of PRNG security.

Flooding via dishonesty Denial of service via hoops

If we were honest then we 2006 Gjgsteen, independently
would tell Alice+Bob to reuse 2006 Schoenmakers—Sidorenko:
ciphers/hashes as PRNGs. Dual EC flunks well-established

But why should we be honest? definition of PRNG security.

Let's build PRNGs from scratch!

2004: Number-theoretic RNGs
provide “Increased assurance.”

2006: Dual EC

“Is the only DRBG mechanism
In this Recommendation

whose security Is related to a
hard problem in number theory.”

Flooding via dishonesty

If we were honest then we

would tell Alice4+Bob to reuse
ciphers/hashes as PRNGs.

But why should we be honest?
Let’'s build PRNGs from scratch!

2004: Number-theoretic RNGs
provide “Increased assurance.”

2006: Dual EC

“Is the only DRBG mechanism
In this Recommendation

whose security Is related to a
hard problem in number theory.”

Denial of service via hoops

2006 Gjgsteen, independently
2006 Schoenmakers—Sidorenko:
Dual EC flunks well-established
definition of PRNG security.

Are all applications broken?
Obviously not! Standardize!

Flooding via dishonesty

If we were honest then we

would tell Alice4+Bob to reuse
ciphers/hashes as PRNGs.

But why should we be honest?
Let’'s build PRNGs from scratch!

2004: Number-theoretic RNGs
provide “Increased assurance.”

2006: Dual EC

“Is the only DRBG mechanism
In this Recommendation

whose security Is related to a
hard problem in number theory.”

Denial of service via hoops

2006 Gjgsteen, independently
2006 Schoenmakers—Sidorenko:
Dual EC flunks well-established
definition of PRNG security.

Are all applications broken?
Obviously not! Standardize!

2007 Shumow—Ferguson: Dual
EC has a back door. Would have
been easy to build @ with the key.

2007 Schneier: Never use Dual

EC. "Both NIST and the NSA
have some explaining to do.”

r via_dishonesty

re honest then we
|l Alice4+-Bob to reuse
hashes as PRNGs.

' should we be honest?
Ild PRNGs from scratch!

umber-theoretic RNGs
“Increased assurance.”

ual EC

nly DRBG mechanism
'ecommendation

curity Is related to a
blem in number theory.”

Denial of service via hoops

2006 Gjgsteen, independently
2006 Schoenmakers—Sidorenko:
Dual EC flunks well-established
definition of PRNG security.

Are all applications broken?
Obviously not! Standardize!

2007 Shumow—Ferguson: Dual
EC has a back door. Would have

been easy to build @ with the key.

2007 Schneier: Never use Dual

EC. “"Both NIST and the NSA
have some explaining to do.”

Did Shu
show us

Maintair

standarc

2008.07-
73 valid:
for Dual

nesty

then we

30b to reuse
PRNGs.

e be honest?
> from scratch!

oretic RNGs
assurance.”

5 mechanism
dation

elated to a
aymber theory.”

Denial of service via hoops

2006 Gjgsteen, independently
2006 Schoenmakers—Sidorenko:
Dual EC flunks well-established
definition of PRNG security.

Are all applications broken?
Obviously not! Standardize!

2007 Shumow—Ferguson: Dual
EC has a back door. Would have

been easy to build @ with the key.

2007 Schneier: Never use Dual

EC. "Both NIST and the NSA
have some explaining to do.”

Did Shumow and
show us the key?

Maintain and pror
standard. Pay pec

2008.07-2014.03:
73 validation certi
for Dual EC imple

SE

5t?
1tch!

Gs

SIM

ory."

Denial of service via hoops

2006 Gjgsteen, independently
2006 Schoenmakers—Sidorenko:
Dual EC flunks well-established
definition of PRNG security.

Are all applications broken?
Obviously not! Standardize!

2007 Shumow—Ferguson: Dual
EC has a back door. Would have

been easy to build @ with the key.

2007 Schneier: Never use Dual

EC. “"Both NIST and the NSA
have some explaining to do.”

Did Shumow and Ferguson
show us the key? No!

Maintain and promote Dual
standard. Pay people to use

2008.07-2014.03: NIST isst
73 validation certificates
for Dual EC implementation

Denial of service via hoops Did Shumow and Ferguson

? I
2006 Gjgsteen, independently show us the key? No!

2006 Schoenmakers—Sidorenko: Maintain and promote Dual EC
Dual EC flunks well-established standard. Pay people to use it.

definition of PRNG security. 2008.07—2014.03: NIST issues

Are all applications broken? 73 validation certificates
Obviously not! Standardize! for Dual EC implementations.

2007 Shumow—Ferguson: Dual
EC has a back door. Would have
been easy to build @ with the key.

2007 Schneier: Never use Dual

EC. "Both NIST and the NSA
have some explaining to do.”

Denial of service via hoops

2006 Gjgsteen, independently
2006 Schoenmakers—Sidorenko:
Dual EC flunks well-established
definition of PRNG security.

Are all applications broken?
Obviously not! Standardize!

2007 Shumow—Ferguson: Dual
EC has a back door. Would have

been easy to build @ with the key.

2007 Schneier: Never use Dual

EC. "Both NIST and the NSA
have some explaining to do.”

10
Did Shumow and Ferguson

show us the key? No!

Maintain and promote Dual EC
standard. Pay people to use it.

2008.07-2014.03: NIST issues
73 validation certificates
for Dual EC implementations.

Even after being caught,
continue to burn auditors’ time by
demanding that they jump higher.

NSA’'s Dickie George, 2014: Gee,
Dual EC is really hard to exploit!

f service via hoops

ssteen, independently
hoenmakers—Sidorenko:

flunks well-established
n of PRNG security.

ypplications broken?
ly not! Standardize!

umow—Ferguson: Dual
Y back door. Would have

y to build @ with the key.

hneier: Never use Dual
th NIST and the NSA
ne explaining to do.”

Did Shumow and Ferguson
show us the key? No!

Maintain and promote Dual EC
standard. Pay people to use it.

2008.07-2014.03: NIST issues
73 validation certificates
for Dual EC implementations.

Even after being caught,
continue to burn auditors’ time by
demanding that they jump higher.

NSA’s Dickie George, 2014: Gee,
Dual EC is really hard to exploit!

10

System

Traditiol
Auditor
an RNG

Auditor’

random
Bob are

1a hoops

lependently
rs—Sidorenko:
[l-established
5 Security.

s broken?
andardize!

guson: Dual
or. Would have

@ with the key.

ver use Dual
ind the NSA
ing to do.”

Did Shumow and Ferguson
show us the key? No!

Maintain and promote Dual EC
standard. Pay people to use it.

2008.07-2014.03: NIST issues
73 validation certificates
for Dual EC implementations.

Even after being caught,
continue to burn auditors’ time by
demanding that they jump higher.

NSA’s Dickie George, 2014: Gee,
Dual EC is really hard to exploit!

10

System vs. ecosyst

Traditional RNG 3
Auditor looks at o
an RNG. Tries to

Auditor’s starting
random numbers 1

Bob are created b

ko:
ned

nal
have

1e key.

ual
YA

Did Shumow and Ferguson
show us the key? No!

Maintain and promote Dual EC
standard. Pay people to use it.

2008.07-2014.03: NIST issues
73 validation certificates
for Dual EC implementations.

Even after being caught,
continue to burn auditors’ time by
demanding that they jump higher.

NSA’s Dickie George, 2014: Gee,
Dual EC is really hard to exploit!

10

System vs. ecosystem

Traditional RNG auditing:
Auditor looks at one system
an RNG. Tries to find weakr

Auditor’s starting assumptio
random numbers for Alice a

Bob are created by an RNG

Did Shumow and Ferguson
show us the key? No!

Maintain and promote Dual EC
standard. Pay people to use it.

2008.07-2014.03: NIST issues
73 validation certificates
for Dual EC implementations.

Even after being caught,
continue to burn auditors’ time by
demanding that they jump higher.

NSA’'s Dickie George, 2014: Gee,
Dual EC is really hard to exploit!

10

11
System vs. ecosystem

Traditional RNG auditing:

Auditor looks at one system,
an RNG. Tries to find weakness.

Auditor’s starting assumption:

random numbers for Alice and
Bob are created by an RNG.

Did Shumow and Ferguson
show us the key? No!

Maintain and promote Dual EC
standard. Pay people to use it.

2008.07-2014.03: NIST issues
73 validation certificates
for Dual EC implementations.

Even after being caught,
continue to burn auditors’ time by
demanding that they jump higher.

NSA’'s Dickie George, 2014: Gee,
Dual EC is really hard to exploit!

10

11
System vs. ecosystem

Traditional RNG auditing:

Auditor looks at one system,
an RNG. Tries to find weakness.

Auditor’s starting assumption:

random numbers for Alice and
Bob are created by an RNG.

Reality: random numbers

are created by a much more
complicated ecosystem that
designs, evaluates, standardizes,
selects, implements, and deploys
RNGs. (Same for other crypto.)

mow and Ferguson
the key? Nol

' and promote Dual EC
. Pay people to use it.

-2014.03: NIST issues
ytion certificates
EC implementations.

er being caught,
' to burn auditors’ time by
ng that they jump higher.

Jickie George, 2014: Gee,
1s really hard to exploit!

10

System vs. ecosystem

Traditional RNG auditing:

Auditor looks at one system,
an RNG. Tries to find weakness.

Auditor’s starting assumption:

random numbers for Alice and
Bob are created by an RNG.

Reality: random numbers

are created by a much more
complicated ecosystem that
designs, evaluates, standardizes,
selects, implements, and deploys
RNGs. (Same for other crypto.)

11

This is
perspec
defendin

The eco
weaknes
Inside ar

e.g. Eas

Ferguson
No!

note Dual EC
ple to use It.

NIST issues

ficates
mentations.

aught,
wuditors’ time by
ey jump higher.

ge, 2014: Gee,
1ard to exploit!

10

System vs. ecosystem

Traditional RNG auditing:

Auditor looks at one system,
an RNG. Tries to find weakness.

Auditor’s starting assumption:
random numbers for Alice and

Bob are created by an RNG.

Reality: random numbers

are created by a much more
complicated ecosystem that
designs, evaluates, standardizes,
selects, implements, and deploys
RNGs. (Same for other crypto.)

11

This is a critical
perspective. Aud
defending the wro

The ecosystem ha
weaknesses that a
inside any particul

e.g. Easily take co

10

EC
It

€S

me by
Nigher.

Gee,
ploit!

System vs. ecosystem

Traditional RNG auditing:

Auditor looks at one system,
an RNG. Tries to find weakness.

Auditor’s starting assumption:
random numbers for Alice and

Bob are created by an RNG.

Reality: random numbers

are created by a much more
complicated ecosystem that
designs, evaluates, standardizes,
selects, implements, and deploys
RNGs. (Same for other crypto.)

11

This i1s a critical change Ir
perspective. Auditor is stu
defending the wrong targets

The ecosystem has many
weaknesses that are not visi
inside any particular system.

e.g. Easily take control of IS

System vs. ecosystem

Traditional RNG auditing:

Auditor looks at one system,
an RNG. Tries to find weakness.

Auditor’s starting assumption:
random numbers for Alice and

Bob are created by an RNG.

Reality: random numbers

are created by a much more
complicated ecosystem that
designs, evaluates, standardizes,
selects, implements, and deploys
RNGs. (Same for other crypto.)

11

This i1s a critical change In
perspective. Auditor is stuck
defending the wrong targets!

The ecosystem has many
weaknesses that are not visible
inside any particular system.

e.g. Easily take control of ISO.

12

System vs. ecosystem

Traditional RNG auditing:
Auditor looks at one system,
an RNG. Tries to find weakness.

Auditor’s starting assumption:

random numbers for Alice and
Bob are created by an RNG.

Reality: random numbers

are created by a much more
complicated ecosystem that
designs, evaluates, standardizes,
selects, implements, and deploys
RNGs. (Same for other crypto.)

11

12
This i1s a critical change In

perspective. Auditor is stuck
defending the wrong targets!

The ecosystem has many
weaknesses that are not visible
inside any particular system.

e.g. Easily take control of ISO.

e.g. Propose 20 weak standards.
Some will survive auditing.
Then manipulate selection.

System vs. ecosystem

Traditional RNG auditing:

Auditor looks at one system,
an RNG. Tries to find weakness.

Auditor’s starting assumption:

random numbers for Alice and
Bob are created by an RNG.

Reality: random numbers

are created by a much more
complicated ecosystem that
designs, evaluates, standardizes,
selects, implements, and deploys
RNGs. (Same for other crypto.)

11

This i1s a critical change In
perspective. Auditor is stuck
defending the wrong targets!

The ecosystem has many
weaknesses that are not visible
inside any particular system.

e.g. Easily take control of ISO.

e.g. Propose 20 weak standards.

Some will survive auditing.
Then manipulate selection.

Deter publication of weaknesses:

“This attack is trivial. Reject.”

12

VS. ecosystem

1al RNG auditing:

looks at one system,
. Tries to find weakness.

s starting assumption:
numbers for Alice and

created by an RNG.

random numbers

ted by a much more
ited ecosystem that
evaluates, standardizes,
'mplements, and deploys
Same for other crypto.)

11

This i1s a critical change In
perspective. Auditor is stuck
defending the wrong targets!

The ecosystem has many
weaknesses that are not visible
inside any particular system.

e.g. Easily take control of ISO.

e.g. Propose 20 weak standards.

Some will survive auditing.
Then manipulate selection.

Deter publication of weaknesses:

“This attack is trivial. Reject.”

12

Textboo
using st:
on a sta

Alic
secret

l

Alic
public
af

{Alice, |
shared
ab

em

uditing:
ne system,
find weakness.

assumption:
or Alice and

v an RNG.

umbers

1uch more
stem that
~standardizes,
s, and deploys
other crypto.)

11

This i1s a critical change In
perspective. Auditor is stuck
defending the wrong targets!

The ecosystem has many
weaknesses that are not visible
inside any particular system.

e.g. Easily take control of ISO.

e.g. Propose 20 weak standards.

Some will survive auditing.
Then manipulate selection.

Deter publication of weaknesses:

“This attack is trivial. Reject.”

12

Textbook key excl
using standard poi
on a standard ellig
Alice’s
secret key a

l

Alice’s
public key

aP ><
{Alice,Bob}'s

shared secret
abP

1€SS.

nd

zes,
loys
to.)

11

This i1s a critical change In
perspective. Auditor is stuck
defending the wrong targets!

The ecosystem has many
weaknesses that are not visible
inside any particular system.

e.g. Easily take control of ISO.

e.g. Propose 20 weak standards.

Some will survive auditing.
Then manipulate selection.

Deter publication of weaknesses:

“This attack is trivial. Reject.”

12

Textbook key exchange
using standard point P
on a standard elliptic curve

Alice's Bob
secret key a secret |
Alice's Bob
public key public
{Alice, Bob}'s {Bob, Al
shared secret — shared ¢
abP baF

This i1s a critical change In
perspective. Auditor is stuck
defending the wrong targets!

The ecosystem has many
weaknesses that are not visible
inside any particular system.

e.g. Easily take control of ISO.

e.g. Propose 20 weak standards.

Some will survive auditing.
Then manipulate selection.

Deter publication of weaknesses:

“This attack is trivial. Reject.”

12

13
Textbook key exchange

using standard point P
on a standard elliptic curve E:

Alice’s Bob's
secret key a secret key b

l l

Alice's Bob's
public key public key
{Alice, Bob}'s {Bob, Alice}'s
shared secret — shared secret
abP baP

This i1s a critical change In
perspective. Auditor is stuck
defending the wrong targets!

The ecosystem has many
weaknesses that are not visible
inside any particular system.

e.g. Easily take control of ISO.

e.g. Propose 20 weak standards.

Some will survive auditing.
Then manipulate selection.

Deter publication of weaknesses:

“This attack is trivial. Reject.”

12

13
Textbook key exchange

using standard point P
on a standard elliptic curve E:

Alice’s Bob's
secret key a secret key b

l l

Alice's Bob's
public key public key
{Alice, Bob}'s {Bob, Alice}'s
shared secret — shared secret
abP baP

Security depends on choice of E.

a critical change In
tive. Auditor Is stuck
g the wrong targets!

system has many
ses that are not visible
1y particular system.

ly take control of I1SO.

pose 20 weak standards.

1l survive auditing.
anipulate selection.

1blication of weaknesses:

tack is trivial. Reject.”

12

Textbook key exchange
using standard point P
on a standard elliptic curve E:

Alice’s Bob's
secret key a secret key b

l i

Alice’s Bob's
public key public key
{Alice, Bob}'s {Bob, Alice}'s
shared secret — shared secret
abP baP

Security depends on choice of E.

13

Alic
secret

l

Alic
public
al

{Alice, |
shared
ab

This is |

change In
itor Is stuck
ng targets!

S many
re not visible
ar system.

ntrol of 1SO.

cak standards.

auditing.
selection.

of weaknesses:

vial. Reject.”

12

Textbook key exchange
using standard point P
on a standard elliptic curve E:

Alice’s Bob's
secret key a secret key b

l l

Alice's Bob's
public key public key
{Alice, Bob}'s {Bob, Alice}'s
shared secret — shared secret
abP baP

Security depends on choice of E.

13

Our partne
choice o

Alice’s
secret key a

l

Alice's
public key

aP ><
{Alice, Bob}'s
shared secret —

abP

This is not the s:

ck

ble

rds.

SSES.

12

Textbook key exchange
using standard point P
on a standard elliptic curve E:

Alice’s Bob's
secret key a secret key b

l i

Alice's Bob's
public key public key
{Alice, Bob}'s {Bob, Alice}'s
shared secret — shared secret
abP baP

Security depends on choice of E.

13

Our partner Jerry's

choice of E, P
Alice's Bob
secret key a secret k
Alice's Bob
public key public
{Alice, Bob}'s {Bob, Al
shared secret — shared ¢
abP baF

This is not the same pictu

Textbook key exchange
using standard point P
on a standard elliptic curve E:

Alice’s Bob's
secret key a secret key b

l l

Alice's Bob's
public key public key
{Alice, Bob}'s {Bob, Alice}'s
shared secret — shared secret
abP baP

Security depends on choice of E.

13

Our partner Jerry's
choice of E, P

Alice’s Bob's
secret key a secret key b

l l

Alice's Bob's
public key public key
{Alice, Bob}'s {Bob, Alice}'s
shared secret — shared secret
abP baP

This is not the same picture!

14

k key exchange
andard point P
ndard elliptic curve E:

e's Bob's
key a secret key b
e's Bob's

- key public key
D

Bob}'s {Bob, Alice}’s

secret shared secret
P baP

depends on choice of E.

13

Our partner Jerry's
choice of E, P

Alice’s Bob's
secret key a secret key b

l l

Alice's Bob's
public key public key
{Alice, Bob}'s {Bob, Alice}'s
shared secret — shared secret
abP baP

This is not the same picture!

14

One fins

2005 Br
“The ch
from wh
paramet
NOot Mot

part of t

... Verl
The [Br.

generate
manner

generate
compreh

1ange
nt P
tic curve E:

Bob's
secret key b

l

Bob's
public key

- bP

N\
{Bob, Alice}'s

shared secret
baP

n choice of E.

13

Our partner Jerry's
choice of E, P

Alice’s Bob's
secret key a secret key b

l l

Alice's Bob's
public key public key
{Alice, Bob}'s {Bob, Alice}'s
shared secret — shared secret
abP baP

This is not the same picture!

14

One final example

2005 Brainpool st.
“The choice of the
from which the [N
parameters have b
not motivated lea\
part of the securit
... Verifiably pse
The [Brainpool] ci

generated In a pse
manner using seec
generated In a sys

comprehensive wa

ice}'s
ecret

of E.

13

Our partner Jerry's

choice of E, P
Alice’s Bob's
secret key a secret key b
Alice’s Bob's
public key public key

{Alice, Bob}'s {Bob, Alice}'s
shared secret — shared secret

abP baP

This is not the same picture!

14

One final example

2005 Brainpool standard:

“The choice of the seeds

from which the [NIST] curv
parameters have been derive
not motivated leaving an es:
part of the security analysis
... Verifiably pseudo-rand
The [Brainpool| curves shall

generated In a pseudo-randc
manner using seeds that are
generated In a systematic ar
comprehensive way."

Our partner Jerry's
choice of E, P

Alice’s Bob's
secret key a secret key b

l l

Alice’s Bob's
public key public key
{Alice, Bob}'s {Bob, Alice}'s
shared secret — shared secret
abP baP

This is not the same picture!

14

One final example

2005 Brainpool standard:

“The choice of the seeds

from which the [NIST] curve
parameters have been derived Is
not motivated leaving an essential
part of the security analysis open.
... Verifiably pseudo-random.
The [Brainpool] curves shall be
nseudo-random

generated In a
manner using seeds that are
generated in a systematic and
comprehensive way."”

15

Jur partner Jerry's
choice of E, P

Bob's
secret key b

l

e's Bob's
- key public key
D)

>< bP
Bob}'s {Bob, Alice}'s

secret shared secret
P baP

not the same picture!

14

One final example

2005 Brainpool standard:

“The choice of the seeds

from which the [NIST] curve
parameters have been derived Is
not motivated leaving an essential
part of the security analysis open.
... Verifiably pseudo-random.

The [Brainpool] curves shall be

generated in a pseudo-random
manner using seeds that are
generated in a systematic and

comprehensive way.”

15

import hashlib
def hash(seed): h
seedbytes = 20

p = 0xD7C134AA264
k = GF(p); R.<x>

def secure(A,B):
if k(B).is_squa
n = EllipticCur
return (n < p a
and Integers(:

def int2str(seed,
return ’’.join(
def str2int(seed)
return Integer(

def update(seed):
return int2str(

def fullhash(seed
return str2int/(

def real2str(seed
return int2str(

nums = real2str(e
S = nums [2*seedby
while True:
A = fullhash(S)
if not (k(A)*x"™
S = update(S)
B = fullhash(S)
if not secure(A
print ’p’,hex(p
print ’A’ ,hex(A
print ’B’,hex(B
break

r Jerry's
fE,P

Bob's
secret key b

l

Bob's
public key

- bP

N\
{Bob, Alice}'s

shared secret
baP

ame picture!

14

One final example

2005 Brainpool standard:

“The choice of the seeds

from which the [NIST] curve
parameters have been derived Is
not motivated leaving an essential
part of the security analysis open.
... Verifiably pseudo-random.
The [Brainpool] curves shall be
nseudo-random

generated In a
manner using seeds that are
generated Iin a systematic and
comprehensive way.”

15

import hashlib
def hash(seed): h = hashlib.shal(); h.
seedbytes = 20

p = 0xD7C134AA264366862A18302575D1D787
k = GF(p); R.<x> = k[]

def secure(A,B):
if k(B).is_square(): return False
n = EllipticCurve([k(A),k(B)]).cardi
return (n < p and n.is_prime()
and Integers(n) (p) .multiplicative_

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%25
def str2int(seed):
return Integer(seed.encode(’hex’),16

def update(seed):
return int2str(str2int(seed) + 1,len

def fullhash(seed):
return str2int(hash(seed) + hash(upd

def real2str(seed,bytes):
return int2str(Integer(floor(RealFie

nums = real2str(exp(l)/16,7*seedbytes)
S = nums [2*seedbytes:3*seedbytes]
while True:

A = fullhash(S)

if not (k(A)*x"4+3).roots(): S = upd

S = update(S)

B = fullhash(S)

if not secure(A,B): S = update(S); c

print ’p’,hex(p) .upper ()

print ’A’ ,hex(A) .upper ()

print ’B’,hex(B) .upper ()

break

ice}'s
ecret
D)

irel

14

One final example

2005 Brainpool standard:

“The choice of the seeds

from which the [NIST] curve
parameters have been derived Is
not motivated leaving an essential
part of the security analysis open.
... Verifiably pseudo-random.
The [Brainpool] curves shall be

generated in a pseudo-random
manner using seeds that are
generated Iin a systematic and
comprehensive way."

15

import hashlib
def hash(seed): h = hashlib.shal(); h.update(seed); return
seedbytes = 20

p = 0xD7C134AA264366862A18302575D1D787BO9F075797DA8OF57TECSC
k = GF(p); R.<x> = k[]

def secure(A,B):
if k(B).is_square(): return False
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n < p and n.is_prime()
and Integers(n) (p) .multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def update(seed):
return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):
return str2int(hash(seed) + hash(update(seed))) % 27223

def real2str(seed,bytes):
return int2str(Integer(floor (RealField(8*bytes+8) (seed) *2

nums = real2str(exp(l)/16,7*seedbytes)
S = nums [2*seedbytes:3*seedbytes]
while True:
A = fullhash(S)
if not (k(A)*x"4+3).roots(): S = update(S); continue
S = update(S)
B = fullhash(S)
if not secure(A,B): S = update(S); continue
print ’p’,hex(p) .upper()
print ’A’ ,hex(A) .upper()
print ’B’,hex(B) .upper()
break

One final example

2005 Brainpool standard:

“The choice of the seeds

from which the [NIST] curve
parameters have been derived Is
not motivated leaving an essential
part of the security analysis open.
... Verifiably pseudo-random.
The [Brainpool] curves shall be
nseudo-random

generated In a
manner using seeds that are
generated Iin a systematic and
comprehensive way.”

15

import hashlib
def hash(seed): h = hashlib.shal(); h.update(seed); return h.digest()
seedbytes = 20

0xD7C134AA264366862A18302575D1D787B09F075797DASOF57EC8COFF
GF(p); R.<x> = k[]

p
k

def secure(A,B):
if k(B).is_square(): return False
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n < p and n.is_prime()
and Integers(n) (p) .multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def update(seed):
return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):
return str2int(hash(seed) + hash(update(seed))) % 27223

def real2str(seed,bytes):

16

return int2str(Integer(floor (RealField(8*bytes+8) (seed)*256 bytes)) ,bytes)

nums = real2str(exp(l)/16,7*seedbytes)
S = nums[2*seedbytes:3*seedbytes]
while True:
A = fullhash(S)
if not (k(A)*x"4+3).roots(): S = update(S); continue
S = update(S)
B = fullhash(S)
if not secure(A,B): S = update(S); continue
print ’p’,hex(p) .upper ()
print ’A’,hex(A) .upper ()
print ’B’,hex(B) .upper ()
break

| example

ainpool standard:

oice of the seeds

ich the [NIST] curve

ers have been derived is
ivated leaving an essential
he security analysis open.
fiably pseudo-random.
ainpool] curves shall be

d In a pseudo-random

using seeds that are
d In a systematic and
ensive way."

15

import hashlib
def hash(seed): h = hashlib.shal(); h.update(seed); return h.digest()
seedbytes = 20

P 0xD7C134AA264366862A18302575D1D787BO9F075797DA89F57TEC8COFF
k = GF(p); R.<x> = k[]

def secure(A,B):
if k(B).is_square(): return False
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n < p and n.is_prime()
and Integers(n) (p) .multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def update(seed):
return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):
return str2int(hash(seed) + hash(update(seed))) % 27223

def real2str(seed,bytes):

return int2str(Integer(floor (RealField(8*bytes+8) (seed)*256 bytes)) ,bytes)

nums = real2str(exp(l)/16,7*seedbytes)
S = nums [2*seedbytes:3*seedbytes]
while True:
A = fullhash(S)
if not (k(A)*x"4+3).roots(): S = update(S); continue
S = update(S)
B = fullhash(S)
if not secure(A,B): = update(S); continue
print ’p’,hex(p) .upper()
print ’A’,hex(A) .upper()
print ’B’,hex(B) .upper()
break

2015: W
the curv
from the
Previous

Output

p D7C134AA2643
A 2B98B906DC24
B 68AEC4BFE84C

andard:

> seeds

IST] curve

een derived Is
/iIng an essential
vy analysis open.
udo-random.
irves shall be
udo-random

s that are
tematic and

Y.

15

import hashlib
def hash(seed): h = hashlib.shal(); h.update(seed); return h.digest()
seedbytes = 20

0xD7C134AA264366862A18302575D1D787B09F075797DA8OF57EC8COFF
GF(p); R.<x> = k[]

p
k

def secure(A,B):
if k(B).is_square(): return False
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n < p and n.is_prime()
and Integers(n) (p) .multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def update(seed):
return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):
return str2int(hash(seed) + hash(update(seed))) % 27223

def real2str(seed,bytes):

return int2str(Integer(floor (RealField(8*bytes+8) (seed)*256 bytes)) ,bytes)

nums = real2str(exp(l)/16,7*seedbytes)
S = nums[2*seedbytes:3*seedbytes]
while True:
A = fullhash(S)
if not (k(A)*x"4+3).roots(): S = update(S); continue
S = update(S)
B = fullhash(S)
if not secure(A,B): S = update(S); continue
print ’p’,hex(p) .upper ()
print ’A’ ,hex(A) .upper ()
print ’B’,hex(B) .upper ()
break

2015: We carefull
the curve-generati
from the Brainpoc
Previous slide: 22

Output of this pro

p D7C134AA264366862A18302575D1D7
A 2B98B906DC245F2916C03A2F953EAS
B 68AEC4BFE84C659EBB8B81DC393554

v

d IS
sential
open.
om.

m

1d

15

16

import hashlib
def hash(seed): h = hashlib.shal(); h.update(seed); return h.digest()
seedbytes = 20

0xD7C134AA264366862A18302575D1D787B09F075797DASOF57EC8COFF
GF(p); R.<x> = k[]

p
k

def secure(A,B):
if k(B).is_square(): return False
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n < p and n.is_prime()
and Integers(n) (p) .multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def update(seed):
return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):
return str2int(hash(seed) + hash(update(seed))) % 27223

def real2str(seed,bytes):
return int2str(Integer(floor (RealField(8*bytes+8) (seed)*256 bytes)) ,bytes)

nums = real2str(exp(l)/16,7*seedbytes)
S = nums [2*seedbytes:3*seedbytes]
while True:
A = fullhash(S)
if not (k(A)*x"4+3).roots(): S = update(S); continue
S = update(S)
B = fullhash(S)
if not secure(A,B): S = update(S); continue
print ’p’,hex(p) .upper()
print ’A’,hex(A) .upper()
print ’B’,hex(B) .upper()

break

2015: We carefully impleme
the curve-generation proced
from the Brainpool standarc
Previous slide: 224-bit proce

Output of this procedure:

p D7C134AA264366862A18302575D1D787BO9F075797DA8SOF
A 2B98B906DC245F2916C03A2F953EA9AES65C3253E8AECAB!
B 68AEC4BFES84C659EBB8B81DC39355A2EBFA3870D98976FA!

16

import hashlib
def hash(seed): h = hashlib.shal(); h.update(seed); return h.digest()
seedbytes = 20

0xD7C134AA264366862A18302575D1D787B09F075797DA8OF57EC8COFF
GF(p); R.<x> = k[]

p
k

def secure(A,B):
if k(B).is_square(): return False
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n < p and n.is_prime()
and Integers(n) (p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def update(seed):
return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):
return str2int(hash(seed) + hash(update(seed))) % 27223

def real2str(seed,bytes):
return int2str(Integer(floor (RealField(8*bytes+8) (seed)*256 bytes)) ,bytes)

nums = real2str(exp(l)/16,7*seedbytes)
S = nums [2*seedbytes:3*seedbytes]
while True:
A = fullhash(S)
if not (k(A)*x"4+3).roots(): S = update(S); continue
S = update(S)
B = fullhash(S)
if not secure(A,B): S = update(S); continue
print ’p’,hex(p) .upper ()
print ’A’,hex(A) .upper ()
print ’B’,hex(B) .upper ()
break

2015: We carefully implemented
the curve-generation procedure
from the Brainpool standard.

Previous slide: 224-bit procedure.

Output of this procedure:

p D7C134AA264366862A18302575D1D787BO9F075797DA8OF57ECSCOFF
A 2B98B906DC245F2916C03A2F953EA9AES65C3253E8AECABFES84C659E
B 68AEC4BFE84C659EBB8B81DC39355A2EBFA3870D98976FA2F17D2D8D

17

16

import hashlib
def hash(seed): h = hashlib.shal(); h.update(seed); return h.digest()
seedbytes = 20

0xD7C134AA264366862A18302575D1D787B09F075797DA8OF57EC8COFF
GF(p); R.<x> = k[]

p
k

def secure(A,B):
if k(B).is_square(): return False
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n < p and n.is_prime()
and Integers(n) (p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def update(seed):
return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):
return str2int(hash(seed) + hash(update(seed))) % 27223

def real2str(seed,bytes):
return int2str(Integer(floor (RealField(8*bytes+8) (seed)*256 bytes)) ,bytes)

nums = real2str(exp(l)/16,7*seedbytes)
S = nums [2*seedbytes:3*seedbytes]
while True:
A = fullhash(S)
if not (k(A)*x"4+3).roots(): S = update(S); continue
S = update(S)
B = fullhash(S)
if not secure(A,B): S = update(S); continue
print ’p’,hex(p) .upper ()
print ’A’,hex(A) .upper ()
print ’B’,hex(B) .upper ()
break

17
2015: We carefully implemented

the curve-generation procedure
from the Brainpool standard.
Previous slide: 224-bit procedure.

Output of this procedure:

p D7C134AA264366862A18302575D1D787BO9F075797DA8OF57ECSCOFF
A 2B98B906DC245F2916C03A2F953EA9AES65C3253E8AECABFES84C659E
B 68AEC4BFE84C659EBB8B81DC39355A2EBFA3870D98976FA2F17D2D8D

The standard 224-bit Brainpool
curve i1s not the same curve:

p D7C134AA264366862A18302575D1D787BO9F075797DA8SIF57TECS8COFF
A 68ABE62CA9CE6C1C299803A6C1530B514E182AD8B0042A59CAD29F43
B 2580F63CCFE44138870713B1A92369E33E2135D266DBB372386C400B

16

import hashlib
def hash(seed): h = hashlib.shal(); h.update(seed); return h.digest()
seedbytes = 20

0xD7C134AA264366862A18302575D1D787B09F075797DA8OF57EC8COFF
GF(p); R.<x> = k[]

p
k

def secure(A,B):
if k(B).is_square(): return False
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n < p and n.is_prime()
and Integers(n) (p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def update(seed):
return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):
return str2int(hash(seed) + hash(update(seed))) % 27223

def real2str(seed,bytes):
return int2str(Integer(floor (RealField(8*bytes+8) (seed)*256 bytes)) ,bytes)

nums = real2str(exp(l)/16,7*seedbytes)
S = nums [2*seedbytes:3*seedbytes]
while True:
A = fullhash(S)
if not (k(A)*x"4+3).roots(): S = update(S); continue
S = update(S)
B = fullhash(S)
if not secure(A,B): S = update(S); continue
print ’p’,hex(p) .upper ()
print ’A’,hex(A) .upper ()
print ’B’,hex(B) .upper ()
break

2015: We carefully implemented
the curve-generation procedure
from the Brainpool standard.

Previous slide: 224-bit procedure.

Output of this procedure:
p D7C134AA264366862A18302575D1D787BO9F075797DA8OF57ECSCOFF

A 2B98B906DC245F2916C03A2F953EA9AES65C3253E8AECABFES84C659E
B 68AEC4BFE84C659EBB8B81DC39355A2EBFA3870D98976FA2F17D2D8D

The standard 224-bit Brainpool
curve i1s not the same curve:

p D7C134AA264366862A18302575D1D787BO9F075797DA8SIF57TECS8COFF
A 68ABE62CA9CE6C1C299803A6C1530B514E182AD8B0042A59CAD29F43
B 2580F63CCFE44138870713B1A92369E33E2135D266DBB372386C400B

Next slide: a procedure
that does generate

the standard Brainpool curve.

17

16

= hashlib.shal(); h.update(seed); return h.digest()

366862A18302575D1D787B0O9F075797DA8OF57ECSCOFF
= k[]

re(): return False

ve ([k(A) ,k(B)]).cardinality()

nd n.is_prime()

n) (p) .multiplicative_order() * 100 >= n-1)

bytes) :
[chr((seed//25671)%256) for i in reversed(range(bytes))])

seed.encode(’hex’),16)

str2int(seed) + 1,len(seed))

) :
hash(seed) + hash(update(seed))) % 27223

,bytes):
Integer (floor (RealField (8*bytes+8) (seed)*256 bytes)) ,bytes)

xp(1)/16,7*seedbytes)
tes:3*seedbytes]

4+3) .roots(): S = update(S); continue

,B): = update(S); continue
) .upper ()
) .upper ()
) .upper ()

17

2015: We carefully implemented

the curve-generation procedure

from the Brainpool standard.

Previous slide: 224-bit procedure.

Output of this procedure:

b
A

B

D7C134AA264366862A18302575D1D787BO9F075797DASIF57ECSCOFF
2B98B906DC245F2916C03A2F953EA9AES65C3253E8AEC4ABFES84C659E
68AEC4BFE84C659EBB8B81DC39355A2EBFA3870D98976FA2F17D2D8D

The standard 224-bit Brainpool
curve i1s not the same curve:

b
A

B

D7C134AA264366862A18302575D1D787BO9F075797DA89F57ECSCOFF
68ABE62CA9CE6C1C299803A6C1530B514E182AD8B0042A59CAD29F43
2580F63CCFE44138870713B1A92369E33E2135D266DBB372386C400B

Next slide: a procedure

t
t

nat does generate

ne standard Brainpool curve.

import hashlib
def hash(seed): h
seedbytes = 20

p = 0xD7C134AA264
k = GF(p); R.<x>

def secure(A,B):
n = EllipticCur
return (n < p a
and Integers(

def int2str(seed,
return ’’.join(

def str2int(seed)
return Integer(

def update(seed):
return int2str(

def fullhash(seed
return str2int/(

def real2str(seed
return int2str(

nums = real2str(e
S = nums [2*seedby
while True:
A = fullhash(S)
if not (k(A)x*x"~
while True:
S = update(S)
B = fullhash(
if not k(B).1i
if not secure(A
print ’p’,hex(p
print ’A’,hex(A
print ’B’,hex(B
break

16

update(seed); return h.digest()

BO9FO075797DA89F57EC8COFF

nality()

order() * 100 >= n-1)

6) for i in reversed(range(bytes))])

(seed))

ate(seed))) % 27223

14 (8*bytes+8) (seed) *256 " bytes)) ,bytes)

ate(S); continue

ontinue

17

2015: We carefully implemented

the curve-generation procedure

from the Brainpool standard.

Previous slide: 224-bit procedure.

Output of this procedure:

b
A

B

D7C134AA264366862A18302575D1D787BO9F075797DASOF57ECSCOFF
2B98B906DC245F2916C03A2F953EA9AES65C3253E8AECABFES84C659E
68AEC4ABFE84C659EBB8B81DC39355A2EBFA3870D98976FA2F17D2D8D

The standard 224-bit Brainpool
curve i1s not the same curve:

p
A

B

D7C134AA264366862A18302575D1D787B0O9F075797DA89F57ECSCOFF
68ASE62CA9CE6C1C299803A6C1530B514E182AD8B0042A59CAD29F43
2580F63CCFE44138870713B1A92369E33E2135D266DBB372386C400B

Next slide: a procedure

t
t

nat does generate

ne standard Brainpool curve.

import hashlib
def hash(seed): h = hashlib.shal(); h.
seedbytes = 20

0xD7C134AA264366862A18302575D1D787
GF(p); R.<x> = k[]

p
k

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardi
return (n < p and n.is_prime()
and Integers(n) (p) .multiplicative_

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%25

def str2int(seed):
return Integer(seed.encode(’hex’),16

def update(seed):
return int2str(str2int(seed) + 1,len

def fullhash(seed):
return str2int(hash(seed) + hash(upd

def real2str(seed,bytes):
return int2str(Integer(floor(RealFie

nums = real2str(exp(l)/16,7*seedbytes)
S = nums[2*seedbytes:3*seedbytes]
while True:
A = fullhash(S)
if not (k(A)*x~4+3).roots(): S = upd
while True:
S = update(S)
B = fullhash(S)
if not k(B).is_square(): break
if not secure(A,B): S = update(S); c
print ’p’,hex(p) .upper ()
print ’A’,hex(A) .upper ()
print ’B’,hex(B) .upper ()
break

16

h.digest ()

OFF

range (bytes))])

56 bytes)) ,bytes)

17
2015: We carefully implemented

the curve-generation procedure
from the Brainpool standard.
Previous slide: 224-bit procedure.

Output of this procedure:
p D7C134AA264366862A18302575D1D787BO9FO075797DA8OF57ECSCOFF

A 2B98B906DC245F2916C03A2F953EA9AES65C3253ESAECABFES84C659E
B 68AEC4BFE84C659EBB8B81DC39355A2EBFA3870D98976FA2F17D2D8D

The standard 224-bit Brainpool
curve i1s not the same curve:

p D7C134AA264366862A18302575D1D787BO9F075797DA8IF57ECS8COFF
A 68ABE62CA9CE6C1C299803A6C1530B514E182AD8B0042A59CAD29F43
B 2580F63CCFE44138870713B1A92369E33E2135D266DBB372386C400B

Next slide: a procedure
that does generate

the standard Brainpool curve.

import hashlib
def hash(seed): h = hashlib.shal(); h.update(seed); return
seedbytes = 20

p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57ECSC
k = GF(p); R.<x> = k[]

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n < p and n.is_prime()
and Integers(n) (p) .multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def update(seed):
return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):
return str2int(hash(seed) + hash(update(seed))) % 27223

def real2str(seed,bytes):
return int2str(Integer(floor (RealField(8*bytes+8) (seed) *2

nums = real2str(exp(l)/16,7*seedbytes)
S = nums[2*seedbytes:3*seedbytes]
while True:
A = fullhash(S)
if not (k(A)*x~4+3).roots(): S = update(S); continue
while True:
S = update(S)
B = fullhash(S)
if not k(B).is_square(): break
if not secure(A,B): S = update(S); continue
print ’p’,hex(p) .upper()
print ’A’,hex(A) .upper()
print ’B’,hex(B) .upper()
break

17
2015: We carefully implemented

the curve-generation procedure
from the Brainpool standard.
Previous slide: 224-bit procedure.

Output of this procedure:
p D7C134AA264366862A18302575D1D787BO9F075797DA8OF57TECSCOFF

A 2B98B906DC245F2916C03A2F953EA9AES65C3253E8AECABFES84C659E
B 68AEC4BFE84C659EBB8B81DC39355A2EBFA3870D98976FA2F17D2D8D

The standard 224-bit Brainpool
curve i1s not the same curve:

p D7C134AA264366862A18302575D1D787BO9F075797DA8SIF57ECS8COFF
A 68ABE62CA9CE6C1C299803A6C1530B514E182AD8B0042A59CAD29F43
B 2580F63CCFE44138870713B1A92369E33E2135D266DBB372386C400B

Next slide: a procedure
that does generate

the standard Brainpool curve.

18

import hashlib
def hash(seed): h = hashlib.shal(); h.update(seed); return h.digest()
seedbytes = 20

0xD7C134AA264366862A18302575D1D787B09F075797DASOF57EC8COFF
GF(p); R.<x> = k[]

p
k

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n < p and n.is_prime()
and Integers(n) (p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def update(seed):
return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):
return str2int(hash(seed) + hash(update(seed))) % 27223

def real2str(seed,bytes):
return int2str(Integer(floor(RealField(8*bytes+8) (seed)*256 bytes)) ,bytes)

nums = real2str(exp(l)/16,7*seedbytes)
S = nums[2*seedbytes:3*seedbytes]
while True:
A = fullhash(S)
if not (k(A)*x~4+3).roots(): S = update(S); continue
while True:
S = update(S)
B = fullhash(S)
if not k(B).is_square(): break
if not secure(A,B): S = update(S); continue
print ’p’,hex(p) .upper ()
print ’A’,hex(A) .upper ()
print ’B’,hex(B) .upper ()
break

/e carefully implemented
e-generation procedure
» Brainpool standard.

slide: 224-bit procedure.

of this procedure:

66862A18302575D1D787BO9FO075797DA8OF57ECSCOFF
bF2916C03A2F953EA9AES65C3253ESAECABFES4C659E
659EBB8B81DC39355A2EBFA3870D98976FA2F17D2D8D

\dard 224-bit Brainpool
not the same curve:

66862A18302575D1D787BO9F075797DASOF57ECSCOFF
6C1C299803A6C1530B514E182AD8B0042A59CAD29F43
4138870713B1A92369E33E2135D266DBB372386C400B

le: a procedure
3S generate
dard Brainpool curve.

17

18

import hashlib
def hash(seed): h = hashlib.shal(); h.update(seed); return h.digest()
seedbytes = 20

P 0xD7C134AA264366862A18302575D1D787BO9F075797DA89F57TEC8COFF
k = GF(p); R.<x> = k[]

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n < p and n.is_prime()
and Integers(n) (p) .multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def update(seed):
return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):
return str2int(hash(seed) + hash(update(seed))) % 27223

def real2str(seed,bytes):
return int2str(Integer(floor(RealField(8*bytes+8) (seed)*256 bytes)) ,bytes)

nums = real2str(exp(l)/16,7*seedbytes)
S = nums[2*seedbytes:3*seedbytes]
while True:
A = fullhash(S)
if not (k(A)*x~4+3).roots(): S = update(S); continue
while True:
S = update(S)
B = fullhash(S)
if not k(B).is_square(): break
if not secure(A,B): S = update(S); continue
print ’p’,hex(p) .upper()
print ’A’,hex(A) .upper()
print ’B’,hex(B) .upper()
break

Did Brai
publicat
Did they

Brainpo
advertise
‘compre
transpar
say the :

vy iImplemented
on procedure
)| standard.

A-bit procedure.

cedure:

'87BO9F075797DA8OF57TECSCOFF
AES565C3253ESAECABFES84C659E
1 2EBFA3870D98976FA2F17D2D8D

bit Brainpool
ame curve:

'87BO9FO075797DA8OF57ECSCOFF
514E182AD8B0042A59CAD29F43
E33E2135D266DBB372386C400B

edure
e
\pool curve.

17

18

import hashlib
def hash(seed): h = hashlib.shal(); h.update(seed); return h.digest()
seedbytes = 20

0xD7C134AA264366862A18302575D1D787B09F075797DA8OF57EC8COFF
GF(p); R.<x> = k[]

p
k

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n < p and n.is_prime()
and Integers(n) (p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def update(seed):
return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):
return str2int(hash(seed) + hash(update(seed))) % 27223

def real2str(seed,bytes):
return int2str(Integer(floor(RealField(8*bytes+8) (seed)*256 bytes)) ,bytes)

nums = real2str(exp(l)/16,7*seedbytes)
S = nums[2*seedbytes:3*seedbytes]
while True:
A = fullhash(S)
if not (k(A)*x~4+3).roots(): S = update(S); continue
while True:
S = update(S)
B = fullhash(S)
if not k(B).is_square(): break
if not secure(A,B): S = update(S); continue
print ’p’,hex(p) .upper ()
print ’A’,hex(A) .upper ()
print ’B’,hex(B) .upper ()
break

Did Brainpool che
publication? After
Did they know bef

Brainpool procedu
advertised as "sys
“comprehensive’,
transparent’, etc.
say the same for £

nted

LIre

dure.

57EC8COFF
FES84C659E
2F17D2D8D

)OO|
e:
>TECBCOFF

9CAD29F43
2386C400B

17

import hashlib
def hash(seed): h = hashlib.shal(); h.update(seed); return h.digest()
seedbytes = 20

P 0xD7C134AA264366862A18302575D1D787BO9F075797DA89F57EC8COFF
k = GF(p); R.<x> = k[]

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n < p and n.is_prime()
and Integers(n) (p) .multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def update(seed):
return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):
return str2int(hash(seed) + hash(update(seed))) % 27223

def real2str(seed,bytes):

return int2str(Integer(floor (RealField(8*bytes+8) (seed)*256 bytes)) ,bytes)

nums = real2str(exp(l)/16,7*seedbytes)
S = nums[2*seedbytes:3*seedbytes]
while True:
A = fullhash(S)
if not (k(A)*x~4+3).roots(): S = update(S); continue
while True:
S = update(S)
B = fullhash(S)
if not k(B).is_square(): break
if not secure(A,B): S = update(S); continue
print ’p’,hex(p) .upper()
print ’A’,hex(A) .upper()
print ’B’,hex(B) .upper()
break

Did Brainpool check before

publication? After publicati
Did they know before 20157

Brainpool procedure is
advertised as “systematic’,
“comprehensive”, “complete
transparent”, etc. Surely we
say the same for both proce

18

import hashlib
def hash(seed): h = hashlib.shal(); h.update(seed); return h.digest()
seedbytes = 20

0xD7C134AA264366862A18302575D1D787B09F075797DA8OF57EC8COFF
GF(p); R.<x> = k[]

p
k

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n < p and n.is_prime()
and Integers(n) (p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def update(seed):
return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):
return str2int(hash(seed) + hash(update(seed))) % 27223

def real2str(seed,bytes):
return int2str(Integer(floor(RealField(8*bytes+8) (seed)*256 bytes)) ,bytes)

nums = real2str(exp(l)/16,7*seedbytes)
S = nums[2*seedbytes:3*seedbytes]
while True:
A = fullhash(S)
if not (k(A)*x~4+3).roots(): S = update(S); continue
while True:
S = update(S)
B = fullhash(S)
if not k(B).is_square(): break
if not secure(A,B): S = update(S); continue
print ’p’,hex(p) .upper ()
print ’A’ ,hex(A) .upper ()

print ’B’,hex(B) .upper ()
break

19
Did Brainpool check before

publication? After publication?
Did they know before 20157

Brainpool procedure is

advertised as “systematic’,
“comprehensive”, “completely
transparent”, etc. Surely we can
say the same for both procedures.

18

import hashlib
def hash(seed): h = hashlib.shal(); h.update(seed); return h.digest()
seedbytes = 20

0xD7C134AA264366862A18302575D1D787B09F075797DA8OF57EC8COFF
GF(p); R.<x> = k[]

p
k

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n < p and n.is_prime()
and Integers(n) (p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def update(seed):
return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):
return str2int(hash(seed) + hash(update(seed))) % 27223

def real2str(seed,bytes):
return int2str(Integer(floor(RealField(8*bytes+8) (seed)*256 bytes)) ,bytes)

nums = real2str(exp(l)/16,7*seedbytes)
S = nums[2*seedbytes:3*seedbytes]
while True:
A = fullhash(S)
if not (k(A)*x~4+3).roots(): S = update(S); continue
while True:
S = update(S)
B = fullhash(S)
if not k(B).is_square(): break
if not secure(A,B): S = update(S); continue
print ’p’,hex(p) .upper ()
print ’A’ ,hex(A) .upper ()
print ’B’,hex(B) .upper ()
break

19
Did Brainpool check before

publication? After publication?
Did they know before 20157

Brainpool procedure is

advertised as “systematic’,
“comprehensive”, “completely
transparent”, etc. Surely we can
say the same for both procedures.

Can quietly manipulate choice
to take the weaker procedure.

18

import hashlib
def hash(seed): h = hashlib.shal(); h.update(seed); return h.digest()
seedbytes = 20

0xD7C134AA264366862A18302575D1D787B09F075797DA8OF57EC8COFF
GF(p); R.<x> = k[]

p
k

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n < p and n.is_prime()
and Integers(n) (p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def update(seed):
return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):
return str2int(hash(seed) + hash(update(seed))) % 27223

def real2str(seed,bytes):
return int2str(Integer(floor(RealField(8*bytes+8) (seed)*256 bytes)) ,bytes)

nums = real2str(exp(l)/16,7*seedbytes)
S = nums[2*seedbytes:3*seedbytes]
while True:
A = fullhash(S)
if not (k(A)*x~4+3).roots(): S = update(S); continue
while True:
S = update(S)
B = fullhash(S)
if not k(B).is_square(): break
if not secure(A,B): S = update(S); continue
print ’p’,hex(p) .upper ()
print ’A’ ,hex(A) .upper ()
print ’B’,hex(B) .upper ()
break

Did Brainpool check before

publication? After publication?
Did they know before 20157

Brainpool procedure is

advertised as “systematic’,
“comprehensive”, “completely
transparent”, etc. Surely we can
say the same for both procedures.

Can quietly manipulate choice
to take the weaker procedure.

Interesting Brainpool quote: “lt
Is envisioned to provide additional
curves on a regular basis.”

19

18

= hashlib.shal(); h.update(seed); return h.digest()

366862A18302575D1D787B0O9F075797DA8OF57ECSCOFF
= k[]

ve ([k(A) ,k(B)]).cardinality()
nd n.is_prime()
n) (p) .multiplicative_order() * 100 >= n-1)

bytes) :
[chr((seed//25671)%256) for i in reversed(range(bytes))])

seed.encode(’hex’) ,16)

str2int(seed) + 1,len(seed))

) :
hash(seed) + hash(update(seed))) % 27223

,bytes):
Integer (floor (RealField (8*bytes+8) (seed)*256 " bytes)) ,bytes)

xp(1)/16,7*seedbytes)
tes:3*seedbytes]

4+3) .roots(): S = update(S); continue

S)

s_square(): break

,B): S = update(S); continue
) .upper ()

) .upper ()

) .upper ()

Did Brainpool check before

publication? After publication?
Did they know before 20157

Brainpool procedure is

advertised as “systematic’,
“comprehensive”, “completely
transparent”, etc. Surely we can
say the same for both procedures.

Can quietly manipulate choice
to take the weaker procedure.

Interesting Brainpool quote: “lt
Is envisioned to provide additional
curves on a regular basis.”

19

We mad
using st:

To avoic
complic:
hash ous
from SE

maximul

Also upg

maximul

Brainpo
and arct
uses sin(
We also
pattern

18

update (seed); return h.digest()

BO9FO075797DA89F57EC8COFF

nality()

order() * 100 >= n-1)

6) for i in reversed(range(bytes))])

)

(seed))

ate(seed))) % 27223

1d (8*bytes+8) (seed) *256 " bytes)) ,bytes)

ate(S); continue

ontinue

Did Brainpool check before

publication? After publication?
Did they know before 20157

Brainpool procedure is

advertised as “systematic’,
“comprehensive”, “completely
transparent”, etc. Surely we can
say the same for both procedures.

Can quietly manipulate choice
to take the weaker procedure.

Interesting Brainpool quote: “lt
Is envisioned to provide additional
curves on a regular basis.”

19

We made a new 2
using standard NI

To avoid Brainpoc
complications of c
hash outputs: We
from SHA-1 to st:
maximum-security
Also upgraded to

maximum twist se

Brainpool uses ex|
and arctan(1l) = 5
uses sin(1), so we
We also used muc
pattern of searchir

18

h.digest ()

OFF

range (bytes))])

56 "bytes)) ,bytes)

Did Brainpool check before
publication? After publication?
Did they know before 20157

Brainpool procedure is
advertised as “systematic’,
“comprehensive’, “completely
transparent”, etc. Surely we can

say the same for both procedures.

Can quietly manipulate choice
to take the weaker procedure.

Interesting Brainpool quote: “lt
Is envisioned to provide additional
curves on a regular basis.”

19

We made a new 224-bit cur
using standard NIST P-224

To avoid Brainpool's

complications of concatenat
hash outputs: We upgraded
from SHA-1 to state-of-the-
maximum-security SHA3-51

Also upgraded to requiring

maximum twist security.

Brainpool uses exp(1l) = e

and arctan(1) = 7 /4, and |
uses sin(1), so we used cos(
We also used much simpler
pattern of searching for seec

Did Brainpool check before

publication? After publication?
Did they know before 20157

Brainpool procedure is

advertised as “systematic’,
“comprehensive”, “completely
transparent”, etc. Surely we can
say the same for both procedures.

Can quietly manipulate choice
to take the weaker procedure.

Interesting Brainpool quote: “lt
Is envisioned to provide additional
curves on a regular basis.”

19

We made a new 224-bit curve
using standard NIST P-224 prime.

To avoid Brainpool's
complications of concatenating
hash outputs: We upgraded
from SHA-1 to state-of-the-art
maximum-security SHA3-512.

Also upgraded to requiring

maximum twist security.

Brainpool uses exp(1) = e

and arctan(1) = 7 /4, and MD5
uses sin(1), so we used cos(1).
We also used much simpler
pattern of searching for seeds.

npool check before

on? After publication?
 know before 20157

ol procedure is

d as “systematic’,
hensive’, “completely
ent”, etc. Surely we can
same for both procedures.

tly manipulate choice
he weaker procedure.

ng Brainpool quote: “lt
oned to provide additional
n a regular basis.”

19

We made a new 224-bit curve

using standard NIST P-224 prime.

To avoid Brainpool's
complications of concatenating
hash outputs: We upgraded
from SHA-1 to state-of-the-art
maximum-security SHA3-512.

Also upgraded to requiring

maximum twist security.

Brainpool uses exp(1l) = e

and arctan(1) = 7 /4, and MD5
uses sin(1), so we used cos(1).
We also used much simpler
pattern of searching for seeds.

20

import simplesha3
hash = simplesha3

p = 27224 - 2796
k = GF(p)
seedbytes = 20

def secure(A,B):
n = EllipticCur
return (n.is_pr
and Integers(
and Integers(

def int2str(seed,
return ’’.join(

def str2int(seed)
return Integer(

def complement(se
return ’’.join(

def real2str(seed
return int2str(

sizeofint = 4
nums = real2str(c
for counter in xr
S = int2str(cou
T = complement(
A = str2int(has:
B = str2int(has:
if secure(A,B):
print ’p’,hex
print A’ ,hex
print ’B’,hex
break

ck before
- publication?
ore 20157

re is

fematic’
“completely
Surely we can
oth procedures.

ulate choice
- procedure.

ool quote: “lt
ovide additional
r basis.”

19

We made a new 224-bit curve

using standard NIST P-224 prime.

To avoid Brainpool's
complications of concatenating
hash outputs: We upgraded
from SHA-1 to state-of-the-art
maximum-security SHA3-512.

Also upgraded to requiring

maximum twist security.

Brainpool uses exp(1) = e

and arctan(1) = 7 /4, and MD5
uses sin(1), so we used cos(1).
We also used much simpler
pattern of searching for seeds.

20

import simplesha3
hash = simplesha3.sha3512

p =27224 - 2796 + 1
k = GF(p)
seedbytes = 20

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardi
return (n.is_prime() and (2*p+2-n).i
and Integers(n) (p) .multiplicative_
and Integers(2*p+2-n) (p) .multiplic

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%25

def str2int(seed):
return Integer(seed.encode(’hex’),16

def complement(seed):
return ’’.join([chr(255-ord(s)) for

def real2str(seed,bytes):
return int2str(Integer (RealField(8%Db

sizeofint = 4
nums = real2str(cos(1l),seedbytes - siz
for counter in xrange(0,2567sizeofint)
S = int2str(counter,sizeofint) + num
T = complement(S)
A = str2int(hash(S))
B = str2int(hash(T))
if secure(A,B):
print ’p’,hex(p) .upper ()
print ’A’,hex(A) .upper ()
print ’B’,hex(B) .upper ()
break

n’?

|y
' can
dures.

ce

“It
tional

19

We made a new 224-bit curve

using standard NIST P-224 prime.

To avoid Brainpool's
complications of concatenating
hash outputs: We upgraded
from SHA-1 to state-of-the-art
maximum-security SHA3-512.

Also upgraded to requiring

maximum twist security.

Brainpool uses exp(1l) = e

and arctan(1) = 7 /4, and MD5
uses sin(1), so we used cos(1).
We also used much simpler
pattern of searching for seeds.

20

import simplesha3
hash = simplesha3.sha3512

p=27224 - 2796 + 1
k = GF(p)
seedbytes = 20

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n.is_prime() and (2*p+2-n).is_prime()
and Integers(n) (p) .multiplicative_order() * 100 >= n-1
and Integers(2*p+2-n) (p) .multiplicative_order() * 100 >

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def complement(seed):
return ’’.join([chr(255-ord(s)) for s in seed])

def real2str(seed,bytes):
return int2str(Integer (RealField(8*bytes) (seed)*256 bytes

sizeofint = 4
nums = real2str(cos(l),seedbytes - sizeofint)
for counter in xrange(0,2567sizeofint):
S = int2str(counter,sizeofint) + nums
T = complement (S)
A = str2int(hash(S))
B = str2int(hash(T))
if secure(A,B):
print ’p’,hex(p) .upper ()
print ’A’ ,hex(A) .upper ()
print ’B’,hex(B) .upper ()
break

We made a new 224-bit curve

using standard NIST P-224 prime.

To avoid Brainpool's
complications of concatenating
hash outputs: We upgraded
from SHA-1 to state-of-the-art
maximum-security SHA3-512.

Also upgraded to requiring

maximum twist security.

Brainpool uses exp(1) = e

and arctan(1) = 7w /4, and MD5
uses sin(1), so we used cos(1).
We also used much simpler
pattern of searching for seeds.

20

import simplesha3
hash = simplesha3.sha3512

p =27224 - 2796 + 1
k = GF(p)
seedbytes = 20

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n.is_prime() and (2*p+2-n).is_prime()
and Integers(n) (p) .multiplicative_order() * 100 >= n-1
and Integers(2xp+2-n) (p) .multiplicative_order() * 100 >= 2xp+2-n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def complement(seed):
return ’’.join([chr(255-ord(s)) for s in seed])

def real2str(seed,bytes):
return int2str(Integer (RealField(8*bytes) (seed)*256"bytes) ,bytes)

sizeofint = 4
nums = real2str(cos(1l),seedbytes - sizeofint)
for counter in xrange(0,256"sizeofint):
S = int2str(counter,sizeofint) + nums
T = complement (S)
A = str2int(hash(S))
B = str2int(hash(T))
if secure(A,B):
print ’p’,hex(p) .upper ()
print ’A’,hex(A) .upper ()
print ’B’,hex(B) .upper ()
break

21

e a new 224-bit curve

andard NIST P-224 prime.

| Brainpool's

itions of concatenating
puts: We upgraded
A-1 to state-of-the-art

m-security SHA3-512.
rraded to requiring

m twist security.

ol uses exp(l) = e
an(l) = w/4, and MD5
1), so we used cos(1).

used much simpler
of searching for seeds.

20

import simplesha3
hash = simplesha3.sha3512

p=27224 - 2796 + 1
k = GF(p)
seedbytes = 20

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n.is_prime() and (2*p+2-n).is_prime()
and Integers(n) (p) .multiplicative_order() * 100 >= n-1
and Integers(2*p+2-n) (p) .multiplicative_order() * 100 >= 2%p+2-n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def complement(seed):
return ’’.join([chr(255-ord(s)) for s in seed])

def real2str(seed,bytes):
return int2str(Integer(RealField(8*bytes) (seed)*256"bytes) ,bytes)

sizeofint = 4
nums = real2str(cos(1l),seedbytes - sizeofint)
for counter in xrange(0,2567sizeofint):

S = int2str(counter,sizeofint) + nums

T = complement (S)
A = str2int(hash(S))
B = str2int(hash(T))

if secure(A,B):
print ’p’,hex(p) .upper ()
print ’A’ ,hex(A) .upper ()
print ’B’,hex(B) .upper ()
break

21

Output:

24-bit curve

>T P-224 prime.

|'s
oncatenating
upgraded

te-of-the-art
SHA3-512.
requiring

curity.

(1) = e

/4, and MD5
used cos(1).
h simpler

g for seeds.

20

import simplesha3
hash = simplesha3.sha3512

p =27224 - 2796 + 1
k = GF(p)
seedbytes = 20

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n.is_prime() and (2*p+2-n).is_prime()
and Integers(n) (p) .multiplicative_order() * 100 >= n-1
and Integers(2xp+2-n) (p) .multiplicative_order() * 100 >= 2xp+2-n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def complement(seed):
return ’’.join([chr(255-ord(s)) for s in seed])

def real2str(seed,bytes):
return int2str(Integer(RealField(8*bytes) (seed)*256"bytes) ,bytes)

sizeofint = 4
nums = real2str(cos(1l),seedbytes - sizeofint)
for counter in xrange(0,256"sizeofint):

S = int2str(counter,sizeofint) + nums

T = complement(S)
A = str2int(hash(S))
B = str2int(hash(T))

if secure(A,B):
print ’p’,hex(p) .upper ()
print ’A’,hex(A) .upper ()
print ’B’,hex(B) .upper ()
break

21

Output: 7144Ba12cESA

VE

prime.

D5
1).

|s.

20

import simplesha3
hash = simplesha3.sha3512

p=27224 - 2796 + 1
k = GF(p)
seedbytes = 20

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n.is_prime() and (2*p+2-n).is_prime()
and Integers(n) (p) .multiplicative_order() * 100 >= n-1
and Integers(2*p+2-n) (p) .multiplicative_order() * 100 >= 2%p+2-n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def complement(seed):
return ’’.join([chr(255-ord(s)) for s in seed])

def real2str(seed,bytes):
return int2str(Integer(RealField(8*bytes) (seed)*256"bytes) ,bytes)

sizeofint = 4
nums = real2str(cos(1l),seedbytes - sizeofint)
for counter in xrange(0,2567sizeofint):
S = int2str(counter,sizeofint) + nums
T = complement (S)
A = str2int(hash(S))
B = str2int(hash(T))
if secure(A,B):
print ’p’,hex(p) .upper ()
print ’A’ ,hex(A) .upper ()
print ’B’,hex(B) .upper ()
break

21

Output: 7144BA12CE8A0C3BEFAOS3EDB

import simplesha3
hash = simplesha3.sha3512

p =27224 - 2796 + 1
k = GF(p)
seedbytes = 20

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n.is_prime() and (2*p+2-n).is_prime()
and Integers(n) (p) .multiplicative_order() * 100 >= n-1
and Integers(2xp+2-n) (p) .multiplicative_order() * 100 >= 2xp+2-n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def complement(seed):
return ’’.join([chr(255-ord(s)) for s in seed])

def real2str(seed,bytes):
return int2str(Integer(RealField(8*bytes) (seed)*256 bytes) ,bytes)

sizeofint = 4
nums = real2str(cos(1l),seedbytes - sizeofint)
for counter in xrange(0,256"sizeofint):

S = int2str(counter,sizeofint) + nums

T = complement(S)
A = str2int(hash(S))
B = str2int(hash(T))

if secure(A,B):
print ’p’,hex(p) .upper ()
print ’A’,hex(A) .upper ()
print ’B’,hex(B) .upper ()
break

21

Output: 7144BA12CES8AOC3BEFAOS3EDBADASS . . .

22

import simplesha3
hash = simplesha3.sha3512

p =27224 - 2796 + 1
k = GF(p)
seedbytes = 20

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n.is_prime() and (2*p+2-n).is_prime()
and Integers(n) (p) .multiplicative_order() * 100 >= n-1
and Integers(2xp+2-n) (p) .multiplicative_order() * 100 >= 2xp+2-n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def complement(seed):
return ’’.join([chr(255-ord(s)) for s in seed])

def real2str(seed,bytes):
return int2str(Integer(RealField(8*bytes) (seed)*256"bytes) ,bytes)

sizeofint = 4
nums = real2str(cos(1l),seedbytes - sizeofint)
for counter in xrange(0,256"sizeofint):

S = int2str(counter,sizeofint) + nums

T = complement(S)
A = str2int(hash(S))
B = str2int(hash(T))

if secure(A,B):
print ’p’,hex(p) .upper ()
print ’A’,hex(A) .upper ()
print ’B’,hex(B) .upper ()
break

21

22
Output: 7144BA12CES8AOC3BEFAOS3EDBADASS . . .

We actually generated >1000000
curves for this prime, each having
a Brainpool-like explanation,

even without complicating

hashing, seed search, etc.; e.g.,
BADA55-VPR2-224 uses exp(1).

import simplesha3
hash = simplesha3.sha3512

p =27224 - 2796 + 1
k = GF(p)
seedbytes = 20

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n.is_prime() and (2*p+2-n).is_prime()
and Integers(n) (p) .multiplicative_order() * 100 >= n-1
and Integers(2xp+2-n) (p) .multiplicative_order() * 100 >= 2xp+2-n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(range(bytes))])
def str2int(seed):
return Integer(seed.encode(’hex’),16)

def complement(seed):
return ’’.join([chr(255-ord(s)) for s in seed])

def real2str(seed,bytes):
return int2str(Integer(RealField(8*bytes) (seed)*256"bytes) ,bytes)

sizeofint = 4
nums = real2str(cos(1l),seedbytes - sizeofint)
for counter in xrange(0,256"sizeofint):
S = int2str(counter,sizeofint) + nums
T = complement(S)
A = str2int(hash(S))
B = str2int(hash(T))
if secure(A,B):
print ’p’,hex(p) .upper ()
print ’A’,hex(A) .upper ()
print ’B’,hex(B) .upper ()
break

21

22
Output: 7144BA12CES8AOC3BEFAOS3EDBADASS . . .

We actually generated >1000000
curves for this prime, each having
a Brainpool-like explanation,

even without complicating

hashing, seed search, etc.; e.g.,
BADA55-VPR2-224 uses exp(1).

See badabb.cr.yp.to for
much more: full paper; scripts;

detailed Brainpool analysis;

manipulating “minimal” primes
and curves (Microsoft “NUMS™);
manipulating security criteria.

