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Dual EC flunks well-established
definition of PRNG security.

Are all applications broken?
Obviously not! Standardize!

2007 Shumow—Ferguson: Dual
EC has a back door. Would have
been easy to build @ with the key.

2007 Schneier: Never use Dual

EC. "Both NIST and the NSA
have some explaining to do.”
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NSA’'s Dickie George, 2014: Gee,
Dual EC is really hard to exploit!
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2005 Brainpool standard:
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The [Brainpool] curves shall be
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import hashlib
def hash(seed): h
seedbytes = 20

p = 0xD7C134AA264
k = GF(p); R.<x>

def secure(A,B):
if k(B).is_squa
n = EllipticCur
return (n < p a
and Integers(:

def int2str(seed,
return ’’.join(
def str2int(seed)
return Integer(

def update(seed):
return int2str(

def fullhash(seed
return str2int/(

def real2str(seed
return int2str(

nums = real2str(e
S = nums [2*seedby
while True:
A = fullhash(S)
if not (k(A)*x"™
S = update(S)
B = fullhash(S)
if not secure(A
print ’p’,hex(p
print ’A’ ,hex(A
print ’B’,hex(B
break
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import hashlib
def hash(seed): h = hashlib.shal(); h.
seedbytes = 20

p = 0xD7C134AA264366862A18302575D1D787
k = GF(p); R.<x> = k[]

def secure(A,B):
if k(B).is_square(): return False
n = EllipticCurve([k(A),k(B)]).cardi
return (n < p and n.is_prime()
and Integers(n) (p) .multiplicative_

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%25
def str2int(seed):
return Integer(seed.encode(’hex’),16

def update(seed):
return int2str(str2int(seed) + 1,len

def fullhash(seed):
return str2int(hash(seed) + hash(upd

def real2str(seed,bytes):
return int2str(Integer(floor(RealFie

nums = real2str(exp(l)/16,7*seedbytes)
S = nums [2*seedbytes:3*seedbytes]
while True:

A = fullhash(S)

if not (k(A)*x"4+3).roots(): S = upd

S = update(S)

B = fullhash(S)

if not secure(A,B): S = update(S); c

print ’p’,hex(p) .upper ()

print ’A’ ,hex(A) .upper ()

print ’B’,hex(B) .upper ()

break
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import hashlib
def hash(seed): h = hashlib.shal(); h.update(seed); return
seedbytes = 20

p = 0xD7C134AA264366862A18302575D1D787BO9F075797DA8OF57TECSC
k = GF(p); R.<x> = k[]

def secure(A,B):
if k(B).is_square(): return False
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n < p and n.is_prime()
and Integers(n) (p) .multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def update(seed):
return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):
return str2int(hash(seed) + hash(update(seed))) % 27223

def real2str(seed,bytes):
return int2str(Integer(floor (RealField(8*bytes+8) (seed) *2

nums = real2str(exp(l)/16,7*seedbytes)
S = nums [2*seedbytes:3*seedbytes]
while True:
A = fullhash(S)
if not (k(A)*x"4+3).roots(): S = update(S); continue
S = update(S)
B = fullhash(S)
if not secure(A,B): S = update(S); continue
print ’p’,hex(p) .upper()
print ’A’ ,hex(A) .upper()
print ’B’,hex(B) .upper()
break
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import hashlib
def hash(seed): h = hashlib.shal(); h.update(seed); return h.digest()
seedbytes = 20

0xD7C134AA264366862A18302575D1D787B09F075797DASOF57EC8COFF
GF(p); R.<x> = k[]

p
k

def secure(A,B):
if k(B).is_square(): return False
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n < p and n.is_prime()
and Integers(n) (p) .multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def update(seed):
return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):
return str2int(hash(seed) + hash(update(seed))) % 27223

def real2str(seed,bytes):

16

return int2str(Integer(floor (RealField(8*bytes+8) (seed)*256 bytes)) ,bytes)

nums = real2str(exp(l)/16,7*seedbytes)
S = nums[2*seedbytes:3*seedbytes]
while True:
A = fullhash(S)
if not (k(A)*x"4+3).roots(): S = update(S); continue
S = update(S)
B = fullhash(S)
if not secure(A,B): S = update(S); continue
print ’p’,hex(p) .upper ()
print ’A’,hex(A) .upper ()
print ’B’,hex(B) .upper ()
break
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import hashlib
def hash(seed): h = hashlib.shal(); h.update(seed); return h.digest()
seedbytes = 20

P 0xD7C134AA264366862A18302575D1D787BO9F075797DA89F57TEC8COFF
k = GF(p); R.<x> = k[]

def secure(A,B):
if k(B).is_square(): return False
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n < p and n.is_prime()
and Integers(n) (p) .multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def update(seed):
return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):
return str2int(hash(seed) + hash(update(seed))) % 27223

def real2str(seed,bytes):

return int2str(Integer(floor (RealField(8*bytes+8) (seed)*256 bytes)) ,bytes)

nums = real2str(exp(l)/16,7*seedbytes)
S = nums [2*seedbytes:3*seedbytes]
while True:
A = fullhash(S)
if not (k(A)*x"4+3).roots(): S = update(S); continue
S = update(S)
B = fullhash(S)
if not secure(A,B): = update(S); continue
print ’p’,hex(p) .upper()
print ’A’,hex(A) .upper()
print ’B’,hex(B) .upper()
break
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import hashlib
def hash(seed): h = hashlib.shal(); h.update(seed); return h.digest()
seedbytes = 20

0xD7C134AA264366862A18302575D1D787B09F075797DA8OF57EC8COFF
GF(p); R.<x> = k[]

p
k

def secure(A,B):
if k(B).is_square(): return False
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n < p and n.is_prime()
and Integers(n) (p) .multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def update(seed):
return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):
return str2int(hash(seed) + hash(update(seed))) % 27223

def real2str(seed,bytes):

return int2str(Integer(floor (RealField(8*bytes+8) (seed)*256 bytes)) ,bytes)

nums = real2str(exp(l)/16,7*seedbytes)
S = nums[2*seedbytes:3*seedbytes]
while True:
A = fullhash(S)
if not (k(A)*x"4+3).roots(): S = update(S); continue
S = update(S)
B = fullhash(S)
if not secure(A,B): S = update(S); continue
print ’p’,hex(p) .upper ()
print ’A’ ,hex(A) .upper ()
print ’B’,hex(B) .upper ()
break
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import hashlib
def hash(seed): h = hashlib.shal(); h.update(seed); return h.digest()
seedbytes = 20

0xD7C134AA264366862A18302575D1D787B09F075797DASOF57EC8COFF
GF(p); R.<x> = k[]

p
k

def secure(A,B):
if k(B).is_square(): return False
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n < p and n.is_prime()
and Integers(n) (p) .multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def update(seed):
return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):
return str2int(hash(seed) + hash(update(seed))) % 27223

def real2str(seed,bytes):
return int2str(Integer(floor (RealField(8*bytes+8) (seed)*256 bytes)) ,bytes)

nums = real2str(exp(l)/16,7*seedbytes)
S = nums [2*seedbytes:3*seedbytes]
while True:
A = fullhash(S)
if not (k(A)*x"4+3).roots(): S = update(S); continue
S = update(S)
B = fullhash(S)
if not secure(A,B): S = update(S); continue
print ’p’,hex(p) .upper()
print ’A’,hex(A) .upper()
print ’B’,hex(B) .upper()

break

2015: We carefully impleme
the curve-generation proced
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Output of this procedure:

p D7C134AA264366862A18302575D1D787BO9F075797DA8SOF
A 2B98B906DC245F2916C03A2F953EA9AES65C3253E8AECAB!
B 68AEC4BFES84C659EBB8B81DC39355A2EBFA3870D98976FA!
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import hashlib
def hash(seed): h = hashlib.shal(); h.update(seed); return h.digest()
seedbytes = 20

0xD7C134AA264366862A18302575D1D787B09F075797DA8OF57EC8COFF
GF(p); R.<x> = k[]

p
k

def secure(A,B):
if k(B).is_square(): return False
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n < p and n.is_prime()
and Integers(n) (p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def update(seed):
return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):
return str2int(hash(seed) + hash(update(seed))) % 27223

def real2str(seed,bytes):
return int2str(Integer(floor (RealField(8*bytes+8) (seed)*256 bytes)) ,bytes)

nums = real2str(exp(l)/16,7*seedbytes)
S = nums [2*seedbytes:3*seedbytes]
while True:
A = fullhash(S)
if not (k(A)*x"4+3).roots(): S = update(S); continue
S = update(S)
B = fullhash(S)
if not secure(A,B): S = update(S); continue
print ’p’,hex(p) .upper ()
print ’A’,hex(A) .upper ()
print ’B’,hex(B) .upper ()
break

2015: We carefully implemented
the curve-generation procedure
from the Brainpool standard.

Previous slide: 224-bit procedure.

Output of this procedure:

p D7C134AA264366862A18302575D1D787BO9F075797DA8OF57ECSCOFF
A 2B98B906DC245F2916C03A2F953EA9AES65C3253E8AECABFES84C659E
B 68AEC4BFE84C659EBB8B81DC39355A2EBFA3870D98976FA2F17D2D8D
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import hashlib
def hash(seed): h = hashlib.shal(); h.update(seed); return h.digest()
seedbytes = 20

0xD7C134AA264366862A18302575D1D787B09F075797DA8OF57EC8COFF
GF(p); R.<x> = k[]

p
k

def secure(A,B):
if k(B).is_square(): return False
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n < p and n.is_prime()
and Integers(n) (p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def update(seed):
return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):
return str2int(hash(seed) + hash(update(seed))) % 27223

def real2str(seed,bytes):
return int2str(Integer(floor (RealField(8*bytes+8) (seed)*256 bytes)) ,bytes)

nums = real2str(exp(l)/16,7*seedbytes)
S = nums [2*seedbytes:3*seedbytes]
while True:
A = fullhash(S)
if not (k(A)*x"4+3).roots(): S = update(S); continue
S = update(S)
B = fullhash(S)
if not secure(A,B): S = update(S); continue
print ’p’,hex(p) .upper ()
print ’A’,hex(A) .upper ()
print ’B’,hex(B) .upper ()
break

17
2015: We carefully implemented

the curve-generation procedure
from the Brainpool standard.
Previous slide: 224-bit procedure.

Output of this procedure:

p D7C134AA264366862A18302575D1D787BO9F075797DA8OF57ECSCOFF
A 2B98B906DC245F2916C03A2F953EA9AES65C3253E8AECABFES84C659E
B 68AEC4BFE84C659EBB8B81DC39355A2EBFA3870D98976FA2F17D2D8D

The standard 224-bit Brainpool
curve i1s not the same curve:

p D7C134AA264366862A18302575D1D787BO9F075797DA8SIF57TECS8COFF
A 68ABE62CA9CE6C1C299803A6C1530B514E182AD8B0042A59CAD29F43
B 2580F63CCFE44138870713B1A92369E33E2135D266DBB372386C400B
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import hashlib
def hash(seed): h = hashlib.shal(); h.update(seed); return h.digest()
seedbytes = 20

0xD7C134AA264366862A18302575D1D787B09F075797DA8OF57EC8COFF
GF(p); R.<x> = k[]

p
k

def secure(A,B):
if k(B).is_square(): return False
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n < p and n.is_prime()
and Integers(n) (p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def update(seed):
return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):
return str2int(hash(seed) + hash(update(seed))) % 27223

def real2str(seed,bytes):
return int2str(Integer(floor (RealField(8*bytes+8) (seed)*256 bytes)) ,bytes)

nums = real2str(exp(l)/16,7*seedbytes)
S = nums [2*seedbytes:3*seedbytes]
while True:
A = fullhash(S)
if not (k(A)*x"4+3).roots(): S = update(S); continue
S = update(S)
B = fullhash(S)
if not secure(A,B): S = update(S); continue
print ’p’,hex(p) .upper ()
print ’A’,hex(A) .upper ()
print ’B’,hex(B) .upper ()
break

2015: We carefully implemented
the curve-generation procedure
from the Brainpool standard.

Previous slide: 224-bit procedure.

Output of this procedure:
p D7C134AA264366862A18302575D1D787BO9F075797DA8OF57ECSCOFF

A 2B98B906DC245F2916C03A2F953EA9AES65C3253E8AECABFES84C659E
B 68AEC4BFE84C659EBB8B81DC39355A2EBFA3870D98976FA2F17D2D8D

The standard 224-bit Brainpool
curve i1s not the same curve:

p D7C134AA264366862A18302575D1D787BO9F075797DA8SIF57TECS8COFF
A 68ABE62CA9CE6C1C299803A6C1530B514E182AD8B0042A59CAD29F43
B 2580F63CCFE44138870713B1A92369E33E2135D266DBB372386C400B

Next slide: a procedure
that does generate

the standard Brainpool curve.

17
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= hashlib.shal(); h.update(seed); return h.digest()
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nd n.is_prime()

n) (p) .multiplicative_order() * 100 >= n-1)

bytes) :
[chr((seed//25671)%256) for i in reversed(range(bytes))])

seed.encode(’hex’),16)

str2int(seed) + 1,len(seed))

) :
hash(seed) + hash(update(seed))) % 27223

,bytes):
Integer (floor (RealField (8*bytes+8) (seed)*256 bytes)) ,bytes)

xp(1)/16,7*seedbytes)
tes:3*seedbytes]

4+3) .roots(): S = update(S); continue

,B): = update(S); continue
) .upper ()
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2015: We carefully implemented

the curve-generation procedure

from the Brainpool standard.

Previous slide: 224-bit procedure.

Output of this procedure:

b
A

B

D7C134AA264366862A18302575D1D787BO9F075797DASIF57ECSCOFF
2B98B906DC245F2916C03A2F953EA9AES65C3253E8AEC4ABFES84C659E
68AEC4BFE84C659EBB8B81DC39355A2EBFA3870D98976FA2F17D2D8D

The standard 224-bit Brainpool
curve i1s not the same curve:

b
A

B

D7C134AA264366862A18302575D1D787BO9F075797DA89F57ECSCOFF
68ABE62CA9CE6C1C299803A6C1530B514E182AD8B0042A59CAD29F43
2580F63CCFE44138870713B1A92369E33E2135D266DBB372386C400B

Next slide: a procedure

t
t

nat does generate

ne standard Brainpool curve.

import hashlib
def hash(seed): h
seedbytes = 20

p = 0xD7C134AA264
k = GF(p); R.<x>

def secure(A,B):
n = EllipticCur
return (n < p a
and Integers(

def int2str(seed,
return ’’.join(

def str2int(seed)
return Integer(

def update(seed):
return int2str(

def fullhash(seed
return str2int/(

def real2str(seed
return int2str(

nums = real2str(e
S = nums [2*seedby
while True:
A = fullhash(S)
if not (k(A)x*x"~
while True:
S = update(S)
B = fullhash(
if not k(B).1i
if not secure(A
print ’p’,hex(p
print ’A’,hex(A
print ’B’,hex(B
break
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update(seed); return h.digest()

BO9FO075797DA89F57EC8COFF

nality()

order() * 100 >= n-1)

6) for i in reversed(range(bytes))])

(seed))

ate(seed))) % 27223

14 (8*bytes+8) (seed) *256 " bytes)) ,bytes)

ate(S); continue

ontinue
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2015: We carefully implemented

the curve-generation procedure

from the Brainpool standard.

Previous slide: 224-bit procedure.

Output of this procedure:

b
A

B

D7C134AA264366862A18302575D1D787BO9F075797DASOF57ECSCOFF
2B98B906DC245F2916C03A2F953EA9AES65C3253E8AECABFES84C659E
68AEC4ABFE84C659EBB8B81DC39355A2EBFA3870D98976FA2F17D2D8D

The standard 224-bit Brainpool
curve i1s not the same curve:

p
A

B

D7C134AA264366862A18302575D1D787B0O9F075797DA89F57ECSCOFF
68ASE62CA9CE6C1C299803A6C1530B514E182AD8B0042A59CAD29F43
2580F63CCFE44138870713B1A92369E33E2135D266DBB372386C400B

Next slide: a procedure

t
t

nat does generate

ne standard Brainpool curve.

import hashlib
def hash(seed): h = hashlib.shal(); h.
seedbytes = 20

0xD7C134AA264366862A18302575D1D787
GF(p); R.<x> = k[]

p
k

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardi
return (n < p and n.is_prime()
and Integers(n) (p) .multiplicative_

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%25

def str2int(seed):
return Integer(seed.encode(’hex’),16

def update(seed):
return int2str(str2int(seed) + 1,len

def fullhash(seed):
return str2int(hash(seed) + hash(upd

def real2str(seed,bytes):
return int2str(Integer(floor(RealFie

nums = real2str(exp(l)/16,7*seedbytes)
S = nums[2*seedbytes:3*seedbytes]
while True:
A = fullhash(S)
if not (k(A)*x~4+3).roots(): S = upd
while True:
S = update(S)
B = fullhash(S)
if not k(B).is_square(): break
if not secure(A,B): S = update(S); c
print ’p’,hex(p) .upper ()
print ’A’,hex(A) .upper ()
print ’B’,hex(B) .upper ()
break
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h.digest ()

OFF

range (bytes))])

56 bytes)) ,bytes)

17
2015: We carefully implemented

the curve-generation procedure
from the Brainpool standard.
Previous slide: 224-bit procedure.

Output of this procedure:
p D7C134AA264366862A18302575D1D787BO9FO075797DA8OF57ECSCOFF

A 2B98B906DC245F2916C03A2F953EA9AES65C3253ESAECABFES84C659E
B 68AEC4BFE84C659EBB8B81DC39355A2EBFA3870D98976FA2F17D2D8D

The standard 224-bit Brainpool
curve i1s not the same curve:

p D7C134AA264366862A18302575D1D787BO9F075797DA8IF57ECS8COFF
A 68ABE62CA9CE6C1C299803A6C1530B514E182AD8B0042A59CAD29F43
B 2580F63CCFE44138870713B1A92369E33E2135D266DBB372386C400B

Next slide: a procedure
that does generate

the standard Brainpool curve.

import hashlib
def hash(seed): h = hashlib.shal(); h.update(seed); return
seedbytes = 20

p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57ECSC
k = GF(p); R.<x> = k[]

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n < p and n.is_prime()
and Integers(n) (p) .multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def update(seed):
return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):
return str2int(hash(seed) + hash(update(seed))) % 27223

def real2str(seed,bytes):
return int2str(Integer(floor (RealField(8*bytes+8) (seed) *2

nums = real2str(exp(l)/16,7*seedbytes)
S = nums[2*seedbytes:3*seedbytes]
while True:
A = fullhash(S)
if not (k(A)*x~4+3).roots(): S = update(S); continue
while True:
S = update(S)
B = fullhash(S)
if not k(B).is_square(): break
if not secure(A,B): S = update(S); continue
print ’p’,hex(p) .upper()
print ’A’,hex(A) .upper()
print ’B’,hex(B) .upper()
break



17
2015: We carefully implemented

the curve-generation procedure
from the Brainpool standard.
Previous slide: 224-bit procedure.

Output of this procedure:
p D7C134AA264366862A18302575D1D787BO9F075797DA8OF57TECSCOFF

A 2B98B906DC245F2916C03A2F953EA9AES65C3253E8AECABFES84C659E
B 68AEC4BFE84C659EBB8B81DC39355A2EBFA3870D98976FA2F17D2D8D

The standard 224-bit Brainpool
curve i1s not the same curve:

p D7C134AA264366862A18302575D1D787BO9F075797DA8SIF57ECS8COFF
A 68ABE62CA9CE6C1C299803A6C1530B514E182AD8B0042A59CAD29F43
B 2580F63CCFE44138870713B1A92369E33E2135D266DBB372386C400B

Next slide: a procedure
that does generate

the standard Brainpool curve.
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import hashlib
def hash(seed): h = hashlib.shal(); h.update(seed); return h.digest()
seedbytes = 20

0xD7C134AA264366862A18302575D1D787B09F075797DASOF57EC8COFF
GF(p); R.<x> = k[]

p
k

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n < p and n.is_prime()
and Integers(n) (p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def update(seed):
return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):
return str2int(hash(seed) + hash(update(seed))) % 27223

def real2str(seed,bytes):
return int2str(Integer(floor(RealField(8*bytes+8) (seed)*256 bytes)) ,bytes)

nums = real2str(exp(l)/16,7*seedbytes)
S = nums[2*seedbytes:3*seedbytes]
while True:
A = fullhash(S)
if not (k(A)*x~4+3).roots(): S = update(S); continue
while True:
S = update(S)
B = fullhash(S)
if not k(B).is_square(): break
if not secure(A,B): S = update(S); continue
print ’p’,hex(p) .upper ()
print ’A’,hex(A) .upper ()
print ’B’,hex(B) .upper ()
break
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import hashlib
def hash(seed): h = hashlib.shal(); h.update(seed); return h.digest()
seedbytes = 20

P 0xD7C134AA264366862A18302575D1D787BO9F075797DA89F57TEC8COFF
k = GF(p); R.<x> = k[]

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n < p and n.is_prime()
and Integers(n) (p) .multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def update(seed):
return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):
return str2int(hash(seed) + hash(update(seed))) % 27223

def real2str(seed,bytes):
return int2str(Integer(floor(RealField(8*bytes+8) (seed)*256 bytes)) ,bytes)

nums = real2str(exp(l)/16,7*seedbytes)
S = nums[2*seedbytes:3*seedbytes]
while True:
A = fullhash(S)
if not (k(A)*x~4+3).roots(): S = update(S); continue
while True:
S = update(S)
B = fullhash(S)
if not k(B).is_square(): break
if not secure(A,B): S = update(S); continue
print ’p’,hex(p) .upper()
print ’A’,hex(A) .upper()
print ’B’,hex(B) .upper()
break
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Did they
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‘compre
transpar
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import hashlib
def hash(seed): h = hashlib.shal(); h.update(seed); return h.digest()
seedbytes = 20

0xD7C134AA264366862A18302575D1D787B09F075797DA8OF57EC8COFF
GF(p); R.<x> = k[]

p
k

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n < p and n.is_prime()
and Integers(n) (p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def update(seed):
return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):
return str2int(hash(seed) + hash(update(seed))) % 27223

def real2str(seed,bytes):
return int2str(Integer(floor(RealField(8*bytes+8) (seed)*256 bytes)) ,bytes)

nums = real2str(exp(l)/16,7*seedbytes)
S = nums[2*seedbytes:3*seedbytes]
while True:
A = fullhash(S)
if not (k(A)*x~4+3).roots(): S = update(S); continue
while True:
S = update(S)
B = fullhash(S)
if not k(B).is_square(): break
if not secure(A,B): S = update(S); continue
print ’p’,hex(p) .upper ()
print ’A’,hex(A) .upper ()
print ’B’,hex(B) .upper ()
break
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import hashlib
def hash(seed): h = hashlib.shal(); h.update(seed); return h.digest()
seedbytes = 20

P 0xD7C134AA264366862A18302575D1D787BO9F075797DA89F57EC8COFF
k = GF(p); R.<x> = k[]

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n < p and n.is_prime()
and Integers(n) (p) .multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def update(seed):
return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):
return str2int(hash(seed) + hash(update(seed))) % 27223

def real2str(seed,bytes):

return int2str(Integer(floor (RealField(8*bytes+8) (seed)*256 bytes)) ,bytes)

nums = real2str(exp(l)/16,7*seedbytes)
S = nums[2*seedbytes:3*seedbytes]
while True:
A = fullhash(S)
if not (k(A)*x~4+3).roots(): S = update(S); continue
while True:
S = update(S)
B = fullhash(S)
if not k(B).is_square(): break
if not secure(A,B): S = update(S); continue
print ’p’,hex(p) .upper()
print ’A’,hex(A) .upper()
print ’B’,hex(B) .upper()
break

Did Brainpool check before

publication? After publicati
Did they know before 20157

Brainpool procedure is
advertised as “systematic’,
“comprehensive”, “complete
transparent”, etc. Surely we
say the same for both proce
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import hashlib
def hash(seed): h = hashlib.shal(); h.update(seed); return h.digest()
seedbytes = 20

0xD7C134AA264366862A18302575D1D787B09F075797DA8OF57EC8COFF
GF(p); R.<x> = k[]

p
k

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n < p and n.is_prime()
and Integers(n) (p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def update(seed):
return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):
return str2int(hash(seed) + hash(update(seed))) % 27223

def real2str(seed,bytes):
return int2str(Integer(floor(RealField(8*bytes+8) (seed)*256 bytes)) ,bytes)

nums = real2str(exp(l)/16,7*seedbytes)
S = nums[2*seedbytes:3*seedbytes]
while True:
A = fullhash(S)
if not (k(A)*x~4+3).roots(): S = update(S); continue
while True:
S = update(S)
B = fullhash(S)
if not k(B).is_square(): break
if not secure(A,B): S = update(S); continue
print ’p’,hex(p) .upper ()
print ’A’ ,hex(A) .upper ()

print ’B’,hex(B) .upper ()
break

19
Did Brainpool check before

publication? After publication?
Did they know before 20157

Brainpool procedure is

advertised as “systematic’,
“comprehensive”, “completely
transparent”, etc. Surely we can
say the same for both procedures.



18

import hashlib
def hash(seed): h = hashlib.shal(); h.update(seed); return h.digest()
seedbytes = 20

0xD7C134AA264366862A18302575D1D787B09F075797DA8OF57EC8COFF
GF(p); R.<x> = k[]

p
k

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n < p and n.is_prime()
and Integers(n) (p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def update(seed):
return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):
return str2int(hash(seed) + hash(update(seed))) % 27223

def real2str(seed,bytes):
return int2str(Integer(floor(RealField(8*bytes+8) (seed)*256 bytes)) ,bytes)

nums = real2str(exp(l)/16,7*seedbytes)
S = nums[2*seedbytes:3*seedbytes]
while True:
A = fullhash(S)
if not (k(A)*x~4+3).roots(): S = update(S); continue
while True:
S = update(S)
B = fullhash(S)
if not k(B).is_square(): break
if not secure(A,B): S = update(S); continue
print ’p’,hex(p) .upper ()
print ’A’ ,hex(A) .upper ()
print ’B’,hex(B) .upper ()
break

19
Did Brainpool check before

publication? After publication?
Did they know before 20157

Brainpool procedure is

advertised as “systematic’,
“comprehensive”, “completely
transparent”, etc. Surely we can
say the same for both procedures.

Can quietly manipulate choice
to take the weaker procedure.



18

import hashlib
def hash(seed): h = hashlib.shal(); h.update(seed); return h.digest()
seedbytes = 20

0xD7C134AA264366862A18302575D1D787B09F075797DA8OF57EC8COFF
GF(p); R.<x> = k[]

p
k

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n < p and n.is_prime()
and Integers(n) (p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def update(seed):
return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):
return str2int(hash(seed) + hash(update(seed))) % 27223

def real2str(seed,bytes):
return int2str(Integer(floor(RealField(8*bytes+8) (seed)*256 bytes)) ,bytes)

nums = real2str(exp(l)/16,7*seedbytes)
S = nums[2*seedbytes:3*seedbytes]
while True:
A = fullhash(S)
if not (k(A)*x~4+3).roots(): S = update(S); continue
while True:
S = update(S)
B = fullhash(S)
if not k(B).is_square(): break
if not secure(A,B): S = update(S); continue
print ’p’,hex(p) .upper ()
print ’A’ ,hex(A) .upper ()
print ’B’,hex(B) .upper ()
break

Did Brainpool check before

publication? After publication?
Did they know before 20157

Brainpool procedure is

advertised as “systematic’,
“comprehensive”, “completely
transparent”, etc. Surely we can
say the same for both procedures.

Can quietly manipulate choice
to take the weaker procedure.

Interesting Brainpool quote: “lt
Is envisioned to provide additional
curves on a regular basis.”

19
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= hashlib.shal(); h.update(seed); return h.digest()
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,B): S = update(S); continue
) .upper ()

) .upper ()

) .upper ()

Did Brainpool check before

publication? After publication?
Did they know before 20157

Brainpool procedure is

advertised as “systematic’,
“comprehensive”, “completely
transparent”, etc. Surely we can
say the same for both procedures.

Can quietly manipulate choice
to take the weaker procedure.

Interesting Brainpool quote: “lt
Is envisioned to provide additional
curves on a regular basis.”
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update (seed); return h.digest()

BO9FO075797DA89F57EC8COFF

nality()

order() * 100 >= n-1)

6) for i in reversed(range(bytes))])

)

(seed))

ate(seed))) % 27223

1d (8*bytes+8) (seed) *256 " bytes)) ,bytes)

ate(S); continue

ontinue

Did Brainpool check before

publication? After publication?
Did they know before 20157

Brainpool procedure is

advertised as “systematic’,
“comprehensive”, “completely
transparent”, etc. Surely we can
say the same for both procedures.

Can quietly manipulate choice
to take the weaker procedure.
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Is envisioned to provide additional
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h.digest ()

OFF

range (bytes))])

56 "bytes)) ,bytes)

Did Brainpool check before
publication? After publication?
Did they know before 20157

Brainpool procedure is
advertised as “systematic’,
“comprehensive’, “completely
transparent”, etc. Surely we can

say the same for both procedures.

Can quietly manipulate choice
to take the weaker procedure.

Interesting Brainpool quote: “lt
Is envisioned to provide additional
curves on a regular basis.”
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To avoid Brainpool's
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hash outputs: We upgraded
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maximum-security SHA3-51

Also upgraded to requiring

maximum twist security.

Brainpool uses exp(1l) = e

and arctan(1) = 7 /4, and |
uses sin(1), so we used cos(
We also used much simpler
pattern of searching for seec



Did Brainpool check before

publication? After publication?
Did they know before 20157

Brainpool procedure is

advertised as “systematic’,
“comprehensive”, “completely
transparent”, etc. Surely we can
say the same for both procedures.

Can quietly manipulate choice
to take the weaker procedure.

Interesting Brainpool quote: “lt
Is envisioned to provide additional
curves on a regular basis.”

19

We made a new 224-bit curve
using standard NIST P-224 prime.

To avoid Brainpool's
complications of concatenating
hash outputs: We upgraded
from SHA-1 to state-of-the-art
maximum-security SHA3-512.

Also upgraded to requiring

maximum twist security.

Brainpool uses exp(1) = e

and arctan(1) = 7 /4, and MD5
uses sin(1), so we used cos(1).
We also used much simpler
pattern of searching for seeds.
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We made a new 224-bit curve

using standard NIST P-224 prime.

To avoid Brainpool's
complications of concatenating
hash outputs: We upgraded
from SHA-1 to state-of-the-art
maximum-security SHA3-512.

Also upgraded to requiring

maximum twist security.

Brainpool uses exp(1l) = e

and arctan(1) = 7 /4, and MD5
uses sin(1), so we used cos(1).
We also used much simpler
pattern of searching for seeds.

20

import simplesha3
hash = simplesha3

p = 27224 - 2796
k = GF(p)
seedbytes = 20

def secure(A,B):
n = EllipticCur
return (n.is_pr
and Integers(
and Integers(

def int2str(seed,
return ’’.join(

def str2int(seed)
return Integer(

def complement(se
return ’’.join(

def real2str(seed
return int2str(

sizeofint = 4
nums = real2str(c
for counter in xr
S = int2str(cou
T = complement(
A = str2int(has:
B = str2int(has:
if secure(A,B):
print ’p’,hex
print A’ ,hex
print ’B’,hex
break



ck before
- publication?
ore 20157

re is

fematic’
“completely
Surely we can
oth procedures.

ulate choice
- procedure.

ool quote: “lt
ovide additional
r basis.”

19

We made a new 224-bit curve

using standard NIST P-224 prime.

To avoid Brainpool's
complications of concatenating
hash outputs: We upgraded
from SHA-1 to state-of-the-art
maximum-security SHA3-512.

Also upgraded to requiring

maximum twist security.

Brainpool uses exp(1) = e

and arctan(1) = 7 /4, and MD5
uses sin(1), so we used cos(1).
We also used much simpler
pattern of searching for seeds.

20

import simplesha3
hash = simplesha3.sha3512

p =27224 - 2796 + 1
k = GF(p)
seedbytes = 20

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardi
return (n.is_prime() and (2*p+2-n).i
and Integers(n) (p) .multiplicative_
and Integers(2*p+2-n) (p) .multiplic

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%25

def str2int(seed):
return Integer(seed.encode(’hex’),16

def complement(seed):
return ’’.join([chr(255-ord(s)) for

def real2str(seed,bytes):
return int2str(Integer (RealField(8%Db

sizeofint = 4
nums = real2str(cos(1l),seedbytes - siz
for counter in xrange(0,2567sizeofint)
S = int2str(counter,sizeofint) + num
T = complement(S)
A = str2int(hash(S))
B = str2int(hash(T))
if secure(A,B):
print ’p’,hex(p) .upper ()
print ’A’,hex(A) .upper ()
print ’B’,hex(B) .upper ()
break
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We made a new 224-bit curve

using standard NIST P-224 prime.

To avoid Brainpool's
complications of concatenating
hash outputs: We upgraded
from SHA-1 to state-of-the-art
maximum-security SHA3-512.

Also upgraded to requiring

maximum twist security.

Brainpool uses exp(1l) = e

and arctan(1) = 7 /4, and MD5
uses sin(1), so we used cos(1).
We also used much simpler
pattern of searching for seeds.

20

import simplesha3
hash = simplesha3.sha3512

p=27224 - 2796 + 1
k = GF(p)
seedbytes = 20

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n.is_prime() and (2*p+2-n).is_prime()
and Integers(n) (p) .multiplicative_order() * 100 >= n-1
and Integers(2*p+2-n) (p) .multiplicative_order() * 100 >

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def complement(seed):
return ’’.join([chr(255-ord(s)) for s in seed])

def real2str(seed,bytes):
return int2str(Integer (RealField(8*bytes) (seed)*256 bytes

sizeofint = 4
nums = real2str(cos(l),seedbytes - sizeofint)
for counter in xrange(0,2567sizeofint):
S = int2str(counter,sizeofint) + nums
T = complement (S)
A = str2int(hash(S))
B = str2int(hash(T))
if secure(A,B):
print ’p’,hex(p) .upper ()
print ’A’ ,hex(A) .upper ()
print ’B’,hex(B) .upper ()
break



We made a new 224-bit curve

using standard NIST P-224 prime.

To avoid Brainpool's
complications of concatenating
hash outputs: We upgraded
from SHA-1 to state-of-the-art
maximum-security SHA3-512.

Also upgraded to requiring

maximum twist security.

Brainpool uses exp(1) = e

and arctan(1) = 7w /4, and MD5
uses sin(1), so we used cos(1).
We also used much simpler
pattern of searching for seeds.

20

import simplesha3
hash = simplesha3.sha3512

p =27224 - 2796 + 1
k = GF(p)
seedbytes = 20

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n.is_prime() and (2*p+2-n).is_prime()
and Integers(n) (p) .multiplicative_order() * 100 >= n-1
and Integers(2xp+2-n) (p) .multiplicative_order() * 100 >= 2xp+2-n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def complement(seed):
return ’’.join([chr(255-ord(s)) for s in seed])

def real2str(seed,bytes):
return int2str(Integer (RealField(8*bytes) (seed)*256"bytes) ,bytes)

sizeofint = 4
nums = real2str(cos(1l),seedbytes - sizeofint)
for counter in xrange(0,256"sizeofint):
S = int2str(counter,sizeofint) + nums
T = complement (S)
A = str2int(hash(S))
B = str2int(hash(T))
if secure(A,B):
print ’p’,hex(p) .upper ()
print ’A’,hex(A) .upper ()
print ’B’,hex(B) .upper ()
break

21
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20

import simplesha3
hash = simplesha3.sha3512

p=27224 - 2796 + 1
k = GF(p)
seedbytes = 20

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n.is_prime() and (2*p+2-n).is_prime()
and Integers(n) (p) .multiplicative_order() * 100 >= n-1
and Integers(2*p+2-n) (p) .multiplicative_order() * 100 >= 2%p+2-n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def complement(seed):
return ’’.join([chr(255-ord(s)) for s in seed])

def real2str(seed,bytes):
return int2str(Integer(RealField(8*bytes) (seed)*256"bytes) ,bytes)

sizeofint = 4
nums = real2str(cos(1l),seedbytes - sizeofint)
for counter in xrange(0,2567sizeofint):

S = int2str(counter,sizeofint) + nums

T = complement (S)
A = str2int(hash(S))
B = str2int(hash(T))

if secure(A,B):
print ’p’,hex(p) .upper ()
print ’A’ ,hex(A) .upper ()
print ’B’,hex(B) .upper ()
break

21

Output:
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import simplesha3
hash = simplesha3.sha3512

p =27224 - 2796 + 1
k = GF(p)
seedbytes = 20

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n.is_prime() and (2*p+2-n).is_prime()
and Integers(n) (p) .multiplicative_order() * 100 >= n-1
and Integers(2xp+2-n) (p) .multiplicative_order() * 100 >= 2xp+2-n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def complement(seed):
return ’’.join([chr(255-ord(s)) for s in seed])

def real2str(seed,bytes):
return int2str(Integer(RealField(8*bytes) (seed)*256"bytes) ,bytes)

sizeofint = 4
nums = real2str(cos(1l),seedbytes - sizeofint)
for counter in xrange(0,256"sizeofint):

S = int2str(counter,sizeofint) + nums

T = complement(S)
A = str2int(hash(S))
B = str2int(hash(T))

if secure(A,B):
print ’p’,hex(p) .upper ()
print ’A’,hex(A) .upper ()
print ’B’,hex(B) .upper ()
break

21
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import simplesha3
hash = simplesha3.sha3512

p=27224 - 2796 + 1
k = GF(p)
seedbytes = 20

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n.is_prime() and (2*p+2-n).is_prime()
and Integers(n) (p) .multiplicative_order() * 100 >= n-1
and Integers(2*p+2-n) (p) .multiplicative_order() * 100 >= 2%p+2-n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def complement(seed):
return ’’.join([chr(255-ord(s)) for s in seed])

def real2str(seed,bytes):
return int2str(Integer(RealField(8*bytes) (seed)*256"bytes) ,bytes)

sizeofint = 4
nums = real2str(cos(1l),seedbytes - sizeofint)
for counter in xrange(0,2567sizeofint):
S = int2str(counter,sizeofint) + nums
T = complement (S)
A = str2int(hash(S))
B = str2int(hash(T))
if secure(A,B):
print ’p’,hex(p) .upper ()
print ’A’ ,hex(A) .upper ()
print ’B’,hex(B) .upper ()
break

21

Output: 7144BA12CE8A0C3BEFAOS3EDB



import simplesha3
hash = simplesha3.sha3512

p =27224 - 2796 + 1
k = GF(p)
seedbytes = 20

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n.is_prime() and (2*p+2-n).is_prime()
and Integers(n) (p) .multiplicative_order() * 100 >= n-1
and Integers(2xp+2-n) (p) .multiplicative_order() * 100 >= 2xp+2-n-1)

def int2str(seed,bytes):
return ’’.join([chr((seed//25671)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def complement(seed):
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Output: 7144BA12CES8AOC3BEFAOS3EDBADASS . . .

We actually generated >1000000
curves for this prime, each having
a Brainpool-like explanation,

even without complicating

hashing, seed search, etc.; e.g.,
BADA55-VPR2-224 uses exp(1).
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hashing, seed search, etc.; e.g.,
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See badabb.cr.yp.to for
much more: full paper; scripts;

detailed Brainpool analysis;

manipulating “minimal” primes
and curves (Microsoft “NUMS™);
manipulating security criteria.



