The DNS security mess The Domain Name System

D. J. Bernstein tue.nl wants to see

University of lllinois at Chicago; nttp://www.ru.nl.

Technische Universiteit Eindhoven

(Browser) at tue.nl
A

“The web server

wWWww.ru.nl

has |IP address
131.174.78.60."

(Administrator) at ru.nl

Now tue.nl

retrieves web page from
|IP address 131.174.78.60.

S security mess
rnstein

ty of lllinois at Chicago:;
he Universiteit Eindhoven

The Domain Name System

tue.nl wants to see
http://www.ru.nl.

(Browser) at tue.nl
R

“The web server

wWWww.ru.nl

has |IP address
131.174.78.60."

(Administrator) at ru.nl

Now tue.nl

retrieves web page from
IP address 131.174.78.60.

Same fo

tue.nl

SOINeoIl¢

(Mail ¢
C

(Adminis

Now tue
delivers

|P addre

IMESS

is at Chicago;
siteit Eindhoven

The Domain Name System

tue.nl wants to see
http://www.ru.nl.

(Browser) at tue.nl
A

“The web server

wWWww.ru.nl

has |IP address
131.174.78.60."

(Administrator) at ru.nl

Now tue.nl

retrieves web page from
|IP address 131.174.78.60.

Same for Internet

tue.nl has mail t

someone@ru.nl.

(Mail client) at
A

“The mail s

ru.n

has |IP ac
192.87.10:.

(Administrator) a

Now tue.nl

delivers mail to
|IP address 192.87.

1g0;
hoven

The Domain Name System

tue.nl wants to see
http://www.ru.nl.

(Browser) at tue.nl
R

“The web server

wWWww.ru.nl

has |IP address
131.174.78.60."

(Administrator) at ru.nl

Now tue.nl
retrieves web page from

|IP address 131.174.78.60.

Same for Internet mail.

tue.nl has mail to deliver t

someone@ru.nl.

(Mail client) at tue.nl
R

“The mail server for

ru.nl

has |IP address
192.87.102.77."

(Administrator) at ru.nl

Now tue.nl

delivers mail to
|IP address 192.87.102.77.

The Domain Name System

tue.nl wants to see
http://www.ru.nl.

(Browser) at tue.nl
A

“The web server

wWWww.ru.nl

has |IP address
131.174.78.60."

(Administrator) at ru.nl

Now tue.nl

retrieves web page from
|IP address 131.174.78.60.

Same for Internet mail.

tue.nl has mail to deliver to

someone@ru.nl.

(Mail client) at tue.nl
A

“The mail server for

ru.nl

has |IP address
192.87.102.77."

(Administrator) at ru.nl

Now tue.nl

delivers mail to
|IP address 192.87.102.77.

nain Name System

wants to see

'Wwww.ru.nl.

iser; at tue.nl

“The web server

wWWww.ru.nl

has IP address
131.174.78.60."

;trator) at ru.nl

=2.nl
“web page from
ss 131.174.78.60.

Same for Internet mail.

tue.nl has mail to deliver to

someone@ru.nl.

(Mail client) at tue.nl
R

“The mail server for

ru.nl

has IP address
192.87.102.77."

(Administrator) at ru.nl

Now tue.nl

delivers mail to
|P address 192.87.102.77.

Forging

tue.nl

SOINeoIl¢

(Mail cli
e
ll"l

(Attack

Now tu
delivers
|P addre

actually

e System

see
1] .

ne.nl

Frver
1
"eSS

Fru.nl

 from
1.78.60.

Same for Internet mail.

tue.nl has mail to deliver to

someone@ru.nl.

(Mail client) at tue.nl
A

“The mail server for

ru.nl

has |IP address
192.87.102.77."

(Administrator) at ru.nl

Now tue.nl
delivers mail to

|IP address 192.87.102.77.

Forging DNS pack

tue.nl has mail t

someone@ru.nl.

(Mail client) at t1
A

“The mail ser

ru.nl

has |P add
204.13.202.

(Attacker) anywt

Now tue.nl
delivers mail to
|P address 204.13.

actually the attacl

Same for Internet mail. Forging DNS packets
tue.nl has mail to deliver to tue.nl has mail to deliver 1
someone@ru.nl. someone@ru.nl.
(Mail client) at tue.nl (Mail client) at tue.nl
A A
“The mail server for “The mail server for
ru.nl ru.nl
has |P address has |IP address
192.87.102.77." 204.13.202.78."
(Administrator) at ru.nl (Attacker) anywhere on ne
Now tue.nl Now tue.nl
delivers mail to delivers mail to
|IP address 192.87.102.77. |IP address 204.13.202.78,
actually the attacker’'s mach

Same for Internet mail. Forging DNS packets
tue.nl has mail to deliver to tue.nl has mail to deliver to
someone@ru.nl. someone@ru.nl.
(Mail client) at tue.nl (Mail client) at tue.nl
A A
“The mail server for “The mail server for
ru.nl ru.nl
has |P address has |P address
192.87.102.77." 204.13.202.78."
(Administrator) at ru.nl (Attacker) anywhere on network
Now tue.nl Now tue.nl
delivers mail to delivers mail to
IP address 192.87.102.77. |P address 204.13.202.78,
actually the attacker’'s machine.

r Internet mail.

has mail to deliver to

2Qru.nl.

lient) at tue.nl

“The mail server for

ru.nl

has IP address
192.87.102.77."

;trator) at ru.nl

> .nl
mail to
ss 192.87.102.77.

Forging DNS packets

tue.nl has mail to deliver to

someone@ru.nl.

(Mail client) at tue.nl
A

“The mail server for

ru.nl

has |IP address
204.13.202.78."

(Attacker) anywhere on network

Now tue.nl
delivers mail to

|P address 204.13.202.78,
actually the attacker’'s machine.

How for;

Client se¢
Attacker
some pa

Attacker
® the na

e the qu
e ~ the
so clie
before
e the qu
e the qu

mail.

o deliver to

tue.nl

arver for
1

| dress
2.77."

Fru.nl

102.77.

Forging DNS packets

tue.nl has mail to deliver to

someone@ru.nl.

(Mail client) at tue.nl
A

“The mail server for

ru.nl

has |IP address
204.13.202.78."

(Attacker) anywhere on network

Now tue.nl
delivers mail to
|P address 204.13.202.78,

actually the attacker’'s machine.

How forgery really

Client sends query
Attacker has to re
some parts of the

Attacker must ma

® the name: ru.n

e the query type:
e ~ the query tim
so client sees fol
before legitimate
e the query UDP
e the query ID.

Forging DNS packets How forgery really works

tue.nl has mail to deliver to Client sends query.
someone@ru.nl. Attacker has to repeat
some parts of the query.

(Mail client) at tue.nl
A

) . Attacker must match
The mail server for

ru.nl e the name: ru.nl.

has IP address e the query type: mail. (“|\/
204.13.202.78."

e ~ the query time,

(Attackea anywhere on network so client sees forgery

before legitimate answer.

N .nl
ow tue.n e the query UDP port.

delivers mail to
|P address 204.13.202.78,
actually the attacker’'s machine.

e the query ID.

Forging DNS packets

tue.nl has mail to deliver to

someone@ru.nl.

(Mail client) at tue.nl
A

“The mail server for

ru.nl

has |IP address
204.13.202.78."

(Attacker) anywhere on network

Now tue.nl
delivers mail to

|P address 204.13.202.78,
actually the attacker’'s machine.

How forgery really works

Client sends query.
Attacker has to repeat
some parts of the query.

Attacker must match

e the name: ru.nl.

e the query type: mail. (“MX".)
e ~ the query time,

so client sees forgery

before legitimate answer.
e the query UDP port.

e the query ID.

DNS packets

has mail to deliver to

2Qru.nl.

ent) at tue.nl

" he mail server for

ru.nl

has |IP address
204.13.202.78."

@ anywhere on network

>.nl
mail to

ss 204.13.202.78,
the attacker's machine.

How forgery really works

Client sends query.
Attacker has to repeat
some parts of the query.

Attacker must match

e the name: ru.nl.

e the query type: mail. (“MX".)
e ~ the query time,

so client sees forgery

before legitimate answer.
e the query UDP port.

e the query ID.

The hart
for attac

Control

oy trigge
Many w.

ets

o deliver to

1e.nl

ver for

ress
(3."

1ere on network

202.78,
cer's machine.

How forgery really works

Client sends query.
Attacker has to repeat
some parts of the query.

Attacker must match

e the name: ru.nl.

e the query type: mail. (“MX".)
e ~ the query time,

so client sees forgery

before legitimate answer.
e the query UDP port.

e the query ID.

The hard way
for attackers to dc

Control name, typ
oy triggering clien

Many ways to do

twork

ine.

How forgery really works

Client sends query.
Attacker has to repeat
some parts of the query.

Attacker must match

e the name: ru.nl.

e the query type: mail. (“MX".)
e ~ the query time,

so client sees forgery

before legitimate answer.
e the query UDP port.

e the query ID.

The hard way
for attackers to do this:

Control name, type, time
oy triggering client.

Many ways to do this.

How forgery really works

Client sends query.
Attacker has to repeat
some parts of the query.

Attacker must match

e the name: ru.nl.

e the query type: mail. (“MX".)
e ~ the query time,

so client sees forgery

before legitimate answer.
e the query UDP port.

e the query ID.

The hard way
for attackers to do this:

Control name, type, time
oy triggering client.

Many ways to do this.

How forgery really works

Client sends query.
Attacker has to repeat
some parts of the query.

Attacker must match

e the name: ru.nl.

e the query type: mail. (“MX".)
e ~ the query time,

so client sees forgery

before legitimate answer.
e the query UDP port.

e the query ID.

The hard way

for attackers to do this:

Control nam

e, type, time

oy triggering client.
Many ways to do this.

Guess port and ID

(or predict t
they're poor
16-bit port,

nem If

y randomized).
16-bit ID.

How forgery really works The hard way
for attackers to do this:

Client sends query.
Attacker has to repeat Control name, type, time

some parts of the query. oy triggering client.
Many ways to do this.

Attacker must match

e the name: ru.nl. Guess port and |ID

e the query type: mail. (“MX".) (or predict them if

e ~ the query time, they're poorly randomized).
so client sees forgery 16-bit port, 16-bit ID.

before legitimate answer. . .
If guess fails, try again.

e the query UDP port. After analysis, optimization:

e the query ID. this is about as much traffic

as downloading a movie.

oery really works

nds query.
- has to repeat
rts of the query.

~must match

me: ru.nl.

ery type: mail. (“MX".)
query time,

nt sees forgery
legitimate answer.

ery UDP port.

ery ID.

The hard way

for attackers

Control nam

to do this:

e, type, time

oy triggering client.
Many ways to do this.

Guess port and ID

(or predict t

hem If

they're poor
16-bit port,

If guess fails

y randomized).
16-bit ID.

, try again.

After analysis, optimization:

this i1s about as much traffic

as download

Ing a movie.

The eas
for attac

1. Breal
on the s

2. Using
sniff net
the clien
Immedia

“works

peat
query.

tch

1.

mail. (“MX".)
Sf

gery

> answer.

port.

The hard way
for attackers to do this:

Control name, type, time
oy triggering client.

Many ways to do this.

Guess port and ID
(or predict them if

they're poorly randomized).
16-bit port, 16-bit ID.

If guess fails, try again.
After analysis, optimization:
this is about as much traffic
as downloading a movie.

The easy way
for attackers to dc

1. Break into a cc
on the same netw

2. Using that comr
sniff network to se
the client’'s query.
Immediately forge

X))

The hard way
for attackers to do this:

Control name, type, time
oy triggering client.
Many ways to do this.

Guess port and ID

(or predict them if

they're poorly randomized).
16-bit port, 16-bit ID.

If guess fails, try again.
After analysis, optimization:
this is about as much traffic
as downloading a movie.

The easy way
for attackers to do this:

1. Break into a computer
on the same network.

2. Using that computer,
sniff network to see

the client’'s query.
Immediately forge answer.

The hard way
for attackers to do this:

Control name, type, time
oy triggering client.
Many ways to do this.

Guess port and ID

(or predict them if

they're poorly randomized).
16-bit port, 16-bit ID.

If guess fails, try again.
After analysis, optimization:
this is about as much traffic
as downloading a movie.

The easy way
for attackers to do this:

1. Break into a computer
on the same network.

2. Using that computer,
sniff network to see

the client’'s query.
Immediately forge answer.

The hard way
for attackers to do this:

Control name, type, time
oy triggering client.
Many ways to do this.

Guess port and ID

(or predict them if

they're poorly randomized).
16-bit port, 16-bit ID.

If guess fails, try again.
After analysis, optimization:
this is about as much traffic
as downloading a movie.

The easy way
for attackers to do this:

1. Break into a computer
on the same network.

2. Using that computer,
sniff network to see

the client’'s query.
Immediately forge answer.

Sometimes skip step 1:
the network is the attacker.
e.g. DNS forgery by hotels,
lranian government, et al.

1 way
kers to do this:

name, type, time
ring client.
ays to do this.

ort and ID
ct them iIf

yoorly randomized).
ort, 16-bit ID.

fails, try again.
alysis, optimization:
oout as much traffic
loading a movie.

The easy way
for attackers to do this:

1. Break into a computer
on the same network.

2. Using that computer,
sniff network to see

the client’s query.
Immediately forge answer.

Sometimes skip step 1:

the network is the attacker.
e.g. DNS forgery by hotels,
lranian government, et al.

Security

Many D

(e.g. que
stop the
out are -

oy the e

) this:

e, time

this.

domized).
ID.

gain.
Imization:
uch traffic

movie.

The easy way
for attackers to do this:

1. Break into a computer
on the same network.

2. Using that computer,
sniff network to see

the client’s query.
Immediately forge answer.

Sometimes skip step 1:

the network is the attacker.
e.g. DNS forgery by hotels,
lranian government, et al.

Security theater

Many DNS “defer
(e.g. query repetit
stop the hard atta
out are trivially br

oy the easy attack

The easy way
for attackers to do this:

1. Break into a computer
on the same network.

2. Using that computer,
sniff network to see

the client’s query.
Immediately forge answer.

Sometimes skip step 1:

the network is the attacker.
e.g. DNS forgery by hotels,
lranian government, et al.

Security theater

Many DNS “defenses”
(e.g. query repetition)
stop the hard attack

out are trivially broken

oy the easy attack.

The easy way
for attackers to do this:

1. Break into a computer
on the same network.

2. Using that computer,
sniff network to see

the client’'s query.
Immediately forge answer.

Sometimes skip step 1:

the network is the attacker.
e.g. DNS forgery by hotels,
lranian government, et al.

Security theater

Many DNS “defenses”
(e.g. query repetition)
stop the hard attack

out are trivially broken

oy the easy attack.

The easy way
for attackers to do this:

1. Break into a computer
on the same network.

2. Using that computer,
sniff network to see

the client’'s query.
Immediately forge answer.

Sometimes skip step 1:

the network is the attacker.

e.g. DNS forgery by hotels,
lranian government, et al.

Security theater

Many DNS “defenses”
(e.g. query repetition)
stop the hard attack

out are trivially broken

oy the easy attack.

Why don’t people realize this?
Answer: The hard attack
receives much more publicity
than the easy attack.

The easy way
for attackers to do this:

1. Break into a computer
on the same network.

2. Using that computer,
sniff network to see

the client’'s query.
Immediately forge answer.

Sometimes skip step 1:

the network is the attacker.

e.g. DNS forgery by hotels,
lranian government, et al.

Security theater

Many DNS “defenses”
(e.g. query repetition)
stop the hard attack

out are trivially broken

oy the easy attack.

Why don’t people realize this?
Answer: The hard attack
receives much more publicity
than the easy attack.

Security researchers
can't publish easy attacks.

y way
kers to do this:

< Into a computer
ame network.

- that computer,
work to see

t's query.

tely forge answer.

1es skip step 1:

jork /s the attacker.

> forgery by hotels,
rovernment, et al.

Security theater

Many DNS “defenses”
(e.g. query repetition)
stop the hard attack

out are trivially broken

oy the easy attack.

Why don’t people realize this?
Answer: The hard attack
receives much more publicity
than the easy attack.

Security researchers
can't publish easy attacks.

June 201

“ORG |
TLD to
DNSSEC(
a signific
effort to
for the .
the first
Domain
zone wit
Extensic
the .OR

domain

this nees

) this:

ymputer
ork.

puter,

dNSWEr.

ep 1

attacker.

oy hotels,
t, et al.

Security theater

Many DNS “defenses”
(e.g. query repetition)
stop the hard attack

out are trivially broken

oy the easy attack.

Why don’t people realize this?
Answer: The hard attack
receives much more publicity
than the easy attack.

Security researchers
can't publish easy attacks.

June 2009: excitir

“.ORG becomes tl
TLD to sign their
DNSSEC ... Tod:
a significant miles
effort to bolster ol
for the .ORG com
the first open gen
Domain to succes:
zone with Domain

Extensions (DNSS
the .ORG zone is
domain registry to
this needed securi

Security theater

Many DNS “defenses”
(e.g. query repetition)
stop the hard attack

out are trivially broken

oy the easy attack.

Why don’t people realize this?
Answer: The hard attack
receives much more publicity
than the easy attack.

Security researchers
can't publish easy attacks.

June 2009: exciting news!

“.ORG becomes the first op
TLD to sign their zone with

DNSSEC ... Today we reac
a significant milestone in ou

effort to bolster online secur
for the .ORG community. W
the first open generic Top-L

Domain to successfully sign

zone with Domain Name Se
Extensions (DNSSEC). To ¢

t

ne .ORG zone is the largest

C

omain registry to implemer

this needed security measure

Security theater

Many DNS “defenses”
(e.g. query repetition)
stop the hard attack

out are trivially broken

oy the easy attack.

Why don’t people realize this?
Answer: The hard attack
receives much more publicity
than the easy attack.

Security researchers
can't publish easy attacks.

June 2009: exciting news!

“.ORG becomes the first open
TLD to sign their zone with
DNSSEC ... Today we reached

a significant milestone in our
effort to bolster online security
for the .ORG community. We are
the first open generic Top-Level
Domain to successfully sign our
zone with Domain Name Security
Extensions (DNSSEC). To date,
the .ORG zone is the largest
domain registry to implement
this needed security measure.”

theater

NS “defenses”
ry repetition)
hard attack
trivially broken

asy attack.

1't people realize this?
The hard attack
much more publicity

' easy attack.

researchers
blish easy attacks.

June 2009: exciting news!

“.ORG becomes the first open
TLD to sign their zone with
DNSSEC ... Today we reached

a significant milestone in our
effort to bolster online security
for the .ORG community. We are
the first open generic Top-Level
Domain to successfully sign our
zone with Domain Name Security
Extensions (DNSSEC). To date,

the .ORG zone is the largest

domain registry to implement
this needed security measure.”

“"What ¢
.ORG Z
Signing
of our
We are |
signing
within t
This pro

the zone
of the ol
Integrity

Ses’
ion)
ck

oken

realize this?
attack
e publicity
ck.

'S
attacks.

June 2009: exciting news!

“.ORG becomes the first open
TLD to sign their zone with
DNSSEC ... Today we reached

a significant milestone in our
effort to bolster online security
for the .ORG community. We are
the first open generic Top-Level
Domain to successfully sign our
zone with Domain Name Security
Extensions (DNSSEC). To date,
the .ORG zone is the largest
domain registry to implement
this needed security measure.”

“What does it me
.ORG Zone is ‘sigl
Signing our zone |
of our DNSSEC te
We are now crypt
signing the author
within the .ORG z
This process adds
the zone, which al
of the origin authe
integrity of data.”

June 2009: exciting news!

“.ORG becomes the first open
TLD to sign their zone with
DNSSEC ... Today we reached

a significant milestone in our
effort to bolster online security
for the .ORG community. We are
the first open generic Top-Level
Domain to successfully sign our
zone with Domain Name Security

Extensions (DNSSEC). To date,
the .ORG zone is the largest

domain registry to implement
this needed security measure.”

“What does it mean that th
.ORG Zone is ‘signed’?
Signing our zone is the first

of our DNSSEC test phase.
We are now cryptographical

signing the authoritative dat
within the .ORG zone file.
This process adds new recor
the zone, which allows verifi
of the origin authenticity an
integrity of data.”

June 2009: exciting news!

“.ORG becomes the first open
TLD to sign their zone with
DNSSEC ... Today we reached

a significant milestone in our
effort to bolster online security
for the .ORG community. We are
the first open generic Top-Level
Domain to successfully sign our
zone with Domain Name Security
Extensions (DNSSEC). To date,
the .ORG zone is the largest
domain registry to implement
this needed security measure.”

“What does it mean that the
.ORG Zone is ‘signed’?

Signing our zone is the first part
of our DNSSEC test phase.

We are now cryptographically

signing the authoritative data
within the .ORG zone file.

This process adds new records to
the zone, which allows verification
of the origin authenticity and
integrity of data.”

)9: exciting news!

yecomes the first open
sign their zone with

_ ... Today we reached
“ant milestone In our
bolster online security
ORG community. We are
open generic Top-Level
to successfully sign our
h Domain Name Security
ns (DNSSEC). To date,
G zone is the largest
registry to implement

led security measure.”

“What does it mean that the
.ORG Zone is ‘signed’?
Signing our zone is the first part

of our DNSSEC test phase.
We are now cryptographically

signing the authoritative data
within the .ORG zone file.

This process adds new records to
the zone, which allows verification
of the origin authenticity and
integrity of data.”

Cryptog
Verificat
Integrity

g news!

1e first open
zone with
)y we reached
fone In our
1line security
munity. We are
2ric Top-Level
sfully sign our
Name Security
EC). To date,
the largest
iImplement
'y measure.”

“What does it mean that the
.ORG Zone is ‘signed’?

Signing our zone is the first part
of our DNSSEC test phase.

We are now cryptographically

signing the authoritative data
within the .ORG zone file.

This process adds new records to
the zone, which allows verification
of the origin authenticity and
integrity of data.”

Cryptography! Au
Verification! Auth
Integrity! Sounds

en

“What does it mean that the
.ORG Zone is ‘signed’?
Signing our zone is the first part

of our DNSSEC test phase.
We are now cryptographically

signing the authoritative data
within the .ORG zone file.

This process adds new records to
the zone, which allows verification
of the origin authenticity and
integrity of data.”

Cryptography! Authority!
Verification! Authenticity!
Integrity! Sounds great!

“What does it mean that the
.ORG Zone is ‘signed’?

Signing our zone is the first part
of our DNSSEC test phase.

We are now cryptographically

signing the authoritative data
within the .ORG zone file.

This process adds new records to
the zone, which allows verification
of the origin authenticity and
integrity of data.”

Cryptography! Authority!
Verification! Authenticity!
Integrity! Sounds great!

“What does it mean

that the

.ORG Zone is ‘signed’?

Signing our zone is t
of our DNSSEC test

ne first part
phase.

We are now cryptographically

signing the authoritative data
within the .ORG zone file.
This process adds new records to

the zone, which allows verification

of the origin authenticity and

integrity of data.”

Cryptography! Authority!
Verification! Authenticity!
Integrity! Sounds great!

Now | simply configure
the new .org public key
into my DNS software.
Because the .org servers

are signing with DNSSEC,
It 1s no longer possible

for attackers to forge
data from those servers!

“What does it mean

that the

.ORG Zone is ‘signed’?

Signing our zone is t
of our DNSSEC test

ne first part
phase.

We are now cryptographically

signing the authoritative data
within the .ORG zone file.
This process adds new records to

the zone, which allows verification

of the origin authenticity and

integrity of data.”

Cryptography! Authority!
Verification! Authenticity!
Integrity! Sounds great!

Now | simply configure
the new .org public key
into my DNS software.
Because the .org servers

are signing with DNSSEC,
It 1s no longer possible

for attackers to forge
data from those servers!

. oris it?

loes 1t mean that the
one is ‘signed’ 7

our zone Is the first part
NSSEC test phase.

1ow cryptographically

he authoritative data

1e .ORG zone file.

cess adds new records to
. which allows verification
1gin authenticity and

of data.”

Cryptography! Authority!
Verification! Authenticity!
Integrity! Sounds great!

Now | simply configure
the new .org public key
into my DNS software.
Because the .org servers

are signing with DNSSEC,
it 1s no longer possible

for attackers to forge
data from those servers!

. oris it?

Decemb

Let's fin

$ dig

do.
al.
cO.

b2

oT,
oT,

or

. OT,
a2.
bO0.

oT,

oT,

$ dig

b0 .

199.1

an that the
ned’ ?

s the first part
st phase.
bgraphically
itative data

one file.

new records to
lows verification
nticity and

Cryptography! Authority!
Verification! Authenticity!
Integrity! Sounds great!

Now | simply configure
the new .org public key
into my DNS software.
Because the .org servers
are signing with DNSSEC,

it 1s no longer possible

for attackers to forge
data from those servers!

. oris it?

December 2015: r

Let's find a .org

$ dig +short n
dO.org.afilias
a0.org.afilias
cO.org.afilias
b2.org.afilias
aZ2.org.afilias

bO.org.afilias

$ dig +short \
bO.org.afili
199.19.54.1

ds to
cation

d

Cryptography! Authority!
Verification! Authenticity!
Integrity! Sounds great!

Now | simply configure
the new .org public key
into my DNS software.
Because the .org servers

are signing with DNSSEC,
it 1s no longer possible

for attackers to forge
data from those servers!

. oris it?

December 2015: reality

Let's find a .org server

$ dig +short ns org
dO.org.afilias—-nst.
a0.org.afilias—-nst.
cO.org.afilias—-nst.
b2.org.afilias—nst.
aZ2.org.afilias—-nst.

bO.org.afilias—-nst.

$ dig +short \

org.
info
info
org.
info

org.

bO.org.afilias—-nst.orx

199.19.54.1

Cryptography! Authority!
Verification! Authenticity!
Integrity! Sounds great!

Now | simply configure
the new .org public key
into my DNS software.
Because the .org servers

are signing with DNSSEC,
It 1s no longer possible

for attackers to forge
data from those servers!

. oris it?

December 2015: reality

Let's find a .org server:

$ dig +short ns org

dO.org.afilias—-nst.org.
a0.org.afilias—nst.info.
cO.org.afilias—nst.info.
b2.org.afilias—-nst.org.
aZ2.org.afilias—-nst.info.

bO.org.afilias-nst.org.

$ dig +short \
bO.org.afilias—-nst.org

199.19.54.1

raphy! Authority!
lon! Authenticity!
I Sounds great!

mply configure
.org public key
DNS software.
the .org servers
ng with DNSSEC,

onger possible

kers to forge
m those servers!

it?

December 2015: reality

Let's find a .org server:

$ dig +short ns org

dO.org.afilias—nst.org.
a0.org.afilias-nst.info.
cO.org.afilias—nst.info.
b2.org.afilias—-nst.org.
aZ2.org.afilias—nst.info.

bO.org.afilias—nst.org.

$ dig +short \
bO.org.afilias—nst.org

199.19.54.1

Look up

$ dig
WWW

©19!
Everythi

;3 AU
green
364
ns—
;3 AD]
NS — el
364
37 .

thority!
enticity!
great!

igure

lic key
vare.
servers
NSSEC,
sible

rge
rvers!

December 2015: reality

Let's find a .org server:

$ dig +short ns org

dO.org.afilias—-nst.org.
a0.org.afilias—nst.info.
cO.org.afilias—nst.info.
b2.org.afilias—nst.org.
aZ2.org.afilias—nst.info.

bO.org.afilias—nst.org.

$ dig +short \
bO.org.afilias—-nst.org

199.19.54.1

Look up greenpe:

$ dig \
WWW . greenpea

©199.19.54.1
Everything looks r

; ; AUTHORITY S
greenpeace.org
86400 IN NS

ns-emea.gree
;3 ADDITIONAL
ns-emea.greenp

86400 IN A

37.48.104.54

December 2015: reality

Let's find a .org server:

$ dig +short ns org

dO.org.afilias—nst.org.
a0.org.afilias-nst.info.
cO.org.afilias—nst.info.
b2.org.afilias—-nst.org.
aZ2.org.afilias—-nst.info.

bO.org.afilias—-nst.org.

$ dig +short \
bO.org.afilias—nst.org

199.19.54.1

Look up greenpeace.org:

$ dig \
WWW.greenpeace.org \

©199.19.54.1
Everything looks normal:

; ; AUTHORITY SECTION:
greenpeace.org.
86400 IN NS
ns-emea.greenpeace.ox
; 3 ADDITIONAL SECTION:
ns-emea.greenpeace.org.
86400 IN A
37.48.104.54

December 2015: reality

Let's find a .org server:

$ dig +short ns org

dO.org.afilias—-nst.org.
a0.org.afilias-nst.info.
cO.org.afilias—nst.info.
b2.org.afilias—-nst.org.
aZ2.org.afilias—nst.info.

bO.org.afilias—-nst.org.

$ dig +short \
bO.org.afilias—nst.org

199.19.54.1

Look up greenpeace.org:

$ dig \
WWW.greenpeace.org \

©199.19.54.1
Everything looks normal:

; ; AUTHORITY SECTION:
greenpeace.org.
86400 IN NS
ns-emea.greenpeace.org.
;3 ADDITIONAL SECTION:
ns-emea.greenpeace.org.
86400 IN A
37.48.104.54

er 2015: reality Look up greenpeace.org: Where's
Have to
d a .org server: $ dig \
WWW . greenpeace.or $ di
+short ns org 5 P g\ 5
o 0199.19.54.1 WWW
c.afilias—-nst.org.
o , . @19!
c.afilias-nst.info. Everything looks normal:
.afilias-nst.info. Old ans\
; 5 AUTHORITY SECTION:
c.afilias—nst.org. ,
greenpeace.org. h9p7u
oc.afilias—-nst.info. |
36400 IN NS np90u.
c.afilias—-nst.org.
ns—emea.greenpeace.org. C3 1
+short \ ; 3 ADDITIONAL SECTION: 69T6U
org.afilias—nst.org ns—emea.greenpeace.org. NS S
0.54.1 36400 IN A 3PARA
37.48.104.54
h9p7u

eality

SErvVer.:

S org
—nst.org.
-nst.info.
-nst.info.
—nst.org.
-nst.info.

—-nst.org.

as—nst.org

Look up greenpeace.org:

$ dig \
WWW.greenpeace.org \

©199.19.54.1
Everything looks normal:

; ; AUTHORITY SECTION:
greenpeace.org.
86400 IN NS
ns-emea.greenpeace.org.
;3 ADDITIONAL SECTION:
ns-emea.greenpeace.org.
86400 IN A
37.48.104.54

Where's the crypt:
Have to ask for si;

$ dig +dnssec

WWW.greenpea

0199.19.54 .1
Old answer + foul

h9p7u7tr2u91d0
np90u3dh.org. 38
C3 11 1 D399E
69T6US01GSGOEL

NS SOA RRSIG
3PARAM

h9p7u7tr2u91do

Look up greenpeace.org: Where's the crypto?
Have to ask for signatures:

$ dig \
WWW.greenpeace.org \ $ dig +dnssec \
@199.19.54.1 WWW.greenpeace.org \

: ©199.19.54.1
Everything looks normal:

Old answer + four new lines
;3 AUTHORITY SECTION:

greenpeace.org. h9p7u7tr2u91d0v01ljs911g
36400 IN NS np90u3h.org. 86400 IN N
ns—emea.greenpeace.org. C3 1 1 1 D399EAAB HOPAR
; 3 ADDITIONAL SECTION: 69T6US01GSGOE1LMITKADEN
ns—emea.greenpeace.org. NS SOA RRSIG DNSKEY N&S
36400 IN A 3PARAM
37.48.104.54

h9p7u7tr2u91d0v0ljs9lig

Look up greenpeace.org: Where's the crypto?
Have to ask for signatures:

$ dig \
WWW.greenpeace.org \ $ dig +dnssec \
©199.19.54.1 WWW.greenpeace.org \

: ©199.19.54.1
Everything looks normal:

Old answer + four new lines:
;3 AUTHORITY SECTION:

greenpeace.org. h9p7ur7tr2u91d0v0ljs9ligid
86400 IN NS np90u3dh.org. 86400 IN NSE
ns—emea.greenpeace.org. C3 1 1 1 D399EAAB HO9PARRG6
; 5 ADDITIONAL SECTION: 69T6US01GSGOE1LMITK4ADEMOT
ns—emea.greenpeace.org. NS SOA RRSIG DNSKEY NSEC
86400 IN A 3PARAM
37.48.104.54

h9p7u7tr2u91d0v0ljs9ligid

greenpeace.org.

\

.greenpeace.org \

0.19.54.1
ng looks normal:

THORITY SECTION:
peace.org.

00 IN NS

emea . greenpeace.org.
DITIONAL SECTION:
ca.greenpeace.org.
00 IN A

18.104.54

Where's the crypto?
Have to ask for signatures:

$ dig +dnssec \

WWW.greenpeace.org \

0199.19.54 .1
Old answer + four new lines:

h9p7u7tr2u91d0v0ljs9ligid
np90u3h.org. 386400 IN NSE
C3 1 1 1 D399EAAB HOPARRG
69T6US01GSGOE1ILMITK4ADEMOT
NS SOA RRSIG DNSKEY NSEC
3PARAM

h9p7u7tr2u91d0v0ljs9ligid

np90u.
IG NS
06023
448 o:
EZ1/m
UJRUA.
Tcziy!
ALtRD
30Jdf!
YBNTu
Cota .

bgca0,

qng3p:
C3 1

Ace.org:

ce.org \

iormal:

ECTION:

npeace.org.

SECTION:

eace.org.

Where's the crypto?
Have to ask for signatures:

$ dig +dnssec \

WWW.greenpeace.org \

0199.19.54 .1
Old answer + four new lines:

h9p7u7tr2u91d0v0ljs9ligid
np90u3h.org. 36400 IN NSE
C3 1 1 1 D399EAAB HO9PARRG6
69T6US01GSGOE1ILMITKADEMOT
NS SOA RRSIG DNSKEY NSEC
3PARAM

h9p7u7tr2u91d0v0ljs9ligid

np90udh.org. 3
IG NSEC3 7 2 8
06023715 20151
448 org. 0GLya
EZ1/mnvAG3NJ2z
UJRUALKVCzaWJj
TcziyRmM8iYvBN
ALtRDomlrdpsVD
30Jdf2sbfXmZd1l
YBNTujz2NPadBA
Cota 1Bk=

bgcalgOuglOpbo7
gqng3p2f.org. 3
C3 1 1 1 D399E

Where's the crypto?
Have to ask for signatures:

$ dig +dnssec \

WWW.greenpeace.org \

0199.19.54 .1
Old answer + four new lines:

h9p7u7tr2u91d0v0ljs9ligid
np90u3h.org. 386400 IN NSE
C3 1 1 1 D399EAAB HOPARRG
69T6US01GSGOE1ILMITK4ADEMOT
NS SOA RRSIG DNSKEY NSEC
3PARAM

h9p7u7tr2u91d0v0ljs9ligid

np90u3h.org. 86400 IN R
IG NSEC3 7 2 86400 201¢€
06023715 20151216013715
448 org. 0OGLyaFRtHdAROUE
EZ1/mnvAG8NJ2z5nBibALDPY
UJRUALKVCzaWJjZ rpgB6Wg
TcziyRmM31iYvBNwzmUxoPzg
ALtRDomlrdpsVDxGveMJub
30Jdf2sbfXmZd1viiz+RXRv
YBNTujz2NPadBATP1UNrOsk
Cota 1Bk=

bgcalgOuglpbo7425emktIu
gng3p2f.org. 36400 IN N
C3 1 1 1 D399EAAB BGDMY

Where's the crypto?

Have to ask for signatures:

$ dig +dnssec \

WWW.greenpeace.org \

©199.19.54.1

Old answer + four new lines:

h9p7u7tr2u91d0v0ljs9ligid
np90u3h.org. 36400 IN NSE
C3 1 1 1 D399EAAB HOPARRG6
69T6US01GSGOE1ILMITKADEMOT
NS SOA RRSIG DNSKEY NSEC
3PARAM

h9p7u7tr2u91d0v0ljs9ligid

np90u3h.org. 86400 IN RRS
IG NSEC3 7 2 86400 201601
06023715 20151216013715 1
448 org. 0GLyaFRtHdR6UBeq
EZ1/mnvAG8NJ2z5nBibALpYtE
UJRUALKVCzaWJjZ rpgB6WgcF
TcziyRmM3iYvBNwzmUxoPzgkv
ALtRDomlrdpsVDxGveMJu6 pE
30Jdf2sbfXmZd1viiz+RXRvNI
YBNTujz2NPadBATP1UNrOsbQj
Cota 1Bk=

bgcalglOuglpbo7425emktOuesd
gng3p2f .org. 36400 IN NSE
C3 1 1 1 D399EAAB BGDM7MS

the crypto?
ask for signatures:

+dnssec \

.greenpeace.org \

9.19.54 .1
ver + four new lines:

(tr2u91d0v01js91l1igid
3h.org. 86400 IN NSE
1 1 D399EAAB HOPARRG6
301GSGOE1LMITK4DEMOT
JA RRSIG DNSKEY NSEC
Jl

7tr2u91d0v0ljs9ligid

np90u3dh.org. 86400 IN RRS
IG NSEC3 7 2 86400 201601
06023715 20151216013715 1
448 org. 0OGLyaFRtHdR6UBeq
EZ1/mnvAG8NJ2z5nBibALpYtE
UJRUALKVCzaWJjZ rpgB6WgcF
TcziyRmM31iYvBNwzmUxoPzgkv
ALtRDomlrdpsVDxGveMJu6 pE
30Jdf2sbfXmZd1viiz+RXRvNI
YBNTujz2NPadBATP1UNrOsbQ]
Cota 1Bk=

bgcalgluglpbo7425emktOuesd
gqng3p2f.org. 36400 IN NSE
C3 1 1 1 D399EAAB BGDM7MS

FOV1T
A RR.

bgcal;
qng3p:
IG NS
30150¢
448 o:
P7skO:
Vn/Q4]
Ork7b.
fevVd
StsWz
sK+PU]

ggs9 |

o7

Ynatures:

\

ce.org \

- new lines:

v0ljs9llgid
6400 IN NSE
AAB HO9PARRG
LMITK4DEMOT
DNSKEY NSEC

v01js9ligid

np90u3dh.org. 86400 IN RRS
IG NSEC3 7 2 86400 201601
06023715 20151216013715 1
448 org. 0OGLyaFRtHdR6UBeq
EZ1/mnvAG8NJ2z5nBibALpYtE
UJRUALKVCzaWJjZ rpgB6WgcF
TcziyRmM3iYvBNwzmUxoPzgkv
ALtRDomlrdpsVDxGveMJu6 pE
30Jdf2sbfXmZd1viiz+RXRvNI
YBNTujz2NPadBATP1UNrOsbQj
Cota 1Bk=

bgcalgOuglpbo7425emktOuesd
gng3p2f .org. 36400 IN NSE
C3 1 1 1 D399EAAB BGDM7MS

FOVIT1JFVISFA2
A RRSIG

bgcalOgOugOpbo7
gqng3p2f.org. 8
IG NSEC3 7 2 8
30150037 20151
448 org. Wg2Zha
P7sk04Y/nSp+sR
Vn/Q4DEXqftVYe
Ork7bZ/K+v0+5m
fevV8t4ZmWrs+N
StsWztJ500xdmZ
sK+PUKaB6dx2Bo
ggs9 MBO=

id
SE
RO
0T
EC

1d

np90u3h.org. 86400 IN RRS
IG NSEC3 7 2 86400 201601
06023715 20151216013715 1
448 org. 0OGLyaFRtHdR6UBeq
EZ1/mnvAG8NJ2z5nBibALpYtE
UJRUALKVCzaWJjZ rpgB6WgcF
TcziyRmM31iYvBNwzmUxoPzgkv
ALtRDomlrdpsVDxGveMJu6 pE
30Jdf2sbfXmZd1viiz+RXRvNI
YBNTujz2NPadBATP1UNrOsbQ]
Cota 1Bk=

bgcalgluglpbo7425emktOuesd
gng3p2f.org. 36400 IN NSE
C3 1 1 1 D399EAAB BGDM7MS

FOVIT1JFVISBFA211MH4JD7U
A RRSIG

bgcalgluglpbo7425emktIu
gqng3dp2f.org. 86400 IN R
IG NSEC3 7 2 86400 2015
30150037 20151209140037
448 org. Wg2ha2mgODnjiV
P7sk04Y/nSp+sR5uhChRWyz
Vn/Q4DEXqftVYeh v/x7Cmz
Ork7bZ/K+v0+5mOMyao6Fod
fevV8t4ZmWrS+NLjNfx/y1l
StsWztJ500xdmZwlEwOALH/
sK+PUKaB6dx2BoEQ1FnlplF
ggs9 MBO=

np90u3dh.org. 86400 IN RRS
IG NSEC3 7 2 86400 201601
06023715 20151216013715 1
448 org. 0OGLyaFRtHdR6UBeq
EZ1/mnvAG8NJ2z5nBibALpYtE
UJRUALKVCzaWJjZ rpgB6WgcF
TcziyRmM3iYvBNwzmUxoPzgkv
ALtRDomlrdpsVDxGveMJu6 pE
30Jdf2sbfXmZd1viiz+RXRvNI
YBNTujz2NPadBATP1UNrOsbQj
Cota 1Bk=

bgcalgOuglpbo7425emktOuesd
gng3p2f .org. 36400 IN NSE
C3 1 1 1 D399EAAB BGDM7MS

FOVIT1JFVIBFA211MH4JD7UJ7
A RRSIG

bgcalgluglOpbo7425emktOued
gqng3p2f .org. 386400 IN RRS
IG NSEC3 7 2 86400 201512
30150037 20151209140037 1
448 org. Wg2ha2mgODnjiVN1
P7sk04Y/nSp+sR5uhChRWyzqgH
Vn/Q4DEXqftVYeh v/x7Cmz2Q
Ork7bZ/K+v0+5mOMyao6Fod8+
fevV8t4ZmWrS+NLjNfx/y1l So
StsWztJ500xdmZwlEwOALH/5g
sK+PUKaB6dx2BoEQiFnlplPSt
ggs9 MBO=

3h.org. 86400 IN RRS
FC3 7 2 86400 201601
15 20151216013715 1
rg. 0OGLyaFRtHdR6UBeq
nvAGENJ2z5nBib5ALpYtE
fKVCzaWJjZ rpgB6bWgcF
RmM31YvBNwzmUxoPzgkv
omlrdpsVDxGveMJu6 pE
2sbfXmZd1viiz+RXRvNI
jz2NPadBATP1UNrOsbQ]
1Bk=

c0ugOpbo7425emktOued
2f .org. 386400 IN NSE
1 1 D399EAAB BGDMT7MS

FOVIT1JFVISFA211MH4JD7UJ7
A RRSIG

bgcalgluglOpbo7425emktOued
gqng3p2f.org. 86400 IN RRS
IG NSEC3 7 2 86400 201512
30150037 20151209140037 1
448 org. Wg2ha2mgODnjiVN1
P7sk04Y/nSp+sR5uhChRWyzgH
Vn/Q4DEXqftVYeh v/x7Cmz2Q
Ork7bZ/K+v0+5mOMyao6Fod8+
fevV8t4ZmWrS+NLjNfx/y1 So
StsWztJ500xdmZwlEwOALH/5g
sK+PUKaB6dx2BoEQ1Fnl1plPSt
ggs9 MBO=

Wow, th
Must be

$ tcpdu

host
shows p
dig sen
to the .
receives

See mor
$ dig +

org Q@
Sends 8¢
receives
totalling

6400 IN RRS
6400 201601
216013715 1
FRtHdR6UBeq
5nBiSALpYtE
Z rpgB6bWgcF
wzmUxoPzgkv
xGveMJu6 pE
viiz+RXRVNI
TP1UNrOsbQj

425emkt9ued
6400 IN NSE
AAB BGDMT7MS

FOVIT1JFVIBFA211MH4JD7UJ7
A RRSIG

bgcalgOuglOpbo7425emktOued
gqng3p2f .org. 36400 IN RRS
IG NSEC3 7 2 86400 201512
30150037 20151209140037 1
448 org. Wg2ha2mgODnjiVN1
P7sk04Y/nSp+sR5uhChRWyzqgH
Vn/Q4DEXqftVYeh v/x7Cmz2Q
Ork7bZ/K+v0+5mOMyao6Fod8+
fevV8t4ZmWrS+NLjNfx/y1l So
StsWztJ500xdmZwlEwOALH/5g
sK+PUKaB6dx2BoEQiFnlplPSt
ggs9 MBO=

Wow, that's a lot
Must be strong cr

$ tcpdump -n -e
host 199.19.54
shows packet sizes
dig sends 89-byte
to the .org DNS
receives 696-byte

See more DNSSE(
$ dig +dnssec an

org ©199.19.54
Sends 89-byte IP |
receives two |P frz
totalling 2362 byte

ed
SE
MS

FOVIT1JFVIBFA211MH4JD7UJ7
A RRSIG

bgcalgluglOpbo7425emktOued
gqng3p2f.org. 86400 IN RRS
IG NSEC3 7 2 86400 201512
30150037 20151209140037 1
448 org. Wg2ha2mgODnjiVN1
P7sk04Y/nSp+sR5uhChRWyzgH
Vn/Q4DEXqftVYeh v/x7Cmz2Q
Ork7bZ/K+v0+5mOMyao6Fod8+
fevV8t4ZmWrS+NLjNfx/y1 So
StsWztJ500xdmZwlEwOALH/5g
sK+PUKaB6dx2BoEQ1Fnl1plPSt
ggs9 MBO=

Wow, that's a lot of data.
Must be strong cryptograph

$ tcpdump -n -e \

host 199.19.54.1 &
shows packet sizes:
dig sends 89-byte IP packet
to the .org DNS server,
receives 696-byte IP packet.

See more DNSSEC data:
$ dig +dnssec any \
org ©0199.19.54.1
Sends 89-byte IP packet,
receives two IP fragments
totalling 2362 bytes.

FOVIT1JFVIBFA211MH4JD7UJ7
A RRSIG

bgcalgluglOpbo7425emktOued
gqng3p2f .org. 36400 IN RRS
IG NSEC3 7 2 86400 201512
30150037 20151209140037 1
448 org. Wg2ha2mgODnjiVN1
P7sk04Y/nSp+sR5uhChRWyzqgH
Vn/Q4DEXqftVYeh v/x7Cmz2Q
Ork7bZ/K+v0+5mOMyao6Fod8+
fevV8t4ZmWrS+NLjNfx/y1l So
StsWztJ500xdmZwlEwOALH/5g
sK+PUKaB6dx2BoEQiFnlplPSt
ggs9 MBO=

Wow, that's a lot of data.
Must be strong cryptography!

$ tcpdump -n -e \

host 199.19.54.1 &
shows packet sizes:
dig sends 389-byte IP packet
to the .org DNS server,
receives 696-byte IP packet.

See more DNSSEC data:
$ dig +dnssec any \
org ©0199.19.54.1
Sends 89-byte IP packet,
receives two IP fragments
totalling 2362 bytes.

1 JFVIS8FA211MH4JD7UJ7
S1G

oc0ugOpbo7425emktOued
2f .org. 86400 IN RRS
FC3 7 2 86400 201512
037 20151209140037 1
rg. Wg2ha2mgODnjiVN1
1Y /nSp+sR5uhChRWyzqgH
DEXqftVYeh v/x7Cmz2Q
Z./K+v0+b5m0Myao6Fod8+
t4ZmWrS+NLjNfx/y1l So
tJ500xdmZwl1EwOALH/5g
KaB6dx2BoEQ1iFnl1plPSt
BO=

Wow, that's a lot of data.
Must be strong cryptography!

$ tcpdump -n -e \

host 199.19.54.1 &
shows packet sizes:
dig sends 89-byte IP packet
to the .org DNS server,
receives 696-byte IP packet.

See more DNSSEC data:
$ dig +dnssec any \
org ©0199.19.54.1
Sends 89-byte IP packet,
receives two IP fragments
totalling 2362 bytes.

Interlude

What h:
this dat:

11MH4JD7UJ7

425emktOued
6400 IN RRS
6400 201512
209140037 1
2mgODn jiVN1
5uhChRWyzqH
h v/x7Cmz2Q
OMyao6Fod3+
LjNfx/yl So
wlEwOALH/bg
EOiFnlplPSt

Wow, that's a lot of data.
Must be strong cryptography!

$ tcpdump -n -e \

host 199.19.54.1 &
shows packet sizes:
dig sends 389-byte IP packet
to the .org DNS server,
receives 696-byte IP packet.

See more DNSSEC data:
$ dig +dnssec any \
org ©0199.19.54.1
Sends 89-byte IP packet,
receives two IP fragments
totalling 2362 bytes.

Interlude: the atts:

What happens if v
this data at somec

Wow, that's a lot of data.
Must be strong cryptography!

$ tcpdump -n -e \

host 199.19.54.1 &
shows packet sizes:
dig sends 89-byte IP packet
to the .org DNS server,
receives 696-byte IP packet.

See more DNSSEC data:
$ dig +dnssec any \
org ©0199.19.54.1
Sends 89-byte IP packet,
receives two IP fragments
totalling 2362 bytes.

Interlude: the attacker’s vie

What happens if we aim
this data at someone else?

Wow, that's a lot of data.
Must be strong cryptography!

$ tcpdump -n -e \

host 199.19.54.1 &
shows packet sizes:
dig sends 389-byte IP packet
to the .org DNS server,
receives 696-byte IP packet.

See more DNSSEC data:
$ dig +dnssec any \
org ©0199.19.54.1
Sends 89-byte IP packet,
receives two IP fragments
totalling 2362 bytes.

Interlude: the attacker’'s view

What happens if we aim
this data at someone else?

Wow, that's a lot of data.
Must be strong cryptography!

$ tcpdump -n -e \

host 199.19.54.1 &
shows packet sizes:
dig sends 89-byte IP packet
to the .org DNS server,
receives 696-byte IP packet.

See more DNSSEC data:
$ dig +dnssec any \
org ©0199.19.54.1
Sends 89-byte IP packet,
receives two IP fragments
totalling 2362 bytes.

Interlude: the attacker's view

What happens if we aim

this data at someone else?

Wow, that's a lot of data.
Must be strong cryptography!

$ tcpdump -n -e \

host 199.19.54.1 &
shows packet sizes:
dig sends 89-byte IP packet
to the .org DNS server,
receives 696-byte IP packet.

See more DNSSEC data:
$ dig +dnssec any \
org ©199.19.54.1
Sends 89-byte IP packet,
receives two IP fragments
totalling 2362 bytes.

Interlude: the attacker's view

What happens if we aim
this data at someone else?

Let's see what DNSSEC can do
as an amplification tool for

denial-of-service attacks.

at’'s a lot of data.
strong cryptography!

np -n —e \
199.19.54.1 &
acket sizes:

s 89-byte IP packet
org DNS server,
696-byte |P packet.

e DNSSEC data:
dnssec any \
199.19.54.1
)-byte IP packet,
two IP fragments

2362 bytes.

Interlude: the attacker’'s view

What happens if we aim
this data at someone else?

Let's see what DNSSEC can do
as an amplification tool for

denial-of-service attacks.

Downloc

wget -m
secsp
cd secs;

awk ’

/GREE

of data.
yptography!

\
1 &

|IP packet
server,
[P packet.

_ data:
y o\

|
vacket,
gments
S,

Interlude: the attacker's view

What happens if we aim
this data at someone else?

Let's see what DNSSEC can do
as an amplification tool for

denial-of-service attacks.

Download DNSSE

wget -m -k -I /
secspider.cs.u
cd secspider.cs.
awk ’
/GREEN . *GREEN .
split ($0,x,/
sub (/<\/TD>/
print x[5]
Iy
’ . /*—-zone.html

| sort -u | wc -

Interlude: the attacker’'s view

What happens if we aim
this data at someone else?

Let's see what DNSSEC can do
as an amplification tool for

denial-of-service attacks.

Download DNSSEC zone lis

wget -m -k -I / \

secspider.cs.ucla.edu
cd secspider.cs.ucla.edu
awk ’

/GREEN . *GREEN . *GREEN . *Y
split($0,x,/<TD>/)
sub (/<\/TD>/,"",x[5])
print x[5]

¥

’ . /*--zone.html \

| sort -u | wec -1

Interlude: the attacker's view

What happens if we aim
this data at someone else?

Let's see what DNSSEC can do
as an amplification tool for

denial-of-service attacks.

Download DNSSEC zone list:

wget -m -k -I / \

secspider.cs.ucla.edu

cd secspider.cs.ucla.edu

awk ’

)

/GREEN . *GREEN . *GREEN . *xYes/ {

split ($0,x,/<TD>/)
sub(/<\/TD>/,"",x[5])
print x[5]

+
./*——zone.html \

sort -u | wec -1

: the attacker's view

ppens if we aim
Y at someone else?

> what DNSSEC can do
plification tool for

-service attacks.

Download DNSSEC zone list:

wget -m -k -I / \
secspider.cs.ucla.edu
cd secspider.cs.ucla.edu
awk ’
/GREEN . *GREEN . *GREEN . xYes/ {
split($0,x,/<TD>/)
sub (/<\/TD>/,"",x[5])
print x[5]
¥
’ . /*—-zone.html \

| sort -u | wec -1

Make lis

(cd se
echo

| xar,

/" Z

S

S

icker's view

ve alm

ne else?

|SSEC can do
1 tool for

ttacks.

Download DNSSEC zone list:

wget -m -k -I / \

secspider.cs.ucla.edu
cd secspider.cs.ucla.edu
awk ’

/GREEN . *GREEN . *GREEN . xYes/ {
split ($0,x,/<TD>/)
sub(/<\/TD>/,"",x[5])
print x[5]

¥

’ . /*—-zone.html \

| sort -u | wec -1

Make list of DNSS

(cd secspider.c
echo ./*--zone
| xargs awk ’

/~Zone <STRO
sub (/<STRO
sub (/<\/ST

+

/GREEN . *GREE
split($0,x
sub (/<\/TD
print x[5]

})

) | sort -k3n \

| awk ’{print $1

1<

 do

Download DNSSEC zone list:

wget -m -k -I / \
secspider.cs.ucla.edu
cd secspider.cs.ucla.edu
awk ’
/GREEN . *GREEN . *GREEN . *Yes/ {
split($0,x,/<TD>/)
sub (/<\/TD>/,"",x[5])
print x[5]
¥
’ . /*—--zone.html \

| sort -u | wec -1

Make list of DNSSEC name

(cd secspider.cs.ucla.ed
echo ./*--zone.html \
| xargs awk ’

/~Zone / { z
sub (//,"",z
sub (/<\/STRONG>/,""

F

/GREEN . *GREEN . *GREEN .
split ($0,x,/<TD>/)
sub(/<\/TD>/,"",x[5
print x[5],z,rand()

})

) | sort -k3n \
| awk ’{print $1,3$2}’ > S

Download DNSSEC zone list:

wget -m -k -I / \
secspider.cs.ucla.edu
cd secspider.cs.ucla.edu
awk ’
/GREEN . *GREEN . *GREEN . xYes/ {
split ($0,x,/<TD>/)
sub (/<\/TD>/,"",x[5])
print x[5]
¥
’ . /*—-zone.html \

| sort -u | wec -1

Make list of DNSSEC names:

(cd secspider.cs.ucla.edu
echo ./*--zone.html \
| xargs awk ’
/~Zone / { z = $2
sub (//,"",z)
sub (/<\/STRONG>/,"",z)
+
/GREEN . *GREEN . *GREEN . *Yes/ {
split ($0,x,/<TD>/)
sub (/<\/TD>/,"",x[5])
print x[5],z,rand()
}J
) | sort -k3n \
| awk ’{print $1,$2}’ > SERVERS

\d DNSSEC zone list:
-k -I / \

ider.cs.ucla.edu

pider.cs.ucla.edu

N. *GREEN . *GREEN . *Yes/ {
it ($0,x,/<TD>/)
(/<\/TD>/,"",x[5])

nt x[5]

zone.html \

-u | we -1

Make list of DNSSEC names:

(cd secspider.cs.ucla.edu
echo ./*--zone.html \
| xargs awk ’
/~Zone / { z = $2
sub (//,"",z)
sub (/<\/STRONG>/,"",z)
+
/GREEN . *GREEN . *GREEN . *Yes/ {
split ($0,x,/<TD>/)
sub (/<\/TD>/,"",x[5])
print x[5],z,rand()
})
) | sort -k3n \
| awk ’{print $1,$2}’ > SERVERS

For eacl
estimate

while r
do
dig +
+time:
awk -
if
if
if
if
est

pri

done < |

C zone list:

\

cla.edu

ucla.edu

*GREEN. *Yes/ {
<TD>/)
,"",X[5])

Make list of DNSSEC names:

(cd secspider.cs.ucla.edu
echo ./*--zone.html \
| xargs awk ’
/"Zone / { z = $2
sub (//,"",z)
sub (/<\/STRONG>/,"",z)
+
/GREEN . *GREEN . *GREEN . *Yes/ {
split ($0,x,/<TD>/)
sub (/<\/TD>/,"",x[5])
print x[5],z,rand()
}J
) | sort -k3n \
| awk ’{print $1,$2}’ > SERVERS

For each domain:
estimate DNSSEC

while read 1ip z
do
dig +dnssec +1
+time=1 any "$

awk -v "z=$z"

if ($1 ="y
if ($2 '= "M
if ($3 !'="S
if ($4 !'= "r
est = (22+$5

print est,1p
})
done < SERVERS >

es/ A

Make list of DNSSEC names:

(cd secspider.cs.ucla.edu
echo ./*--zone.html \
| xargs awk ’
/~Zone / { z = $2
sub (//,"",z)
sub (/<\/STRONG>/,"",z)
+
/GREEN . *GREEN . *GREEN . *Yes/ {
split ($0,x,/<TD>/)
sub (/<\/TD>/,"",x[5])
print x[5],z,rand()
})
) | sort -k3n \
| awk ’{print $1,$2}’ > SERVERS

For each domain: Try query
estimate DNSSEC amplifica

while read ip z

do
dig +dnssec +ignore +tr
+time=1 any "$z" "@$ip"

awk -v "z=$z" -v "ip=8i

if ($1 !'= ";;") next
if ($2 '= "MSG") next
if ($3 != "SIZE") nex
if ($4 '= "rcvd:") ne

est = (22+35)/(40+1en
print est,ip,z
})
done < SERVERS > AMP

Make list of DNSSEC names:

(cd secspider.cs.ucla.edu
echo ./*--zone.html \
| xargs awk ’
/"Zone / { z = $2
sub (//,"",z)
sub (/<\/STRONG>/,"",z)
+
/GREEN . *GREEN . *GREEN . *Yes/ {
split ($0,x,/<TD>/)
sub (/<\/TD>/,"",x[5])
print x[5],z,rand()
}J
) | sort -k3n \
| awk ’{print $1,$2}’ > SERVERS

For each domain: Try query,
estimate DNSSEC amplification.

while read 1ip z

do
dig +dnssec +ignore +tries=1 \
+time=1 any "$z" "@$ip" | \

awk -v "Z=$Z" —v "ip=$ip"){

if ($1 '= ";;") next

if ($2 != "MSG") next
if ($3 != "SIZE") next
if ($4 '= "rcvd:") next

est = (22+835)/(40+length(z))
print est,ip,z
})
done < SERVERS > AMP

t of DNSSEC names:

cspider.cs.ucla.edu
./*——zone.html \

oS awk '’

one / { z = $2
1b (//,"",z)

1b (/<\/STRONG>/,"" ,z)

EEN . *GREEN . *GREEN . xYes/ {
p1it ($0,x,/<TD>/)
ub (/<\/TD>/,"",x[5])

rint x[5],z,rand ()

t -k3n \
{print $1,$2}’ > SERVERS

For each domain: Try query,
estimate DNSSEC amplification.

while read ip z

do

dig +dnssec +ignore +tries=1 \

+time=1 any "$z" "@$ip" | \

awk -v n2=$zn —v "ip=$ip"){

if
if
if
if

est

($1 !'= ";;") next
($2 '= "MSG") next
($3 '= "SIZE") next
($4 '= "rcvd:") next

= (22+$5)/(40+1length(z))

print est,ip,z

})

done < SERVERS > AMP

For eacl
find don

maximul

SOrt —n
if (s
if ($
print
seen [!

}’> > MA

head -1

wc -1 M

Output

95.6279
2326 MA.

yEC names: For each domain: Try query, For each DNSSEC
© vela odu estimate DNSSEC amplification. find Idomain estim
.html \ while read ip z maximum DNSSE
do sort —-nr AMP a
NG>/ { z = $2 dig +dnssec +ignore +tries=1 \ if (seenl[$2])
NG>/,"",z) +time=1 any "$z" "@$ip" | \ if ($1 < 30) n
RONG>/,"",z) awk -v "z=$z" -v "ip=$ip" ’{ print $1,$2,$3
if ($1 = ";;") next seen[$2] = 1
N.*GREEN.*Yes/ { if ($2 '= "MSG") next }’> > MAXAMP
,/<TD>/) if ($3 !'= "SIZE") next head -1 MAXAMP
>/ ,"" . x[5]) if ($4 !'= "rcvd:") next wc -1 MAXAMP
,z,rand () est = (22+$5)/(40+1length(z)) ()utput(]astthne
print est,ip,z
}> 95.6279 156.154.
,$2}° > SERVERS done < SERVERS > AMP 2326 MAXAMP

ERVERS

For each domain: Try query,
estimate DNSSEC amplification.

while read ip z

do

dig +dnssec +ignore +tries=1 \

+time=1 any "$z" "@$ip" | \

awk -v n2=$zn —v "ip=$ip"){

if
if
if
if

est

($1 =
($2 !'=
($3 !=
($4 '=

n;;n) next
"MSG") next
"STZE") next

"rcvd:") next

= (22+$5)/(40+1length(z))

print est,ip,z

})

done < SERVERS > AMP

For each DNSSEC server,

find domain estimated to ha
maximum DNSSEC amplific

sort —nr AMP awk ’{

if (seen[$2]) next
if ($1 < 30) next
print $1,3%$2,8$3
seen[$2] = 1

}’ > MAXAMP

head -1 MAXAMP

wc -1 MAXAMP

Output (last time | tried it):

95.6279 156.154.102.26 f1i
2326 MAXAMP

For each domain: Try query,
estimate DNSSEC amplification.

while read 1ip z

do
dig +dnssec +ignore +tries=1 \
+time=1 any "$z" "@$ip" | \

awk -v "Z=$Z" —v "ip=$ip"){

if ($1 '= ";;") next
if ($2 != "MSG") next
if ($3 != "SIZE") next
if ($4 '= "rcvd:") next

est = (22+835)/(40+length(z))
print est,ip,z
})
done < SERVERS > AMP

For each DNSSEC server,

find domain estimated to have
maximum DNSSEC amplification:

sort —-nr AMP awk ’{

if (seen[$2]) next
if ($1 < 30) next
print $1,3$2,$3
seen[$2] =1

}’ > MAXAMP

head -1 MAXAMP

wc -1 MAXAMP

Output (last time | tried it):

95.6279 156.154.102.26 f1i.
2326 MAXAMP

 domain: Try query,
- DNSSEC amplification.

cad 1p z

inssec +ignore +tries=1 \
=1 any n$zn "@$ip" | \
Vs n2=$zn -V "ip=$ip"){

($1 = ";;") next
($2 = "MSG") next
($3 '= "SIZE") next
($4 '= "rcvd:") next

= (22+$5)/(40+1length(z))

nt est,ip,z

SERVERS > AMP

For each DNSSEC server,
find domain estimated to have

maximum DNSSEC amplification:

sort —nr AMP awk ’{

if (seen[$2]) next
if ($1 < 30) next
print $1,3$2,8$3
seen[$2] = 1

}’ > MAXAMP

head -1 MAXAMP

wc -1 MAXAMP

Output (last time | tried it):

95.6279 156.154.102.26 f1i.
2326 MAXAMP

Can tha
>2000 [
around t
providin,
of incomn

Try query,
amplification.

gnore +tries=1 \
z" "@$ip" | \

-v "ip=8%ip" ’A
;") next

SG") next

IZE") next
cvd:") next

)/ (40+1length(z))

y Z

AMP

For each DNSSEC server,
find domain estimated to have

maximum DNSSEC amplification:

awk ’{
if (seen[$2]) next
if ($1 < 30) next
print $1,3$2,$3
seen[$2] =1

}’ > MAXAMP

head -1 MAXAMP

wc -1 MAXAMP

sort —nr AMP

Output (last time | tried it):

95.6279 156.154.102.26 f1i.
2326 MAXAMP

Can that really be
>2000 DNSSEC s
around the Interne
providing >30X% a
of incoming UDP

tion.

jes=1 \

XT
gth(z))

For each DNSSEC server,
find domain estimated to have

maximum DNSSEC amplification:

sort —nr AMP awk ’{

if (seen[$2]) next
if ($1 < 30) next
print $1,3$2,8$3
seen[$2] = 1

}’ > MAXAMP

head -1 MAXAMP

wc -1 MAXAMP

Output (last time | tried it):

95.6279 156.154.102.26 f1i.
2326 MAXAMP

Can that really be true?
>2000 DNSSEC servers
around the Internet, each
providing >30x amplificatic
of incoming UDP packets?

For each DNSSEC server,
find domain estimated to have

maximum DNSSEC amplification:

sort —-nr AMP awk ’{

if (seen[$2]) next
if ($1 < 30) next
print $1,3$2,$3
seen[$2] =1

}’ > MAXAMP

head -1 MAXAMP

wc -1 MAXAMP

Output (last time | tried it):

95.6279 156.154.102.26 f1i.
2326 MAXAMP

Can that really be true?
>2000 DNSSEC servers
around the Internet, each
providing >30x amplification
of incoming UDP packets?

For each DNSSEC server,
find domain estimated to have

maximum DNSSEC amplification:

sort —-nr AMP awk ’{

if (seen[$2]) next
if ($1 < 30) next
print $1,3$2,$3
seen[$2] =1

}’ > MAXAMP

head -1 MAXAMP

wc -1 MAXAMP

Output (last time | tried it):

95.6279 156.154.102.26 f1i.
2326 MAXAMP

Can that really be true?
>2000 DNSSEC servers
around the Internet, each
providing >30x amplification
of incoming UDP packets?

Let’s verify this.

Choose quiet test machines
on two different networks
(without egress filters).

e.g. Sender: 1.2.3.4.
Receiver: 5.6.7.8.

DNSSEC server,
1ain estimated to have
m DNSSEC amplification:

r AMP awk A
cen[$2]) next

1 < 30) next
$1,%$2,83
p2] =1

XAMP

MAXAMP
AXAMP

(last time | tried it):

156.154.102.26 fi.
XAMP

Can that really be true?
>2000 DNSSEC servers
around the Internet, each
providing >30x amplification
of incoming UDP packets?

Let’s verify this.

Choose quiet test machines
on two different networks
(without egress filters).

e.g. Sender: 1.2.3.4,
Receiver: 5.6.7.8.

Run net
on 1.2.3

On 1.2.-
address

dNad SEN(

ifconfi
5.6.7
netma
while r
do
dig -
+dnss
+times

done < |

~server,
ated to have
C amplification:

wk °{
next

ext

| tried it):

102.26 f1i.

Can that really be true?
>2000 DNSSEC servers
around the Internet, each
providing >30x amplification
of incoming UDP packets?

Let's verify this.

Choose quiet test machines
on two different networks
(without egress filters).

e.g. Sender: 1.2.3.4.
Receiver: 5.6.7.8.

Run network-traffi
on 1.2.3.4 and 5.6

On 1.2.3.4, set res
address to 5.6.7.8
and send 1 query/

ifconfig ethO:1
5.6.7.8 \
netmask 255.25
while read est 1
do
dig -b 5.6.7.8
+dnssec +ignor
+time=1 any "$

done < MAXAMP >/

\'AS

ation:

Can that really be true?
>2000 DNSSEC servers
around the Internet, each
providing >30x amplification
of incoming UDP packets?

Let’s verify this.

Choose quiet test machines
on two different networks
(without egress filters).

e.g. Sender: 1.2.3.4,
Receiver: 5.6.7.8.

Run network-traffic monitor:
on 1.2.3.4 and 5.6.7.8.

On 1.2.3.4, set response
address to 5.0.7.8,
and send 1 query/second:

ifconfig ethO:1 \
5.6.7.8 \
netmask 255.255.255.255
while read est ip z
do
dig -b 5.6.7.8 \
+dnssec +ignore +tries=
+time=1 any "$z" "@$ip"
done < MAXAMP >/dev/null

Can that really be true?
>2000 DNSSEC servers
around the Internet, each
providing >30x amplification
of incoming UDP packets?

Let's verify this.

Choose quiet test machines
on two different networks
(without egress filters).

e.g. Sender: 1.2.3.4.
Receiver: 5.6.7.8.

Run network-traffic monitors
on 1.2.3.4 and 5.6.7.8.

On 1.2.3.4, set response
address to 5.0.7.8,
and send 1 query/second:

ifconfig ethO:1 \
5.6.7.8 \
netmask 255.255.255.255
while read est ip z
do
dig -b 5.6.7.8 \
+dnssec +ignore +tries=1 \
+time=1 any "$z" "@$ip"
done < MAXAMP >/dev/null 2>&1

t really be true?
ONSSEC servers

he Internet, each

o >30x amplification
ing UDP packets?

ity this.

quiet test machines
lifferent networks
- egress filters).

der: 1.2.3.4.
- 5.6.7.8.

Run network-traffic monitors
on 1.2.3.4 and 5.6.7.8.

On 1.2.3.4, set response
address to 5.0.7.8,
and send 1 query/second:

ifconfig ethO:1 \
5.6.7.8 \
netmask 255.255.255.255
while read est ip z
do
dig -b 5.6.7.8 \
+dnssec +ignore +tries=1 \
+time=1 any "$z" "@$ip"
done < MAXAMP >/dev/null 2>&1

| sustain
of actua
in a US-
on typic
at the e

true?
ervers

t, each
mplification
packets?

machines
atworks
ters).

4.

Run network-traffic monitors
on 1.2.3.4 and 5.6.7.8.

On 1.2.3.4, set response
address to 5.0.7.8,
and send 1 query/second:

ifconfig ethO:1 \
5.6.7.8 \
netmask 255.255.255.255
while read est ip z
do
dig -b 5.6.7.8 \
+dnssec +ignore +tries=1 \
+time=1 any "$z" "@$ip"
done < MAXAMP >/dev/null 2>&1

| sustained 51x ai
of actual network
in a US-to-Europe
on typical universi

at the end of 201(

n

Run network-traffic monitors
on 1.2.3.4 and 5.6.7.8.

On 1.2.3.4, set response
address to 5.0.7.8,
and send 1 query/second:

ifconfig ethO:1 \
5.6.7.8 \
netmask 255.255.255.255
while read est ip z
do
dig -b 5.6.7.8 \
+dnssec +ignore +tries=1 \
+time=1 any "$z" "@$ip"
done < MAXAMP >/dev/null 2>&1

| sustained 51 x amplificatio
of actual network traffic
in a US-to-Europe experime

on typical university comput
at the end of 2010.

Run network-traffic monitors | sustained 51 x amplification
on 1.2.3.4 and 5.6.7.8. of actual network traffic

On 1.2.3.4, set response in a US-to-Europe experiment

address to 5.6.7.8,
and send 1 query/second:

on typical university computers
at the end of 2010.

ifconfig ethO:1 \
5.6.7.8 \
netmask 255.255.255.255
while read est ip z
do
dig -b 5.6.7.8 \
+dnssec +ignore +tries=1 \
+time=1 any "$z" "@$ip"
done < MAXAMP >/dev/null 2>&1

Run network-traffic monitors | sustained 51 x amplification
on 1.2.3.4 and 5.6.7.8. of actual network traffic

On 1.2.3.4, set response in a US-to-Europe experiment

address to 5.6.7.8,
and send 1 query/second:

on typical university computers
at the end of 2010.

Attacker sending 10Mbps

can trigger 500Mbps tlood
from the DNSSEC drone pool,
taking down typical site.

ifconfig ethO:1 \
5.6.7.8 \
netmask 255.255.255.255

while read est ip z
do
dig -b 5.6.7.8 \
+dnssec +ignore +tries=1 \
+time=1 any "$z" "@$ip"
done < MAXAMP >/dev/null 2>&1

Run network-traffic monitors | sustained 51 x amplification
on 1.2.3.4 and 5.6.7.8. of actual network traffic

On 1.2.3.4, set response in a US-to-Europe experiment

address to 5.6.7.8,
and send 1 query/second:

on typical university computers
at the end of 2010.

Attacker sending 10Mbps

can trigger 500Mbps tlood
from the DNSSEC drone pool,
taking down typical site.

ifconfig ethO:1 \
5.6.7.8 \
netmask 255.255.255.255

while read est ip z

do Attacker sending 200Mbps
dig -b 5.6.7.8 \ can trigger 10Gbps flood,
+dnssec +ignore +tries=1 \ taking down very large site.

+time=1 any "$z" "@$ip"
done < MAXAMP >/dev/null 2>&1

work-traffic monitors
4 and 5.6.7.8.

.4, set response
to 5.6.7.3,
1 1 query/second:

o ethO:1 \
.8\
sk 255.255.255.2565

cad est 1p z

b 5.6.7.8 \

ec +ignore +tries=1 \
=1 any "$z" "@$ip"
MAXAMP >/dev/null 2>&1

| sustained 51 x amplification

of actual network traffic

in a US-to-Europe experiment

on typical university computers

at the end of 2010.

Attacker sending 10M
can trigger 500Mbps f

OPS

ood

from the DNSSEC drone pool,
taking down typical site.

Attacker sending 200Mbps

can trigger 10Gbps flo

od,

taking down very large site.

Attack c
total DN
Mid-201
Can't ta

C monitors
. 7.8.

ponse

second:

\

5.255.2565
P Z

\

e +tries=1 \
z" "@$ip"
dev/null 2>&1

| sustained 51 x amplification
of actual network traffic

in a US-to-Europe experiment
on typical university computers

at the end of 2010.

Attacker sending 10Mbps

can trigger 500Mbps tlood
from the DNSSEC drone pool,
taking down typical site.

Attacker sending 200Mbps
can trigger 10Gbps flood,
taking down very large site.

Attack capacity Is

total DNSSEC ser
Mid-2012 estimate
Can't take down (

Vi

1\

2>&1

| sustained 51 x amplification

of actual network traffic

in a US-to-Europe experiment

on typical university computers

at the end of 2010.

Attacker sending 10M
can trigger 500Mbps f

OPS

ood

from the DNSSEC drone pool,
taking down typical site.

Attacker sending 200Mbps

can trigger 10Gbps flo

od,

taking down very large site.

Attack capacity Is limited

D)

total DNSSEC server banc

W

Mid-2012 estimate: <100Gl
Can't take down Google thi:

| sustained 51 x amplification

of actual network traffic

in a US-to-Europe experiment

on typical university computers

at the end of 2010.

Attacker sending 10M
can trigger 500Mbps f

OPS

ood

from the DNSSEC drone pool,
taking down typical site.

Attacker sending 200Mbps

can trigger 10Gbps flo

od,

taking down very large site.

Attack capacity is limited by

total DNSSEC server bandwidth.
Mid-2012 estimate: <100Gbps.
Can't take down Google this way.

| sustained 51 x amplification

of actual network traffic

in a US-to-Europe experiment

on typical university computers

at the end of 2010.

Attacker sending 10M
can trigger 500Mbps f

OPS

ood

from the DNSSEC drone pool,
taking down typical site.

Attacker sending 200Mbps

can trigger 10Gbps flo

od,

taking down very large site.

Attack capacity is limited by

total DNSSEC server bandwidth.
Mid-2012 estimate: <100Gbps.
Can't take down Google this way.

Logical attacker response:
Tell people to install DNSSEC.

| sustained 51 x amplification
of actual network traffic
in a US-to-Europe experiment

on typical university computers
at the end of 2010.

Attacker sending 10Mbps

can trigger 500Mbps tlood
from the DNSSEC drone pool,
taking down typical site.

Attacker sending 200Mbps
can trigger 10Gbps flood,
taking down very large site.

Attack capacity is limited by
total DNSSEC server bandwidth.

Mid-2012 estimate: <100Gbps.
Can't take down Google this way.

Logical attacker response:
Tell people to install DNSSEC.

2010.12.24 DNSSEC servers:
2536 |IP addresses worldwide.

| sustained 51 x amplification
of actual network traffic
in a US-to-Europe experiment

on typical university computers
at the end of 2010.

Attacker sending 10Mbps

can trigger 500Mbps tlood
from the DNSSEC drone pool,
taking down typical site.

Attacker sending 200Mbps
can trigger 10Gbps flood,
taking down very large site.

Attack capacity is limited by

total DNSSEC server bandwidth.
Mid-2012 estimate: <100Gbps.
Can't take down Google this way.

Logical attacker response:
Tell people to install DNSSEC.

2010.12.24 DNSSEC servers:
2536 |IP addresses worldwide.

2011.12.14 DNSSEC servers:
3393 |IP addresses worldwide.

| sustained 51 x amplification
of actual network traffic

in a US-to-Europe experiment
on typical university computers

at the end of 2010.

Attacker sending 10Mbps

can trigger 500Mbps tlood
from the DNSSEC drone pool,
taking down typical site.

Attacker sending 200Mbps
can trigger 10Gbps flood,
taking down very large site.

Attack capacity is limited by
total DNSSEC server bandwidth.

Mid-2012 estimate: <100Gbps.
Can't take down Google this way.

Logical attacker response:
Tell people to install DNSSEC.

2010.12.24 DNSSEC servers:
2536 |IP addresses worldwide.

2011.12.14 DNSSEC servers:
3393 |IP addresses worldwide.

2015: No SecSpider downloads???

| sustained 51 x amplification
of actual network traffic

in a US-to-Europe experiment
on typical university computers

at the end of 2010.

Attacker sending 10Mbps

can trigger 500Mbps tlood
from the DNSSEC drone pool,
taking down typical site.

Attacker sending 200Mbps
can trigger 10Gbps flood,
taking down very large site.

Attack capacity is limited by
total DNSSEC server bandwidth.

Mid-2012 estimate: <100Gbps.
Can't take down Google this way.

Logical attacker response:
Tell people to install DNSSEC.

2010.12.24 DNSSEC servers:
2536 |IP addresses worldwide.

2011.12.14 DNSSEC servers:
3393 |IP addresses worldwide.

2015: No SecSpider downloads???
Exercise: Collect+publish data.

ed 51x amplification
| network traffic
to-Europe experiment

al university computers
d of 2010.

-sending 10Mbps
rer 500Mbps flood

> DNSSEC drone pool,
own typical site.

sending 200Mbps
rer 10Gbps flood,
own very large site.

Attack capacity is limited by
total DNSSEC server bandwidth.

Mid-2012 estimate: <100Gbps.
Can't take down Google this way.

Logical attacker response:
Tell people to install DNSSEC.

2010.12.24 DNSSEC servers:
2536 |IP addresses worldwide.

2011.12.14 DNSSEC servers:
3393 |IP addresses worldwide.

2015: No SecSpider downloads???
Exercise: Collect+publish data.

RFC 40:
"DNSSE

against

nplification
traffic
“experiment
ty computers
).

| OMbps
ps flood

drone pool,
| site.

’00Mbps
s flood,
arge site.

Attack capacity is limited by
total DNSSEC server bandwidth.

Mid-2012 estimate: <100Gbps.
Can't take down Google this way.

Logical attacker response:
Tell people to install DNSSEC.

2010.12.24 DNSSEC servers:
2536 |IP addresses worldwide.

2011.12.14 DNSSEC servers:
3393 |IP addresses worldwide.

2015: No SecSpider downloads???
Exercise: Collect+publish data.

RFC 4033 says

“DNSSEC provide
against denial of s

Nt
ers

Attack capacity is limited by
total DNSSEC server bandwidth.

Mid-2012 estimate: <100Gbps.
Can't take down Google this way.

Logical attacker response:
Tell people to install DNSSEC.

2010.12.24 DNSSEC servers:
2536 |IP addresses worldwide.

2011.12.14 DNSSEC servers:
3393 |IP addresses worldwide.

2015: No SecSpider downloads???
Exercise: Collect+publish data.

RFC 4033 says

“DNSSEC provides no prote
against denial of service att:

Attack capacity is limited by RFC 4033 says

total DNSSEC server bandwidth. “DNSSEC provides no protection
Mid-2012 estimate: <100Gbps. against denial of service attacks.”
Can't take down Google this way.

Logical attacker response:
Tell people to install DNSSEC.

2010.12.24 DNSSEC servers:
2536 |IP addresses worldwide.

2011.12.14 DNSSEC servers:
3393 |IP addresses worldwide.

2015: No SecSpider downloads???
Exercise: Collect+publish data.

Attack capacity is limited by

total DNSSEC server bandwidth.
Mid-2012 estimate: <100Gbps.

Can't take down Google this way.

Logical attacker response:
Tell people to install DNSSEC.

2010.12.24 DNSSEC servers:
2536 |IP addresses worldwide.

2011.12.14 DNSSEC servers:
3393 |IP addresses worldwide.

2015: No SecSpider downloads???

Exercise: Collect+publish data.

RFC 4033 says
“DNSSEC provides no protection
against denial of service attacks.”

RFC 4033 doesn't say
“DNSSEC is a pool of
remote-controlled attack drones,
the worst DDoS amplifier

on the Internet.”

Attack capacity is limited by RFC 4033 says

total DNSSEC server bandwidth. “DNSSEC provides no protection
Mid-2012 estimate: <100Gbps. against denial of service attacks.”
Can't take down Google this way.

RFC 4033 doesn't say
Logical attacker response: “DNSSEC is a pool of
Tell people to install DNSSEC. remote-controlled attack drones,

the worst DDoS amplifier

2010.12.24 DNSSEC servers:)]
2536 |IP addresses worldwide. on the Internet.

2011.12.14 DNSSEC servers: Exercise: investigate

3393 IP addresses worldwide. other types of DoS attacks.

e.g. DNSSEC advertising says
2015: No SeCSpider downloads??? Zero Server_CPU_time coSt.

Exercise: Collect+publish data. How much server CPU time

can attackers actually consume?

apacity is limited by
ISSEC server bandwidth.
2 estimate: <100Gbps.

ke down Google this way.

ttacker response:
ple to install DNSSEC.

24 DNSSEC servers:
addresses worldwide.

14 DNSSEC servers:
addresses worldwide.

o SecSpider downloads???
. Collect+publish data.

RFC 4033 says
“DNSSEC provides no protection

against denial of service attacks.”

RFC 4033 doesn't say
“DNSSEC is a pool of
remote-controlled attack drones,
the worst DDoS amplifier

on the Internet.”

Exercise: Investigate

other types of DoS attacks.

e.g. DNSSEC advertising says
zero server-CPU-time cost.

How much server CPU time
can attackers actually consume?

Back to

Let's pre
care abc
Thisisr

limited by

ver bandwidth.
3 <100Gbps.
;00gle this way.

SPONSE:
all DNSSEC.

- C servers:
worldwide.

EC servers:
worldwide.

er downloads?7?7?
-publish data.

RFC 4033 says
“DNSSEC provides no protection

against denial of service attacks.”

RFC 4033 doesn't say
“DNSSEC is a pool of
remote-controlled attack drones,
the worst DDoS amplifier

on the Internet.”

Exercise: Investigate

other types of DoS attacks.

e.g. DNSSEC advertising says
zero server-CPU-time cost.

How much server CPU time

can attackers actually consume?

Back to integrity

Let's pretend we ¢
care about availab
This is not an att:

ndth.
OPS.
5 way.

Ads??7?

1ta.

RFC 4033 says
“DNSSEC provides no protection

against denial of service attacks.”

RFC 4033 doesn't say
“DNSSEC is a pool of
remote-controlled attack drones,
the worst DDoS amplifier

on the Internet.”

Exercise: Investigate

other types of DoS attacks.

e.g. DNSSEC advertising says
zero server-CPU-time cost.

How much server CPU time

can attackers actually consume?

Back to integrity

Let's pretend we don't
care about availability.

This is not an attack:

RFC 4033 says
“DNSSEC provides no protection

against denial of service attacks.”

RFC 4033 doesn’t say
“DNSSEC is a pool of
remote-controlled attack drones,
the worst DDoS amplifier

on the Internet.”

Exercise: Investigate

other types of DoS attacks.

e.g. DNSSEC advertising says
zero server-CPU-time cost.

How much server CPU time

can attackers actually consume?

Back to integrity

Let's pretend we don't
care about availability.
This Is not an attack:

33 says
-C provides no protection

denial of service attacks.”

33 doesn’t say

-C is a pool of
-ontrolled attack drones,
t DDoS amplifier
ternet.”

. Investigate

nes of DoS attacks.
SSEC advertising says
rer-CPU-time cost.

ch server CPU time
ckers actually consume?

Back to integrity

Let's pretend we don't
care about availability.

This is not an attack:

All we ¢

S no protection

ervice attacks.”

say
ol of

attack drones,
mplifier

1te

> attacks.
ertising says
'me cost.

CPU time
ally consume?

Back to integrity

Let's pretend we don't
care about availability.
This Is not an attack:

All we care about

INTERNE

Back to integrity All we care about Is integrit
ction , ,
) Let's pretend we don't
1cks. N —
care about availability.
This Is not an attack:
nes, =
VS =
HARDENING THE
INTERNET
me?

Back to integrity All we care about Is integrity:

Let's pretend we don't em__
care about availability.
This 1s not an attack:

" HARDENING THE
INTERNET

integrity

tend we don't
ut availability.
ot an attack:

All we care about Is integrity:

IZJ.
HARDENING THE
INTERNET

The .or
are 1024

2003: S
conclude
was alre
large col
$10 mill
$120 mi

2003: R
recommit
2048-bit
of this d
made th

lon't
1ck:

All we care about Is integrity:

HARDENING THE

INTERNET

The .org signatul
are 1024-bit RSA

2003: Shamir—Tro
concluded that 10
was already break:

large companies a
$10 million: 1 key
$120 million: 1 ke

2003: RSA Labor:
recommended a tr

2048-bit keys “ove
of this decade.” 2

made the same re

All we care about Is integrity:

HARDENING THE

The

.org signatures

are 1024-bit RSA signatures

2003: Shamir—Tromer et al.
concluded that 1024-bit RS,

Was

already breakable by

large companies and botnet:

$10

million: 1 key/year.

$120 million: 1 key/month.

2003: RSA Laboratories

recommended a transition t«
2048-bit keys “over the rem

of t

nis decade.” 2007: NIS™

mad

e the same recommend:

All we care about Is Integrity:

The

.org signatures

are 1024-bit RSA signatures.

2003: Shamir—Tromer et al.
concluded that 1024-bit RSA

wWas

already breakable by

large companies and botnets.

$10

million: 1 key/year.

$120 million: 1 key/month.

2003: RSA Laboratories
recommended a transition to

2048-bit keys “over the remainder

of t

his decade.” 2007: NIST

Mad

e the same recommendation.

are about Is integrity:

~

The .org signatures
are 1024-bit RSA signatures.

2003: Shamir—Tromer et al.
concluded that 1024-bit RSA
was already breakable by
large companies and botnets.

$10 million: 1 key/year.
$120 million: 1 key/month.

2003: RSA Laboratories
recommended a transition to
2048-bit keys “over the remainder

of this decade.” 2007: NIST
made the same recommendation.

Academ
factored
Still no
of break

IS Integrity:

4

-

The

.org signatures

are 1024-bit RSA signatures.

2003: Shamir—Tromer et al.
concluded that 1024-bit RSA

wWas

already breakable by

large companies and botnets.

$10

million: 1 key/year.

$120 million: 1 key/month.

2003: RSA Laboratories
recommended a transition to

2048-bit keys “over the remainder

of t

his decade.” 2007: NIST

Mad

e the same recommendation.

Academics In sma
factored RSA-768
Still no public ann
of breaks of 1024-

/4

The

.org sighatures

are 1024-bit RSA signatures.

2003: Shamir—Tromer et al.
concluded that 1024-bit RSA

Was

already breakable by

large companies and botnets.

$10

million: 1 key/year.

$120 million: 1 key/month.

2003: RSA Laboratories
recommended a transition to

2048-bit keys “over the remainder

of t

his decade.” 2007: NIST

Mmad

e the same recommendation.

Academics in small labs
factored RSA-768 in 20009.
Still no public announcemen
of breaks of 1024-bit RSA.

The

.org signatures

are 1024-bit RSA signatures.

2003: Shamir—Tromer et al.
concluded that 1024-bit RSA

wWas

already breakable by

large companies and botnets.

$10

million: 1 key/year.

$120 million: 1 key/month.

2003: RSA Laboratories
recommended a transition to

2048-bit keys “over the remainder

of t

his decade.” 2007: NIST

Mad

e the same recommendation.

Academics in small labs
factored RSA-768 in 20009.

Still no public announcements
of breaks of 1024-bit RSA.

The .org signatures
are 1024-bit RSA signatures.

2003: Shamir—Tromer et al.
concluded that 1024-bit RSA
was already breakable by
large companies and botnets.

$10 million: 1 key/year.
$120 million: 1 key/month.

2003: RSA Laboratories
recommended a transition to
2048-bit keys “over the remainder

of this decade.” 2007: NIST
made the same recommendation.

Academics in small labs
factored RSA-768 in 20009.

Still no public announcements
of breaks of 1024-bit RSA.

"RSA-1024: still secure
against honest attackers.”

The
are

.org signatures
1024-bit RSA signatures.

2003: Shamir—Tromer et al.
concluded that 1024-bit RSA

wWas

already breakable by

large companies and botnets.

$10

million: 1 key/year.

$120 million: 1 key/month.

2003: RSA Laboratories
recommended a transition to

2048-bit keys “over the remainder

of t

his decade.” 2007: NIST

Mad

e the same recommendation.

Academics in small labs
factored RSA-768 in 20009.

Still no public announcements
of breaks of 1024-bit RSA.

"RSA-1024: still secure
against honest attackers.”

What about serious attackers
using many more computers?
e.g. botnet operators?

| say:
Using RSA-1024 is irresponsible.

g signatures
-bit RSA signatures.

hamir—Tromer et al.
d that 1024-bit RSA
ady breakable by
mpanies and botnets.
on: 1 key/year.
llion: 1 key/month.

SA Laboratories
anded a transition to
keys “over the remainder

ecade.” 2007: NIST
e same recommendation.

Academics in small labs
factored RSA-768 in 20009.

Still no public announcements
of breaks of 1024-bit RSA.

"RSA-1024: still secure
against honest attackers.”

What about serious attackers
using many more computers?
e.g. botnet operators?

| say:

Using RSA-1024 is irresponsible.

But that
with the
for gree

€S
signatures.

mer et al.
24-bit RSA
ble by

nd botnets.

/year.
y/month.

1tories
ansition to
r the remainder

007: NIST
commendation.

Academics in small labs
factored RSA-768 in 2009.

Still no public announcements
of breaks of 1024-bit RSA.

"RSA-1024: still secure
against honest attackers.”

What about serious attackers
using many more computers?
e.g. botnet operators?

| say:
Using RSA-1024 is irresponsible.

But that's not the
with these DNSSE

for greenpeace.c

Academics in small labs But that's not the big probl
factored RSA-768 in 2009. with these DNSSEC signatu

Still no public announcements for greenpeace. org.
of breaks of 1024-bit RSA.

"RSA-1024: still secure
. against honest attackers.”

What about serious attackers
using many more computers?
e.g. botnet operators?

)
| say:

ainder Using RSA-1024 is irresponsible.

-

tion.

Academics in small labs But that's not the big problem

factored RSA-768 in 2009. with these DNSSEC signatures
Still no public announcements for greenpeace. org.
of breaks of 1024-bit RSA.

"RSA-1024: still secure
against honest attackers.”

What about serious attackers
using many more computers?
e.g. botnet operators?

| say:
Using RSA-1024 is irresponsible.

Academics in small labs
factored RSA-768 in 20009.

Still no public announcements
of breaks of 1024-bit RSA.

"RSA-1024: still secure
against honest attackers.”

What about serious attackers
using many more computers?
e.g. botnet operators?

| say:

Using RSA-1024 is irresponsible.

But that's not the big problem
with these DNSSEC signatures

for greenpeace.org.

Suppose an attacker forges
a DNS packet from .org,
including exactly the same
DNSSEC signatures but

changing the NS+A records to

point to the attacker's servers.

Academics in small labs
factored RSA-768 in 20009.

Still no public announcements
of breaks of 1024-bit RSA.

"RSA-1024: still secure
against honest attackers.”

What about serious attackers
using many more computers?
e.g. botnet operators?

| say:

Using RSA-1024 is irresponsible.

But that's not the big problem
with these DNSSEC signatures

for greenpeace.org.

Suppose an attacker forges
a DNS packet from .org,
including exactly the same
DNSSEC signatures but

changing the NS+A records to

point to the attacker's servers.

Fact: DNSSEC “verification”
won't notice the change.
The signatures say nothing
about the NS+A records.

T he forgery will be accepted.

cs In small labs
RSA-768 in 2009.

public announcements
s of 1024-bit RSA.

)24 still secure
nonest attackers.”

yout serious attackers
any more computers?
net operators?

SA-1024 is irresponsible.

But that's not the big problem
with these DNSSEC signatures

for greenpeace.org.

Suppose an attacker forges
a DNS packet from .org,
including exactly the same
DNSSEC signatures but

changing the NS+A records to

point to the attacker's servers.

Fact: DNSSEC “verification”
won't notice the change.
The signatures say nothing
about the NS+A records.

T he forgery will be accepted.

Here's w
translate
t.org m
with ha
h9p7u7tr
h9parr66
but has
that da

Can che
has a ha

.0Trg NO
of these
This is .
a ‘need:

| labs
in 2009.

ouncements
bit RSA.

ecure
ackers.”

Is attackers
computers?
ors”?

5 Irresponsible.

But that's not the big problem
with these DNSSEC signatures

for greenpeace.org.

Suppose an attacker forges
a DNS packet from .org,
including exactly the same
DNSSEC signatures but

changing the NS+A records to

point to the attacker's servers.

Fact: DNSSEC “verification”
won't notice the change.
The signatures say nothing
about the NS+A records.

T he forgery will be accepted.

Here's what .org
translated into En
“.org might hav
with hashes bet
h9p7u7tr2u91d0v0lj
h9parr669t6u8olgsg
but has not sigr
that data.”

Can check that gz
has a hash in that

.org now has tho
of these useless sij
Thisis .org “imp
a ‘needed security

1s

i1ble.

But that's not the big problem
with these DNSSEC signatures

for greenpeace.org.

Suppose an attacker forges
a DNS packet from .org,
including exactly the same
DNSSEC signatures but

changing the NS+A records to

point to the attacker's servers.

Fact: DNSSEC “verification”
won't notice the change.
The signatures say nothing
about the NS+A records.

T he forgery will be accepted.

Here's what .org signed,
translated into English:
“.org might have data
with hashes between
h9p7u7tr2u91d0v01ljs91l1gidnp9
h9parr669t6u8olgsg9ellmitk4d
but has not signed any o
that data.”

Can check that greenpeace
has a hash in that range.

.org now has thousands

of these useless signatures.
This is .org “Implementing
a needed security measure.

But that's not the big problem Here's what .org signed,
with these DNSSEC signatures translated into English:
for greenpeace.org. “.org might have data

with hashes between
Suppose an attacker forges

h9p7u7tr2u91d0ov0ljs91l1gidnp90ush
a DNS packet from .org, P js9llgidnp ;

h9parr669t6u8olgsg9ellmitk4demOt
including exactly the same

DNSSEC signatures but but has nOJ’C’ signed any of
changing the NS+A records to that data.

point to the attacker's servers. Can check that greenpeace.org
Fact: DNSSEC “verification” has a hash in that range.

won't notice the change. .org now has thousands

The signatures say nothing of these useless signatures.

about the NS+A records. This is .org “implementing”

T he forgery will be accepted. a needed security measure.”

's not the big problem
se DNSSEC signatures

npeace.org.

“an attacker forges
yacket from .org,
r exactly the same

_ signatures but

> the NS+A records to

the attacker’s servers.

NSSEC “verification”
tice the change.
\atures say nothing
e NS+A records.
rery will be accepted.

Here's what .org signed,
translated into English:

“.org might have data

with hashes between
h9p7u7tr2u91d0v01ljs911gidnp90u3h,
h9parr669t6u8olgsg9ellmitké4demOt
but has not signed any of
that data.”

Can check that greenpeace.org
has a hash in that range.

.org now has thousands
of these useless signatures.
This is .org “implementing”

a needed security measure.”

"DNSSE

D

big problem
C signatures

rg.

er forges

n .org,

he same

2s but

-A records to
ker's servers.

erification”
hange.

/ nothing
records.

e accepted.

Here's what .org signed,
translated into English:

“.org might have data

with hashes between
h9p7u7tr2u91d0v01js911gidnp90u3h,
h9parr669t6u8olgsg9ellmitk4demOt
but has not signed any of
that data.”

Can check that greenpeace.org
has a hash in that range.

.org now has thousands
of these useless signatures.
This is .org “Iimplementing”

a needed security measure.”

"DNSSEC: Built,

Tha mpact and i

cm

res

to
rS.

Here's what .org signed,
translated into English:

“.org might have data

with hashes between
h9p7u7tr2u91d0v01ljs911gidnp90u3h,
h9parr669t6u8olgsg9ellmitk4demOt
but has not signed any of
that data.”

Can check that greenpeace.org
has a hash in that range.

.org now has thousands

of these useless signatures.
This is .org “implementing”
a needed security measure.”

“DNSSEC: Built, not pluggse

Here's what .org signed,
translated into English:

“.org might have data

with hashes between
h9p7u7tr2u91d0v01js911gidnp90u3h,
h9parr669t6u8olgsg9ellmitk4demOt
but has not signed any of
that data.”

Can check that greenpeace.org
has a hash in that range.

.org now has thousands

of these useless signatures.
This is .org “Iimplementing”
a needed security measure.”

"“DNSSEC: Built, not plugged in.”

'hat . org signed,

d Into English:

ight have data

shes between
2u91d0v01js911gidnp90u3dh,
Itb6uB8olgsg9ellmitkd4demOt
not signed any of
ta.

ck that greenpeace.org
sh in that range.

w has thousands
useless signatures.
org "Implementing’
>d security measure.”

"DNSSEC: Built, not plugged in."

HARDENING THE

What w

Rushed

signed,

glish:

e data

ween
s911gidnp90u3h,
9ellmitk4demOt

1ed any of

‘eenpeace.org

range.

usands
Ynatures.
lementing”
' measure.”

“DNSSEC: Built, not plugged in.”

HARDENING THE
INTERNET

What went wrong

Rushed developme

Ou3h,

emOt

. 0rg

“DNSSEC: Built, not plugged in.”

HARDENING THE
INTERNET

What went wrong?

Rushed development proces:

“DNSSEC: Built, not plugged in.” What went wrong?

' Rushed development process?
% P P

HARDENING THE
INTERNET

“DNSSEC: Built, not plugged in.” What went wrong?

Rushed development process?

No: DNSSEC has been
under active development
for two decades.

" HARDENING THE
INTERNET

"“DNSSEC: Built, not plugged in.”

What went wrong?

Rushed development process?

No: DNSSEC has been
under active development
for two decades.

1993.11 Galvin: “The DNS
Security design team of the
DNS working group met for one
morning at the Houston |IETF."

1994.02 Eastlake—Kaufman,
after months of discussions on
dns-security mailing list:
“DNSSEC" protocol specification.

-C: Built, not plugged in.”

~

What went wrong?

Rushed development process?

No: DNSSEC has been

under active development
for two decades.

1993.11 Galvin: “The DNS
Security design team of the
DNS working group met for one
morning at the Houston |IETF."

1994 .02 Eastlake—Kaufman,
after months of discussions on
dns-security mailing list:

"“DNSSEC" protocol specification.

Millions

of U.S. i
DISA to
NSF to
Secureb:

Continui
DNSSEC(

IETF DI
Protoco

software

not plugged in."

4
K

mﬂﬂ'ﬁiﬂ:

What went wrong?

Rushed development process?

No: DNSSEC has been

under active development
for two decades.

1993.11 Galvin: “The DNS
Security design team of the
DNS working group met for one
morning at the Houston |IETF."

1994 .02 Eastlake—Kaufman,
after months of discussions on
dns-security mailing list:

“DNSSEC" protocol specification.

Millions of dollars

of U.S. governmer
DISA to BIND col

NSF to UCLA: Dt
Secureb64 Software

Continuing cycle ¢
DNSSEC impleme

IETF DNSSEC dis
protocol updates,

software implemer

d In.”

/4

What went wrong?

Rushed development process?

No: DNSSEC has been
under active development
for two decades.

1993.11 Galvin: “The DNS
Security design team of the
DNS working group met for one
morning at the Houston |IETF."

1994 .02 Eastlake—Kaufman,
after months of discussions on

dns-security mailing list:

“DNSSEC" protocol specification.

Millions of dollars

of U.S.

government grants:

DISA to BIND company;

NSF to

UCLA; DHS to

Secure64 Software Corporat

Continuing cycle of
DNSSEC implementations,

IETF D
pProtoco

NSSEC discussions,

updates, revised

software implementations, e

What went wrong?

Rushed development process?

No: DNSSEC has been
under active development

for two decades.

1993.11 Galvin: “The DNS
Security design team of the
DNS working group met for one
morning at the Houston |IETF."

1994.02 Eastlake—Kaufman,
after months of discussions on

dns-security mailing list:

“DNSSEC" protocol specification.

Millions of dollars

of U.S.

government grants: e.g.,

DISA to BIND company;

NSF to

UCLA; DHS to

Secure64 Software Corporation.

Continuing cycle of
DNSSEC implementations,

IETF D
Protoco

NSSEC discussions,

updates, revised

software implementations, etc.

What went wrong?

Rushed development process?

No: DNSSEC has been
under active development
for two decades.

1993.11 Galvin: “The DNS
Security design team of the
DNS working group met for one
morning at the Houston |IETF."

1994.02 Eastlake—Kaufman,
after months of discussions on

dns-security mailing list:

“DNSSEC" protocol specification.

Millions of dollars

of U.S. government grants: e.g.,
DISA to BIND company;

NSF to UCLA; DHS to
Secure64 Software Corporation.

Continuing cycle of
DNSSEC implementations,

IETF DNSSEC discussions,
protocol updates, revised

software implementations, etc.

Compatibility trap? No.
Several DNSSEC updates
have broken compatibility
with older implementations.

ant wrong?

development process?

SSEC has been
tive development

decades.

Galvin: “The DNS
design team of the
rking group met for one
at the Houston IETF."

Eastlake—Kaufman,
nths of discussions on
urity mailing list:

-C" protocol specification.

Millions of dollars

of U.S. government grants: e.g.,
DISA to BIND company;

NSF to UCLA; DHS to
Secure64 Software Corporation.

Continuing cycle of
DNSSEC implementations,
IETF DNSSEC discussions,

protocol updates, revised

software implementations, etc.

Compatibility trap? No.
Several DNSSEC updates
have broken compatibility
with older implementations.

The per

Some of
servers ¢
the root

the goog
Can the

?

nt process?’

been
opment

The DNS

am of the

p met for one
uston |[ETF.”

Kaufman,
scussions on
1ling list:

ol specification.

Millions of dollars

of U.S. government grants: e.g.,

DISA to BIND company;

NSF to

Secure64 Software Corporation.

UCLA; DHS to

Continuing cycle of
DNSSEC implementations,

IETF D
pProtoco

NSSEC discussions,

updates, revised

software implementations, etc.

Compatibility trap? No.

Several

DNSSEC updates

have broken compatibility

with older implementations.

The performance 1

Some of the Interi
servers are extrem
the root servers, t

the google.com S
Can they afford cr

one
F.”

on

ation.

Millions of dollars

of U.S. government grants: e.g.,
DISA to BIND company;

NSF to UCLA; DHS to
Secure64 Software Corporation.

Continuing cycle of
DNSSEC implementations,
IETF DNSSEC discussions,

protocol updates, revised

software implementations, etc.

Compatibility trap? No.
Several DNSSEC updates
have broken compatibility
with older implementations.

The performance trap

Some of the Internet's DNS
servers are extremely busy:
the root servers, the .com s

the google.com servers.
Can they afford crypto?

Millions of dollars

of U.S. government grants: e.g.,
DISA to BIND company;

NSF to UCLA; DHS to
Secure64 Software Corporation.

Continuing cycle of
DNSSEC implementations,
IETF DNSSEC discussions,

protocol updates, revised

software implementations, etc.

Compatibility trap? No.
Several DNSSEC updates
have broken compatibility
with older implementations.

The performance trap

Some of the Internet’'s DNS
servers are extremely busy: e.g.,
the root servers, the . com servers,

the google.com servers.
Can they afford crypto?

Millions of dollars

of U.S. government grants: e.g.,

DISA to BIND company;

NSF to

Secure64 Software Corporation.

UCLA; DHS to

Continuing cycle of
DNSSEC implementations,

IETF D
protoco

NSSEC discussions,

updates, revised

software implementations, etc.

Compatibility trap? No.

Several

DNSSEC updates

have broken compatibility

with older implementations.

The performance trap

Some of the Internet’'s DNS
servers are extremely busy: e.g.,
the root servers, the . com servers,

the google.com servers.
Can they afford crypto?

The critical design decision
in DNSSEC: precompute

signatures of DNS records.
“Per-query crypto Is bad.”

Signature is computed once;
saved; sent to many clients.
Hopefully the server can afford
to sign each DNS record once.

of dollars

Tovernment grants: e.g.,

BIND company;
UCLA; DHS to
1 Software Corporation.

ng cycle of

_ Implementations,
NSSEC discussions,
updates, revised
implementations, etc.

bility trap? No.
DNSSEC updates
ken compatibility
er Implementations.

The performance trap

Some of the Internet’'s DNS
servers are extremely busy: e.g.,
the root servers, the . com servers,

the google.com servers.
Can they afford crypto?

The critical design decision
in DNSSEC: precompute

signatures of DNS records.
“Per-query crypto Is bad.”

Signature is computed once;
saved; sent to many clients.
Hopefully the server can afford
to sign each DNS record once.

Clients ¢
of verify

DNSSEC(
client-sic
precomg
choice o

Many D
640-bit
(68-bit
1024-bit
(for “lea
DSA, “1
for verifi

signatur

1t grants: e.g.,

npany;
1S to
- Corporation.

f

ntations,
,cussions,
revised
tations, etc.

? No.
1pdates
atibility
entations.

The performance trap

Some of the Internet’'s DNS
servers are extremely busy: e.g.,
the root servers, the . com servers,

the google.com servers.
Can they afford crypto?

The critical design decision
in DNSSEC: precompute

signatures of DNS records.
“Per-query crypto Is bad.”

Signature is computed once;
saved; sent to many clients.
Hopefully the server can afford
to sign each DNS record once.

Clients don't share

of verifying a sign

DNSSEC tries to
client-side costs (z

precomputation cc

choice of crypto p

Many DNSSEC cr

640-
763-

oit RSA, origi

oit RSA, man

1024-bit RSA, cur

(for

eaf nodes In

DSA, “10 to 40 ti
for verification” bl

signatures.

e.g.,

lon.

[C.

The performance trap

Some of the Internet’'s DNS
servers are extremely busy: e.g.,
the root servers, the . com servers,

the google.com servers.
Can they afford crypto?

The critical design decision
in DNSSEC: precompute

signatures of DNS records.
“Per-query crypto Is bad.”

Signature is computed once;
saved; sent to many clients.
Hopefully the server can afford
to sign each DNS record once.

Clients don't share the work

of verifying a signature.

DNSSEC tries to reduce

client-side costs (and

precomputation costs) throt

choice of crypto primitive.

Many DNSSEC crypto optic

640-
763-

1024-

(for

bit RSA, origina

oit RSA, many ¢

SPECS;
OCS;

it RSA, current RFCs
“leaf nodes in the DNS’

DSA, “10 to 40 times as slo
for verification” but faster f

signatures.

The performance trap

Some of the Internet’'s DNS
servers are extremely busy: e.g.,
the root servers, the . com servers,

the google.com servers.
Can they afford crypto?

The critical design decision
in DNSSEC: precompute

signatures of DNS records.
“Per-query crypto Is bad.”

Signature is computed once;
saved; sent to many clients.
Hopefully the server can afford
to sign each DNS record once.

Clients don’t share the work
of verifying a signature.

DNSSEC tries to reduce
client-side costs (and
precomputation costs) through
choice of crypto primitive.

Many DNSSEC crypto options:
640-bit RSA, original specs;
768-bit RSA, many docs;
1024-bit RSA, current RFCs
(for “leaf nodes in the DNS");
DSA, “10 to 40 times as slow
for verification” but faster for

signatures.

formance trap

‘the Internet’'s DNS

re extremely busy: e.g.,
servers, the .com servers,
rle.com servers.

v afford crypto?

ical design decision
EC: precompute

es of DNS records.
2ry crypto Is bad.”

e IS computed once;
ant to many clients.
y the server can afford
ach DNS record once.

Clients don’t share the work
of verifying a signature.

DNSSEC tries to reduce

client-side costs (and
precomputation costs) through
choice of crypto primitive.

Many DNSSEC crypto options:

640-bit RSA, original specs;
768-bit RSA, many docs;
1024-bit RSA, current RFCs
(for “leaf nodes in the DNS");
DSA, “10 to 40 times as slow
for verification” but faster for

signatures.

DNSSEC(
such as
for no re
fear of ¢

DNSSEC(
to survin
More co
including

[rap

1et’'s DNS

ely busy: e.g.,
he . com servers,
ervers.

ypto?

' decision
mpute

records.
Is bad.”

uted once;
1y clients.
er can afford
record once.

Clients don’t share the work
of verifying a signature.

DNSSEC tries to reduce
client-side costs (and
precomputation costs) through
choice of crypto primitive.

Many DNSSEC crypto options:

640-bit RSA, original specs;
768-bit RSA, many docs;
1024-bit RSA, current RFCs
(for “leaf nodes in the DNS");
DSA, “10 to 40 times as slow
for verification” but faster for

signatures.

DNSSEC made br
such as 640-bit RS
for no reason othe
fear of overload.

DNSSEC needed 1
to survive the iney

More complexity =
including security

e.g.,

cIrVers,

rd
ce.

Clients don’t share the work
of verifying a signature.

DNSSEC tries to reduce
client-side costs (and
precomputation costs) through
choice of crypto primitive.

Many DNSSEC crypto options:

640-bit RSA, original specs;
768-bit RSA, many docs;
1024-bit RSA, current RFCs
(for “leaf nodes in the DNS");
DSA, “10 to 40 times as slow
for verification” but faster for

signatures.

DNSSEC made breakable cf
such as 640-bit RSA

for no reason other than
fear of overload.

DNSSEC needed more optic
to survive the inevitable bre;

More complexity = more bt
including security holes.

Clients don’t share the work
of verifying a signature.

DNSSEC tries to reduce
client-side costs (and
precomputation costs) through
choice of crypto primitive.

Many DNSSEC crypto options:

640-bit RSA, original specs;
768-bit RSA, many docs;
1024-bit RSA, current RFCs
(for “leaf nodes in the DNS");
DSA, “10 to 40 times as slow
for verification” but faster for

signatures.

DNSSEC made breakable choices

such as 640-bit RSA
for no reason other than
fear of overload.

DNSSEC needed more options
to survive the inevitable breaks.

More complexity = more bugs,
including security holes.

Clients don't share the work DNSSEC made breakable choices
of verifying a signature. such as 640-bit RSA

DNSSEC tries to reduce for no reason other than

. . fear of overload.
client-side costs (and

precomputation costs) through DNSSEC needed more options
choice of crypto primitive. to survive the inevitable breaks.

Many DNSSEC crypto options: More complexity = more bugs,

640-bit RSA, original specs: including security holes.

768-bit RSA, many docs; Looking beyond the crypto:
1024-bit RSA, current RFCs Precomputation forced DNSSEC
(for “leaf nodes in the DNS"); down a path of unreliability,
DSA, “10 to 40 times as slow insecurity, and unusability.

for verification” but faster for Let's see how this happened.

signatures.

lon't share the work
Ing a signature.

_ tries to reduce

le costs (and

utation costs) through
f crypto primitive.

RSA, original specs;

RSA, many docs;
RSA, current RFCs

f nodes in the DNS");
0 to 40 times as slow
cation” but faster for
s,

NSSEC crypto options:

DNSSEC made breakable choices
such as 640-bit RSA

for no reason other than

fear of overload.

DNSSEC needed more options
to survive the inevitable breaks.

More complexity = more bugs,
including security holes.

Looking beyond the crypto:
Precomputation forced DNSSEC
down a path of unreliability,
insecurity, and unusability.

Let's see how this happened.

DNS arc

Browser
DNS ca

Broy
/

DNS

CAdmini

Cache p

€

administ
doesn't

> the work
ature.

educe
\nd
sts) through

rimitive.

ypto options:

nal specs;

y docs;
rent RFCs

the DNS");
mes as slow
i1t faster for

DNSSEC made breakable choices
such as 640-bit RSA

for no reason other than

fear of overload.

DNSSEC needed more options
to survive the inevitable breaks.

More complexity = more bugs,
including security holes.

Looking beyond the crypto:
Precomputation forced DNSSEC
down a path of unreliability,
insecurity, and unusability.

Let's see how this happened.

DNS architecture

Browser pulls datec
DNS cache at tue

/ Browser\ 3

A N
\DNS cache
A

(Administfator)

Cache pulls data f

administrator if it
doesn't already ha

NS:

DNSSEC made breakable choices
such as 640-bit RSA
for no reason other than

fear of overload.

DNSSEC needed more options

to survive t
More comp

ne inevitable breaks.

exity = more bugs,

including security holes.

Looking beyond the crypto:
Precomputation forced DNSSEC
down a path of unreliability,

insecurity, and unusability.

Let's see how this happened.

DNS architecture

Browser pulls data from
DNS cache at tue.nl:

/Broxvser\ at tue.nl

“The wet

NS i WWW. T
cacne

\ A / has IP a_

o 13101745

CAdministrétoD at ru.nl

Cache pulls data from
administrator if it
doesn't already have the daf

DNSSEC made breakable choices DNS architecture
such as 640-bit RSA
for no reason other than

Browser pulls data from

DNS cache at tue.nl:
fear of overload.

DNSSEC needed more options /BFOXVSGFS at tue.nl

to survive the inevitable breaks.

| “The web server
More complexity = more bugs, wuw. .1l

including security holes. \DNSAcaChy has IP address

131.174.78.60."

Looking beyond the crypto:
Precomputation forced DNSSEC
down a path of unreliability,

<AdministrétoD at ru.nl

insecurity, and unusability. Cache pulls data from

Let's see how this happened. administrator if it

doesn't already have the data.

—

_ made breakable choices
640-bit RSA

ason other than

verload.

—

_ needed more options
e the Iinevitable breaks.

mplexity = more bugs,
y security holes.

beyond the crypto:
yutation forced DNSSEC
path of unreliability,

y, and unusability.

> how this happened.

DNS architecture

Browser pulls data from
DNS cache at tue.nl:

/Broxvser\ at tue.nl

. "The web server

WWw.ru.nl

\DNSACacl’y has IP address

131.174.78.60."

CAdministrétoD at ru.nl

Cache pulls data from
administrator if it
doesn't already have the data.

Adminis
through

.ru.nl

=

/ .I'u

DNS

1

.Tu
data

1

\Admini

eakable choices
A
r than

nore options
1table breaks.
= more bugs,
holes.

1€ Crypto:
rced DNSSEC
reliability,
1sability.
happened.

DNS architecture

Browser pulls data from
DNS cache at tue.nl:

/Browser\ at tue.nl
A

. "“The web server

WWww.ru.nl

\DNSACachy has IP address

131.174.78.60."

<AdministrétoD at ru.nl

Cache pulls data from
administrator if it
doesn't already have the data.

Administrator pus
through local data
.ru.nl DNS serv:

Browser

\DNS cache /

A

/ .ru.nl \ .

DNS server

!

.ru.nl
database .-

T

\Adminis-"c.'r-atcy

01CeS

NS

1ks.
1gs,

SEC

DNS architecture

Browser pulls data from
DNS cache at tue.nl:

/Broxvser\ at tue.nl

. "The web server

WWw.ru.nl

\DNSACacl’y has IP address

131.174.78.60."

CAdministrétoD at ru.nl

Cache pulls data from
administrator if it
doesn't already have the data.

Administrator pushes data
through local database into
.ru.nl DNS server:

at tue.nl
- “The wek
/ .ru.nl \ [E—
DNS Server _-'.-' has IP 3
¢ -~ 131.174.7
.ru.nl |
database -

\Administratcy at ru.nl

DNS architecture

Browser pulls data from
DNS cache at tue.nl:

/Browser\ at tue.nl
A

. "“The web server

QNS Acachy

WWww.ru.nl

has IP address
131.174.78.60."

CAdministfatoD at ru.nl

Cache pulls data from
administrator if it
doesn't already have the data.

Administrator pushes data
through local database into
.ru.nl DNS server:

Browser at tue.nl
T v
\DNS cache /=
A |
- “The web server
.ru.nl \ .-'- WWw.ru.nl
DNS server " has IP address
T - 131.174.78.60."
.ru.nl |~
database .-

kAdminis"cratcy at ru.nl

hitecture

pulls data from
“he at tue.nl;:

nyser \ at tue.nl
\ N

. "“The web server

WWw.ru.nl

cache | has |IP address

131.174.78.60."

stratoD at ru.nl

ulls data from
rator if it
already have the data.

Administrator pushes data
through local database into
.ru.nl DNS server:

- “The web server

/ .ru.nl \ .. Www.ru.nl

DNS server " has IP address
¢ - 131.174.78.60."
.ru.nl |~
dataTbase

\Administratcy at ru.nl

DNS ca
.ru.nl

.nl1 DN

“The DN
for .r

IS N

with |P
131.174.

' from
v .nl:

t tue.nl

 "The web server

WWww.ru.nl

3 has IP address
131.174.78.60."

at ru.nl

rom

ve the data.

Administrator pushes data
through local database into
.ru.nl DNS server:

Browser at tue.nl
T v
\DNS cache /-
A .
- “The web server
.ru.nl \ - www.ru.nl
DNS server " has IP address
i - 131.174.78.60."
.ru.nl |~
database .-

\Administratcy at ru.nl

DNS cache learns
.ru.nl DNS serv
.n1 DNS server:

at tue.n.

“The DNS server .-
for .ru.nl -
IS ns3 B
with IP address
131.174.78.16."

at ru.nl

) Sserver
1.nl

ddress
’8.60."

Administrator pushes data
through local database into
.ru.nl DNS server:

- “The web server

/ .ru.nl \ .. Www.ru.nl

DNS server " has IP address
¢ - 131.174.78.60."
.ru.nl |~
dataTbase

\Administratcy at ru.nl

DNS cache learns location ¢

.ru.nl DNS server from

.n1 DNS server:

at tue.nl [DNS C

for .ru.nl

IS ns3

with IP address -

1.

at ru.nl [Adm-inis

131.174.78.16."

i

T

“The DNS server

DNS s

!

Administrator pushes data
through local database into
.ru.nl DNS server:

Browser at tue.nl
T o
\DNS cache /=
A
- "The web server
.ru.nl \ '.-'- WWw.ru.nl
DNS server " has IP address
T - 131.174.78.60."
.ru.nl |~
database .-

Administratcy at ru.nl

DNS cache learns location of
.ru.nl DNS server from
.nl1 DNS server:

at tue.nl [DNS cache]

“The DNS server Ill \
for .ru.nl DNS Sserver
IS ns3 : T
with IP address
131.174.78.16."

vjata base/

at ru.nl [AdmmlstratorJ

trator pushes data

local database into
DNS server:

Server
\

.nl

\

base .

s"'c-.|‘r-a-atcy

- “The web server

wWWww.ru.nl

.:.: has |IP address
- 131.174.78.60."

at ru.nl

DNS cache learns location of

.ru.nl DNS server from

.n1 DNS server:

at tue.nl [DNS cache]

for .ru.nl
IS ns3 :
with IP address
131.174.78.16."

at ru.nl [Ad m'inistratorj

R
VR

“The DNS server

DNS server

!

.nl
..;._,-Sate'aA‘baseJ

/God

Root
DNS

SErvel

.nl

DNS
servel

!

.nl
Kdata ba

at Inter
Central

hes data
base into

2r.

t tue.nl

“The web server

WWww.ru.nl

.:.: has |IP address
- 131.174.78.60."

at ru.nl

DNS cache learns location of
.ru.nl DNS server from
.nl1 DNS server:

at tue.nl [DNS cache]

“The DNS server Ill \
for .ru.nl - DNS server
IS ns3 - T
with IP address
nl
131.174.78.16."

at ru.nl [Ad m'inistratorj

/GOdQ

Root

DNS
server

server -

!

at Internet
Central HQ

.nl fﬂg
Kdata ba%.-

) server
1.nl

ddress
’8.00."

DNS cache learns location of

.ru.nl DNS server from

.n1 DNS server:

at tue.nl [DNS cache]

“The DNS server

for .ru.nl

IS ns3

with IP address -

-""-i-_-_.-Kdata baseJ

at ru.nl [Admmlstratorj

131.174.78.16."

]
nl\

DNS server

}

/GOdQ

é I’OWSGVR

\\ T
Root _ DNS
DNS cache
server ' A /
.nl /iﬁs ru.nl
DNS DNS
server - server
.nl fﬂ; .ru.nl
@taba%-:-_,_ database .

at Internet
Central HQ

\Administratc

at ru.nlA

DNS cache learns location of / Cod \ érows%
AN

ru.nl DNS server from

. -
.nl DNS server: \\ T

oot |1 ons
at tue.nl [DNS cache] server - cacA:he/

“The DNS server .nl \ .nl / .ru.nl \

for .ru.nl DNS SEerver DNS DNS
is ns3 {-f- T server - server
with IP address T T
.nl -
131.174.78.16."
B nl B .ru.nl

| \databa%.-,_ database___-:-""
at ru.nl [AdmmlstratorJ At Internet \ T

Central HQ \Administratcy

at ru.nl

~he learns location of

DNS server from

S server:

at tue.nl [DNS cache]

S server .-

u.nl
s3

address -

.nl
..;._,-Sate'aA‘baseJ

at ru.nl [Ad m'inistratorj

78.16."

.
VTR

DNS server

!

/GOdQ

Root

~L 1

B rowsm

DNS
server

server -

!

at Internet
Central HQ

.nl ffg
Kdata ba%-:-_._

SErver

!

.ru.nl .
database -

]

\Ad m| n is-"c..ratcy

at ru.nl

DNS ser
Wikiped
DNS, d
DNS Pl
PowerD|
Nominui
Posadis,
Registra
yaku-ns,

Much w
database

hundred

written |

location of

or from

I [DNS cache]

‘T
nl\

DNS server

[Ad m'inistratorj

/GOdQ

Root

~L |

é rows%

DNS
server

server -

!

at Internet
Central HQ

.nl fﬂg
Kdata ba%-:-_._

- DNS
_ cache

SErver

!

.ru.nl .
database -

\Administratcy

at ru.nl

DNS server softwe
Wikipedia: BIND,
DNS, djbdns, Dns
DNS Plus, NSD, |
PowerDNS, Maral
Nominum ANS, N
Posadis, Unbound

Registrar, dnrd, g«
yaku-ns, DNS Bla:

Much wider variet
database-manager

hundreds of home
written by DNS re

f

T ratorj

/GOdQ

~L 1

B rowsm

at Internet
Central HQ

Root
DNS
server
.nl
DNS
server - server
.nl fh; .ru.nl
\fﬁtabaiijg;:g_ database -

]

\Ad m| n is-"c..ratcy

at ru.nl

DNS server software listed i
Wikipedia: BIND, Microsoft
DNS, djbdns, Dnsmasq, Sin
DNS Plus, NSD, Knot DNS
PowerDNS, MaraDNS, pdns
Nominum ANS, Nominum \
Posadis, Unbound, Cisco Ne
Registrar, dnrd, gdnsd, YAD
yaku-ns, DNS Blast.

Much wider variety of DNS

data

base-management tools

hund

reds of

nomegrown too

written by DNS registrars et

/ Cod Q érows% DNS server software listed in

= Wikipedia: BIND, Microsoft
Root \\ T DNS, djbdns, Dnsmasq, Simple
DNS - DNS | = DNS Plus, NSD, Knot DNS,

server PowerDNS, MaraDNS, pdnsd,

Nominum ANS, Nominum Vantio,

Posadis, Unbound, Cisco Network

) Registrar, dnrd, gdnsd, YADIFA,
Server - Server
T T yaku-ns, DNS Blast.
nl e .ru.nl _.;I:"' Much wider variety of DNS
Kdataba%-:-_.__ database - database-management tools, plus

at Internet \ T hundreds of homegrown tools

Central HQ \Admmlstratcy written by DNS registrars etc.
at ru.nl

~L 1

B rowsm

net

HQ

SErver

!

.ru.nl .
database -~

]

\Ad m| n is-"c..ratcy

at ru.nl

DNS server software listed in
Wikipedia: BIND, Microsoft
DNS, djbdns, Dnsmasq, Simple
DNS Plus, NSD, Knot DNS,
PowerDNS, MaraDNS, pdnsd,

Nominum ANS, Nominum Vantio,

Posadis, Unbound, Cisco Network
Registrar, dnrd, gdnsd, YADIFA,
yaku-ns, DNS Blast.

Much wider variety of DNS
database-management tools, plus

hundreds of homegrown tools

written by DNS registrars etc.

DNSSEC(

DNSSEC(
every DI

Whenev:
a DNS 1
precomg
signatur

Often cc
for the t

Example
can proc
Tool rea
probably

-
B rows%

A\

_ DNS
_, cache

g cache)

I.ru.nl \

SErver

!

.ru.nl .
database -

P

iministratcy

ét ru.nl

DNS server software listed in
Wikipedia: BIND, Microsoft
DNS, djbdns, Dnsmasq, Simple
DNS Plus, NSD, Knot DNS,
PowerDNS, MaraDNS, pdnsd,

Nominum ANS, Nominum Vantio,

Posadis, Unbound, Cisco Network
Registrar, dnrd, gdnsd, YADIFA,
yaku-ns, DNS Blast.

Much wider variety of DNS

data

nase-management tools, plus

huna

reds of

nomegrown tools

written by DNS registrars etc.

DNSSEC changes

DNSSEC demand:
every DNS-manag

Whenever a tool 3
a DNS record, als
precompute and s
signature for the r

Often considerable
for the tool progrz

Example: Signing
can produce 20GE
Tool reading datal
probably has to be

DNS server software listed in
Wikipedia: BIND, Microsoft
DNS, djbdns, Dnsmasq, Simple
DNS Plus, NSD, Knot DNS,
PowerDNS, MaraDNS, pdnsd,

Nominum ANS, Nominum Vantio,

Posadis, Unbound, Cisco Network
Registrar, dnrd, gdnsd, YADIFA,
yvaku-ns, DNS Blast.

Much wider variety of DNS
database-management tools, plus

hundreds of homegrown tools

written by DNS registrars etc.

DNSSEC changes everything

DNSSEC demands new cod:
every DNS-management toc

Whenever a tool adds or ch:
a DNS record, also has to

precompute and store a DN.
signature for the new record

Often considerable effort
for the tool programmers.

Example: Signing 3GB data
can produce 20GB database
Tool reading database Into |
probably has to be reengine

DNS server software listed in
Wikipedia: BIND, Microsoft
DNS, djbdns, Dnsmasq, Simple
DNS Plus, NSD, Knot DNS,
PowerDNS, MaraDNS, pdnsd,

Nominum ANS, Nominum Vantio,

Posadis, Unbound, Cisco Network
Registrar, dnrd, gdnsd, YADIFA,
yaku-ns, DNS Blast.

Much wider variety of DNS
database-management tools, plus

hundreds of homegrown tools

written by DNS registrars etc.

DNSSEC changes everything

DNSSEC demands new code in
every DNS-management tool.

Whenever a tool adds or changes
a DNS record, also has to
precompute and store a DNSSEC
signature for the new record.

Often considerable effort
for the tool programmers.

Example: Signing 3GB database
can produce 20GB database.

Tool reading database into RAM
probably has to be reengineered.

ver software listed in
1a: BIND, Microsoft
bdns, Dnsmasq, Simple
1s, NSD, Knot DNS,
NS, MaraDNS, pdnsd,

n ANS, Nominum Vantio,

Unbound, Cisco Network
r, dnrd, gdnsd, YADIFA,
DNS Blast.

ider variety of DNS
-management tools, plus
s of homegrown tools

oy DNS registrars etc.

DNSSEC changes everything

DNSSEC demands new code in
every DNS-management tool.

Whenever a tool adds or changes
a DNS record, also has to
precompute and store a DNSSEC
signature for the new record.

Often considerable effort
for the tool programmers.

Example: Signing 3GB database
can produce 20GB database.

Tool reading database into RAM
probably has to be reengineered.

Nijmege
to send

The .nl
and dat.
and wek
need to
to accer
and to s

DNS cac
to fetch
and veri

Tons of

re listed In
Microsoft
masq, Simple
<not DNS,

ONS, pdnsd,
ominum Vantio,
, Cisco Network
Insd, YADIFA,
ST.

y of DNS

nent tools, plus
ocrown tools
gistrars etc.

DNSSEC changes everything

DNSSEC demands new code in
every DNS-management tool.

Whenever a tool adds or changes
a DNS record, also has to
precompute and store a DNSSEC
signature for the new record.

Often considerable effort
for the tool programmers.

Example: Signing 3GB database
can produce 20GB database.

Tool reading database into RAM
probably has to be reengineered.

Nijmegen administ

to send public key

The .nl server

and database soft
and web interface
need to be update
to accept these pu
and to sign everyt

DNS cache needs

to fetch keys, fetc
and verify signatui

Tons of pain for ir

1ple
d,
/antio,

twork
|FA,

, plus

DNSSEC changes everything

DNSSEC demands new code in
every DNS-management tool.

Whenever a tool adds or changes
a DNS record, also has to
precompute and store a DNSSEC
signature for the new record.

Often considerable effort
for the tool programmers.

Example: Signing 3GB database
can produce 20GB database.

Tool reading database into RAM
probably has to be reengineered.

Nijmegen administrator also

to send public key to .nl.

The .nl server

and database software
and web interface

need to be updated

to accept these public keys
and to sign everything.

DNS cache needs new softw
to fetch keys, fetch signatur
and verify signatures.

Tons of pain for implementc

DNSSEC changes everything

DNSSEC demands new code in
every DNS-management tool.

Whenever a tool adds or changes
a DNS record, also has to
precompute and store a DNSSEC
signature for the new record.

Often considerable effort
for the tool programmers.

Example: Signing 3GB database
can produce 20GB database.

Tool reading database into RAM
probably has to be reengineered.

Nijmegen administrator also has

to send public key to .nl.

The .nl server

and database software
and web interface

need to be updated

to accept these public keys
and to sign everything.

DNS cache needs new software
to fetch keys, fetch signatures,
and verify signatures.

Tons of pain for implementors.

—

_ changes everything

—

_ demands new code in
\'S-management tool.

er a tool adds or changes
ecord, also has to

ute and store a DNSSEC
e for the new record.

nsiderable effort
ool programmers.

: Signing 3GB database
luce 20GB database.

ding database into RAM
' has to be reengineered.

Nijmegen administrator also has

to send public key to .nl.

The .nl server

and database software
and web interface

need to be updated

to accept these public keys
and to sign everything.

DNS cache needs new software
to fetch keys, fetch signatures,
and verify signatures.

Tons of pain for implementors.

Original
would h;
to sign |

millions

Concept
much to

So the [
added c

allowing
a small |
and to s
but has
covering

everything

5> hew code In
ement tool.

dds or changes
b has to

ore a DNSSEC
ew record.

» effort

MMErSs.

3GB database
 database.

vase iInto RAM
» reengineered.

Nijmegen administrator also has

to send public key to .nl.

The .nl server

and database software
and web interface

need to be updated

to accept these public keys
and to sign everything.

DNS cache needs new software
to fetch keys, fetch signatures,
and verify signatures.

Tons of pain for implementors.

Original DNSSEC
would have require

to sign its whole ¢
millions of records

Conceptually simp

much too slow, m

So the DNSSEC ¢
added complicatec

allowing .org to ¢
a small number of
and to sign “migh
but has not signec
covering the other

AINEES

SSEC

base
RAM
ared.

Nijmegen administrator also has

to send public key to .nl.

The .nl server

and database software
and web interface

need to be updated

to accept these public keys
and to sign everything.

DNS cache needs new software
to fetch keys, fetch signatures,
and verify signatures.

Tons of pain for implementors.

Original DNSSEC protocols

would have required .org
to sign its whole database:
millions of records.

Conceptually simple but

much too slow, much too b

So the DNSSEC protocol
added complicated options

allowing .org to sign

a small number of records,
and to sign "“might have dat
but has not signed any of it
covering the other records.

Nijmegen administrator also has

to send public key to .nl.

The .nl server

and database software
and web interface

need to be updated

to accept these public keys
and to sign everything.

DNS cache needs new software
to fetch keys, fetch signatures,
and verify signatures.

Tons of pain for implementors.

Original DNSSEC protocols
would have required .org

to sign its whole database:
millions of records.

Conceptually simple but

much too slow, much too big.

So the DNSSEC protocol
added complicated options

allowing .org to sign

a small number of records,
and to sign “might have data
but has not signed any of it"
covering the other records.

n administrator also has

public key to .nl.

_server
abase software
 interface

be updated

t these public keys
ign everything.

“he needs new software
keys, fetch signatures,
fy signatures.

pain for implementors.

Original DNSSEC protocols

would have required .org
to sign its whole database:
millions of records.

Conceptually simple but

much too slow, much too big.

So the DNSSEC protocol
added complicated options

allowing .org to sign

a small number of records,
and to sign “might have data
but has not signed any of it"
covering the other records.

What akt

€.g. Mo
return re

to sprea

Often tf
adjust |
in light
client lo

‘rator also has
to .nl.

ware

d
blic keys
hing.

new software
h signatures,
es.

nplementors.

Original DNSSEC protocols
would have required .org

to sign its whole database:
millions of records.

Conceptually simple but

much too slow, much too big.

So the DNSSEC protocol
added complicated options

allowing .org to sign

a small number of records,
and to sign “might have data
but has not signed any of it"
covering the other records.

What about dynal

e.g. Most big site:

return random [P
to spread load acr

Often they autom
adjust list of addr
in light of dead se
client location, etc

has

are
€S,

II'S.

Original DNSSEC protocols
would have required .org

to sign its whole database:

millions of records.

Conceptually simple but

much too slow, much too big.

So the DNSSEC protocol

al

added complicated options

owing .org to sign

a small number of records,

and to sign “might have data

but has not signed any of it"

covering the other records.

What about dynamic DNS

e.g. Most big sites

return random IP addresses
to spread load across server:

Often they automatically
adjust list of addresses
in light of dead servers,
client location, etc.

Original DNSSEC protocols
would have required .org

to sign its whole database:
millions of records.

Conceptually simple but

much too slow, much too big.

So the DNSSEC protocol
added complicated options

allowing .org to sign

a small number of records,
and to sign “might have data
but has not signed any of it"
covering the other records.

What about dynamic DNS data?

e.g. Most big sites

return random IP addresses
to spread load across servers.

Often they automatically
adjust list of addresses
in light of dead servers,
client location, etc.

Original DNSSEC protocols
would have required .org

to sign its whole database:
millions of records.

Conceptually simple but

much too slow, much too big.

So the DNSSEC protocol
added complicated options

allowing .org to sign

a small number of records,
and to sign “might have data
but has not signed any of it"
covering the other records.

What about dynamic DNS data?

e.g. Most big sites

return random IP addresses
to spread load across servers.

Often they automatically
adjust list of addresses
in light of dead servers,
client location, etc.

DNSSEC purists say “Answers
should always be static™.

DNSSEC protocols

ave required .org
ts whole database:
of records.

ually simple but

o slow, much too big.

)NSSEC protocol

omplicated options
.org to sign
number of records,
ign “might have data
not signed any of it"
the other records.

What about dynamic DNS data?

e.g. Most big sites

return random IP addresses
to spread load across servers.

Often they automatically
adjust list of addresses
in light of dead servers,
client location, etc.

DNSSEC purists say “Answers
should always be static”.

Even In
each res
dynamic
from se\
MX ansy

DNSSEC(
a signat
not for ¢

= One
includes
Massive

That's v
sO much

protocols
>d .org
[atabase:

le but

uch too big.

rotocol

| options
1gn
records,

t have data
| any of it"
records.

What about dynamic DNS data?

e.g. Most big sites

return random IP addresses
to spread load across servers.

Often they automatically
adjust list of addresses
in light of dead servers,
client location, etc.

DNSSEC purists say “Answers
should always be static™.

Even in “static” L
each response pac
dynamically assem
from several answ

MX answer, NS ai

DNSSEC precomp

a signature for eac
not for each packe

— One DNSSEC

iIncludes several sig
Massive bloat on 1

That's why DNSS
so much amplifica

What about dynamic DNS data? Even in “static’ DNS,

L each response packet is
e.g. Most big sites P P

dynamically assembled
return random |P addresses Y Y

from several answers:
to spread load across servers.

MX answer, NS answer, etc

Often they automatically
DNSSEC precomputes

adjust list of addresses |
a signature for each answer,

in light of dead servers,

. . not for each packet.
client location, etc.

= One DNSSEC packet

DNSSEC purists say “Answers | |
includes several signatures.

should always be static”. | |
Massive bloat on the wire.

That's why DNSSEC allows
so much amplification.

What about dynamic DNS data?

e.g. Most big sites

return random IP addresses
to spread load across servers.

Often they automatically
adjust list of addresses
in light of dead servers,
client location, etc.

DNSSEC purists say “Answers
should always be static™.

Even in “static” DNS,
each response packet iIs
dynamically assembled
from several answers:
MX answer, NS answer, etc.

DNSSEC precomputes
a signature for each answer,
not for each packet.

= One DNSSEC packet

includes several signatures.
Massive bloat on the wire.

That's why DNSSEC allows
so much amplification.

yout dynamic DNS data?

st big sites

yndom |IP addresses
d load across servers.

ey automatically
st of addresses
of dead servers,
cation, etc.

_ purists say “Answers
lways be static” .

Even in “static” DNS,
each response packet iIs
dynamically assembled
from several answers:

MX answer, NS answer, etc.

DNSSEC precomputes
a signature for each answer,
not for each packet.

= One DNSSEC packet

includes several signatures.
Massive bloat on the wire.

That's why DNSSEC allows
so much amplification.

What at
Are the

Can an ;
obsolete

e.g. Yol
Attacker
replays «

nic DNS data?

5
addresses
0SS Sservers.

atically
2SSes

r'vers,

ay Answers
tatic’ .

Even in “static’ DNS,
each response packet Is
dynamically assembled
from several answers:

MX answer, NS answer, etc.

DNSSEC precomputes
a signature for each answer,
not for each packet.

= One DNSSEC packet

includes several signatures.
Massive bloat on the wire.

That's why DNSSEC allows
so much amplification.

What about old L
Are the signatures

Can an attacker re
obsolete signed da

e.g. You move IP
Attacker grabs olc
replays old signatt

1ata?

2rS

Even in “static’ DNS,
each response packet Is
dynamically assembled
from several answers:

MX answer, NS answer, etc.

DNSSEC precomputes
a signature for each answer,
not for each packet.

= One DNSSEC packet

includes several signatures.
Massive bloat on the wire.

That's why DNSSEC allows
so much amplification.

What about ol/d DNS data?
Are the signatures still valid

Can an attacker replay
obsolete signed data?

e.g. You move IP addresses
Attacker grabs old address,
replays old signature.

Even in “static’ DNS,
each response packet iIs
dynamically assembled
from several answers:

MX answer, NS answer, etc.

DNSSEC precomputes
a signature for each answer,
not for each packet.

= One DNSSEC packet

includes several signatures.
Massive bloat on the wire.

That's why DNSSEC allows
so much amplification.

What about o/d DNS data?
Are the signatures still valid?

Can an attacker replay
obsolete signed data?

e.g. You move IP addresses.
Attacker grabs old address,
replays old signature.

Even in “static’ DNS,
each response packet iIs
dynamically assembled
from several answers:

MX answer, NS answer, etc.

DNSSEC precomputes
a signature for each answer,
not for each packet.

= One DNSSEC packet

includes several signatures.
Massive bloat on the wire.

That's why DNSSEC allows
so much amplification.

What about o/d DNS data?
Are the signatures still valid?

Can an attacker replay
obsolete signed data?

e.g. You move IP addresses.
Attacker grabs old address,
replays old signature.

If clocks are synchronized
then signatures can
include expiration times.
But frequent re-signing
Is an administrative disaster.

“static” DNS,
ponse packet Is
ally assembled
reral answers:

ver, NS answer, etc.

_ precomputes
ire for each answer,
ach packet.

DNSSEC packet

several signatures.
bloat on the wire.

vhy DNSSEC allows
amplification.

What about ol/d DNS data?
Are the signatures still valid?

Can an attacker replay
obsolete signed data?

e.g. You move IP addresses.
Attacker grabs old address,
replays old signature.

If clocks are synchronized
then signatures can

include expiration times.
But frequent re-signing

Is an administrative disaster.

A few D
2010.09.

NS,
ket Is
bled

=rS:

1swer, etc.

utes
h answer,
T.

packet
Ynatures.
he wire.

EC allows

tion.

What about o/d DNS data?
Are the signatures still valid?

Can an attacker replay
obsolete signed data?

e.g. You move IP addresses.
Attacker grabs old address,
replays old signature.

If clocks are synchronized
then signatures can

include expiration times.
But frequent re-signing

Is an administrative disaster.

A few DNSSEC st

2010.09.02:

.us k

What about o/d DNS data? A few DNSSEC suicide exar

| e
Are the signatures still valid: 2010.09.02: .us killed itself

Can an attacker replay
obsolete signed data?

e.g. You move IP addresses.
Attacker grabs old address,
replays old signature.

If clocks are synchronized
then signatures can

include expiration times.
But frequent re-signing

Is an administrative disaster.

What about o/ld DNS data? A few DNSSEC suicide examples:

| e
Are the signatures still valid: 2010.09.02: .us killed itself

Can an attacker replay
obsolete signed data?

e.g. You move IP addresses.
Attacker grabs old address,
replays old signature.

If clocks are synchronized
then signatures can

include expiration times.
But frequent re-signing

Is an administrative disaster.

What about o/ld DNS data? A few DNSSEC suicide examples:

| e
Are the signatures still valid: 2010.09.02: .us killed itself

Can an attacker replay 2012.02.28, 1SC’s Evan Hunt

obsolete signed data? y . "
dnssec—-accept—-expired yes
e.g. You move IP addresses.
Attacker grabs old address,

replays old signature.

If clocks are synchronized
then signatures can

include expiration times.
But frequent re-signing

Is an administrative disaster.

What about o/d DNS data?
Are the signatures still valid?

Can an attacker replay
obsolete signed data?

e.g. You move IP addresses.
Attacker grabs old address,
replays old signature.

If clocks are synchronized
then signatures can

include expiration times.
But frequent re-signing

Is an administrative disaster.

A few DNSSEC suicide examples:
2010.09.02: .us killed itself.
2012.02.28, ISC’'s Evan Hunt:

"dnssec-accept-expired yes"

2012.10.28: .n1 killed itself.

What about o/d DNS data?
Are the signatures still valid?

Can an attacker replay
obsolete signed data?

e.g. You move IP addresses.
Attacker grabs old address,
replays old signature.

If clocks are synchronized
then signatures can

include expiration times.
But frequent re-signing

Is an administrative disaster.

A few DNSSEC suicide examples:
2010.09.02: .us killed itself.
2012.02.28, ISC’'s Evan Hunt:

"dnssec-accept-expired yes"
2012.10.28: .nl killed itself.

2015.01.25: opendnssec.org
killed itself.

What about o/d DNS data?
Are the signatures still valid?

Can an attacker replay
obsolete signed data?

e.g. You move IP addresses.
Attacker grabs old address,
replays old signature.

If clocks are synchronized
then signatures can

include expiration times.
But frequent re-signing

Is an administrative disaster.

A few DNSSEC suicide examples:
2010.09.02: .us killed itself.
2012.02.28, ISC’'s Evan Hunt:

"dnssec-accept-expired yes"
2012.10.28: .nl killed itself.

2015.01.25: opendnssec.org
killed itself.

2015.12.11: af.mil killed itself.

What about o/d DNS data?
Are the signatures still valid?

Can an attacker replay
obsolete signed data?

e.g. You move IP addresses.
Attacker grabs old address,
replays old signature.

If clocks are synchronized
then signatures can

include expiration times.
But frequent re-signing

Is an administrative disaster.

A few DNSSEC suicide examples:
2010.09.02: .us killed itself.
2012.02.28, ISC’'s Evan Hunt:

"dnssec-accept-expired yes"
2012.10.28: .nl killed itself.

2015.01.25: opendnssec.org
killed itself.

2015.12.11: af.mil killed itself.

Many more: see ianix.com

/pub/dnssec-outages.html.

yout o/d DNS data?
signatures still valid?

attacker replay
signhed data?

| move |IP addresses.
- grabs old address,
ld signature.

are synchronized
natures can
xpiration times.
uent re-signing
ministrative disaster.

A few DNSSEC suicide examples:

2010.09.02: .us killed itself.
2012.02.28, ISC’'s Evan Hunt:

"dnssec-accept-expired yes”
2012.10.28: .nl killed itself.

2015.01.25: opendnssec.org
killed itself.

2015.12.11: af.mil killed itself.

Many more: see ianix.com

/pub/dnssec-outages.html.

What akt

NS data?
still valid?

play
ta?

addresses.
address,
Ire.

ronized
n
times.
ning

e disaster.

A few DNSSEC suicide examples:
2010.09.02:

.us killed itself.

2012.02.28, ISC’'s Evan Hunt:

"dnssec-accept-expired yes”

2012.10.28:

2015.01.25:
killed itself.

2015.12.11:

.nl killed itself.

opendnssec.org

af.mil killed itself.

Many more: see ianix.com

/pub/dnssec-outages.html.

What about none

A few DNSSEC suicide examples:

2010.09.02: .us killed itself.
2012.02.28, ISC’'s Evan Hunt:

"dnssec-accept-expired yes’
2012.10.28: .nl killed itself.

2015.01.25: opendnssec.org
killed itself.

2015.12.11: af.mil killed itself.

Many more: see ianix.com

/pub/dnssec-outages.html.

What about nonexistent dat

A few DNSSEC suicide examples:

2010.09.02: .us killed itself.
2012.02.28, ISC’'s Evan Hunt:

"dnssec-accept-expired yes"
2012.10.28: .nl killed itself.

2015.01.25: opendnssec.org
killed itself.

2015.12.11: af.mil killed itself.

Many more: see ianix.com

/pub/dnssec-outages.html.

What about nonexistent data?

A few DNSSEC suicide examples:

2010.09.02: .us killed itself.
2012.02.28, ISC’'s Evan Hunt:

"dnssec-accept-expired yes"
2012.10.28: .nl killed itself.

2015.01.25: opendnssec.org
killed itself.

2015.12.11: af.mil killed itself.

Many more: see ianix.com

/pub/dnssec-outages.html.

What about nonexistent data?

Does Nijmegen administrator
precompute signatures on
"aaaaa.ru.nl does not exist’,
“aaaab.ru.nl does not exist’,

etc.”

A few DNSSEC suicide examples:

2010.09.02: .us killed itself.
2012.02.28, ISC’'s Evan Hunt:

"dnssec-accept-expired yes"
2012.10.28: .nl killed itself.

2015.01.25: opendnssec.org
killed itself.

2015.12.11: af.mil killed itself.

Many more: see ianix.com

/pub/dnssec-outages.html.

What about nonexistent data?

Does Nijmegen administrator
precompute signatures on
"aaaaa.ru.nl does not exist’,
“aaaab.ru.nl does not exist’,

etc.”

Crazy! Obvious approach:
“We sign each record that exists,
and don't sign anything else.”

A few DNSSEC suicide examples:

2010.09.02: .us killed itself.
2012.02.28, ISC’'s Evan Hunt:

"dnssec-accept-expired yes"
2012.10.28: .nl killed itself.

2015.01.25: opendnssec.org
killed itself.

2015.12.11: af.mil killed itself.

Many more: see ianix.com

/pub/dnssec-outages.html.

What about nonexistent data?

Does Nijmegen administrator
precompute signatures on
"aaaaa.ru.nl does not exist’,
“aaaab.ru.nl does not exist’,

etc.”

Crazy! Obvious approach:
“We sign each record that exists,
and don't sign anything else.”

User asks for nonexistent name.
Receives unsigned answer
saying the name doesn't exist.
Has no choice but to trust it.

NSSEC suicide examples:

02: .us killed itself.
28, ISC’'s Evan Hunt:

—accept-expired yes”

28: .nl killed itself.

25: opendnssec.org

elf.
11: af.mil killed itself.

ore: see 1anix.com

1Ssec-outages.html.

What about nonexistent data?

Does Nijmegen administrator
precompute signatures on
“aaaaa.ru.nl does not exist',
“aaaab.ru.nl does not exist',
etc.?

Crazy! Obvious approach:
“We sign each record that exists,
and don't sign anything else.”

User asks for nonexistent name.
Receives unsigned answer
saying the name doesn't exist.
Has no choice but to trust it.

User ask
Recelves
a packet
saying tl
Has no «

Clearly :

Sometin
Thisis

licide examples:

dlled 1tself.

Evan Hunt:

-expired yes”

dlled 1tself.

inssec.org

i1 killed itself.

anix.com

cages.html.

What about nonexistent data?

Does Nijmegen administrator
precompute signatures on
"aaaaa.ru.nl does not exist’,
“aaaab.ru.nl does not exist’,

etc.”

Crazy! Obvious approach:
“We sign each record that exists,
and don't sign anything else.”

User asks for nonexistent name.
Receives unsigned answer
saying the name doesn't exist.
Has no choice but to trust it.

User asks for www.
Recelves unsigned
a packet forged by
saying the name d
Has no choice but

Clearly a violation
Sometimes a viola
This Is not a gooc

nples:

yes

Lg

self.

nl.

What about nonexistent data?

Does Nijmegen administrator
precompute signatures on
“aaaaa.ru.nl does not exist',
“aaaab.ru.nl does not exist',
etc.?

Crazy! Obvious approach:
“We sign each record that exists,
and don't sign anything else.”

User asks for nonexistent name.
Receives unsigned answer
saying the name doesn't exist.
Has no choice but to trust it.

User asks for www.google. «
Receives unsigned answer,

a packet forged by attacker,
saying the name doesn’t exi:
Has no choice but to trust 1

Clearly a violation of availak
Sometimes a violation of int
This Is not a good approach

What about nonexistent data? User asks for www.google. com.

y .. Receives unsigned answer,
Does Nijmegen administrator

. a packet forged by attacker,
precompute signatures on

y o saying the name doesn't exist.
aaaaa.ru.nl does not exist |,

. o Has no choice but to trust it.
aaaab.ru.nl does not exist |

etc.? Clearly a violation of availability.

. Sometimes a violation of integrity.

Crazy! Obvious approach: Thic]) Bty

. . . IS IS not a good approach.

We sign each record that exists, & PP

and don't sign anything else.”

User asks for nonexistent name.
Receives unsigned answer
saying the name doesn't exist.
Has no choice but to trust it.

What about nonexistent data?

Does Nijmegen administrator
precompute signatures on
“aaaaa.ru.nl does not exist’,
“aaaab.ru.nl does not exist’,

etc.”

Crazy! Obvious approach:
“We sign each record that exists,
and don't sign anything else.”

User asks for nonexistent name.
Receives unsigned answer
saying the name doesn't exist.
Has no choice but to trust it.

User asks for www.google. com.
Receives unsigned answer,

a packet forged by attacker,
saying the name doesn't exist.
Has no choice but to trust it.

Clearly a violation of availability.
Sometimes a violation of integrity.
This I1s not a good approach.

Alternative: DNSSEC’'s “NSEC".

e.g. nonex.clegg.com query
returns “There are no names
between nick.clegg.com and

start.clegg.com’ -+ signature.

yout nonexistent data?

jmegen administrator
ute signatures on
ru.nl does not exist’,

ru.nl does not exist’,

Jbvious approach:
n each record that exists,
't sign anything else.”

s for nonexistent name.
- unsigned answer

1e name doesn't exist.
“hoice but to trust it.

User asks for www.google. com.
Receives unsigned answer,

a packet forged by attacker,
saying the name doesn't exist.
Has no choice but to trust it.

Clearly a violation of availability.

Sometimes a violation of integrity.

This I1s not a good approach.

Alternative: DNSSEC's “NSEC".

e.g. nonex.clegg.com query
returns “There are no names
between nick.clegg.com and

start.clegg.com -+ signature.

Try foo
After se
complet:
_Jjabber
server.
andrew,
googled
home, 11
localhc

<istent data?

ministrator
ures on
es not exist’,

es not exist’,

proach:
ord that exists,
rthing else.”

xistent name.
answer
oesn't exist.
to trust It.

User asks for www.google. com.
Receives unsigned answer,

a packet forged by attacker,
saying the name doesn't exist.
Has no choice but to trust it.

Clearly a violation of availability.

Sometimes a violation of integrity.

This I1s not a good approach.

Alternative: DNSSEC’'s “NSEC".

e.g. nonex.clegg.com query
returns “There are no names
between nick.clegg.com and

start.clegg.com’ -+ signature.

Try foo.clegg.c
After several queri
complete clegg.c
_jabber._tcp, _:
server._tcp, al
andrew, brian, c
googleffffffffe
home, imogene, j

localhost, mail,

)

cist’

cist”

XISts,

me.

User asks for www.google. com.
Receives unsigned answer,

a packet forged by attacker,
saying the name doesn't exist.
Has no choice but to trust it.

Clearly a violation of availability.

Sometimes a violation of integrity.

This I1s not a good approach.

Alternative: DNSSEC's “NSEC".
e.g. nonex.clegg.com query
returns “There are no names
between nick.clegg.com and

start.clegg.com - signature.

Try foo.clegg.com etc.
After several queries have
complete clegg.comn list:
_Jjabber._tcp, _xmpp-
server._tcp, alan, alvis
andrew, brian, calendar,
googleffffffffe91126e7,
home, imogene, jennifer,

localhost, mail, wikl, ww

User asks for www.google. com.
Receives unsigned answer,

a packet forged by attacker,
saying the name doesn't exist.
Has no choice but to trust it.

Clearly a violation of availability.

Sometimes a violation of integrity.

This I1s not a good approach.

Alternative: DNSSEC's “NSEC".
e.g. nonex.clegg.com query
returns “There are no names
between nick.clegg.com and

start.clegg.com’ -+ signature.

Try foo.clegg.com etc.

After several queries have
complete clegg.comn list:
_Jjabber._tcp, _xmpp-
server._tcp, alan, alvis,
andrew, brian, calendar, dlv,
googleffffffffe91126e7,
home, imogene, jennifer,

localhost, mail, wikl, www.

User asks for www.google. com.
Receives unsigned answer,

a packet forged by attacker,
saying the name doesn't exist.
Has no choice but to trust it.

Clearly a violation of availability.

Sometimes a violation of integrity.

This I1s not a good approach.

Alternative: DNSSEC's “NSEC".
e.g. nonex.clegg.com query
returns “There are no names
between nick.clegg.com and

start.clegg.com’ -+ signature.

Try foo.clegg.com etc.

After several queries have
complete clegg.comn list:
_Jjabber._tcp, _xmpp-
server._tcp, alan, alvis,
andrew, brian, calendar, dlv,
googleffffffffe91126e7,
home, imogene, jennifer,

localhost, mail, wikl, www.

The clegg.com administrator
disabled DNS “zone transfers”
— but then leaked the same data
by installing DNSSEC.

(This was a real example.)

s for www.google. com.
- unsigned answer,

- forged by attacker,

1e name doesn't exist.
“hoice but to trust It.

) violation of availability.

1es a violation of integrity.

1ot a good approach.

ive: DNSSEC's "NSEC".

ex.clegg.com query
‘There are no names
1 nick.clegg.com and

-legg.com” + signature.

Try foo.clegg.com etc.

After several queries have
complete clegg.comn list:
_Jjabber._tcp, _xmpp-
server._tcp, alan, alvis,
andrew, brian, calendar, dlv,
googleffffffffe91126e7,
home, imogene, jennifer,

localhost, mail, wikl, www.

The clegg.com administrator
disabled DNS “zone transfers”
— but then leaked the same data

by installing DNSSEC.
(This was a real example.)

Summar
all n nar
(with sig
that the

using n

google.com.
answer,

- attacker,
oesn't exist.
to trust It.

of availability.

tion of integrity.

| approach.

SEC's “NSEC".
r.com query

'€ NO names
egg.com and

"+ signature.

Try foo.clegg.com etc.

After several queries have
complete clegg.comn list:
_Jjabber._tcp, _xmpp-
server._tcp, alan, alvis,
andrew, brian, calendar, dlv,
googleffffffffe91126e7,
home, imogene, jennifer,

localhost, mail, wikl, www.

The clegg.com administrator
disabled DNS “zone transfers”
— but then leaked the same data

by installing DNSSEC.
(This was a real example.)

Summary: Attack
all n names Iin an

(with signatures g
that there are no |
using n DNS quer

~onl.

Try foo.clegg.com etc.

After several queries have
complete clegg.comn list:
_Jjabber._tcp, _xmpp-
server._tcp, alan, alvis,
andrew, brian, calendar, dlv,
googleffffffffe91126e7,
home, imogene, jennifer,

localhost, mail, wikl, www.

The clegg.com administrator
disabled DNS “zone transfers”
— but then leaked the same data

by installing DNSSEC.
(This was a real example.)

Summary: Attacker learns
all n names in an NSEC zon
(with signatures guaranteeir
that there are no more)
using n DNS queries.

Try foo.clegg.com etc.

After several queries have
complete clegg.con list:
_jabber._tcp, _xmpp-
server._tcp, alan, alvis,
andrew, brian, calendar, dlv,
googleffffffffe91126e7,
home, imogene, jennifer,

localhost, mail, wikl, www.

The clegg.com administrator
disabled DNS “zone transfers”
— but then leaked the same data

by installing DNSSEC.
(This was a real example.)

Summary: Attacker learns

all n names in an NSEC zone
(with signatures guaranteeing
that there are no more)

using n DNS queries.

Try foo.clegg.com etc.

After several queries have
complete clegg.con list:
_jabber._tcp, _xmpp-
server._tcp, alan, alvis,
andrew, brian, calendar, dlv,
googleffffffffe91126e7,
home, imogene, jennifer,

localhost, mail, wikl, www.

The clegg.com administrator
disabled DNS “zone transfers”
— but then leaked the same data

by installing DNSSEC.
(This was a real example.)

Summary: Attacker learns

all n names in an NSEC zone
(with signatures guaranteeing
that there are no more)

using n DNS queries.

This Is not a good approach.

Try foo.clegg.com etc. Summary: Attacker learns

After several queries have all n names in an NSEC zone
complete clegg. com list: (with signatures guaranteeing
_jabber._tcp, _xmpp- that there are no more)
server._tcp, alan, alvis, using n DNS queries.

andrew, brian, calendar, dlv,
googleffffffffe91126e7,
home, imogene, jennifer’ DNSSEC puriStS Cisagree:

localhost, mail, wiki, www. “It 1s part of the design
philosophy of the DNS

that the data in it Is public.”
But this notion Is so extreme

This Is not a good approach.

The clegg.com administrator
disabled DNS “zone transfers”
— but then leaked the same data

by installing DNSSEC.
(This was a real example.)

that i1t became a
public-relations problem.

.clegg.com etc.

veral queries have

> clegg. comn list:
~._Tcp, _Xmpp-—

_tcp, alan, alvis,
brian, calendar, dlv,
fffffffe91126e7,
nogene, jennifer,

)st, maill, wiki, www.

gg . com administrator
DNS “zone transfers”
nen leaked the same data
ing DNSSEC.

s a real example.)

Summary: Attacker learns

all n names in an NSEC zone
(with signatures guaranteeing
that there are no more)

using n DNS queries.

This I1s not a good approach.

DNSSEC purists disagree:

“It is part of the design

philosophy of the DNS
that the data in it Is public.”
But this notion Is so extreme

that it became a
public-relations problem.

New DN
1. “NSE

Use a "¢
such as
Reveal /
instead «
“There

hashes

om etc.

es have

om |ist:

XIMpp~

an, alvis,
alendar, dlv,
29112667,
ennifer,

wilikl, www.

dministrator
1e transfers”
] the same data

SEC.
xample.)

Summary: Attacker learns

all n names in an NSEC zone

(with signatures guaranteeing

that there are no more)

using n DNS queries.

This Is not a good approach.

DNSSEC purists ¢

“It 1s part of the ¢

Isagree:
esign

philosophy of the DNS

that the data in it

is public.”

But this notion Is so extreme

that 1t became a

public-relations problem.

New DNSSEC apy

1. “NSEC3" tec

Use a “one-way

NI

N

such as (iterated s

Reveal hashes of r

Instead of revealin

"There are no ns

hashes between

dlv,

» data

Summary: Attacker learns

all n names in an NSEC zone
(with signatures guaranteeing
that there are no more)

using n DNS queries.

This I1s not a good approach.

DNSSEC purists disagree:
“It is part of the design

philosophy of the DNS
that the data in it Is public.”
But this notion Is so extreme

that it became a
public-relations problem.

New DNSSEC approach:

1. "NSEC3" technology:
Use a “one-way hash functic

such as (iterated salted) SH
Reveal hashes of names

instead of revealing names.
“There are no names with

hashes between ... and ..

Summary: Attacker learns New DNSSEC approach:

all n names in an NSEC zone 1. “NSEC3" technology:

Use a “one-way hash function”

such as (iterated salted) SHA-1.
Reveal hashes of names

(with signatures guaranteeing
that there are no more)
using n DNS queries.

This Is not a good approach. instead of revealing names.

ists di ‘Th ith
DNSSEC purists disagree: ere are no names wi

“It is part of the design

philosophy of the DNS
that the data in it Is public.”
But this notion Is so extreme

hashes between ... and ...

that i1t became a
public-relations problem.

Summary: Attacker learns New DNSSEC approach:

all n names in an NSEC zone 1. “NSEC3" technology:

Use a “one-way hash function”
such as (iterated salted) SHA-1.
Reveal hashes of names

(with signatures guaranteeing
that there are no more)
using n DNS queries.

This Is not a good approach. instead of revealing names.

ists di ‘Th ith
DNSSEC purists disagree: ere are no names wi

‘It is part of the design hashes between ... and ..."
philosophy of the DNS 2. Marketing:

that the data in it is public.” Pretend that NSEC3 is

But this notion is so extreme less damaging than NSEC.

that it became a ISC: “NSEC3 does not allow

public-relations problem. . .
enumeration of the zone.

y: Attacker learns
nes in an NSEC zone
'natures guaranteeing

re are no more)
DNS queries.

1ot a good approach.

_ purists disagree:

rt of the design

hy of the DNS

data in it Is public.”
notion Is so extreme
ecame a

lations problem.

New DNSSEC approach:

1. "NSEC3" technology:
Use a “one-way hash function”

such as (iterated salted) SHA-1.

Reveal hashes of names
instead of revealing names.
“There are no names with

hashes between ... and ...

2. Marketing:

Pretend that NSEC3 is
less damaging than NSEC.

ISC: “NSEC3 does not allow
enumeration of the zone.”

Reality:
by abusi
compute
for man
quickly «
(and knc

or |learns
NSEC zone

uaranteeing
more)
es.

| approach.

Isagree:

esign
DNS
is public.”
SO extreme

oblem.

New DNSSEC approach:

1. "NSEC3" technology:
Use a “one-way hash function”

such as (iterated salted) SHA-1.

Reveal hashes of nhames
instead of revealing names.
"There are no names with

hashes between ... and ...

2. Marketing:

Pretend that NSEC3 is
less damaging than NSEC.

ISC: “NSEC3 does not allow
enumeration of the zone.”

Reality: Attacker
by abusing DNSSI
computes the sam
for many different
quickly discovers ¢
(and knows # mis

€

New DNSSEC approach:

1. "NSEC3" technology:
Use a “one-way hash function”

such as (iterated salted) SHA-1.

Reveal hashes of names
instead of revealing names.
“There are no names with

hashes between ... and ..."

2. Marketing:

Pretend that NSEC3 is
less damaging than NSEC.

ISC: “NSEC3 does not allow
enumeration of the zone.”

Reality: Attacker grabs the
by abusing DNSSEC’s NSE(
computes the same hash fur
for many different name gue
quickly discovers almost all
(and knows # missing name

New DNSSEC approach:

1. “"NSEC3" technology:
Use a “one-way hash function”

such as (iterated salted) SHA-1.

Reveal hashes of nhames
instead of revealing names.
"There are no names with

hashes between ... and ..."

2. Marketing:

Pretend that NSEC3 is
less damaging than NSEC.

ISC: “NSEC3 does not allow
enumeration of the zone.”

Reality: Attacker grabs the hashes
by abusing DNSSEC's NSEC3;
computes the same hash function
for many different name guesses;
quickly discovers almost all names
(and knows # missing names).

New DNSSEC approach:

1. “"NSEC3" technology:
Use a “one-way hash function”

such as (iterated salted) SHA-1.

Reveal hashes of nhames
instead of revealing names.
"There are no names with

hashes between ... and ...

2. Marketing:

Pretend that NSEC3 is
less damaging than NSEC.

ISC: “NSEC3 does not allow
enumeration of the zone.”

Reality: Attacker grabs the hashes
by abusing DNSSEC’'s NSEC3;
computes the same hash function
for many different name guesses;
quickly discovers almost all names
(and knows # missing names).

DNSSEC purists: “You could
have sent all the same guesses

as queries to the server.”

New DNSSEC approach:

1. “"NSEC3" technology:

Use a “one-way hash function”
such as (iterated salted) SHA-1.
Reveal hashes of names

instead of revealing names.
“There are no names with

hashes between ... and ..."

2. Marketing:

Pretend that NSEC3 is
less damaging than NSEC.

ISC: “NSEC3 does not allow
enumeration of the zone.”

Reality: Attacker grabs the hashes
by abusing DNSSEC’'s NSEC3;
computes the same hash function
for many different name guesses;
quickly discovers almost all names
(and knows # missing names).

DNSSEC purists: “You could
have sent all the same guesses

as queries to the server.”

4Mbps flood of queries is under
500 million noisy guesses/day.
NSEC3 allows typical attackers

1000000 million to 1000000000
million silent guesses/day.

|SSEC approach:

-C3" technology:

ne-way hash function”

(iterated salted) SHA-1.

1ashes of names
of revealing names.
are no names with

between ... and ...

eting:
that NSEC3 is
aging than NSEC.

SEC3 does not allow
tion of the zone.”

Reality: Attacker grabs the hashes
by abusing DNSSEC's NSEC3;
computes the same hash function
for many different name guesses;
quickly discovers almost all names
(and knows # missing names).

DNSSEC purists: “You could
have sent all the same guesses

as queries to the server.”

4Mbps flood of queries is under
500 million noisy guesses/day.
NSEC3 allows typical attackers

1000000 million to 1000000000
million silent guesses/day.

This is ¢

Imagine
that wor

yroach:

10logy:

sh function”
alted) SHA-1.
1ames

g names.

mes with

.and ..."

C3is
n NSEC.

5 not allow
e zone.'

Reality: Attacker grabs the hashes
by abusing DNSSEC’'s NSEC3;
computes the same hash function
for many different name guesses;
quickly discovers almost all names
(and knows # missing names).

DNSSEC purists: “You could
have sent all the same guesses

as queries to the server.”

4Mbps flood of queries is under
500 million noisy guesses/day.
NSEC3 allows typical attackers

1000000 million to 1000000000
million silent guesses/day.

This Is crazy!

Imagine an "HTT
that works like DN

n'’

A-1.

Reality: Attacker grabs the hashes
by abusing DNSSEC's NSEC3;
computes the same hash function
for many different name guesses;
quickly discovers almost all names
(and knows # missing names).

DNSSEC purists: “You could
have sent all the same guesses

as queries to the server.”

4Mbps flood of queries is under
500 million noisy guesses/day.
NSEC3 allows typical attackers

1000000 million to 1000000000
million silent guesses/day.

This Is crazy!

Imagine an "HTTPSEC"
that works like DNSSEC.

Reality: Attacker grabs the hashes
by abusing DNSSEC’'s NSEC3;
computes the same hash function
for many different name guesses;
quickly discovers almost all names
(and knows # missing names).

DNSSEC purists: “You could
have sent all the same guesses

as queries to the server.”

4Mbps flood of queries is under
500 million noisy guesses/day.
NSEC3 allows typical attackers

1000000 million to 1000000000
million silent guesses/day.

This Is crazy!

Imagine an "HTTPSEC"
that works like DNSSEC.

Reality: Attacker grabs the hashes
by abusing DNSSEC’'s NSEC3;
computes the same hash function
for many different name guesses;
quickly discovers almost all names
(and knows # missing names).

DNSSEC purists: “You could
have sent all the same guesses

as queries to the server.”

4Mbps flood of queries is under
500 million noisy guesses/day.
NSEC3 allows typical attackers

1000000 million to 1000000000
million silent guesses/day.

This Is crazy!

Imagine an "HTTPSEC"
that works like DNSSEC.

Store a signature next to

every web page.

Recompute and store signature
for every minor wiki edit,

and again every 30 days.

Any failure: HTTPSEC suicide.

Dynamic content? Give up.

Reality: Attacker grabs the hashes
by abusing DNSSEC’'s NSEC3;
computes the same hash function
for many different name guesses;
quickly discovers almost all names
(and knows # missing names).

DNSSEC purists: “You could
have sent all the same guesses

as queries to the server.”

4Mbps flood of queries is under
500 million noisy guesses/day.
NSEC3 allows typical attackers

1000000 million to 1000000000
million silent guesses/day.

This Is crazy!

Imagine an "HTTPSEC"
that works like DNSSEC.

Store a signature next to

every web page.

Recompute and store signature
for every minor wiki edit,

and again every 30 days.

Any failure: HTTPSEC suicide.

Dynamic content? Give up.

Replay attacks work for 30 days.
Filename guessing is much faster.
Nothing Is encrypted.

Denial of service is trivial.

Attacker grabs the hashes

ng DNSSEC’'s NSEC3;
s the same hash function

/ different name guesses;

Jiscovers almost all names

WS #

missing names).

_ purists: “You could

t all t
s to t

N€ SdMeE ZUESSES

ne server.’

lood of queries is under

jon noisy guesses/day.

allows

typical attackers

'million to 1000000000
ilent guesses/day.

This Is crazy!

Imagine an "HTTPSEC”
that works like DNSSEC.

Store a signature next to

every web page.

Recompute and store signature
for every minor wiki edit,

and again every 30 days.

Any failure: HTTPSEC suicide.

Dynamic content? Give up.

Replay attacks work for 30 days.
Filename guessing is much faster.
Nothing Is encrypted.

Denial of service is trivial.

Does DI

There ai
signed w
caches ¢
Never m
Do thes
accomp

orabs the hashes
-C’'s NSEC3;

e hash function
name guesses;
Imost all names
sing names).

“You could
ame guesses

erver.’

leries IS under
ruesses/day.
cal attackers

> 1000000000
ses /day.

This Is crazy!

Imagine an "HTTPSEC”
that works like DNSSEC.

Store a signature next to

every web page.

Recompute and store signature
for every minor wiki edit,

and again every 30 days.

Any failure: HTTPSEC suicide.

Dynamic content? Give up.

Replay attacks work for 30 days.
Filename guessing is much faster.
Nothing Is encrypted.

Denial of service is trivial.

Does DNS securit

There are some |F
signed with DNSS
caches checking si
Never mind all the
Do these signatu
accomplish anytl

hashes
_3;
1ction
SSES;
names

).
d

ES

\der

\V2
ers
000

This Is crazy!

Imagine an "HTTPSEC”
that works like DNSSEC.

Store a signature next to

every web page.

Recompute and store signature
for every minor wiki edit,

and again every 30 days.

Any failure: HTTPSEC suicide.
Dynamic content? Give up.

Replay attacks work for 30 days.
Filename guessing is much faster.
Nothing Is encrypted.

Denial of service is trivial.

Does DNS security matter?

There are some |P addresse:
signed with DNSSEC, and s
caches checking signatures.
Never mind all the problems
Do these signatures
accomplish anything?

This is crazy! Does DNS security matter?

Imagine an “HT TPSEC" There are some IP addresses
that works like DNSSEC. signed with DNSSEC, and some
caches checking signatures.

Store a signature next to

Never mind all the problems.
every web page. _
. Do these sighatures
Recompute and store signature

: N
for every minor wiki edit, accomplish anything
and again every 30 days.

Any failure: HTTPSEC suicide.

Dynamic content? Give up.

Replay attacks work for 30 days.
Filename guessing is much faster.
Nothing Is encrypted.

Denial of service is trivial.

This Is crazy!

Imagine an "HTTPSEC”
that works like DNSSEC.

Store a signature next to

every web page.

Recompute and store signature
for every minor wiki edit,

and again every 30 days.

Any failure: HTTPSEC suicide.

Dynamic content? Give up.

Replay attacks work for 30 days.

Filename guessing is much faster.

Nothing Is encrypted.
Denial of service is trivial.

Does DNS security matter?

There are some |IP addresses
signed with DNSSEC, and some
caches checking signatures.
Never mind all the problems.
Do these signatures
accomplish anything?

Occasionally these caches
are on client machines,

so attacker can't simply
forge packets from cache ...

This Is crazy!

Imagine an "HTTPSEC”
that works like DNSSEC.

Store a signature next to

every web page.

Recompute and store signature
for every minor wiki edit,

and again every 30 days.

Any failure: HTTPSEC suicide.

Dynamic content? Give up.

Replay attacks work for 30 days.

Filename guessing is much faster.

Nothing Is encrypted.
Denial of service is trivial.

Does DNS security matter?

There are some |IP addresses
signed with DNSSEC, and some
caches checking signatures.
Never mind all the problems.
Do these signatures
accomplish anything?

Occasionally these caches

are on client machines,

so attacker can't simply

forge packets from cache ...

so attacker intercepts and forges
all the subsequent packets:

web pages, emall, etc.

razy!

an “HTTPSEC"
ks like DNSSEC.

signature next to

b page.

ute and store signature
/ minor wiki edit,

n every 30 days.

ire: HTTPSEC suicide.

-~ content? Give up.

ttacks work for 30 days.

= guessing I1s much faster.

IS encrypted.
f service is trivial.

Does DNS security matter?

There are some IP addresses
signed with DNSSEC, and some
caches checking signatures.
Never mind all the problems.
Do these signatures
accomplish anything?

Occasionally these caches

are on client machines,

so attacker can't simply

forge packets from cache ...

so attacker intercepts and forges
all the subsequent packets:

web pages, emall, etc.

Adminis
to prote

. but
IS stopp¢

PSEC”
ISSEC.

next to

ore signature
ki edit,
) days.
°SEC suicide.

Give up.
rk for 30 days.

Is much faster.

ed.

5 trivial.

Does DNS security matter?

There are some |IP addresses
signed with DNSSEC, and some
caches checking signatures.
Never mind all the problems.
Do these signatures
accomplish anything?

Occasionally these caches

are on client machines,

so attacker can't simply

forge packets from cache ...

so attacker intercepts and forges
all the subsequent packets:

web pages, emall, etc.

Administrator can
to protect web pa;
... but then what
is stopped by DN

ure

Ide.

lays.
aster.

Does DNS security matter?

There are some IP addresses
signed with DNSSEC, and some
caches checking signatures.
Never mind all the problems.
Do these signatures
accomplish anything?

Occasionally these caches

are on client machines,

so attacker can’'t simply

forge packets from cache ...

so attacker intercepts and forges
all the subsequent packets:

web pages, emall, etc.

Administrator can use HT T|
to protect web pages

... but then what attack

Is stopped by DNSSEC?

Does DNS security matter?

There are some |IP addresses
signed with DNSSEC, and some
caches checking signatures.
Never mind all the problems.
Do these signatures
accomplish anything?

Occasionally these caches

are on client machines,

so attacker can't simply

forge packets from cache ...

so attacker intercepts and forges
all the subsequent packets:

web pages, emall, etc.

Administrator can use HT TPS
to protect web pages

... but then what attack

is stopped by DNSSEC?

Does DNS security matter?

There are some |IP addresses
signed with DNSSEC, and some
caches checking signatures.
Never mind all the problems.
Do these signatures
accomplish anything?

Occasionally these caches

are on client machines,

so attacker can't simply

forge packets from cache ...

so attacker intercepts and forges
all the subsequent packets:

web pages, emall, etc.

Administrator can use HT TPS
to protect web pages

... but then what attack

is stopped by DNSSEC?

DNSSEC purists criticize HT TPS:
“You can't trust your servers.”

DNSSEC signers are offline
(preferably in guarded rooms).
DNSSEC precomputes signatures.
DNSSEC doesn't trust servers.

Does DNS security matter?

There are some |IP addresses
signed with DNSSEC, and some
caches checking signatures.
Never mind all the problems.
Do these signatures
accomplish anything?

Occasionally these caches

are on client machines,

so attacker can't simply

forge packets from cache ...

so attacker intercepts and forges
all the subsequent packets:

web pages, emall, etc.

Administrator can use HT TPS
to protect web pages

... but then what attack

is stopped by DNSSEC?

DNSSEC purists criticize HT TPS:
“You can't trust your servers.”

DNSSEC signers are offline
(preferably in guarded rooms).

DNSSEC precomputes signatures.
DNSSEC doesn't trust servers.

But DNSSEC is not signing
any of the user’s datal

NS security matter?

e some |P addresses
ith DNSSEC, and some
hecking signatures.

ind all the problems.

e signatures

lish anything?

1ally these caches
lent machines,

ker can't simply

ckets from cache ...

ker intercepts and forges
ubsequent packets:

es, email, etc.

Administrator can use HT TPS
to protect web pages

... but then what attack

s stopped by DNSSEC?

DNSSEC purists criticize HT TPS:

“You can't trust your servers.”

DNSSEC signers are offline
(preferably in guarded rooms).

DNSSEC precomputes signatures.

DNSSEC doesn’t trust servers.

But DNSSEC is not signing
any of the user’'s datal

PGP sig
PGP-sig
are prote
misbeha
and aga

/ matter?

> addresses
EC, and some
gnatures.

> problems.
res

1ing?

- caches
nes,

imply
) cache ...

pts and forges

packets:
etc.

Administrator can use HT TPS
to protect web pages

... but then what attack

is stopped by DNSSEC?

DNSSEC purists criticize HT TPS:

“You can't trust your servers.”

DNSSEC signers are offline
(preferably in guarded rooms).

DNSSEC precomputes signatures.

DNSSEC doesn’t trust servers.

But DNSSEC is not signing
any of the user’s datal

PGP signs the use
PGP-signed web
are protected agal
misbehaving serve
and against netwo

V)

OMmeE

rges

Administrator can use HT TPS
to protect web pages

... but then what attack

Is stopped by DNSSEC?

DNSSEC purists criticize HT TPS:

“You can't trust your servers.”

DNSSEC signers are offline
(preferably in guarded rooms).

DNSSEC precomputes signatures.

DNSSEC doesn’t trust servers.

But DNSSEC is not signing
any of the user’'s datal

PGP signs the user’'s data.
PGP-signed web pages and
are protected against
misbehaving servers,

and against network attacke

Administrator can use HT TPS
to protect web pages

... but then what attack

is stopped by DNSSEC?

DNSSEC purists criticize HT TPS:

“You can't trust your servers.”

DNSSEC signers are offline
(preferably in guarded rooms).

DNSSEC precomputes signatures.

DNSSEC doesn’t trust servers.

But DNSSEC is not signing
any of the user’s datal

PGP signs the user’'s data.
PGP-signed web pages and email
are protected against
misbehaving servers,

and against network attackers.

Administrator can use HT TPS
to protect web pages

... but then what attack

is stopped by DNSSEC?

DNSSEC purists criticize HT TPS:

“You can't trust your servers.”

DNSSEC signers are offline
(preferably in guarded rooms).

DNSSEC precomputes signatures.

DNSSEC doesn’t trust servers.

But DNSSEC is not signing
any of the user’s datal

PGP signs the user’'s data.
PGP-signed web pages and email
are protected against
misbehaving servers,

and against network attackers.

With PGP, what attack
is stopped by DNSSEC?

Administrator can use HT TPS
to protect web pages

... but then what attack

is stopped by DNSSEC?

DNSSEC purists criticize HT TPS:

“You can't trust your servers.”

DNSSEC signers are offline
(preferably in guarded rooms).

DNSSEC precomputes signatures.

DNSSEC doesn’t trust servers.

But DNSSEC is not signing
any of the user’s datal

PGP signs the user’'s data.
PGP-signed web pages and email
are protected against
misbehaving servers,

and against network attackers.

With PGP, what attack
is stopped by DNSSEC?

With HTTPS but not PGP, what
attack is stopped by DNSSEC?

Administrator can use HT TPS
to protect web pages

... but then what attack

is stopped by DNSSEC?

DNSSEC purists criticize HT TPS:

“You can't trust your servers.”

DNSSEC signers are offline
(preferably in guarded rooms).

DNSSEC precomputes signatures.

DNSSEC doesn’t trust servers.

But DNSSEC is not signing
any of the user’s datal

PGP signs the user’'s data.
PGP-signed web pages and email
are protected against
misbehaving servers,

and against network attackers.

With PGP, what attack
is stopped by DNSSEC?

With HTTPS but not PGP, what
attack is stopped by DNSSEC?

With neither HTTPS nor PGP,
what attack is stopped by
DNSSEC?

trator can use HT TPS
ct web pages

then what attack

>d by DNSSEC?

_ purists criticize HT TPS:

n't trust your servers.”

_ signers are offline
oly in guarded rooms).

_ precomputes signatures.

_ doesn't trust servers.

SSEC is not signing
ne user's datal

PGP signs the user’'s data.
PGP-signed web pages and email
are protected against
misbehaving servers,

and against network attackers.

With PGP, what attack
is stopped by DNSSEC?

With HTTPS but not PGP, what
attack is stopped by DNSSEC?

With neither HT TPS nor PGP,
what attack is stopped by
DNSSEC?

Getting

State-of:
is fast el
authenti
every pa

Deploye
DNS Pa

Deployec
DNS Pa

Work iIn
protects

use HTTPS
TS

attack
SEC?

riticize HT TPS:

our servers."

re offline
ded rooms).

utes signatures.

Lrust servers.

ot signing
latal

PGP signs the user’'s data.
PGP-signed web pages and email
are protected against
misbehaving servers,

and against network attackers.

With PGP, what attack
is stopped by DNSSEC?

With HTTPS but not PGP, what
attack is stopped by DNSSEC?

With neither HT TPS nor PGP,
what attack is stopped by
DNSSEC?

Getting out of the

State-of-the-art E
is fast enough to
authenticate and ¢
every packet.

Deployed: DNSCLu
DNS packets, serv

Deployed: DNSCr
DNS packets, cacl

Work in progress:
protects HT TP pa

PS

[TPS:

tures.

IS.

PGP signs the user’'s data.
PGP-signed web pages and email
are protected against
misbehaving servers,

and against network attackers.

With PGP, what attack
is stopped by DNSSEC?

With HTTPS but not PGP, what
attack is stopped by DNSSEC?

With neither HT TPS nor PGP,
what attack is stopped by
DNSSEC?

Getting out of the mess

State-of-the-art ECC

is fast enough to
authenticate and encrypt
every packet.

Deployed: DNSCurve protec
DNS packets, server—cache

Deployed: DNSCrypt protec
DNS packets, cache—client

Work in progress: HT TPCu
protects HT TP packets.

PGP signs the user’'s data.
PGP-signed web pages and email
are protected against
misbehaving servers,

and against network attackers.

With PGP, what attack
is stopped by DNSSEC?

With HTTPS but not PGP, what
attack is stopped by DNSSEC?

With neither HT TPS nor PGP,

what attack is stopped by
DNSSEC?

Getting out of the mess

State-of-the-art ECC

is fast enough to
authenticate and encrypt
every packet.

Deployed: DNSCurve protects
DNS packets, server—cache.

Deployed: DNSCrypt protects
DNS packets, cache—client.

Work in progress: HT TPCurve
protects HT TP packets.

ns the user's data.

ned web pages and emalil
acted against

ving servers,

nst network attackers.

P, what attack
>d by DNSSEC?

[TPS but not PGP, what
, stopped by DNSSEC?

ther HT TPS nor PGP,

ack Is stopped by
_?

Getting out of the mess

State-of-the-art ECC

is fast enough to
authenticate and encrypt
every packet.

Deployed: DNSCurve protects
DNS packets, server—-cache.

Deployed: DNSCrypt protects
DNS packets, cache—client.

Work in progress: HT TPCurve
protects HT TP packets.

Crypto i
handled

Adminis
INnto nan

Need ne

out No r
server sc
database
web inte

Easy to
easy to

r's data.

ages and emall
nst

rs,

rk attackers.

ttack
SEC?

not PGP, what
by DNSSEC?

PS nor PGP,
pped by

Getting out of the mess

State-of-the-art ECC

is fast enough to
authenticate and encrypt
every packet.

Deployed: DNSCurve protects
DNS packets, server—cache.

Deployed: DNSCrypt protects
DNS packets, cache—client.

Work in progress: HT TPCurve
protects HT TP packets.

Crypto is at edge
handled by simple

Administrator put:
INto name of serve

Need new DNS ca
out no need to ch

server software,
database-manager
web interfaces, et

Easy to implemen
easy to deploy.

email

rsS.

what

Getting out of the mess

State-of-the-art ECC

is fast enough to
authenticate and encrypt
every packet.

Deployed: DNSCurve protects
DNS packets, server—-cache.

Deployed: DNSCrypt protects
DNS packets, cache—client.

Work in progress: HT TPCurve
protects HT TP packets.

Crypto is at edge of networl
handled by simple proxy.

Administrator puts public ke
INto name of server.

Need new DNS cache softw:
out no need to change

server software,
database-management softw
web interfaces, etc.

Easy to implement,
easy to deploy.

Getting out of the mess Crypto is at edge of network,

State-of-the-art ECC handled by simple proxy.

is fast enough to Administrator puts public key
authenticate and encrypt into name of server.

every packet. Need new DNS cache software

Deployed: DNSCurve protects out no need to change
DNS packets, server—cache. server software,

database-management software,

Deployed: DNSCrypt protects —
DNS packets, cache—client. web Interfaces, etc.

Work in progress: HTTPCurve Easy to implement,

protects HT TP packets. easy to deploy.

out of the mess

the-art ECC
1ough to

cate and encrypt
cket.

1: DNSCurve protects
ckets, server—cache.

1: DNSCrypt protects
ckets, cache—client.

progress: HT TPCurve
HT TP packets.

Crypto is at edge of network,
handled by simple proxy.

Administrator puts public key
iInto name of server.

Need new DNS cache software

out no need to change

server software,
database-management software,
web interfaces, etc.

Easy to implement,
easy to deploy.

No prec

_mess

ncrypt

rve protects
er—cache.

ypt protects
1e—client.

HTTPCurve
ckets.

Crypto is at edge of network,
handled by simple proxy.

Administrator puts public key
Into name of server.

Need new DNS cache software

out no need to change

server software,
database-management software,
web interfaces, etc.

Easy to implement,
easy to deploy.

No precomputatio

Crypto is at edge of network, No precomputation.
handled by simple proxy.

Administrator puts public key
iInto name of server.

Need new DNS cache software

ts out no need to change

server software,
database-management software,
web interfaces, etc.

Easy to implement,
rve Y P

easy to deploy.

Crypto is at edge of network, No precomputation.
handled by simple proxy.

Administrator puts public key
Into name of server.

Need new DNS cache software

out no need to change

server software,
database-management software,
web interfaces, etc.

Easy to implement,
easy to deploy.

Crypto is at edge of network, No precomputation.

handled by simple proxy. No problems with

Administrator puts public key dynamic data.
into name of server.

Need new DNS cache software

out no need to change

server software,
database-management software,
web interfaces, etc.

Easy to implement,
easy to deploy.

Crypto is at edge of network, No precomputation.

handled by simple proxy. No problems with

Administrator puts public key dynamic data.

INto name of server. .
No problems with

Need new DNS cache software old data: all results

out no need to change are guaranteed to be fresh.
server software,
database-management software,
web interfaces, etc.

Easy to implement,
easy to deploy.

Crypto is at edge of network, No precomputation.

handled by simple proxy. No problems with

Administrator puts public key dynamic data.

INto name of server. .
No problems with

Need new DNS cache software old data: all results

out no need to change are guaranteed to be fresh.

server software, .
No problems with

database-management software, .
nonexistent data,

web interfaces, etc.
database leaks, etc.
Easy to implement,

easy to deploy.

Crypto is at edge of network, No precomputation.

handled by simple proxy. No problems with

Administrator puts public key dynamic data.

INto name of server. .
No problems with

Need new DNS cache software old data: all results

out no need to change are guaranteed to be fresh.

server software, .
No problems with

database-management software, .
nonexistent data,

web interfaces, etc.
database leaks, etc.

Easy to implement,
y P Packets are small.

easy to deploy. Smaller amplification

than existing protocols.

s at edge of network,
by simple proxy.

trator puts public key
1e of server.

w DNS cache software
eed to change

ftware,

-management software,
rfaces, etc.

implement,
deploy.

No precomputation.

No problems with
dynamic data.

No problems with
old data: all results

are guaranteed to be fresh.

No problems with
nonexistent data,
database leaks, etc.

Packets are small.
Smaller amplification
than existing protocols.

DNSCur
and HT

add real
PGP-sig

Improve
e.g.,Ist
firstas:
diabete

Improve
e.g., fre

Improve
attacker
doesn't

of network, No precomputation. DNSCurve and DI

Proxy. No problems with and HT TPCurve ¢

add real security e

5 public key dynamic data. |
PGP-signed web ¢

" No problems with

Improved confiden
che software old data: all results P

e.g.. Is the user ac
ange are guaranteed to be fresh. &

firstaid.webmd

No problems with diabetes.webmd

nent software, .
nonexistent data,

Improved integrit
database leaks, etc. P grity

e.g., freshness.

Packets are small.

L Improved availabil
Smaller amplification P

. attacker forging a
than existing protocols.

doesn’'t break coni

, No precomputation. DNSCurve and DNSCrypt
and HT TPCurve and SMTF

No problems with |
add real security even to

'y dynamic data. |
PGP-signed web pages, ema

No problems with

Improved confidentiality:
re old data: all results P y

e.g., Is the user accessin
are guaranteed to be fresh. & &

firstaid.webmd.com or

No problems with diabetes.webmd.com?

are, .
nonexistent data,

Improved integrity:
database leaks, etc. P grity

e.g., freshness.

Packets are small.

e Improved availability:
Smaller amplification P Y

: L attacker forging a packet
than existing protocols. ging a p

doesn’t break connections.

No precomputation. DNSCurve and DNSCrypt
and HT TPCurve and SMTPCurve

No problems with |
add real security even to

dynamic data. | |
PGP-signed web pages, email.

No problems with

Improved confidentiality:
old data: all results P y

e.g., Is the user accessin
are guaranteed to be fresh. & 5

firstaid.webmd.com or

No problems with diabetes.webmd.com?

nonexistent data, | | |
mproved Integrity:
database leaks, etc. P grity

e.g., freshness.

Packets are small.

L Improved availability:
Smaller amplification P Y

: L attacker forging a packet
than existing protocols. sing a P

doesn’t break connections.

