
Failures in NIST’s ECC standards

Daniel J. Bernstein, Tanja Lange

2015.12.15



Review of the (prime-field) NIST curves I

I Presented by NIST in 1999

I Curve names: P-192, P-224, P-256, P-384, P-521

I Curve is defined over Fp where p has 192 bits, 224 bits,
etc.

I Primes are pseudo-Mersenne primes:

I e.g. P-224 prime is 2224 − 296 + 1
I e.g. P-256 prime is 2256 − 2224 + 2192 + 296 − 1
I Why? Efficiency

I NSA’s Jerry Solinas chose these curves and wrote
papers about the speed of these primes

I Possible additional motivation: avoiding
the Crandall patents (which expired in 2011)



Review of the (prime-field) NIST curves I

I Presented by NIST in 1999

I Curve names: P-192, P-224, P-256, P-384, P-521

I Curve is defined over Fp where p has 192 bits, 224 bits,
etc.

I Primes are pseudo-Mersenne primes:

I e.g. P-224 prime is 2224 − 296 + 1
I e.g. P-256 prime is 2256 − 2224 + 2192 + 296 − 1
I Why? Efficiency

I NSA’s Jerry Solinas chose these curves and wrote
papers about the speed of these primes

I Possible additional motivation: avoiding
the Crandall patents (which expired in 2011)



Review of the (prime-field) NIST curves II

I Curve shape specifically y2 = x3 − 3x + b

I About 50% of all curves
I Absolutely nothing worrisome from an ECDLP

perspective
I “For reasons of efficiency”

I cites IEEE P1363 standard

I P1363 cites 1987 paper by Chudnovsky brothers
I P1363 claims that its choices “provide the fastest

arithmetic on elliptic curves”

I Cofactor choice:

I NIST takes cofactor “as small as possible” for “efficiency
reasons”

I All cofactors for NIST curves are 1, 2, or 4
I All cofactors for prime-field NIST curves are 1



Why did NIST choose these curves?

I Most people we have asked: “security”

I Actual NIST design document: “efficiency”

I There are some minimal security requirements

I Enough to make ECDLP hard
I Not enough to make ECC secure

I Amusing side notes regarding efficiency:

I addition formulas presented in standard are suboptimal,
even for exactly these curves

I NIST’s prime choices are suboptimal:
2255 − 19 etc. are simpler and faster

I cofactor 4 is much more efficient than cofactor 1



Why did NIST choose these curves?

I Most people we have asked: “security”

I Actual NIST design document: “efficiency”

I There are some minimal security requirements

I Enough to make ECDLP hard
I Not enough to make ECC secure

I Amusing side notes regarding efficiency:

I addition formulas presented in standard are suboptimal,
even for exactly these curves

I NIST’s prime choices are suboptimal:
2255 − 19 etc. are simpler and faster

I cofactor 4 is much more efficient than cofactor 1



What goes wrong with computing kQ?
I Simplest scalar-multiplication inner loop: P ← P + P;

P ← P + Q if current bit of k is set
I Huge timing channel, but that’s not the only problem
I Simplest way to implement “+”: use the addition formulas
λ =

yP−yQ
xP−xQ ; x3 = λ2 − xP − xQ ; y3 = λ(xP − x3)− yP

I But this doesn’t work for doublings; all tests fail
I So implementor checks book, implements dbl(P)

I New inner loop: P ← dbl(P); P ← P + Q if current
exponent bit is set

I This passes all tests but still has failure cases
I e.g., what if P = Q? what if P = −Q?

I Maybe implementor instead has “+” check for P = Q
I less likely: this is slower and more complicated code
I doesn’t catch all the failure cases

I Attacker triggers the failure cases
I Fancy example: Izu–Takagi “exceptional procedure

attack”



What goes wrong with computing kQ?
I Simplest scalar-multiplication inner loop: P ← P + P;

P ← P + Q if current bit of k is set
I Huge timing channel, but that’s not the only problem
I Simplest way to implement “+”: use the addition formulas
λ =

yP−yQ
xP−xQ ; x3 = λ2 − xP − xQ ; y3 = λ(xP − x3)− yP

I But this doesn’t work for doublings; all tests fail
I So implementor checks book, implements dbl(P)

I New inner loop: P ← dbl(P); P ← P + Q if current
exponent bit is set

I This passes all tests but still has failure cases
I e.g., what if P = Q? what if P = −Q?

I Maybe implementor instead has “+” check for P = Q
I less likely: this is slower and more complicated code
I doesn’t catch all the failure cases

I Attacker triggers the failure cases
I Fancy example: Izu–Takagi “exceptional procedure

attack”



Alternative: Montgomery curves y 2 = x3 + ax2 + x

I Use Montgomery ladder for scalar multiplication

I per bit 1 doubling + 1 differential addition
I differential addition: compute P + Q given P,Q,P − Q
I automatic uniform pattern independent of n; good

against timing and simple side-channel attacks

I Represent a point as its x-coordinate

I very fast doubling, very fast differential addition
I faster scalar multiplication than y2 = x3 − 3x + b
I for Montgomery curves that have unique point of order 2:

I infinity and 0 behave the same way
I the formulas always work (2006 Bernstein)



Any reasons not to choose Montgomery curves?

I Is security the same?

I Cannot be very different

I Every curve is a Montgomery curve over a small
extension field

I Almost half of all curves are Montgomery curves over the
same field

I Any serious attack on Montgomery curves would be
huge ECC news

I Cofactor for Montgomery curves is a multiple of 4

I Requires slightly larger primes

I Limitation: only for single-scalar multiplication

I signature verification needs double-scalar multiplication
I but no problem for DH, El Gamal, etc.



Does this work for the NIST curves?

I Not easily; NIST cofactor 1 is incompatible with Montgomery

I Can still try to imitate part of the Montgomery approach

I Double and always add

I Slow, more complicated than standard approach
I More smart-card trouble: extra vulnerability to fault

attacks
I Can stop timing attacks but does nothing to fix failure

cases

I Ladder

I Representing point as (x , y): very slow
I Just x : not as slow (Brier–Joye, Hutter–Joye–Sierra) but

still complicated
I Maybe fixes failure cases; analysis has never been done



Problems with NIST curves as actually implemented

I What if input point P is not on E but on a different curve?

I Simplest implementation doesn’t check. What happens?

I Typical ECDH answer: successfully obtain nP on that other
curve; use nP as shared secret to encrypt data

I Attacker chooses P so that, e.g., 1009P = 0; checks
encryption, quickly figures out n mod 1009

I Attacker figures out n by CRT

I Recent paper at ESORICS (Jager, Schwenk, Somorovsky):
ECC implementations of Oracle and Bouncy Castle do not
check for point on curve. Practical attack on ECC in TLS.
http:

//www.nds.rub.de/research/publications/ESORICS15/

http://www.nds.rub.de/research/publications/ESORICS15/
http://www.nds.rub.de/research/publications/ESORICS15/


Problems with NIST curves as actually implemented

I What if input point P is not on E but on a different curve?

I Simplest implementation doesn’t check. What happens?

I Typical ECDH answer: successfully obtain nP on that other
curve; use nP as shared secret to encrypt data

I Attacker chooses P so that, e.g., 1009P = 0; checks
encryption, quickly figures out n mod 1009

I Attacker figures out n by CRT

I Recent paper at ESORICS (Jager, Schwenk, Somorovsky):
ECC implementations of Oracle and Bouncy Castle do not
check for point on curve. Practical attack on ECC in TLS.
http:

//www.nds.rub.de/research/publications/ESORICS15/

http://www.nds.rub.de/research/publications/ESORICS15/
http://www.nds.rub.de/research/publications/ESORICS15/


Countermeasures

I Countermeasure: send (x , bit(y)), recover y or fail.

I Simpler: send and use only x in Montgomery ladder.

I Only two possible curves: E and its “nontrivial quadratic
twist”

I 2001 Bernstein: stop attack by choosing twist to be
secure

I Twist security might happen by accident, but random
curves are usually less secure

I NIST P-256 has a somewhat weaker twist (security
2120.3)

I NIST P-224 has a much weaker twist (security 258.4)
I BrainpoolP256t1 has a much, much weaker twist

(security 244.5)



Suggestions so far

I Choose Montgomery curves (with unique point of order 2)

I Represent points as x-coordinates

I In particular choose twist-secure curves

I Simple implementation is fine

I Main limitation: how to handle signatures?



Alternative: Edwards curves x2 + y 2 = 1 + dx2y 2

I Focus on complete Edwards curves: non-square d

I about 25% of all elliptic curves
I includes Curve25519; does not include the NIST curves

I Simplest addition law is complete

I x3 = (x1y2 + x2y1)/(1 + dx1x2y1y2)
I y3 = (y1y2 − x1x2)/(1− dx1x2y1y2)
I no exceptions: works for doubling, P + (−P), etc.
I easy to implement; It Just WorksTM

I can implement separate doubling but don’t have to
I also very fast (see http://hyperelliptic.org/EFD)

I Guarantees Montgomery compatibility

I easy secure single-scalar multiplication

I Also good for other ECC protocols

I simplest signature-verification implementation is fine



Problems with protocols

I Notation: public key A; signature (R,S); message M to verify;
standard base point B and curve and hash function H

I NIST’s ECDSA: verify H(M)B + x(R)A = SR

I Equivalent view: B + H ′(R,M)A = S ′R with
H ′(R,M) = x(R)/H(M)

I Our EdDSA (Schnorr-based): verify SB = R + H(R,A,M)A

I ECDSA needs divisions for signer etc.;
EdDSA puts S in front of B rather than R

I ECDSA isn’t resilient against collisions;
EdDSA replaces weird H ′ with normal hash H

I ECDSA has concerns regarding multi-key attacks;
EdDSA includes A as an extra hash input

I ECDSA R gen: hard to audit, hard to test, Sony PS3 disaster;
EdDSA generates R by deterministically hashing (secret,M)



Problems with protocols

I Notation: public key A; signature (R,S); message M to verify;
standard base point B and curve and hash function H

I NIST’s ECDSA: verify H(M)B + x(R)A = SR

I Equivalent view: B + H ′(R,M)A = S ′R with
H ′(R,M) = x(R)/H(M)

I Our EdDSA (Schnorr-based): verify SB = R + H(R,A,M)A

I ECDSA needs divisions for signer etc.;
EdDSA puts S in front of B rather than R

I ECDSA isn’t resilient against collisions;
EdDSA replaces weird H ′ with normal hash H

I ECDSA has concerns regarding multi-key attacks;
EdDSA includes A as an extra hash input

I ECDSA R gen: hard to audit, hard to test, Sony PS3 disaster;
EdDSA generates R by deterministically hashing (secret,M)



Summary

I ECDLP security does not guarantee ECC security

I Choose protocols carefully (ECDSA is horrible)

I Add extra requirements on curve choices

I Recognize the importance of friendliness to implementors
I NIST curves cause real trouble

I Require Montgomery compatibility (NIST curves flunk)

I Require Edwards compatibility (NIST curves flunk)

I Require completeness (NIST curves flunk)

I Require twist security (NIST curves are weak)

I Easy to generate curves meeting all these requirements:
Curve25519, Curve41417, E-521, etc.



Will there ever be progress in the NIST ECC standards?

I We already presented this perspective in May 2013:
http://cr.yp.to/talks.html#2013.05.31

I Many successful ECC timing attacks since then: e.g.,
https://eprint.iacr.org/2015/1141

I Invalid-curve attacks (as mentioned before):
http://web-in-security.blogspot.com/2015/09/

practical-invalid-curve-attacks.html

I 2015.06: NIST ran a “Workshop on ECC Standards”.

I 2015.10: NIST reopened its ECC standards for comments.

I We sent comments.
Paper coming soon: “Failures in NIST’s ECC standards.”

I But is NIST trying to fix actual problems with ECC?
Or is it focusing entirely on the possibility of back doors?

http://cr.yp.to/talks.html#2013.05.31
https://eprint.iacr.org/2015/1141
http://web-in-security.blogspot.com/2015/09/practical-invalid-curve-attacks.html
http://web-in-security.blogspot.com/2015/09/practical-invalid-curve-attacks.html


Will there ever be progress in the NIST ECC standards?

I We already presented this perspective in May 2013:
http://cr.yp.to/talks.html#2013.05.31

I Many successful ECC timing attacks since then: e.g.,
https://eprint.iacr.org/2015/1141

I Invalid-curve attacks (as mentioned before):
http://web-in-security.blogspot.com/2015/09/

practical-invalid-curve-attacks.html

I 2015.06: NIST ran a “Workshop on ECC Standards”.

I 2015.10: NIST reopened its ECC standards for comments.

I We sent comments.
Paper coming soon: “Failures in NIST’s ECC standards.”

I But is NIST trying to fix actual problems with ECC?
Or is it focusing entirely on the possibility of back doors?

http://cr.yp.to/talks.html#2013.05.31
https://eprint.iacr.org/2015/1141
http://web-in-security.blogspot.com/2015/09/practical-invalid-curve-attacks.html
http://web-in-security.blogspot.com/2015/09/practical-invalid-curve-attacks.html


Will there ever be progress in the NIST ECC standards?

I We already presented this perspective in May 2013:
http://cr.yp.to/talks.html#2013.05.31

I Many successful ECC timing attacks since then: e.g.,
https://eprint.iacr.org/2015/1141

I Invalid-curve attacks (as mentioned before):
http://web-in-security.blogspot.com/2015/09/

practical-invalid-curve-attacks.html

I 2015.06: NIST ran a “Workshop on ECC Standards”.

I 2015.10: NIST reopened its ECC standards for comments.

I We sent comments.
Paper coming soon: “Failures in NIST’s ECC standards.”

I But is NIST trying to fix actual problems with ECC?
Or is it focusing entirely on the possibility of back doors?

http://cr.yp.to/talks.html#2013.05.31
https://eprint.iacr.org/2015/1141
http://web-in-security.blogspot.com/2015/09/practical-invalid-curve-attacks.html
http://web-in-security.blogspot.com/2015/09/practical-invalid-curve-attacks.html

