
Trapdoor simulation

of quantum algorithms

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Tung Chou

Technische Universiteit Eindhoven

Algorithms in CS courses

“WHAT is your algorithm?”



Trapdoor simulation

of quantum algorithms

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Tung Chou

Technische Universiteit Eindhoven

Algorithms in CS courses

“WHAT is your algorithm?”

“Heapsort. Here’s the code.”



Trapdoor simulation

of quantum algorithms

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Tung Chou

Technische Universiteit Eindhoven

Algorithms in CS courses

“WHAT is your algorithm?”

“Heapsort. Here’s the code.”

“WHAT does it accomplish?”



Trapdoor simulation

of quantum algorithms

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Tung Chou

Technische Universiteit Eindhoven

Algorithms in CS courses

“WHAT is your algorithm?”

“Heapsort. Here’s the code.”

“WHAT does it accomplish?”

“It sorts the input array in place.

Here’s a proof.”



Trapdoor simulation

of quantum algorithms

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Tung Chou

Technische Universiteit Eindhoven

Algorithms in CS courses

“WHAT is your algorithm?”

“Heapsort. Here’s the code.”

“WHAT does it accomplish?”

“It sorts the input array in place.

Here’s a proof.”

“WHAT is its run time?”



Trapdoor simulation

of quantum algorithms

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Tung Chou

Technische Universiteit Eindhoven

Algorithms in CS courses

“WHAT is your algorithm?”

“Heapsort. Here’s the code.”

“WHAT does it accomplish?”

“It sorts the input array in place.

Here’s a proof.”

“WHAT is its run time?”

“O(n lg n) comparisons;

and Θ(n lg n) comparisons

for most inputs. Here’s a proof.”



Trapdoor simulation

of quantum algorithms

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Tung Chou

Technische Universiteit Eindhoven

Algorithms in CS courses

“WHAT is your algorithm?”

“Heapsort. Here’s the code.”

“WHAT does it accomplish?”

“It sorts the input array in place.

Here’s a proof.”

“WHAT is its run time?”

“O(n lg n) comparisons;

and Θ(n lg n) comparisons

for most inputs. Here’s a proof.”

“You may pass.”



Trapdoor simulation

of quantum algorithms

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Tung Chou

Technische Universiteit Eindhoven

Algorithms in CS courses

“WHAT is your algorithm?”

“Heapsort. Here’s the code.”

“WHAT does it accomplish?”

“It sorts the input array in place.

Here’s a proof.”

“WHAT is its run time?”

“O(n lg n) comparisons;

and Θ(n lg n) comparisons

for most inputs. Here’s a proof.”

“You may pass.”

Algorithms for hard problems

Critical question for ECC security:

How hard is ECDLP?



Trapdoor simulation

of quantum algorithms

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Tung Chou

Technische Universiteit Eindhoven

Algorithms in CS courses

“WHAT is your algorithm?”

“Heapsort. Here’s the code.”

“WHAT does it accomplish?”

“It sorts the input array in place.

Here’s a proof.”

“WHAT is its run time?”

“O(n lg n) comparisons;

and Θ(n lg n) comparisons

for most inputs. Here’s a proof.”

“You may pass.”

Algorithms for hard problems

Critical question for ECC security:

How hard is ECDLP?



Trapdoor simulation

of quantum algorithms

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Tung Chou

Technische Universiteit Eindhoven

Algorithms in CS courses

“WHAT is your algorithm?”

“Heapsort. Here’s the code.”

“WHAT does it accomplish?”

“It sorts the input array in place.

Here’s a proof.”

“WHAT is its run time?”

“O(n lg n) comparisons;

and Θ(n lg n) comparisons

for most inputs. Here’s a proof.”

“You may pass.”

Algorithms for hard problems

Critical question for ECC security:

How hard is ECDLP?



Algorithms in CS courses

“WHAT is your algorithm?”

“Heapsort. Here’s the code.”

“WHAT does it accomplish?”

“It sorts the input array in place.

Here’s a proof.”

“WHAT is its run time?”

“O(n lg n) comparisons;

and Θ(n lg n) comparisons

for most inputs. Here’s a proof.”

“You may pass.”

Algorithms for hard problems

Critical question for ECC security:

How hard is ECDLP?



Algorithms in CS courses

“WHAT is your algorithm?”

“Heapsort. Here’s the code.”

“WHAT does it accomplish?”

“It sorts the input array in place.

Here’s a proof.”

“WHAT is its run time?”

“O(n lg n) comparisons;

and Θ(n lg n) comparisons

for most inputs. Here’s a proof.”

“You may pass.”

Algorithms for hard problems

Critical question for ECC security:

How hard is ECDLP?

Standard estimate for “strong”

ECC groups of prime order ‘:

Latest “negating” variants of

“distinguished point” rho methods

break an average ECDLP instance

using ≈0:886
√
‘ additions.



Algorithms in CS courses

“WHAT is your algorithm?”

“Heapsort. Here’s the code.”

“WHAT does it accomplish?”

“It sorts the input array in place.

Here’s a proof.”

“WHAT is its run time?”

“O(n lg n) comparisons;

and Θ(n lg n) comparisons

for most inputs. Here’s a proof.”

“You may pass.”

Algorithms for hard problems

Critical question for ECC security:

How hard is ECDLP?

Standard estimate for “strong”

ECC groups of prime order ‘:

Latest “negating” variants of

“distinguished point” rho methods

break an average ECDLP instance

using ≈0:886
√
‘ additions.

Is this proven? No!

Is this provable? Maybe not!



Algorithms in CS courses

“WHAT is your algorithm?”

“Heapsort. Here’s the code.”

“WHAT does it accomplish?”

“It sorts the input array in place.

Here’s a proof.”

“WHAT is its run time?”

“O(n lg n) comparisons;

and Θ(n lg n) comparisons

for most inputs. Here’s a proof.”

“You may pass.”

Algorithms for hard problems

Critical question for ECC security:

How hard is ECDLP?

Standard estimate for “strong”

ECC groups of prime order ‘:

Latest “negating” variants of

“distinguished point” rho methods

break an average ECDLP instance

using ≈0:886
√
‘ additions.

Is this proven? No!

Is this provable? Maybe not!

So why do we think it’s true?



Algorithms in CS courses

“WHAT is your algorithm?”

“Heapsort. Here’s the code.”

“WHAT does it accomplish?”

“It sorts the input array in place.

Here’s a proof.”

“WHAT is its run time?”

“O(n lg n) comparisons;

and Θ(n lg n) comparisons

for most inputs. Here’s a proof.”

“You may pass.”

Algorithms for hard problems

Critical question for ECC security:

How hard is ECDLP?

Standard estimate for “strong”

ECC groups of prime order ‘:

Latest “negating” variants of

“distinguished point” rho methods

break an average ECDLP instance

using ≈0:886
√
‘ additions.

Is this proven? No!

Is this provable? Maybe not!

So why do we think it’s true?

2000 Gallant–Lambert–Vanstone:

inadequately specified statement

of a negating rho algorithm.



Algorithms in CS courses

“WHAT is your algorithm?”

“Heapsort. Here’s the code.”

“WHAT does it accomplish?”

“It sorts the input array in place.

Here’s a proof.”

“WHAT is its run time?”

“O(n lg n) comparisons;

and Θ(n lg n) comparisons

for most inputs. Here’s a proof.”

“You may pass.”

Algorithms for hard problems

Critical question for ECC security:

How hard is ECDLP?

Standard estimate for “strong”

ECC groups of prime order ‘:

Latest “negating” variants of

“distinguished point” rho methods

break an average ECDLP instance

using ≈0:886
√
‘ additions.

Is this proven? No!

Is this provable? Maybe not!

So why do we think it’s true?

2000 Gallant–Lambert–Vanstone:

inadequately specified statement

of a negating rho algorithm.



Algorithms in CS courses

“WHAT is your algorithm?”

“Heapsort. Here’s the code.”

“WHAT does it accomplish?”

“It sorts the input array in place.

Here’s a proof.”

“WHAT is its run time?”

“O(n lg n) comparisons;

and Θ(n lg n) comparisons

for most inputs. Here’s a proof.”

“You may pass.”

Algorithms for hard problems

Critical question for ECC security:

How hard is ECDLP?

Standard estimate for “strong”

ECC groups of prime order ‘:

Latest “negating” variants of

“distinguished point” rho methods

break an average ECDLP instance

using ≈0:886
√
‘ additions.

Is this proven? No!

Is this provable? Maybe not!

So why do we think it’s true?

2000 Gallant–Lambert–Vanstone:

inadequately specified statement

of a negating rho algorithm.



Algorithms for hard problems

Critical question for ECC security:

How hard is ECDLP?

Standard estimate for “strong”

ECC groups of prime order ‘:

Latest “negating” variants of

“distinguished point” rho methods

break an average ECDLP instance

using ≈0:886
√
‘ additions.

Is this proven? No!

Is this provable? Maybe not!

So why do we think it’s true?

2000 Gallant–Lambert–Vanstone:

inadequately specified statement

of a negating rho algorithm.



Algorithms for hard problems

Critical question for ECC security:

How hard is ECDLP?

Standard estimate for “strong”

ECC groups of prime order ‘:

Latest “negating” variants of

“distinguished point” rho methods

break an average ECDLP instance

using ≈0:886
√
‘ additions.

Is this proven? No!

Is this provable? Maybe not!

So why do we think it’s true?

2000 Gallant–Lambert–Vanstone:

inadequately specified statement

of a negating rho algorithm.

2010 Bos–Kleinjung–Lenstra:

a plausible interpretation of

that algorithm is non-functional.



Algorithms for hard problems

Critical question for ECC security:

How hard is ECDLP?

Standard estimate for “strong”

ECC groups of prime order ‘:

Latest “negating” variants of

“distinguished point” rho methods

break an average ECDLP instance

using ≈0:886
√
‘ additions.

Is this proven? No!

Is this provable? Maybe not!

So why do we think it’s true?

2000 Gallant–Lambert–Vanstone:

inadequately specified statement

of a negating rho algorithm.

2010 Bos–Kleinjung–Lenstra:

a plausible interpretation of

that algorithm is non-functional.

See 2011 Bernstein–Lange–

Schwabe for more history

and better algorithms.



Algorithms for hard problems

Critical question for ECC security:

How hard is ECDLP?

Standard estimate for “strong”

ECC groups of prime order ‘:

Latest “negating” variants of

“distinguished point” rho methods

break an average ECDLP instance

using ≈0:886
√
‘ additions.

Is this proven? No!

Is this provable? Maybe not!

So why do we think it’s true?

2000 Gallant–Lambert–Vanstone:

inadequately specified statement

of a negating rho algorithm.

2010 Bos–Kleinjung–Lenstra:

a plausible interpretation of

that algorithm is non-functional.

See 2011 Bernstein–Lange–

Schwabe for more history

and better algorithms.

Why do we believe that

the latest algorithms work

at the claimed speeds?

Experiments!



Algorithms for hard problems

Critical question for ECC security:

How hard is ECDLP?

Standard estimate for “strong”

ECC groups of prime order ‘:

Latest “negating” variants of

“distinguished point” rho methods

break an average ECDLP instance

using ≈0:886
√
‘ additions.

Is this proven? No!

Is this provable? Maybe not!

So why do we think it’s true?

2000 Gallant–Lambert–Vanstone:

inadequately specified statement

of a negating rho algorithm.

2010 Bos–Kleinjung–Lenstra:

a plausible interpretation of

that algorithm is non-functional.

See 2011 Bernstein–Lange–

Schwabe for more history

and better algorithms.

Why do we believe that

the latest algorithms work

at the claimed speeds?

Experiments!

Similar story for RSA security:

we don’t have proofs for the

best factoring algorithms.



Algorithms for hard problems

Critical question for ECC security:

How hard is ECDLP?

Standard estimate for “strong”

ECC groups of prime order ‘:

Latest “negating” variants of

“distinguished point” rho methods

break an average ECDLP instance

using ≈0:886
√
‘ additions.

Is this proven? No!

Is this provable? Maybe not!

So why do we think it’s true?

2000 Gallant–Lambert–Vanstone:

inadequately specified statement

of a negating rho algorithm.

2010 Bos–Kleinjung–Lenstra:

a plausible interpretation of

that algorithm is non-functional.

See 2011 Bernstein–Lange–

Schwabe for more history

and better algorithms.

Why do we believe that

the latest algorithms work

at the claimed speeds?

Experiments!

Similar story for RSA security:

we don’t have proofs for the

best factoring algorithms.



Algorithms for hard problems

Critical question for ECC security:

How hard is ECDLP?

Standard estimate for “strong”

ECC groups of prime order ‘:

Latest “negating” variants of

“distinguished point” rho methods

break an average ECDLP instance

using ≈0:886
√
‘ additions.

Is this proven? No!

Is this provable? Maybe not!

So why do we think it’s true?

2000 Gallant–Lambert–Vanstone:

inadequately specified statement

of a negating rho algorithm.

2010 Bos–Kleinjung–Lenstra:

a plausible interpretation of

that algorithm is non-functional.

See 2011 Bernstein–Lange–

Schwabe for more history

and better algorithms.

Why do we believe that

the latest algorithms work

at the claimed speeds?

Experiments!

Similar story for RSA security:

we don’t have proofs for the

best factoring algorithms.



2000 Gallant–Lambert–Vanstone:

inadequately specified statement

of a negating rho algorithm.

2010 Bos–Kleinjung–Lenstra:

a plausible interpretation of

that algorithm is non-functional.

See 2011 Bernstein–Lange–

Schwabe for more history

and better algorithms.

Why do we believe that

the latest algorithms work

at the claimed speeds?

Experiments!

Similar story for RSA security:

we don’t have proofs for the

best factoring algorithms.



2000 Gallant–Lambert–Vanstone:

inadequately specified statement

of a negating rho algorithm.

2010 Bos–Kleinjung–Lenstra:

a plausible interpretation of

that algorithm is non-functional.

See 2011 Bernstein–Lange–

Schwabe for more history

and better algorithms.

Why do we believe that

the latest algorithms work

at the claimed speeds?

Experiments!

Similar story for RSA security:

we don’t have proofs for the

best factoring algorithms.

Code-based cryptography:

we don’t have proofs for the

best decoding algorithms.



2000 Gallant–Lambert–Vanstone:

inadequately specified statement

of a negating rho algorithm.

2010 Bos–Kleinjung–Lenstra:

a plausible interpretation of

that algorithm is non-functional.

See 2011 Bernstein–Lange–

Schwabe for more history

and better algorithms.

Why do we believe that

the latest algorithms work

at the claimed speeds?

Experiments!

Similar story for RSA security:

we don’t have proofs for the

best factoring algorithms.

Code-based cryptography:

we don’t have proofs for the

best decoding algorithms.

Lattice-based cryptography:

we don’t have proofs for the

best lattice algorithms.



2000 Gallant–Lambert–Vanstone:

inadequately specified statement

of a negating rho algorithm.

2010 Bos–Kleinjung–Lenstra:

a plausible interpretation of

that algorithm is non-functional.

See 2011 Bernstein–Lange–

Schwabe for more history

and better algorithms.

Why do we believe that

the latest algorithms work

at the claimed speeds?

Experiments!

Similar story for RSA security:

we don’t have proofs for the

best factoring algorithms.

Code-based cryptography:

we don’t have proofs for the

best decoding algorithms.

Lattice-based cryptography:

we don’t have proofs for the

best lattice algorithms.

MQ-based cryptography:

we don’t have proofs for the

best system-solving algorithms.



2000 Gallant–Lambert–Vanstone:

inadequately specified statement

of a negating rho algorithm.

2010 Bos–Kleinjung–Lenstra:

a plausible interpretation of

that algorithm is non-functional.

See 2011 Bernstein–Lange–

Schwabe for more history

and better algorithms.

Why do we believe that

the latest algorithms work

at the claimed speeds?

Experiments!

Similar story for RSA security:

we don’t have proofs for the

best factoring algorithms.

Code-based cryptography:

we don’t have proofs for the

best decoding algorithms.

Lattice-based cryptography:

we don’t have proofs for the

best lattice algorithms.

MQ-based cryptography:

we don’t have proofs for the

best system-solving algorithms.

Confidence relies on experiments.



2000 Gallant–Lambert–Vanstone:

inadequately specified statement

of a negating rho algorithm.

2010 Bos–Kleinjung–Lenstra:

a plausible interpretation of

that algorithm is non-functional.

See 2011 Bernstein–Lange–

Schwabe for more history

and better algorithms.

Why do we believe that

the latest algorithms work

at the claimed speeds?

Experiments!

Similar story for RSA security:

we don’t have proofs for the

best factoring algorithms.

Code-based cryptography:

we don’t have proofs for the

best decoding algorithms.

Lattice-based cryptography:

we don’t have proofs for the

best lattice algorithms.

MQ-based cryptography:

we don’t have proofs for the

best system-solving algorithms.

Confidence relies on experiments.

Where’s my quantum computer?

Quantum-algorithm design

is moving beyond textbook stage

into algorithms without proofs.

Example: subset-sum

exponent ≈0:241 from 2013

Bernstein–Jeffery–Lange–Meurer.

Don’t expect proofs or provability

for the best quantum algorithms

to attack post-quantum crypto.

How do we obtain confidence

in analysis of these algorithms?

Quantum experiments are hard.



2000 Gallant–Lambert–Vanstone:

inadequately specified statement

of a negating rho algorithm.

2010 Bos–Kleinjung–Lenstra:

a plausible interpretation of

that algorithm is non-functional.

See 2011 Bernstein–Lange–

Schwabe for more history

and better algorithms.

Why do we believe that

the latest algorithms work

at the claimed speeds?

Experiments!

Similar story for RSA security:

we don’t have proofs for the

best factoring algorithms.

Code-based cryptography:

we don’t have proofs for the

best decoding algorithms.

Lattice-based cryptography:

we don’t have proofs for the

best lattice algorithms.

MQ-based cryptography:

we don’t have proofs for the

best system-solving algorithms.

Confidence relies on experiments.

Where’s my quantum computer?

Quantum-algorithm design

is moving beyond textbook stage

into algorithms without proofs.

Example: subset-sum

exponent ≈0:241 from 2013

Bernstein–Jeffery–Lange–Meurer.

Don’t expect proofs or provability

for the best quantum algorithms

to attack post-quantum crypto.

How do we obtain confidence

in analysis of these algorithms?

Quantum experiments are hard.



2000 Gallant–Lambert–Vanstone:

inadequately specified statement

of a negating rho algorithm.

2010 Bos–Kleinjung–Lenstra:

a plausible interpretation of

that algorithm is non-functional.

See 2011 Bernstein–Lange–

Schwabe for more history

and better algorithms.

Why do we believe that

the latest algorithms work

at the claimed speeds?

Experiments!

Similar story for RSA security:

we don’t have proofs for the

best factoring algorithms.

Code-based cryptography:

we don’t have proofs for the

best decoding algorithms.

Lattice-based cryptography:

we don’t have proofs for the

best lattice algorithms.

MQ-based cryptography:

we don’t have proofs for the

best system-solving algorithms.

Confidence relies on experiments.

Where’s my quantum computer?

Quantum-algorithm design

is moving beyond textbook stage

into algorithms without proofs.

Example: subset-sum

exponent ≈0:241 from 2013

Bernstein–Jeffery–Lange–Meurer.

Don’t expect proofs or provability

for the best quantum algorithms

to attack post-quantum crypto.

How do we obtain confidence

in analysis of these algorithms?

Quantum experiments are hard.



Similar story for RSA security:

we don’t have proofs for the

best factoring algorithms.

Code-based cryptography:

we don’t have proofs for the

best decoding algorithms.

Lattice-based cryptography:

we don’t have proofs for the

best lattice algorithms.

MQ-based cryptography:

we don’t have proofs for the

best system-solving algorithms.

Confidence relies on experiments.

Where’s my quantum computer?

Quantum-algorithm design

is moving beyond textbook stage

into algorithms without proofs.

Example: subset-sum

exponent ≈0:241 from 2013

Bernstein–Jeffery–Lange–Meurer.

Don’t expect proofs or provability

for the best quantum algorithms

to attack post-quantum crypto.

How do we obtain confidence

in analysis of these algorithms?

Quantum experiments are hard.



Similar story for RSA security:

we don’t have proofs for the

best factoring algorithms.

Code-based cryptography:

we don’t have proofs for the

best decoding algorithms.

Lattice-based cryptography:

we don’t have proofs for the

best lattice algorithms.

MQ-based cryptography:

we don’t have proofs for the

best system-solving algorithms.

Confidence relies on experiments.

Where’s my quantum computer?

Quantum-algorithm design

is moving beyond textbook stage

into algorithms without proofs.

Example: subset-sum

exponent ≈0:241 from 2013

Bernstein–Jeffery–Lange–Meurer.

Don’t expect proofs or provability

for the best quantum algorithms

to attack post-quantum crypto.

How do we obtain confidence

in analysis of these algorithms?

Quantum experiments are hard.

Where’s my big computer?

Analogy: Public hasn’t carried out

a 280 NFS RSA-1024 experiment.



Similar story for RSA security:

we don’t have proofs for the

best factoring algorithms.

Code-based cryptography:

we don’t have proofs for the

best decoding algorithms.

Lattice-based cryptography:

we don’t have proofs for the

best lattice algorithms.

MQ-based cryptography:

we don’t have proofs for the

best system-solving algorithms.

Confidence relies on experiments.

Where’s my quantum computer?

Quantum-algorithm design

is moving beyond textbook stage

into algorithms without proofs.

Example: subset-sum

exponent ≈0:241 from 2013

Bernstein–Jeffery–Lange–Meurer.

Don’t expect proofs or provability

for the best quantum algorithms

to attack post-quantum crypto.

How do we obtain confidence

in analysis of these algorithms?

Quantum experiments are hard.

Where’s my big computer?

Analogy: Public hasn’t carried out

a 280 NFS RSA-1024 experiment.



Similar story for RSA security:

we don’t have proofs for the

best factoring algorithms.

Code-based cryptography:

we don’t have proofs for the

best decoding algorithms.

Lattice-based cryptography:

we don’t have proofs for the

best lattice algorithms.

MQ-based cryptography:

we don’t have proofs for the

best system-solving algorithms.

Confidence relies on experiments.

Where’s my quantum computer?

Quantum-algorithm design

is moving beyond textbook stage

into algorithms without proofs.

Example: subset-sum

exponent ≈0:241 from 2013

Bernstein–Jeffery–Lange–Meurer.

Don’t expect proofs or provability

for the best quantum algorithms

to attack post-quantum crypto.

How do we obtain confidence

in analysis of these algorithms?

Quantum experiments are hard.

Where’s my big computer?

Analogy: Public hasn’t carried out

a 280 NFS RSA-1024 experiment.



Where’s my quantum computer?

Quantum-algorithm design

is moving beyond textbook stage

into algorithms without proofs.

Example: subset-sum

exponent ≈0:241 from 2013

Bernstein–Jeffery–Lange–Meurer.

Don’t expect proofs or provability

for the best quantum algorithms

to attack post-quantum crypto.

How do we obtain confidence

in analysis of these algorithms?

Quantum experiments are hard.

Where’s my big computer?

Analogy: Public hasn’t carried out

a 280 NFS RSA-1024 experiment.



Where’s my quantum computer?

Quantum-algorithm design

is moving beyond textbook stage

into algorithms without proofs.

Example: subset-sum

exponent ≈0:241 from 2013

Bernstein–Jeffery–Lange–Meurer.

Don’t expect proofs or provability

for the best quantum algorithms

to attack post-quantum crypto.

How do we obtain confidence

in analysis of these algorithms?

Quantum experiments are hard.

Where’s my big computer?

Analogy: Public hasn’t carried out

a 280 NFS RSA-1024 experiment.

But public has carried out

250, 260, 270 NFS experiments.

Hopefully not too much

extrapolation error for 280.



Where’s my quantum computer?

Quantum-algorithm design

is moving beyond textbook stage

into algorithms without proofs.

Example: subset-sum

exponent ≈0:241 from 2013

Bernstein–Jeffery–Lange–Meurer.

Don’t expect proofs or provability

for the best quantum algorithms

to attack post-quantum crypto.

How do we obtain confidence

in analysis of these algorithms?

Quantum experiments are hard.

Where’s my big computer?

Analogy: Public hasn’t carried out

a 280 NFS RSA-1024 experiment.

But public has carried out

250, 260, 270 NFS experiments.

Hopefully not too much

extrapolation error for 280.

Vastly larger extrapolation

for the quantum situation.

Imagine attacker performing

280 operations on 240 qubits;

compare to today’s challenges

of 21, 22, 23, 24, 25, 26 qubits.



Where’s my quantum computer?

Quantum-algorithm design

is moving beyond textbook stage

into algorithms without proofs.

Example: subset-sum

exponent ≈0:241 from 2013

Bernstein–Jeffery–Lange–Meurer.

Don’t expect proofs or provability

for the best quantum algorithms

to attack post-quantum crypto.

How do we obtain confidence

in analysis of these algorithms?

Quantum experiments are hard.

Where’s my big computer?

Analogy: Public hasn’t carried out

a 280 NFS RSA-1024 experiment.

But public has carried out

250, 260, 270 NFS experiments.

Hopefully not too much

extrapolation error for 280.

Vastly larger extrapolation

for the quantum situation.

Imagine attacker performing

280 operations on 240 qubits;

compare to today’s challenges

of 21, 22, 23, 24, 25, 26 qubits.

Simulation

An algorithm simulation

is a computer-assisted proof

of the algorithm’s performance

for a particular input.



Where’s my quantum computer?

Quantum-algorithm design

is moving beyond textbook stage

into algorithms without proofs.

Example: subset-sum

exponent ≈0:241 from 2013

Bernstein–Jeffery–Lange–Meurer.

Don’t expect proofs or provability

for the best quantum algorithms

to attack post-quantum crypto.

How do we obtain confidence

in analysis of these algorithms?

Quantum experiments are hard.

Where’s my big computer?

Analogy: Public hasn’t carried out

a 280 NFS RSA-1024 experiment.

But public has carried out

250, 260, 270 NFS experiments.

Hopefully not too much

extrapolation error for 280.

Vastly larger extrapolation

for the quantum situation.

Imagine attacker performing

280 operations on 240 qubits;

compare to today’s challenges

of 21, 22, 23, 24, 25, 26 qubits.

Simulation

An algorithm simulation

is a computer-assisted proof

of the algorithm’s performance

for a particular input.



Where’s my quantum computer?

Quantum-algorithm design

is moving beyond textbook stage

into algorithms without proofs.

Example: subset-sum

exponent ≈0:241 from 2013

Bernstein–Jeffery–Lange–Meurer.

Don’t expect proofs or provability

for the best quantum algorithms

to attack post-quantum crypto.

How do we obtain confidence

in analysis of these algorithms?

Quantum experiments are hard.

Where’s my big computer?

Analogy: Public hasn’t carried out

a 280 NFS RSA-1024 experiment.

But public has carried out

250, 260, 270 NFS experiments.

Hopefully not too much

extrapolation error for 280.

Vastly larger extrapolation

for the quantum situation.

Imagine attacker performing

280 operations on 240 qubits;

compare to today’s challenges

of 21, 22, 23, 24, 25, 26 qubits.

Simulation

An algorithm simulation

is a computer-assisted proof

of the algorithm’s performance

for a particular input.



Where’s my big computer?

Analogy: Public hasn’t carried out

a 280 NFS RSA-1024 experiment.

But public has carried out

250, 260, 270 NFS experiments.

Hopefully not too much

extrapolation error for 280.

Vastly larger extrapolation

for the quantum situation.

Imagine attacker performing

280 operations on 240 qubits;

compare to today’s challenges

of 21, 22, 23, 24, 25, 26 qubits.

Simulation

An algorithm simulation

is a computer-assisted proof

of the algorithm’s performance

for a particular input.



Where’s my big computer?

Analogy: Public hasn’t carried out

a 280 NFS RSA-1024 experiment.

But public has carried out

250, 260, 270 NFS experiments.

Hopefully not too much

extrapolation error for 280.

Vastly larger extrapolation

for the quantum situation.

Imagine attacker performing

280 operations on 240 qubits;

compare to today’s challenges

of 21, 22, 23, 24, 25, 26 qubits.

Simulation

An algorithm simulation

is a computer-assisted proof

of the algorithm’s performance

for a particular input.

Compared to traditional proofs:

Theorem statement is easier.

Steps in proof are easier.

Don’t need to generalize

beyond a single input.

Provability is guaranteed.

Proof has computer assistance,

so less chance of error.



Where’s my big computer?

Analogy: Public hasn’t carried out

a 280 NFS RSA-1024 experiment.

But public has carried out

250, 260, 270 NFS experiments.

Hopefully not too much

extrapolation error for 280.

Vastly larger extrapolation

for the quantum situation.

Imagine attacker performing

280 operations on 240 qubits;

compare to today’s challenges

of 21, 22, 23, 24, 25, 26 qubits.

Simulation

An algorithm simulation

is a computer-assisted proof

of the algorithm’s performance

for a particular input.

Compared to traditional proofs:

Theorem statement is easier.

Steps in proof are easier.

Don’t need to generalize

beyond a single input.

Provability is guaranteed.

Proof has computer assistance,

so less chance of error.

The standard structure

of an algorithm simulation:

Compute s0; s1; s2; : : :

and t0; t1; t2; : : :

such that si represents

algorithm state at time ti .

Prove that the computation

matches the original algorithm.

Special case: experiment.

The computation is

the original algorithm

plus printouts of state.

Particularly easy proof.



Where’s my big computer?

Analogy: Public hasn’t carried out

a 280 NFS RSA-1024 experiment.

But public has carried out

250, 260, 270 NFS experiments.

Hopefully not too much

extrapolation error for 280.

Vastly larger extrapolation

for the quantum situation.

Imagine attacker performing

280 operations on 240 qubits;

compare to today’s challenges

of 21, 22, 23, 24, 25, 26 qubits.

Simulation

An algorithm simulation

is a computer-assisted proof

of the algorithm’s performance

for a particular input.

Compared to traditional proofs:

Theorem statement is easier.

Steps in proof are easier.

Don’t need to generalize

beyond a single input.

Provability is guaranteed.

Proof has computer assistance,

so less chance of error.

The standard structure

of an algorithm simulation:

Compute s0; s1; s2; : : :

and t0; t1; t2; : : :

such that si represents

algorithm state at time ti .

Prove that the computation

matches the original algorithm.

Special case: experiment.

The computation is

the original algorithm

plus printouts of state.

Particularly easy proof.



Where’s my big computer?

Analogy: Public hasn’t carried out

a 280 NFS RSA-1024 experiment.

But public has carried out

250, 260, 270 NFS experiments.

Hopefully not too much

extrapolation error for 280.

Vastly larger extrapolation

for the quantum situation.

Imagine attacker performing

280 operations on 240 qubits;

compare to today’s challenges

of 21, 22, 23, 24, 25, 26 qubits.

Simulation

An algorithm simulation

is a computer-assisted proof

of the algorithm’s performance

for a particular input.

Compared to traditional proofs:

Theorem statement is easier.

Steps in proof are easier.

Don’t need to generalize

beyond a single input.

Provability is guaranteed.

Proof has computer assistance,

so less chance of error.

The standard structure

of an algorithm simulation:

Compute s0; s1; s2; : : :

and t0; t1; t2; : : :

such that si represents

algorithm state at time ti .

Prove that the computation

matches the original algorithm.

Special case: experiment.

The computation is

the original algorithm

plus printouts of state.

Particularly easy proof.



Simulation

An algorithm simulation

is a computer-assisted proof

of the algorithm’s performance

for a particular input.

Compared to traditional proofs:

Theorem statement is easier.

Steps in proof are easier.

Don’t need to generalize

beyond a single input.

Provability is guaranteed.

Proof has computer assistance,

so less chance of error.

The standard structure

of an algorithm simulation:

Compute s0; s1; s2; : : :

and t0; t1; t2; : : :

such that si represents

algorithm state at time ti .

Prove that the computation

matches the original algorithm.

Special case: experiment.

The computation is

the original algorithm

plus printouts of state.

Particularly easy proof.



Simulation

An algorithm simulation

is a computer-assisted proof

of the algorithm’s performance

for a particular input.

Compared to traditional proofs:

Theorem statement is easier.

Steps in proof are easier.

Don’t need to generalize

beyond a single input.

Provability is guaranteed.

Proof has computer assistance,

so less chance of error.

The standard structure

of an algorithm simulation:

Compute s0; s1; s2; : : :

and t0; t1; t2; : : :

such that si represents

algorithm state at time ti .

Prove that the computation

matches the original algorithm.

Special case: experiment.

The computation is

the original algorithm

plus printouts of state.

Particularly easy proof.

Simulation of quantum algorithms

“If you can efficiently simulate

a quantum algorithm using a

pre-quantum computer then you

have an efficient pre-quantum

algorithm for the same problem.”



Simulation

An algorithm simulation

is a computer-assisted proof

of the algorithm’s performance

for a particular input.

Compared to traditional proofs:

Theorem statement is easier.

Steps in proof are easier.

Don’t need to generalize

beyond a single input.

Provability is guaranteed.

Proof has computer assistance,

so less chance of error.

The standard structure

of an algorithm simulation:

Compute s0; s1; s2; : : :

and t0; t1; t2; : : :

such that si represents

algorithm state at time ti .

Prove that the computation

matches the original algorithm.

Special case: experiment.

The computation is

the original algorithm

plus printouts of state.

Particularly easy proof.

Simulation of quantum algorithms

“If you can efficiently simulate

a quantum algorithm using a

pre-quantum computer then you

have an efficient pre-quantum

algorithm for the same problem.”



Simulation

An algorithm simulation

is a computer-assisted proof

of the algorithm’s performance

for a particular input.

Compared to traditional proofs:

Theorem statement is easier.

Steps in proof are easier.

Don’t need to generalize

beyond a single input.

Provability is guaranteed.

Proof has computer assistance,

so less chance of error.

The standard structure

of an algorithm simulation:

Compute s0; s1; s2; : : :

and t0; t1; t2; : : :

such that si represents

algorithm state at time ti .

Prove that the computation

matches the original algorithm.

Special case: experiment.

The computation is

the original algorithm

plus printouts of state.

Particularly easy proof.

Simulation of quantum algorithms

“If you can efficiently simulate

a quantum algorithm using a

pre-quantum computer then you

have an efficient pre-quantum

algorithm for the same problem.”



The standard structure

of an algorithm simulation:

Compute s0; s1; s2; : : :

and t0; t1; t2; : : :

such that si represents

algorithm state at time ti .

Prove that the computation

matches the original algorithm.

Special case: experiment.

The computation is

the original algorithm

plus printouts of state.

Particularly easy proof.

Simulation of quantum algorithms

“If you can efficiently simulate

a quantum algorithm using a

pre-quantum computer then you

have an efficient pre-quantum

algorithm for the same problem.”



The standard structure

of an algorithm simulation:

Compute s0; s1; s2; : : :

and t0; t1; t2; : : :

such that si represents

algorithm state at time ti .

Prove that the computation

matches the original algorithm.

Special case: experiment.

The computation is

the original algorithm

plus printouts of state.

Particularly easy proof.

Simulation of quantum algorithms

“If you can efficiently simulate

a quantum algorithm using a

pre-quantum computer then you

have an efficient pre-quantum

algorithm for the same problem.”

No, not necessarily!



The standard structure

of an algorithm simulation:

Compute s0; s1; s2; : : :

and t0; t1; t2; : : :

such that si represents

algorithm state at time ti .

Prove that the computation

matches the original algorithm.

Special case: experiment.

The computation is

the original algorithm

plus printouts of state.

Particularly easy proof.

Simulation of quantum algorithms

“If you can efficiently simulate

a quantum algorithm using a

pre-quantum computer then you

have an efficient pre-quantum

algorithm for the same problem.”

No, not necessarily!

“Yes, you do! Simply run the

simulation on the same input and

extract the original algorithm’s

output from the final state.”



The standard structure

of an algorithm simulation:

Compute s0; s1; s2; : : :

and t0; t1; t2; : : :

such that si represents

algorithm state at time ti .

Prove that the computation

matches the original algorithm.

Special case: experiment.

The computation is

the original algorithm

plus printouts of state.

Particularly easy proof.

Simulation of quantum algorithms

“If you can efficiently simulate

a quantum algorithm using a

pre-quantum computer then you

have an efficient pre-quantum

algorithm for the same problem.”

No, not necessarily!

“Yes, you do! Simply run the

simulation on the same input and

extract the original algorithm’s

output from the final state.”

Ah, but did I say that the

simulation takes only this input?



The standard structure

of an algorithm simulation:

Compute s0; s1; s2; : : :

and t0; t1; t2; : : :

such that si represents

algorithm state at time ti .

Prove that the computation

matches the original algorithm.

Special case: experiment.

The computation is

the original algorithm

plus printouts of state.

Particularly easy proof.

Simulation of quantum algorithms

“If you can efficiently simulate

a quantum algorithm using a

pre-quantum computer then you

have an efficient pre-quantum

algorithm for the same problem.”

No, not necessarily!

“Yes, you do! Simply run the

simulation on the same input and

extract the original algorithm’s

output from the final state.”

Ah, but did I say that the

simulation takes only this input?

Trapdoor simulation

Input to simulation doesn’t have

to be input to original algorithm.

Simulation can use extra input

that makes simulation much

faster than original algorithm.

Typical example:

• Algorithm input: f (x).

• Algorithm output: x .

• Simulation input: x .

This is still useful:

can try many choices of x ,

understand algorithm for f (x).



The standard structure

of an algorithm simulation:

Compute s0; s1; s2; : : :

and t0; t1; t2; : : :

such that si represents

algorithm state at time ti .

Prove that the computation

matches the original algorithm.

Special case: experiment.

The computation is

the original algorithm

plus printouts of state.

Particularly easy proof.

Simulation of quantum algorithms

“If you can efficiently simulate

a quantum algorithm using a

pre-quantum computer then you

have an efficient pre-quantum

algorithm for the same problem.”

No, not necessarily!

“Yes, you do! Simply run the

simulation on the same input and

extract the original algorithm’s

output from the final state.”

Ah, but did I say that the

simulation takes only this input?

Trapdoor simulation

Input to simulation doesn’t have

to be input to original algorithm.

Simulation can use extra input

that makes simulation much

faster than original algorithm.

Typical example:

• Algorithm input: f (x).

• Algorithm output: x .

• Simulation input: x .

This is still useful:

can try many choices of x ,

understand algorithm for f (x).



The standard structure

of an algorithm simulation:

Compute s0; s1; s2; : : :

and t0; t1; t2; : : :

such that si represents

algorithm state at time ti .

Prove that the computation

matches the original algorithm.

Special case: experiment.

The computation is

the original algorithm

plus printouts of state.

Particularly easy proof.

Simulation of quantum algorithms

“If you can efficiently simulate

a quantum algorithm using a

pre-quantum computer then you

have an efficient pre-quantum

algorithm for the same problem.”

No, not necessarily!

“Yes, you do! Simply run the

simulation on the same input and

extract the original algorithm’s

output from the final state.”

Ah, but did I say that the

simulation takes only this input?

Trapdoor simulation

Input to simulation doesn’t have

to be input to original algorithm.

Simulation can use extra input

that makes simulation much

faster than original algorithm.

Typical example:

• Algorithm input: f (x).

• Algorithm output: x .

• Simulation input: x .

This is still useful:

can try many choices of x ,

understand algorithm for f (x).



Simulation of quantum algorithms

“If you can efficiently simulate

a quantum algorithm using a

pre-quantum computer then you

have an efficient pre-quantum

algorithm for the same problem.”

No, not necessarily!

“Yes, you do! Simply run the

simulation on the same input and

extract the original algorithm’s

output from the final state.”

Ah, but did I say that the

simulation takes only this input?

Trapdoor simulation

Input to simulation doesn’t have

to be input to original algorithm.

Simulation can use extra input

that makes simulation much

faster than original algorithm.

Typical example:

• Algorithm input: f (x).

• Algorithm output: x .

• Simulation input: x .

This is still useful:

can try many choices of x ,

understand algorithm for f (x).



Simulation of quantum algorithms

“If you can efficiently simulate

a quantum algorithm using a

pre-quantum computer then you

have an efficient pre-quantum

algorithm for the same problem.”

No, not necessarily!

“Yes, you do! Simply run the

simulation on the same input and

extract the original algorithm’s

output from the final state.”

Ah, but did I say that the

simulation takes only this input?

Trapdoor simulation

Input to simulation doesn’t have

to be input to original algorithm.

Simulation can use extra input

that makes simulation much

faster than original algorithm.

Typical example:

• Algorithm input: f (x).

• Algorithm output: x .

• Simulation input: x .

This is still useful:

can try many choices of x ,

understand algorithm for f (x).

For comparison:

Often see x inside proofs

in traditional algorithm analyses.

Typical proof has formula

(x; i) 7→ (si ; ti ).

Formula is proven inductively.

Simulation is more flexible.

Given x ,

for each i ,

simulation computes (si ; ti ).

Doesn’t need unified formula

that works for all x; i .

Proof can work “locally”.



Simulation of quantum algorithms

“If you can efficiently simulate

a quantum algorithm using a

pre-quantum computer then you

have an efficient pre-quantum

algorithm for the same problem.”

No, not necessarily!

“Yes, you do! Simply run the

simulation on the same input and

extract the original algorithm’s

output from the final state.”

Ah, but did I say that the

simulation takes only this input?

Trapdoor simulation

Input to simulation doesn’t have

to be input to original algorithm.

Simulation can use extra input

that makes simulation much

faster than original algorithm.

Typical example:

• Algorithm input: f (x).

• Algorithm output: x .

• Simulation input: x .

This is still useful:

can try many choices of x ,

understand algorithm for f (x).

For comparison:

Often see x inside proofs

in traditional algorithm analyses.

Typical proof has formula

(x; i) 7→ (si ; ti ).

Formula is proven inductively.

Simulation is more flexible.

Given x ,

for each i ,

simulation computes (si ; ti ).

Doesn’t need unified formula

that works for all x; i .

Proof can work “locally”.



Simulation of quantum algorithms

“If you can efficiently simulate

a quantum algorithm using a

pre-quantum computer then you

have an efficient pre-quantum

algorithm for the same problem.”

No, not necessarily!

“Yes, you do! Simply run the

simulation on the same input and

extract the original algorithm’s

output from the final state.”

Ah, but did I say that the

simulation takes only this input?

Trapdoor simulation

Input to simulation doesn’t have

to be input to original algorithm.

Simulation can use extra input

that makes simulation much

faster than original algorithm.

Typical example:

• Algorithm input: f (x).

• Algorithm output: x .

• Simulation input: x .

This is still useful:

can try many choices of x ,

understand algorithm for f (x).

For comparison:

Often see x inside proofs

in traditional algorithm analyses.

Typical proof has formula

(x; i) 7→ (si ; ti ).

Formula is proven inductively.

Simulation is more flexible.

Given x ,

for each i ,

simulation computes (si ; ti ).

Doesn’t need unified formula

that works for all x; i .

Proof can work “locally”.



Trapdoor simulation

Input to simulation doesn’t have

to be input to original algorithm.

Simulation can use extra input

that makes simulation much

faster than original algorithm.

Typical example:

• Algorithm input: f (x).

• Algorithm output: x .

• Simulation input: x .

This is still useful:

can try many choices of x ,

understand algorithm for f (x).

For comparison:

Often see x inside proofs

in traditional algorithm analyses.

Typical proof has formula

(x; i) 7→ (si ; ti ).

Formula is proven inductively.

Simulation is more flexible.

Given x ,

for each i ,

simulation computes (si ; ti ).

Doesn’t need unified formula

that works for all x; i .

Proof can work “locally”.



Trapdoor simulation

Input to simulation doesn’t have

to be input to original algorithm.

Simulation can use extra input

that makes simulation much

faster than original algorithm.

Typical example:

• Algorithm input: f (x).

• Algorithm output: x .

• Simulation input: x .

This is still useful:

can try many choices of x ,

understand algorithm for f (x).

For comparison:

Often see x inside proofs

in traditional algorithm analyses.

Typical proof has formula

(x; i) 7→ (si ; ti ).

Formula is proven inductively.

Simulation is more flexible.

Given x ,

for each i ,

simulation computes (si ; ti ).

Doesn’t need unified formula

that works for all x; i .

Proof can work “locally”.

Proof of concept

2014.04 Chou → Ambainis:

Simulation shows error in

proof of 2003 Ambainis

distinctness algorithm.



Trapdoor simulation

Input to simulation doesn’t have

to be input to original algorithm.

Simulation can use extra input

that makes simulation much

faster than original algorithm.

Typical example:

• Algorithm input: f (x).

• Algorithm output: x .

• Simulation input: x .

This is still useful:

can try many choices of x ,

understand algorithm for f (x).

For comparison:

Often see x inside proofs

in traditional algorithm analyses.

Typical proof has formula

(x; i) 7→ (si ; ti ).

Formula is proven inductively.

Simulation is more flexible.

Given x ,

for each i ,

simulation computes (si ; ti ).

Doesn’t need unified formula

that works for all x; i .

Proof can work “locally”.

Proof of concept

2014.04 Chou → Ambainis:

Simulation shows error in

proof of 2003 Ambainis

distinctness algorithm.



Trapdoor simulation

Input to simulation doesn’t have

to be input to original algorithm.

Simulation can use extra input

that makes simulation much

faster than original algorithm.

Typical example:

• Algorithm input: f (x).

• Algorithm output: x .

• Simulation input: x .

This is still useful:

can try many choices of x ,

understand algorithm for f (x).

For comparison:

Often see x inside proofs

in traditional algorithm analyses.

Typical proof has formula

(x; i) 7→ (si ; ti ).

Formula is proven inductively.

Simulation is more flexible.

Given x ,

for each i ,

simulation computes (si ; ti ).

Doesn’t need unified formula

that works for all x; i .

Proof can work “locally”.

Proof of concept

2014.04 Chou → Ambainis:

Simulation shows error in

proof of 2003 Ambainis

distinctness algorithm.



For comparison:

Often see x inside proofs

in traditional algorithm analyses.

Typical proof has formula

(x; i) 7→ (si ; ti ).

Formula is proven inductively.

Simulation is more flexible.

Given x ,

for each i ,

simulation computes (si ; ti ).

Doesn’t need unified formula

that works for all x; i .

Proof can work “locally”.

Proof of concept

2014.04 Chou → Ambainis:

Simulation shows error in

proof of 2003 Ambainis

distinctness algorithm.



For comparison:

Often see x inside proofs

in traditional algorithm analyses.

Typical proof has formula

(x; i) 7→ (si ; ti ).

Formula is proven inductively.

Simulation is more flexible.

Given x ,

for each i ,

simulation computes (si ; ti ).

Doesn’t need unified formula

that works for all x; i .

Proof can work “locally”.

Proof of concept

2014.04 Chou → Ambainis:

Simulation shows error in

proof of 2003 Ambainis

distinctness algorithm.

Ambainis: Yes, thanks, will fix.



For comparison:

Often see x inside proofs

in traditional algorithm analyses.

Typical proof has formula

(x; i) 7→ (si ; ti ).

Formula is proven inductively.

Simulation is more flexible.

Given x ,

for each i ,

simulation computes (si ; ti ).

Doesn’t need unified formula

that works for all x; i .

Proof can work “locally”.

Proof of concept

2014.04 Chou → Ambainis:

Simulation shows error in

proof of 2003 Ambainis

distinctness algorithm.

Ambainis: Yes, thanks, will fix.

2014.04 Chou → Childs:

Simulation shows that 2003

Childs–Eisenberg distinctness

algorithm is non-functional;

need to take half angle.



For comparison:

Often see x inside proofs

in traditional algorithm analyses.

Typical proof has formula

(x; i) 7→ (si ; ti ).

Formula is proven inductively.

Simulation is more flexible.

Given x ,

for each i ,

simulation computes (si ; ti ).

Doesn’t need unified formula

that works for all x; i .

Proof can work “locally”.

Proof of concept

2014.04 Chou → Ambainis:

Simulation shows error in

proof of 2003 Ambainis

distinctness algorithm.

Ambainis: Yes, thanks, will fix.

2014.04 Chou → Childs:

Simulation shows that 2003

Childs–Eisenberg distinctness

algorithm is non-functional;

need to take half angle.

Childs: Yes. Typo, already

fixed in 2005 journal version.


