Trapdoor simulation Algorithms in CS courses

of quantum algorithms "WHAT is your algorithm?”

Daniel J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

Joint work with:

Tung Chou
Technische Universiteit Eindhoven




Trapdoor simulation Algorithms in CS courses

of quantum algorithms "WHAT is your algorithm?”

Daniel J. Bernstein y , y
o o | Heapsort. Here's the code.
University of lllinois at Chicago &

Technische Universiteit Eindhoven

Joint work with:

Tung Chou
Technische Universiteit Eindhoven




Trapdoor simulation Algorithms in CS courses

of quantum algorithms "WHAT is your algorithm?”

Daniel J. Bernstein y , y
o o | Heapsort. Here's the code.
University of lllinois at Chicago &

Technische Universiteit Eindhoven "WHAT does it accomplish?”

Joint work with:

Tung Chou
Technische Universiteit Eindhoven




Trapdoor simulation Algorithms in CS courses

of quantum algorithms "WHAT is your algorithm?”

Daniel J. Bernstein ) | .
Heapsort. Here's the code.

University of lllinois at Chicago &

Technische Universiteit Eindhoven "WHAT does it accomplish?”
Joint work with: "It sorts the input array In place.
Tung Chou Here's a proof.”

Technische Universiteit Eindhoven




Trapdoor simulation Algorithms in CS courses

of quantum algorithms "WHAT is your algorithm?”

Daniel J. Bernstein ) | .
Heapsort. Here's the code.

University of lllinois at Chicago &

Technische Universiteit Eindhoven "WHAT does it accomplish?”
Joint work with: "It sorts the input array In place.
Tung Chou Here's a proof.”

Technische Universiteit Eindhoven AWHAT s its run time?”




Trapdoor simulation Algorithms in CS courses

of quantum algorithms "WHAT is your algorithm?”

Daniel J. Bernstein ) | .
Heapsort. Here's the code.

University of lllinois at Chicago &

Technische Universiteit Eindhoven "WHAT does it accomplish?”
Joint work with: "It sorts the input array In place.
Tung Chou Here's a proof.”

Technische Universiteit Eindhoven AWHAT is its run time?”

“O(nlg n) comparisons;
and ©(nlgn) comparisons
for most inputs. Here's a proof.”




Trapdoor simulation Algorithms in CS courses

of quantum algorithms "WHAT is your algorithm?”

Daniel J. Bernstein ) | .
Heapsort. Here's the code.

University of lllinois at Chicago &

Technische Universiteit Eindhoven "WHAT does it accomplish?”
Joint work with: "It sorts the input array In place.
Tung Chou Here's a proof.”

Technische Universiteit Eindhoven AWHAT is its run time?”

“O(nlg n) comparisons;
and ©(nlgn) comparisons
for most inputs. Here's a proof.”

“You may pass.”




r simulation Algorithms in CS courses Algorith

um algorithms "WHAT is your algorithm?” Critical «

. Bernstein y , , How har
Heapsort. Here's the code.

ty of lllinois at Chicago &

he Universiteit Eindhoven "WHAT does it accomplish?”

rk with: "It sorts the Input array in place.
1oUu Here's a proof.”

he Universiteit Eindhoven AWHAT s its run time?”

“O(nlg n) comparisons;
and ©(nlgn) comparisons
for most inputs. Here's a proof.”

“You may pass.”




on

thms

0
is at Chicago &
siteit Eindhoven

siteit Eindhoven

Algorithms in CS courses

"WHAT s your algorithm?”
"Heapsort. Here's the code.”

"WHAT does it accomplish?”

"It sorts the input array in place.

Here's a proof.”
"WHAT s its run time?”

“O(nlg n) comparisons;
and ©(nlgn) comparisons
for most inputs. Here's a proof.”

“You may pass.”

Algorithms for har

Critical question f
How hard is ECDI



g0 &
hoven

hoven

Algorithms in CS courses

"WHAT s your algorithm?”
"Heapsort. Here's the code.”

"WHAT does it accomplish?”

"It sorts the Input array In place.

Here's a proof.”
"WHAT s its run time?”

“O(nlg n) comparisons;
and ©(nlgn) comparisons
for most inputs. Here's a proof.”

“You may pass.”

Algorithms for hard problem

Critical question for ECC se
How hard is ECDLP?



Algorithms in CS courses Algorithms for hard problems

“"WHAT s your algorithm?” Critical question for ECC security:

' ?
"Heapsort. Here's the code.” How hard is ECDLP:

"WHAT does it accomplish?”

"It sorts the input array in place.
Here's a proof.”

"WHAT s its run time?”

“O(nlg n) comparisons;
and ©(nlgn) comparisons
for most inputs. Here's a proof.”

“You may pass.”




Algorithms in CS courses Algorithms for hard problems

“"WHAT s your algorithm?” Critical question for ECC security:

' ?
"Heapsort. Here's the code.” How hard is ECDLP:

“WHAT does it accomplish?” Standard estimate for “strong”

ECC groups of prime order £:

"It sorts the input array in place. Latest “negating” variants of
Here's a proof.” “distinguished point” rho methods
AWHAT is its run time?” break an average ECDLP instance

using ~0.886+/£ additions.
“O(nlg n) comparisons;

and ©(nlgn) comparisons
for most inputs. Here's a proof.”

“You may pass.”




Algorithms in CS courses

"WHAT s your algorithm?”
"Heapsort. Here's the code.”

"WHAT does it accomplish?”

"It sorts the input array in place.

Here's a proof.”
"WHAT s its run time?”

“O(nlg n) comparisons;
and ©(nlgn) comparisons
for most inputs. Here's a proof.”

“You may pass.”

Algorithms for hard problems

Critical question for ECC security:
How hard is ECDLP?

Standard estimate for “strong”
ECC groups of prime order £:
Latest “negating’ variants of
“distinguished point” rho methods
break an average ECDLP instance

using ~0.886+/£ additions.
Is this proven? Nol

Is this provable? Maybe not!



Algorithms in CS courses

"WHAT s your algorithm?”
"Heapsort. Here's the code.”

"WHAT does it accomplish?”

"It sorts the input array in place.

Here's a proof.”
"WHAT s its run time?”

“O(nlg n) comparisons;
and ©(nlgn) comparisons
for most inputs. Here's a proof.”

“You may pass.”

Algorithms for hard problems

Critical question for ECC security:
How hard is ECDLP?

Standard estimate for “strong”
ECC groups of prime order £:
Latest “negating’ variants of
“distinguished point” rho methods
break an average ECDLP instance

using ~0.886+/£ additions.
Is this proven? Nol
Is this provable? Maybe not!

So why do we think it's true?



ms in CS courses

is your algorithm?”
rt. Here's the code.”

does it accomplish?”

the input array in place.

proof.”
IS its run time?"

1) comparisons;
g n) comparisons
“inputs. Here's a proof.”

)y pass.’

Algorithms for hard problems

Critical question for ECC security:
How hard is ECDLP?

Standard estimate for “strong”
ECC groups of prime order £:
Latest “negating’ variants of
“distinguished point” rho methods
break an average ECDLP instance

using ~0.886+/¢ additions.
Is this proven? No!
Is this provable? Maybe not!

So why do we think it's true?

2000 Ga

Inadequiz
of a neg



courses

gorithm?”
the code.”

~complish?”

array in place.

time?”

ISONS;
parisons
lere’'s a proof.”

Algorithms for hard problems

Critical question for ECC security:
How hard is ECDLP?

Standard estimate for “strong”
ECC groups of prime order £:
Latest “negating’ variants of
“distinguished point” rho methods
break an average ECDLP instance

using ~0.886+/£ additions.
Is this proven? Nol
Is this provable? Maybe not!

So why do we think it's true?

2000 Gallant—Lam
inadequately speci
of a negating rho



>”

|ace.

oof.

Algorithms for hard problems

Critical question for ECC security:
How hard is ECDLP?

Standard estimate for “strong”
ECC groups of prime order £:
Latest “negating’ variants of
“distinguished point” rho methods
break an average ECDLP instance

using ~0.886+/¢ additions.
Is this proven? No!
Is this provable? Maybe not!

So why do we think it's true?

2000 Gallant—Lambert—Vans
inadequately specified stater
of a negating rho algorithm.



Algorithms for hard problems

Critical question for ECC security:
How hard is ECDLP?

Standard estimate for “strong”
ECC groups of prime order £:
Latest “negating’ variants of
“distinguished point” rho methods
break an average ECDLP instance

using ~0.886+/£ additions.
Is this proven? Nol
Is this provable? Maybe not!

So why do we think it's true?

2000 Gallant—Lambert—Vanstone:
inadequately specified statement
of a negating rho algorithm.



Algorithms for hard problems

Critical question for ECC security:
How hard is ECDLP?

Standard estimate for “strong”
ECC groups of prime order £:
Latest “negating’ variants of
“distinguished point” rho methods
break an average ECDLP instance

using ~0.886+/£ additions.
Is this proven? Nol
Is this provable? Maybe not!

So why do we think it's true?

2000 Gallant—Lambert—Vanstone:
inadequately specified statement
of a negating rho algorithm.

2010 Bos—Kleinjung—Lenstra:
a plausible interpretation of

that algorithm is non-functional.



Algorithms for hard problems

Critical question for ECC security:
How hard is ECDLP?

Standard estimate for “strong”
ECC groups of prime order £:
Latest “negating’ variants of
“distinguished point” rho methods
break an average ECDLP instance

using ~0.886+/£ additions.
Is this proven? Nol
Is this provable? Maybe not!

So why do we think it's true?

2000 Gallant—Lambert—Vanstone:
inadequately specified statement
of a negating rho algorithm.

2010 Bos—Kleinjung—Lenstra:
a plausible interpretation of

that algorithm is non-functional.

See 2011 Bernstein—Lange-—
Schwabe for more history
and better algorithms.



Algorithms for hard problems

Critical question for ECC security:
How hard is ECDLP?

Standard estimate for “strong”
ECC groups of prime order £:
Latest “negating’ variants of
“distinguished point” rho methods
break an average ECDLP instance

using ~0.886+/£ additions.
Is this proven? Nol
Is this provable? Maybe not!

So why do we think it's true?

2000 Gallant—Lambert—Vanstone:
inadequately specified statement
of a negating rho algorithm.

2010 Bos—Kleinjung—Lenstra:
a plausible interpretation of

that algorithm is non-functional.

See 2011 Bernstein—Lange-—
Schwabe for more history
and better algorithms.

Why do we believe that
the latest algorithms work
at the claimed speeds?
Experiments!



ms for hard problems

question for ECC security:
d is ECDLP?

1 estimate for “strong”
ups of prime order £:
negating’ variants of
lished point” rho methods
 average ECDLP instance

).886+/£ additions.
roven? No!
rovable? Maybe not!

do we think it's true?

2000 Gallant—Lambert—Vanstone:

inadequately specified statement
of a negating rho algorithm.

2010 Bos—Kleinjung—Lenstra:
a plausible interpretation of
that algorithm is non-functional.

See 2011 Bernstein—Lange—
Schwabe for more history
and better algorithms.

Why do we believe that
the latest algorithms work
at the claimed speeds?
Experiments!

Similar ¢
we don'1
best fac:



d problems

or ECC security:
P?

for “strong”
me order £:
variants of

nt" rho methods

~CDLP instance
dditions.

)|
vViaybe not!

Kk 1t's true?

2000 Gallant—Lambert—Vanstone:

inadequately specified statement

of a negating rho algorithm.

2010 Bos—Kleinj

ung—Lenstra:

a plausible inter

bretation of

that algorithm is non-functional.

See 2011 Bernstein—Lange-—

Schwabe for more history

and better algorithms.

Why do we believe that
the latest algorithms work

at the claimed speeds?

Experiments!

Similar story for R
we don't have pro
best factoring algc



")

curity:

g

):

f
ethods

stance

7

2000 Gallant—Lambert—Vanstone:

inadequately specified statement
of a negating rho algorithm.

2010 Bos—Kleinjung—Lenstra:
a plausible interpretation of
that algorithm is non-functional.

See 2011 Bernstein—Lange-—
Schwabe for more history
and better algorithms.

Why do we believe that
the latest algorithms work
at the claimed speeds?
Experiments!

Similar story for RSA securi
we don't have proofs for the
best factoring algorithms.



2000 Gallant—Lambert—Vanstone:

inadequately specified statement

of a negating rho algorithm.

2010 Bos—Kleinj

ung—Lenstra:

a plausible inter

bretation of

that algorithm is non-functional.

See 2011 Bernstein—Lange—

Schwabe for more history

and better algorithms.

Why do we believe that
the latest algorithms work

at the claimed speeds?

Experiments!

Similar story for RSA security:
we don’'t have proofs for the
best factoring algorithms.



2000 Gallant—Lambert—Vanstone:

inadequately specified statement

of a negating rho algorithm.

2010 Bos—Kleinj

ung—Lenstra:

a plausible inter

bretation of

that algorithm is non-functional.

See 2011 Bernstein—Lange—

Schwabe for more history

and better algorithms.

Why do we believe that
the latest algorithms work

at the claimed speeds?

Experiments!

Similar story for RSA security:
we don’'t have proofs for the
best factoring algorithms.

Code-based cryptography:
we don’'t have proofs for the
best decoding algorithms.



2000 Gallant—Lambert—Vanstone:

inadequately specified statement

of a negating rho algorithm.

2010 Bos—Kleinj

ung—Lenstra:

a plausible inter

bretation of

that algorithm is non-functional.

See 2011 Bernstein—Lange—

Schwabe for more history

and better algorithms.

Why do we believe that
the latest algorithms work

at the claimed speeds?

Experiments!

Similar story for RSA security:
we don’'t have proofs for the
best factoring algorithms.

Code-based cryptography:
we don’'t have proofs for the
best decoding algorithms.

Lattice-based cryptography:
we don’'t have proofs for the
best lattice algorithms.



2000 Gallant—Lambert—Vanstone:

inadequately specified statement

of a negating rho algorithm.

2010 Bos—Kleinj

ung—Lenstra:

a plausible inter

bretation of

that algorithm is non-functional.

See 2011 Bernstein—Lange—

Schwabe for more history

and better algorithms.

Why do we believe that
the latest algorithms work

at the claimed speeds?

Experiments!

Similar story for RSA security:
we don’'t have proofs for the
best factoring algorithms.

Code-based cryptography:
we don’'t have proofs for the
best decoding algorithms.

Lattice-based cryptography:
we don’'t have proofs for the
best lattice algorithms.

MQ-based cryptography:
we don’'t have proofs for the
best system-solving algorithms.



2000 Gallant—Lambert—Vanstone:

inadequately specified statement
of a negating rho algorithm.

2010 Bos—Kleinjung—Lenstra:
a plausible interpretation of

that algorithm is non-functional.

See 2011 Bernstein—Lange—
Schwabe for more history
and better algorithms.

Why do we believe that
the latest algorithms work
at the claimed speeds?
Experiments!

Similar story for RSA security:
we don’'t have proofs for the
best factoring algorithms.

Code-based cryptography:
we don’'t have proofs for the
best decoding algorithms.

Lattice-based cryptography:
we don’'t have proofs for the
best lattice algorithms.

MQ-based cryptography:
we don’'t have proofs for the
best system-solving algorithms.

Confidence relies on experiments.



llant—Lambert—Vanstone:

tely specified statement
ating rho algorithm.

s—Kleinjung—Lenstra:
le interpretation of
orithm is non-functional.

| Bernstein—Lange—
> for more history
er algorithms.

we believe that

t algorithms work
aimed speeds?
1ents!

Similar story for RSA security:
we don't have proofs for the
best factoring algorithms.

Code-based cryptography:
we don’'t have proofs for the
best decoding algorithms.

Lattice-based cryptography:
we don’'t have proofs for the
best lattice algorithms.

MQ-based cryptography:
we don’'t have proofs for the
best system-solving algorithms.

Confidence relies on experiments.

Where's

Quantur
IS movin

into algc

Example
exponen
Bernstel

Don't e
for the L
to attac

How do
in analy:
Quantur



bert—Vanstone:

fied statement
algorithm.

1g—Lenstra:
~tation of
1on-functional.

n—Lange—
history

1MSs.

> that

ns work
eds?

Similar story for RSA security:
we don’'t have proofs for the
best factoring algorithms.

Code-based cryptography:
we don’'t have proofs for the
best decoding algorithms.

Lattice-based cryptography:
we don’'t have proofs for the
best lattice algorithms.

MQ-based cryptography:
we don’'t have proofs for the
best system-solving algorithms.

Confidence relies on experiments.

Where's my quant

Quantum-algorithi
Is moving beyond
into algorithms wi

Example: subset-s
exponent ~0.241
Bernstein—Jeffery-

Don't expect proo
for the best quant
to attack post-qus

How do we obtain
in analysis of thes

Quantum experim



tone:

nent

onal.

Similar story for RSA security:

we don't have proofs for the
best factoring algorithms.

Code-based cryptography:
we don’'t have proofs for the
best decoding algorithms.

Lattice-based cryptography:
we don’'t have proofs for the
best lattice algorithms.

MQ-based cryptography:
we don’'t have proofs for the

best system-solving algorithms.

Confidence relies on experiments.

Where's my quantum compi

Quantum-algorithm design
Is moving beyond textbook
into algorithms without proc

Example: subset-sum
exponent ~0.241 from 2013
Bernstein—Jetfery—Lange—M¢

Don't expect proofs or prov:
for the best quantum algorit
to attack post-quantum cry

How do we obtain confidenc
in analysis of these algorithr
Quantum experiments are h



Similar story for RSA security:
we don’'t have proofs for the
best factoring algorithms.

Code-based cryptography:
we don’'t have proofs for the
best decoding algorithms.

Lattice-based cryptography:
we don’'t have proofs for the
best lattice algorithms.

MQ-based cryptography:
we don’'t have proofs for the
best system-solving algorithms.

Confidence relies on experiments.

Where's my quantum computer?

Quantum-algorithm design
Is moving beyond textbook stage
into algorithms without proofs.

Example: subset-sum
exponent ~0.241 from 2013
Bernstein—Jeffery—Lange—Meurer.

Don't expect proofs or provability
for the best quantum algorithms
to attack post-quantum crypto.

How do we obtain confidence
in analysis of these algorithms?
Quantum experiments are hard.



tory for RSA security:
- have proofs for the
toring algorithms.

sed cryptography:
- have proofs for the
oding algorithms.

based cryptography:
- have proofs for the
ice algorithms.

ed cryptography:
- have proofs for the
tem-solving algorithms.

1ce relies on experiments.

Where's my quantum computer?

Quantum-algorithm design
Is moving beyond textbook stage
into algorithms without proofs.

Example: subset-sum
exponent ~0.241 from 2013
Bernstein—Jeffery—Lange—Meurer.

Don't expect proofs or provability
for the best quantum algorithms
to attack post-quantum crypto.

How do we obtain confidence
in analysis of these algorithms?

Quantum experiments are hard.

Where's

Analogy
a 280 NI



SA security:
ofs for the
rithmes.

graphy:
ofs for the
rithms.

tography:
ofs for the
hms.

raphy:
ofs for the
g algorithms.

n experiments.

Where's my quantum computer?

Quantum-algorithm design
Is moving beyond textbook stage
into algorithms without proofs.

Example: subset-sum
exponent ~0.241 from 2013
Bernstein—Jeffery—Lange—Meurer.

Don't expect proofs or provability
for the best quantum algorithms
to attack post-quantum crypto.

How do we obtain confidence
in analysis of these algorithms?
Quantum experiments are hard.

Where's my big cc

Analogy: Public h
a 259 NFS RSA-1(



NS.

1ents.

Where's my quantum computer?

Quantum-algorithm design
Is moving beyond textbook stage
into algorithms without proofs.

Example: subset-sum
exponent ~0.241 from 2013
Bernstein—Jeffery—Lange—Meurer.

Don't expect proofs or provability
for the best quantum algorithms
to attack post-quantum crypto.

How do we obtain confidence
in analysis of these algorithms?

Quantum experiments are hard.

Where's my big computer?

Analogy: Public hasn't carri
a 250 NFS RSA-1024 experi



Where's my quantum computer?

Quantum-algorithm design
Is moving beyond textbook stage
into algorithms without proofs.

Example: subset-sum
exponent ~0.241 from 2013
Bernstein—Jeffery—Lange—Meurer.

Don't expect proofs or provability
for the best quantum algorithms
to attack post-quantum crypto.

How do we obtain confidence
in analysis of these algorithms?

Quantum experiments are hard.

Where's my big computer?

Analogy: Public hasn't carried out
a 289 NFS RSA-1024 experiment.



Where's my quantum computer?

Quantum-algorithm design
Is moving beyond textbook stage
into algorithms without proofs.

Example: subset-sum
exponent ~0.241 from 2013
Bernstein—Jeffery—Lange—Meurer.

Don't expect proofs or provability
for the best quantum algorithms
to attack post-quantum crypto.

How do we obtain confidence
in analysis of these algorithms?

Quantum experiments are hard.

Where's my big computer?

Analogy: Public hasn't carried out
a 289 NFS RSA-1024 experiment.

But public has carried out

250 260 570 NFS experiments.
Hopefully not too much
extrapolation error for 259



Where's my quantum computer?

Quantum-algorithm design
Is moving beyond textbook stage
into algorithms without proofs.

Example: subset-sum
exponent ~0.241 from 2013
Bernstein—Jeffery—Lange—Meurer.

Don't expect proofs or provability
for the best quantum algorithms
to attack post-quantum crypto.

How do we obtain confidence
in analysis of these algorithms?
Quantum experiments are hard.

Where's my big computer?

Analogy: Public hasn't carried out
a 289 NFS RSA-1024 experiment.

But public has carried out
250 260 570 NFS experiments.

Hopefully not too much

extrapolation error for 259

Vastly larger extrapolation

for the quantum situation.
Imagine attacker performing
230 operations on 249 qubits;

compare to today's challenges
of 21,22 23 24 25 20 gubits.



‘my quantum computer?

n-algorithm design
g beyond textbook stage
rithms without proofs.

: subset-sum
t =~0.241 from 2013
n—Jeffery—Lange—Meurer.

(pect proofs or provability
yest quantum algorithms
kK post-quantum crypto.

we obtain confidence
5is of these algorithms?
n experiments are hard.

Where's my big computer?

Analogy: Public hasn't carried out
a 289 NFS RSA-1024 experiment.

But public has carried out
290 260 570 NFS experiments.

Hopefully not too much

extrapolation error for 259

Vastly larger extrapolation

for the quantum situation.
Imagine attacker performing
230 operations on 240 qubits:

compare to today's challenges
of 21,22 23 24 25 20 gubits.

Simulati

An algor
IS a com
of the al
for a pai



um computer?

M design
textbook stage
thout proofs.

um
from 2013
Lange—Meurer.

fs or provability
um algorithms
\ntum crypto.

confidence
> algorithms?
ents are hard.

Where's my big computer?

Analogy: Public hasn't carried out
a 289 NFS RSA-1024 experiment.

But public has carried out
250 260 570 NFS experiments.

Hopefully not too much
extrapolation error for 259

Vastly larger extrapolation

for the quantum situation.
Imagine attacker performing
230 operations on 249 qubits;

compare to today's challenges
of 21,22 23 24 25 20 gubits.

Simulation

An algorithm simt
IS a computer-assi
of the algorithm’s
for a particular ing



1ter?

stage
fs.

=urer.

ability
hms
OTo.

e
ns?
ard.

Where's my big computer?

Analogy: Public hasn't carried out
a 289 NFS RSA-1024 experiment.

But public has carried out
290 260 570 NFS experiments.

Hopefully not too much
extrapolation error for 259

Vastly larger extrapolation

for the quantum situation.
Imagine attacker performing
230 operations on 240 qubits:

compare to today's challenges
of 21,22 23 24 25 20 qubits.

Simulation

An algorithm simulation

Is a computer-assisted proof
of the algorithm’s performar
for a particular input.



Where's my big computer?

Analogy: Public hasn't carried out
a 289 NFS RSA-1024 experiment.

But public has carried out
250 260 570 NFS experiments.

Hopefully not too much
extrapolation error for 259

Vastly larger extrapolation

for the quantum situation.
Imagine attacker performing
230 operations on 249 qubits;

compare to today's challenges
of 21,22 23 24 25 20 gubits.

Simulation

An algorithm simulation

Is a computer-assisted proof
of the algorithm’s performance
for a particular input.



Where's my big computer?

Analogy: Public hasn't carried out
a 289 NFS RSA-1024 experiment.

But public has carried out

250 260 570 NFS experiments.

Hopefully not too much
extrapolation error for 259

Vastly larger extrapolation

for the quantum situation.
Imagine attacker performing
230 operations on 249 qubits;

compare to today's challenges

of 21,22 23 24 25 20 gubits.

Simulation

An algorithm simulation

Is a computer-assisted proof
of the algorithm’s performance
for a particular input.

Compared to traditional proofs:

Theorem statement Is easier.
Steps in proof are easier.
Don't need to generalize
beyond a single input.

Provability 1s guaranteed.

Proof has computer assistance,
so less chance of error.



‘my big computer?

- Public hasn't carried out
-S RSA-1024 experiment.

lic has carried out
270 NFS experiments.
y not too much

ation error for 280

rger extrapolation
juantum situation.
attacker performing
ations on 249 qubits:

to today's challenges
', 23,24 25 20 qubits.

Simulation

An algorithm simulation

IS a computer-assisted proof
of the algorithm’s performance
for a particular input.

Compared to traditional proofs:

Theorem statement is easier.
Steps in proof are easier.
Don't need to generalize
beyond a single input.

Provability 1s guaranteed.

Proof has computer assistance,
so less chance of error.

The star
of an alg

Comput

dNdG
SucC

to, 1

N tha

algorithr

Prove tf
matches

Special

The con

the

origi

plus prir

Particul:



ymputer?

asn't carried out
)24 experiment.

ried out
experiments.
much

- for 280

polation
ituation.
yerforming
240 qubits;

s challenges
2 26 qubits.

Simulation

An algorithm simulation

Is a computer-assisted proof
of the algorithm’s performance
for a particular input.

Compared to traditional proofs:

Theorem statement Is easier.
Steps in proof are easier.
Don't need to generalize
beyond a single input.

Provability 1s guaranteed.

Proof has computer assistance,
so less chance of error.

The standard stru
of an algorithm sit

Compute sp, s1, S
and tp, 1, by, ...

such that s; repres

algorithm state at

Prove that the col
matches the origir

Special case: expe
The computation

the original algorit
plus printouts of s
Particularly easy p



ed out

ment.

11S.

es
Its.

Simulation

An algorithm simulation

IS a computer-assisted proof
of the algorithm’s performance
for a particular input.

Compared to traditional proofs:

Theorem statement is easier.
Steps in proof are easier.
Don't need to generalize
beyond a single input.

Provability 1s guaranteed.

Proof has computer assistance,
so less chance of error.

The standard structure
of an algorithm simulation:

Compute sp, s1, 59, . . .
and tp, t1, by, ...

such that s; represents
algorithm state at time t;.

Prove that the computation
matches the original algoritt

Special case: experiment.
The computation /s

the original algorithm
plus printouts of state.
Particularly easy proof.



Simulation

An algorithm simulation

Is a computer-assisted proof
of the algorithm’s performance
for a particular input.

Compared to traditional proofs:

Theorem statement Is easier.
Steps in proof are easier.
Don't need to generalize
beyond a single input.

Provability 1s guaranteed.

Proof has computer assistance,
so less chance of error.

The standard structure

of an algorithm simulation:

Compute sp, 51, 9, . . .

and tp

such t
algorit

Prove

b1, b, ...
nat s; represents

nm state at time t;.

that the computation

matches the original algorithm.

Special case: experiment.

The computation is

the original algorithm

plus printouts of state.

Particularly easy proof.



on

1thm simulation
puter-assisted proof
gorithm's performance
ticular input.

2d to traditional proofs:

1 statement Is easier.
proof are easier.

ed to generalize

1 single input.

ity Is guaranteed.

1S computer assistance,
hance of error.

The standard structure
of an algorithm simulation:

Compute sp, s1, 52, . . .
and tp, t1, by, ...

such that s; represents
algorithm state at time t;.

Prove that the computation

matches the original algorithm.

Special case: experiment.
The computation /s

the original algorithm
plus printouts of state.
Particularly easy proof.

Simulati

“If you «
a quantt
pre-quar
have an
algorithr



lation

sted proof
performance
ut.

tional proofs:

1t IS easler.
easler.
eralize

put.

anteed.

er assistance,

Iror.

The standard structure
of an algorithm simulation:

Compute sp, 51, 9, . . .
and tp, 1, by, ...

such that s; represents

algorithm state at time t;.

Prove that the computation

matches the original algorithm.

Special case: experiment.
The computation /s

the original algorithm
plus printouts of state.
Particularly easy proof.

Simulation of qual

“If you can efficier
a quantum algorit
pre-quantum comyj
have an efficient
algorithm for the



1CE

ofs:

ce,

The standard structure
of an algorithm simulation:

Compute s, s1, 52, . . .
and tp, t1, by, ...

such that s; represents
algorithm state at time t;.

Prove that the computation

matches the original algorithm.

Special case: experiment.
The computation /s

the original algorithm
plus printouts of state.
Particularly easy proof.

Simulation of quantum algo

“If you can efficiently simulz
a quantum algorithm using .
pre-quantum computer then
have an efficient pre-quantu
algorithm for the same prob



The standard structure Simulation of quantum algorithms

of an algorithm simulation: y .. .
If you can efficiently simulate

Compute sp, 51, 9, . . . a quantum algorithm using a
and tp, t1, o, . .. pre-quantum computer then you
such that s; represents have an efficient pre-quantum
algorithm state at time t;. algorithm for the same problem.”

Prove that the computation
matches the original algorithm.

Special case: experiment.
The computation /s

the original algorithm
plus printouts of state.
Particularly easy proof.




The standard structure

of an algorithm simulation:

Compute sp, 51, 9, . . .

and ftp

such t
algorit

Prove

matches the original algorithm.

b1, b, ...
nat s; represents

nm state at time t;.

that the computation

Special case: experiment.

The computation /s

the ori

ginal algorithm

plus printouts of state.

Particularly easy proof.

Simulation of quantum algorithms

“If you can efficiently simulate

a quantum algorithm using a
pre-quantum computer then you
have an efficient pre-quantum
algorithm for the same problem.”

No, not necessarily!



The standard structure

of an algorithm simulation:

Compute sp, 51, 9, . . .

and ftp

such t
algorit

Prove

matches the original algorithm.

b1, b, ...
nat s; represents

nm state at time t;.

that the computation

Special case: experiment.

The computation /s

the original algorithm

plus printouts of state.

Particularly easy proof.

Simulation of quantum algorithms

“If you can efficiently simulate

a quantum algorithm using a
pre-quantum computer then you
have an efficient pre-quantum
algorithm for the same problem.”

No, not necessarily!

“Yes, you do! Simply run the
simulation on the same input and
extract the original algorithm’s
output from the final state.”



The standard structure

of an algorithm simulation:

Compute sp, 51, 9, . . .

and ftp

such t
algorit

Prove

matches the original algorithm.

b1, b, ...
nat s; represents

nm state at time t;.

that the computation

Special case: experiment.

The computation /s

the original algorithm

plus printouts of state.

Particularly easy proof.

Simulation of quantum algorithms

“If you can efficiently simulate

a quantum algorithm using a
pre-quantum computer then you
have an efficient pre-quantum
algorithm for the same problem.”

No, not necessarily!

“Yes, you do! Simply run the
simulation on the same input and
extract the original algorithm’s
output from the final state.”

Ah, but did | say that the
simulation takes only this input?



1dard structure
rorithm simulation:

2 S, S1, S0, . . .

1, o, ...
T S; represents

n state at time t;.

at the computation

the original algorithm.

case: experiment.
\putation s

nal algorithm
touts of state.
rly easy proof.

Simulation of quantum algorithms

“If you can efficiently simulate

a quantum algorithm using a
pre-quantum computer then you
have an efficient pre-quantum
algorithm for the same problem.”

No, not necessarily!

“Yes, you do! Simply run the
simulation on the same input and
extract the original algorithm's
output from the final state.”

Ah, but did | say that the
simulation takes only this input?

Trapdoc

Input to
to be In

Simulati
that ma
faster th

Typical
o Algorr

o Algorr

e Simul:
This Is s
can try |
understz



cture
nulation:

ents
time t;.

nputation

al algorithm.

riment.
IS

hm
tate.
roof.

Simulation of quantum algorithms

“If you can efficiently simulate

a quantum algorithm using a
pre-quantum computer then you
have an efficient pre-quantum
algorithm for the same problem.”

No, not necessarily!

“Yes, you do! Simply run the
simulation on the same input and
extract the original algorithm’s
output from the final state.”

Ah, but did | say that the
simulation takes only this input?

Trapdoor simulatic

Input to simulatio
to be Input to orig

Simulation can us
that makes simula

faster than origina

Typical example:
e Algorithm input:

e Algorithm outpu
e Simulation inpus

This is still useful:
can try many chol
understand algorit



M.

Simulation of quantum algorithms

“If you can efficiently simulate

a quantum algorithm using a
pre-quantum computer then you
have an efficient pre-quantum
algorithm for the same problem.”

No, not necessarily!

“Yes, you do! Simply run the
simulation on the same input and
extract the original algorithm's
output from the final state.”

Ah, but did | say that the
simulation takes only this input?

Trapdoor simulation

Input to simulation doesn't
to be input to original algori

Simulation can use extra ing
that makes simulation much
faster than original algorithr

Typical example:
e Algorithm input: f(x).

e Algorithm output: x.

e Simulation input: x.

This is still useful:
can try many choices of x,
understand algorithm for f{(.



Simulation of quantum algorithms

“If you can efficiently simulate

a quantum algorithm using a
pre-quantum computer then you
have an efficient pre-quantum
algorithm for the same problem.”

No, not necessarily!

“Yes, you do! Simply run the
simulation on the same input and
extract the original algorithm's
output from the final state.”

Ah, but did | say that the
simulation takes only this input?

Trapdoor simulation

Input to simulation doesn’'t have
to be input to original algorithm.

Simulation can use extra input
that makes simulation much
faster than original algorithm.

Typical example:
e Algorithm input: f(x).

e Algorithm output: x.

e Simulation input: x.

This is still useful:
can try many choices of x,
understand algorithm for f(x).



on of quantum algorithms

Trapdoor simulation

an efficiently simulate
1m algorithm using a
'tum computer then you
efficient pre-quantum

n for the same problem.”

necessarily!

u do! Simply run the

on on the same input and
he original algorithm's
rom the final state.”

did | say that the
on takes only this input?

Input to simulation doesn’'t have

to be input to original algorithm.

Simulation can use extra input
that makes simulation much
faster than original algorithm.

Typical example:
e Algorithm input: f(x).

e Algorithm output: x.

e Simulation input: x.

This is still useful:
can try many choices of x,
understand algorithm for f(x).

For com

Often se
In tradit

Typical |
(x, 1) —

Formula

Simulati
Given x,
for each
simulatic
Doesn’t
that wor
Proof cc



1tum algorithms

Trapdoor simulation

1tly simulate
hm using a
outer then you
re-quantum

same problem.”

1

ply run the
same input and
| algorithm'’s
nal state.”

hat the
nly this input?

Input to simulation doesn’'t have

to be input to original algorithm.

Simulation can use extra input

that makes simulation much

faster than original algorithm.

Typical example:

o A
o A

gorit
gorit

nm input: f(x).

nm output: X.

e Simulation input: x.

This 1s still useful:

can try many choices of x,

understand algorithm for f(x).

For comparison:

Often see x inside
in traditional algol

Typical proof has
(x, 1) — (s, tj).
Formula 1s proven

Simulation is more
Given x,

for each 1,
simulation comput
Doesn’t need unifi
that works for all .
Proof can work “I



rithms

Trapdoor simulation

1te

3
you

m

lem.

t and

n's

put?

Input to simulation doesn’'t have

to be input to original algorithm.

Simulation can use extra input

that makes simulation much

faster than original algorithm.

Typical example:

o A
o A

gorit
gorit

m input: f(x).

nm output: X.

e Simulation input: x.

This is still useful:

can try many choices of x,

understand algorithm for f(x).

For comparison:

Often see x inside proofs
in traditional algorithm anal

Typical proof has formula
(X, i) —> (S,', t,').
Formula Is proven inductivel

Simulation is more flexible.
Given x,

for each 1,

simulation computes (s, t;).
Doesn’'t need unified formul.
that works for all x, i.

Proof can work “locally”.



Trapdoor simulation

Input to simulation doesn’'t have

to be input to original algorithm.

Simulation can use extra input
that makes simulation much
faster than original algorithm.

Typical example:
e Algorithm input: f(x).

e Algorithm output: x.
e Simulation input: x.

This is still useful:
can try many choices of x,
understand algorithm for f(x).

For comparison:

Often see x inside proofs
in traditional algorithm analyses.

Typical proof has formula
(x, 1) — (s, tj).
Formula is proven inductively.

Simulation is more flexible.
Given x,

for each 1,

simulation computes (s;, t;).
Doesn't need unified formula
that works for all x, i.

Proof can work “locally”.



r simulation

simulation doesn’'t have

out to original algorithm.

on can use extra input
kes simulation much

an original algorithm.

example:
thm input: f(x).

Chm output: X.
tion input: x.

till useful:
many choices of x,
nd algorithm for f(x).

For comparison:

Often see x inside proofs

in traditional algorithm analyses.

Typical proof has formula
(X, i) —> (S,', t,').
Formula Is proven inductively.

Simulation is more flexible.
Given x,

for each 1,

simulation computes (s, t;).
Doesn’'t need unified formula
that works for all x, i.

Proof can work “locally”.

Proof of

2014.04
Simulati
proof of
distinctr



oNn

n doesn't have

inal algorithm.

> extra Input
tion much
| algorithm.

ces of x,
hm for f(x).

For comparison:

Often see x inside proofs

in traditional algorithm analyses.

Typical proof has formula
(x, 1) — (s, tj).
Formula is proven inductively.

Simulation is more flexible.
Given x,

for each 1,

simulation computes (s;, t;).
Doesn’'t need unified formula
that works for all x, I.

Proof can work “locally”.

Proof of concept

2014.04 Chou — .
Simulation shows
proof of 2003 Am
distinctness algorr




have

thm.

ut

For comparison:

Often see x inside proofs

in traditional algorithm analyses.

Typical proof has formula
(X, i) —> (S,', t,').
Formula Is proven inductively.

Simulation is more flexible.
Given x,

for each 1,

simulation computes (s, t;).
Doesn’'t need unified formula
that works for all x, i.

Proof can work “locally”.

Proof of concept

2014.04 Chou — Ambainis:
Simulation shows error in
proof of 2003 Ambainis
distinctness algorithm.



For comparison:

Often see x inside proofs

in traditional algorithm analyses.

Typical proof has formula
(x, 1) — (s, tj).
Formula is proven inductively.

Simulation is more flexible.
Given x,

for each 1,

simulation computes (s;, t;).
Doesn’'t need unified formula
that works for all x, I.

Proof can work “locally”.

Proof of concept

2014.04 Chou — Ambainis:
Simulation shows error in
proof of 2003 Ambainis
distinctness algorithm.



For comparison:

Often see x inside proofs

in traditional algorithm analyses.

Typical proof has formula
(x, 1) — (s, tj).
Formula is proven inductively.

Simulation is more flexible.
Given x,

for each 1,

simulation computes (s;, t;).
Doesn’'t need unified formula
that works for all x, I.

Proof can work “locally”.

Proof of concept

2014.04 Chou — Ambainis:
Simulation shows error in
proof of 2003 Ambainis
distinctness algorithm.

Ambainis: Yes, thanks, will fix.



For comparison:

Often see x inside proofs

in traditional algorithm analyses.

Typical proof has formula
(x, 1) — (s, tj).
Formula is proven inductively.

Simulation is more flexible.
Given x,

for each 1,

simulation computes (s;, t;).
Doesn’'t need unified formula
that works for all x, I.

Proof can work “locally”.

Proof of concept

2014.04 Chou — Ambainis:
Simulation shows error in
proof of 2003 Ambainis
distinctness algorithm.

Ambainis: Yes, thanks, will fix.

2014.04 Chou — Childs:

Simulation s
Childs—Eisen
algorithm is

nows that 2003

nerg distinctness
non-functional;

need to take half angle.



For comparison:

Often see x inside proofs

in traditional algorithm analyses.

Typical proof has formula
(x, 1) — (s, tj).
Formula is proven inductively.

Simulation is more flexible.
Given x,

for each 1,

simulation computes (s;, t;).
Doesn’'t need unified formula
that works for all x, I.

Proof can work “locally”.

Proof of concept

2014.04 Chou — Ambainis:
Simulation shows error in
proof of 2003 Ambainis
distinctness algorithm.

Ambainis: Yes, thanks, will fix.

2014.04 Chou — Childs:

Simulation s
Childs—Eisen
algorithm is

nows that 2003

nerg distinctness
non-functional;

need to take half angle.

Childs: Yes.

Typo, already

fixed in 2005 journal version.



