Introduction to Data (“state”) stored in n bits:

quantum algorithms an element of {0, 1}",
often viewed as representing

Daniel J. Bernstein
an element of {0,1,...,2"7 —1}.

University of lllinois at Chicago &
Technische Universiteit Eindhoven

Introduction to Data (“state”) stored in n bits:

quantum algorithms an element of {0, 1}",
often viewed as representing

Daniel J. Bernstein
an element of {0,1,...,2"7 —1}.

University of lllinois at Chicago &

Technische Universiteit Eindhoven State stored in n qubits:
a nonzero element of C2".

Retrieving this vector Is tough!

Introduction to Data (“state”) stored in n bits:

quantum algorithms an element of {0, 1}",
often viewed as representing

Daniel J. Bernstein
an element of {0,1,...,2"7 —1}.

University of lllinois at Chicago &
Technische Universiteit Eindhoven State stored in n qubits:
a nonzero element of C2".

Retrieving this vector Is tough!

If n qubits have state

(ag, a1,...,a»_1) then
measuring the qubits produces
an element of {0,1,...,2"7 — 1}
and destroys the state.
Measurement produces element g

with probability |ag|?/ Y, |ar|?.

tion to
1 algorithms

. Bernstein
ty of lllinois at Chicago &
he Universiteit Eindhoven

Data (“state”) stored in n bits:
an element of {0,1}",

often viewed as representing
an element of {0,1,...,2"7 — 1}

State stored in n qubits:
a nonzero element of C2".

Retrieving this vector Is tough!

If n qubits have state

(ag, a1,...,a»_1) then
measuring the qubits produces
an element of {0,1,...,2"7 — 1}
and destroys the state.
Measurement produces element g

with probability |ag|?/ Y, |ar|?.

Some ex

(1,0,0,(
“10)" in
Measure

NS

0
is at Chicago &
siteit Eindhoven

Data (“state”) stored in n bits:
an element of {0,1}",

often viewed as representing
an element of {0,1,...,2"7 — 1}

State stored in n qubits:
a nonzero element of C2".

Retrieving this vector Is tough!

If n qubits have state

(ag, a1,...,a»_1) then
measuring the qubits produces
an element of {0,1,...,2"7 — 1}
and destroys the state.
Measurement produces element g

with probability |ag|?/ Y, |ar|?.

Some examples of

(1,0,0,0,0,0,0,0
“10)" in standard
Measurement proc

g0 &
hoven

Data (“state”) stored in n bits:
an element of {0,1}",

often viewed as representing
an element of {0,1,...,2"7 — 1}

State stored in n qubits:
a nonzero element of C2".

Retrieving this vector Is tough!

If n qubits have state

(ag, a1,...,a»_1) then
measuring the qubits produces
an element of {0,1,...,2"7 — 1}
and destroys the state.
Measurement produces element g

with probability |ag|?/ Y, |ar|?.

Some examples of 3-qubit si

(1,0,0,0,0,0,0,0) is
“|0)" in standard notation.

Measurement produces O.

Data (“state”) stored in n bits:
an element of {0,1}",

often viewed as representing
an element of {0,1,...,2"7 — 1}

State stored in n qubits:
a nonzero element of C2".

Retrieving this vector Is tough!

If n qubits have state

(ag, a1,...,a»_1) then
measuring the qubits produces
an element of {0,1,...,2"7 — 1}
and destroys the state.
Measurement produces element g

with probability |ag|?/ Y, |ar|?.

Some examples of 3-qubit states:

(1,0,0,0,0,0,0,0) is
“I0)" in standard notation.

Measurement produces O.

Data (“state”) stored in n bits:
an element of {0, 1}",
often viewed as representing

an element of {0,1,...,2"7 — 1}

State stored in n qubits:
a nonzero element of C2".

Retrieving this vector Is tough!

If n qubits have state
(ao, a, ..., aQn_l) then
measuring the qubits produces

an element of {0,1,...,2"7 — 1}
and destroys the state.

Measurement produces element g

with probability |ag|?/ Y, |ar|?.

Some examples of 3-qubit states:

(1,0,0,0,0,0,0,0) is
“I0)" in standard notation.

Measurement produces O.

(OOOOOOlO)ls
“|6)" in standard notation.

Measurement produces 6.

Data (“state”) stored in n bits:

an element of {0, 1}",
often viewed as representing

an element of {0,1,...,2"7 — 1}

State stored in n qubits:
a nonzero element of C2".

Retrieving this vector Is tough!

If n qubits have state
(ao, a, ..., aQn_l) then
measuring the qubits produces

an element of {0,1,...,2"7 — 1}
and destroys the state.

Measurement produces element g

with probability |ag|?/ Y, |ar|?.

Some examples of 3-qubit states:

(1,0,0,0,0,0,0,0) is
“I0)" in standard notation.

Measurement produces O.

(OOOOOOlO)ls
“|6)" in standard notation.

Measurement produces 6.

(0,0,0,0,0,0,—7i,0) = —7i|6):
Measurement produces 6.

Data (“state”) stored in n bits:

an element of {0, 1}",
often viewed as representing

an element of {0,1, ..., 2" — 1},

State stored in n qubits:
a nonzero element of C2".

Retrieving this vector Is tough!

If n qubits have state

and destroys the state.

Measurement produces element g

with probability |ag|?/ Y, |ar|?.

Some examples of 3-qubit states:

(1,0,0,0,0,0,0,0) is
“I0)" in standard notation.

Measurement produces O.

(OOOOOOlO)ls
“|6)" in standard notation.

Measurement produces 6.

(0,0,0,0,0,0,—7i,0) = —7i|6):
Measurement produces 6.

(0,0,4,0,0,0,8,0) = 4|2) + 8|6):
Measurement produces
2 with probability 20%,
6 with probability 80%.

state”) stored in n bits:
nt of {0, 1},
wed as representing

nt of {0,1,..., 2" — 1},

ored In n qubits:
n
o element of C? .

g this vector Is tough!

ts have state

.., aon_1) then

ng the qubits produces
nt of {0,1, ..., 2" — 1}
roys the state.

ment produces element g

bability |aq|?/S_, |ar|?.

Some examples of 3-qubit states:

(1,0,0,0,0,0,0,0) is
“|0)" in standard notation.

Measurement produces O.

(0,0,0,0,0,0,1,0) is
“|6)" in standard notation.

Measurement produces 6.

(0,0,0,0,0,0,—7i,0) = —7i|6):
Measurement produces 6.

(0,0,4,0,0,0,8,0) = 4]2) + 8/6):

Measurement produces
2 with probability 20%,

6 with probability 80%.

Fast quc

(ag, a1,
(a1, ag,
is compl

hence

“(

red In n bits:
1}7,

presenting

Jubits:
of C%".
tor 1s tough!

ate
then
bits produces

tate.

luces element g

Q‘Q/Zr ‘al’|2'

Some examples of 3-qubit states:

(1,0,0,0,0,0,0,0) is
“I0)" in standard notation.

Measurement produces O.

(O 0,0,0,0,0,1,0) is
“|6)" in standard notation.

Measurement produces 6.

(0,0,0,0,0,0,—7i,0) = —7i|6):
Measurement produces 6.

(0,0,4,0,0,0,8,0) = 4|2) + 8|6):

Measurement produces
2 with probability 20%,
6 with probability 80%.

Fast quantum ope

(ag, a1, a2, a3, ag, ¢

(a1, ag, a3, a2, as, ¢
Is complementing

hence “complemel

Its:

Some examples of 3-qubit states:

(1,0,0,0,0,0,0,0) is
“|0)" in standard notation.

Measurement produces O.

(0,0,0,0,0,0,1,0) is
“|6)" in standard notation.

Measurement produces 6.

(0,0,0,0,0,0,—7i,0) = —7i|6):
Measurement produces 6.

(0,0,4,0,0,0,8,0) = 4]2) + 8/6):

Measurement produces
2 with probability 20%,
6 with probability 80%.

Fast quantum operations, p:

(301 a]_v 321 331 341 351 36' 37) |

(a1, ag, a3, ao, as, a4, a7, ag)
Is complementing index bit |

hence “complementing qubr

Some examples of 3-qubit states:

(1,0,0,0,0,0,0,0) is
“I0)" in standard notation.

Measurement produces O.

(O 0,0,0,0,0,1,0) is
“|6)" in standard notation.

Measurement produces 6.

(0,0,0,0,0,0,—7i,0) = —7i|6):
Measurement produces 6.

(0,0,4,0,0,0,8,0) = 4|2) + 8|6):

Measurement produces
2 with probability 20%,
6 with probability 80%.

Fast quantum operations, part 1

(ag, a1, a2, a3, a4, as, ag, a7) —

(a1, ag, a3, ao, as, a4, a7, ag)
Is complementing index bit O,

hence “complementing qubit 0.

Some examples of 3-qubit states:

(1,0,0,0,0,0,0,0) is
“I0)" in standard notation.

Measurement produces O.

(OOOOOOlO)ls
“|6)" in standard notation.

Measurement produces 6.

(0,0,0,0,0,0,—7i,0) = —7i|6):
Measurement produces 6.

(0,0,4,0,0,0,8,0) = 4|2) + 8|6):

Measurement produces
2 with probability 20%,
6 with probability 80%.

Fast quantum operations, part 1

(ag, a1, a2, a3, a4, as, ag, a7) —

(a1, ag, a3, ao, as, a4, a7, ag)
Is complementing index bit O,

hence “complementing qubit 0.

(ag, a1, a2, a3, aa, as, ae, a7)

is measured as (qg, g1, q2),
representing g = qg + 291 + 49>,
with probability |ag|?/ Y, |ar|?.

(a1, ag, a3, ao, as, a4, a7, ap)
is measured as (qo @ 1, g1, q2),
representing g @ 1,

with probability |ag|?/ Y, |ar|?.

amples of 3-qubit states:

),0,0,0,0) is
standard notation.
ment produces 0.

),0,0,1,0) is
standard notation.
ment produces 6.

),0,0,—=7i,0) = —7il|6):
ment produces 6.

),0,0,8,0) = 4[2) + 8/6):

ment produces
robability 20%,
robability 80%.

Fast quantum operations, part 1

(ag, a1, a2, a3, a4, as, ag, ay) —
(a1, ag, a3, ao, as, a4, a7, ag)

Is complementing index

nit 0,

hence “complementing qubit 0" .

(ag, a1, a2, a3, aa, as, ae, a7)

is measured as (qg, g1, q2),
representing g = qg + 291 + 49>,
with probability |ag|?/ Y, |ar|?.

(a1, ag, a3, ao, as, a4, a7, ag)
is measured as (qo @ 1, g1, q2),

representing g @ 1,

with probability |ag|?/ Y, |ar|?.

(ag, a1, ¢
(34, dg, c
IS “‘com|

(g0, g1,

3-qubit states:

) is
notation.
luces O.

) is
notation.
luces 0.

,0) = —7i|6):
luces 0.

) = 4|2) 4 8|6):

luces
20%,
80%.

Fast quantum operations, part 1

(ag, a1, a2, a3, a4, as, ag, a7) —

(a1, ag, a3, ao, as, a4, a7, ag)
Is complementing index bit 0,

hence “complementing qubit 0.

(ag, a1, a2, a3, aa, as, ae, a7)

is measured as (qg, g1, q2),
representing g = qg + 291 + 49>,
with probability |ag|?/ Y, |ar|?.

(a1, ag, a3, ao, as, a4, ay, ap)

is measured as (qo @ 1, g1, q2),
representing g @ 1,

with probability |ag|?/ Y, |ar|?.

(ag, a1, a2, a3, aa, ¢
(a4, as, ag, ay, ag,
Is “‘complementing

(90, 91, 92) — (qo

ates:

16):

-8(6):

Fast quantum operations, part 1

(ag, a1, a2, a3, a4, as, ag, ay) —
(a1, ag, a3, ao, as, a4, a7, ag)

Is complementing index

nit O,

hence “complementing qubit 0.

(ag, a1, a2, a3, aa, as, ae, a7)

is measured as (qg, g1, q2),
representing g = qg + 291 + 4q»,
with probability |ag|?/ Y, |ar|?.

(a1, ag, a3, ao, as, a4, a7, ag)
is measured as (qo @ 1, g1, q2),

representing g @ 1,

with probability |ag|?/ Y, |ar|?.

(a0, a1, a2, a3, aa, as, ag, az)
(a4, as, ag, a7, ag, a1, a2, az)
is “complementing qubit 2"

(90,91.92) — (90,91, G2 D

Fast quantum operations, part 1 (ag, a1, a2, a3, aa, as, @, a7) —

(a4, as, ag, a7, ag, a1, a2, az)
is ‘complementing qubit 2" :

(90,91, G2) — (g0, 91, G2 B 1).

(ag, a1, a2, a3, a4, as, ag, a7) —

(a1, ag, a3, ao, as, a4, a7, ap)
Is complementing index bit O,

hence “complementing qubit 0.

(ag, a1, a2, a3, aa, as, ae, a7)

is measured as (qg, g1, q2),
representing g = qg + 291 + 49>,
with probability |ag|?/ Y, |ar|?.

(a1, ag, a3, ao, as, a4, a7, ap)
is measured as (qo @ 1, 91, q2),
representing g @ 1,

with probability |ag|?/ Y, |ar|?.

Fast quantum operations, part 1 (ag, a1, a2, a3, aa, as, @, a7) —
(a4, as, ag, a7, ag, a1, a2, az)
is ‘complementing qubit 2" :

(90,91, G2) — (g0, 91, G2 B 1).

(ag, a1, a2, a3, a4, as, ag, a7) —

(a1, ag, a3, ao, as, a4, a7, ap)
Is complementing index bit O,

hence “complementing qubit 0". (ag, a1, a2, a3, aa, as, a6, a7) —
(a0, a4, a2, a6, a1, as, a3, ar)
Is “swapping qubits 0 and 2" :

(0. g1, q2) = (92,91, q0).

(ag, a1, a2, a3, aa, as, ae, a7)

is measured as (qg, g1, q2),
representing g = qg + 291 + 49>,
with probability |ag|?/ Y, |ar|?.

(a1, ag, a3, ao, as, a4, a7, ap)

is measured as (qo @ 1, 91, q2),
representing g @ 1,

with probability |ag|?/ Y, |ar|?.

Fast quantum operations, part 1

(ag, a1, a2, a3, a4, as, ag, a7) —

(a1, ag, a3, ao, as, a4, a7, ap)
Is complementing index bit O,

hence “complementing qubit 0.

(ag, a1, a2, a3, aa, as, ae, a7)

is measured as (qg, g1, q2),
representing g = qg + 291 + 49>,
with probability |ag|?/ Y, |ar|?.

(a1, ag, a3, ao, as, a4, a7, ap)

is measured as (qo @ 1, 91, q2),
representing g @ 1,

with probability |ag|?/ Y, |ar|?.

(ag, a1, a2, a3, aa, as, @, a7) —
(a4, as, ag, a7, ag, a1, a2, az)
is ‘complementing qubit 2" :

(90,91, G2) — (g0, 91, G2 B 1).

(ag, a1, a2, a3, aa, as, a6, a7) —
(a0, a4, a2, a6, a1, as, a3, ar)
Is “swapping qubits 0 and 2" :

(90, 91, 92) — (92, 91, q0).
Complementing qubit 2
= swapping qubits 0 and 2

o complementing qubit O
o swapping qubits 0 and 2.

Similarly: swapping qubits 7, J.

intum operations, part 1

10, a3, a4, as, ap, A7) —

13, a2, as, a4, a7, a)
ementing index bit 0,

omplementing qubit 0.

2, a3, a4, as, ae, ar)

red as (qo, 91, 92),

ting g = qo + 291 + 4q2,
bability [ag|*/ Y, |ar|*.

33132135134137736)
red as (qo ® 1, q1, qz),
ting g @ 1,

bability |aq|?/S_, |ar|?.

(ag, a1, a2, a3, aa, as, ap, a7) —

(a4, as, ag, a7, ag, a1, a2, az)
is “complementing qubit 2" :

(90,91, G2) — (g0, 91, G2 ® 1).

(ag, a1, a2, a3, aa, as, ap, a7) —
(a0, a4, a2, a6, a1, as, a3, ar)
Is “swapping qubits O and 2":

(0. g1, 92) = (92,91, q0).

Complementing qubit 2

= swapping qubits 0 and 2
o complementing qubit O
o swapping qubits 0 and 2.

Similarly: swapping qubits 7, J.

(ag, a1, ¢
(ag, a1, ¢
IS a ‘rev
“control

(g0, g1, ¢

Example
(ag, a1, ¢
dg, d9, d:
d16, 417,
d24, d25,
— (ao, 2
ag, ag, a
d16, 417,
d24, d25,

rations, part 1

)5, 3, a7)

4, a7, ap)
index bit O,

1ting qubit 0.

5, A6, a7)
, g1, G2),
0 + 291 + 4q2,

Q‘Q/Zr ‘al"z'

)4,37,36)
D 1,q1,92),

Q‘z/Zr ‘al’|2'

(ag, a1, a2, a3, aa, as, a6, a7) —

(a4, as, ag, a7, ag, a1, a2, az)
Is “complementing qubit 2" :

(90,91, G2) — (g0, 91, G2 B 1).

(ag, a1, a2, a3, aa, as, a6, a7) —
(a0, a4, a2, a6, a1, as, a3, ar)
Is “swapping qubits O and 2" :

(0. g1, q2) = (92,91, q0).

Complementing qubit 2

= swapping qubits 0 and 2
o complementing qubit O
o swapping qubits 0 and 2.

Similarly: swapping qubits 7, J.

(ag, a1, a2, a3, aa, ¢

(ag, a1, a3, a2, aa, ¢
IS a "reversible XC

“controlled NOT |
(90, 91, g2) — (q0

Example with mor

(ag, a1, a2, a3, aa, ¢
dg, d9, 410, 411, 9412
a16, 417, 418, 319, 4
a4, azs, aze, a7, 4
— (ag, a1, a3, a2, a
dg, d9, d11, 410, d12
d16,d17, 419, 418, 4
d24, d25, d27, d26, 4

(ag, a1, a», a3, aa, as, ap, a7) —

(a4, as, ag, a7, ag, a1, a2, az)
is “complementing qubit 2" :

(90,91, G2) — (g0, 91, G2 ® 1).

(ag, a1, a2, a3, aa, as, ap, a7) —
(a0, a4, a2, a6, a1, as, a3, ar)
Is “swapping qubits O and 2":

(0. g1, 92) = (92,91, q0).

Complementing qubit 2

= swapping qubits 0 and 2
o complementing qubit O
o swapping qubits 0 and 2.

Similarly: swapping qubits /, J.

(30, di, d2, d3, d4, d5, 46, 37) |

(a0, a1, a3, a2, a4, as, a7, ag)
is a “reversible XOR gate” -

“controlled NOT gate”:
(90,91, 92) — (G0 ® g1, g1,

Example with more qubits:

(20, a1, a2, a3, a4, as, a6, a7,

dg, d9, 410, d11,d12, d13, d14,
d16, d17,d18, 419, 420, d21, 42
d24, d25, d26, d27, A28, d29, d3(
— (ag, a1, a3, a2, a4, as, ay, a
d8, d9, d11, 410, 412, 413, 415,
d16, d17, d19, 418, 420, d21, d2:
d24, d25, d27, d26, 428, d29, d3:

(ag, a1, a2, a3, aa, as, @, a7) —

(a4, as, ag, a7, ag, a1, a2, az)
Is “complementing qubit 2" :

(90,91, G2) — (g0, 91, G2 B 1).

(ag, a1, a2, a3, aa, as, a6, a7) —
(a0, a4, a2, a6, a1, as, a3, ar)
Is “swapping qubits 0 and 2" :

(0. g1, 92) = (92,91, q0).

Complementing qubit 2

= swapping qubits 0 and 2
o complementing qubit O
o swapping qubits 0 and 2.

Similarly: swapping qubits 7, J.

(ag, a1, a2, a3, aa, as, @, a7) —
(a0, a1, a3, a2, a4, as, a7, ag)

is a “reversible XOR gate” =
“controlled NOT gate”:

(g0, g1, 92) — (g0 @ q1. 91, 2).

Example with more qubits:

(a0, a1, @2, a3, as, as, ae, ar,

ag, a9, a10, 411, @12, 413, 14, a15,
16, a17, 18, @19, 20, 421, a22, a3,
a4, axs, e, a27, a2, a9, a0, as1)
— (ag, a1, a3, a2, a4, as, ay, ag,

ag, ag, a11, a10, @12, 413, a15, a4,
a16, a17, 419, @18, 20, 421, a23, a2,
aga, azs, 27, a6, A28, 29, @31, a3).-

1, a3, a4, as, ag, a7) —

6, a7, A0, a1, a2, a3)
blementing qubit 2:

12) — (g0, g1, g2 D 1).

10, a3, a4, as, ag, a7) —
2, a6, a1, a5, a3, ay)
ping qubits 0 and 2":

1) — (g2, 91, q0).

nenting qubit 2

ing qubits 0 and 2
iplementing qubit O
pping qubits 0 and 2.

. swapping qubits 1, J.

(ag, a1, a2, a3, aa, as, ap, a7) —
(a0, a1, a3, a2, a4, as, a7, ag)

is a “reversible XOR gate” =
“controlled NOT gate”:

(90, g1, 92) — (g0 @ g1. 91, §2).

Example with more qubits:

(a0, a1, a2, a3, as, as, ae, ar,

ag, a9, a10, 11, @12, 413, 14, a1s,
16, a17, 18, @19, a20, 421, a22, a3,
a4, azs, axe, a27, a8, a29, a0, asl)
— (a0, a1, a3, a2, as, as, a7, ap,

ag, a9, a11, 410, @12, 413, a15, a4,
a16, a17, 419, a18, a20, 421, a23, a2,

(ag, a1, ¢
(ag, a1, ¢
sa To
“control
(90, g1, ¢

Example
(ag, a1, ¢
dg, d9, d:
d16, 417,
d24, d25,
— (ao, 2
ag, ag, a
ale, a7,
apa, as,

5, g, a7)

1, a2, a3)
- qubit 27 :

g1, g2 D 1).

5, a6, a7) —

5, a3, a7)
s 0 and 2"

;qquO)
1bit 2
5 0 and 2

g qubit O
its 0 and 2.

g qubits 1, J.

(ag, a1, a2, a3, aa, as, a6, a7) —
(a0, a1, a3, a2, a4, as, a7, ag)

is a “reversible XOR gate” =
“controlled NOT gate”:

(90,91, 92) — (g0 @ q91. 91, q2).

Example with more qubits:

(a0, a1, @2, a3, as, as, ae, ar,

ag, a9, a10, 411, @12, 413, 14, a15s,
a16, a17, 18, @19, 20, 421, a22, a3,
a4, axs, axe, a27, a2, a9, a0, as1)
— (ao, a1, a3, a2, as, as, ar, ae,

ag, a9, a11, a10, @12, 413, a15, a4,
a16, a17, 419, @18, 20, 421, a23, a2,

(ag, a1, a2, a3, aa, ¢

(ag, a1, a2, a3, aa, ¢
is a "Toffoli gate”

“controlled contro
(g0, 91, 92) — (qo

Example with mor

(ag, a1, a2, a3, aa, ¢
dg, d9, 410, 411, 9412
d16,d17, 418,419, d
d24, d25, d26, 427, d
— (ag, a1, a2, a3, a
dg, d9, 410, 411, 412
d16,d17, 418,419, 4
d24, d25, d26, d27, 4

(ag, a1, a», a3, aa, as, ap, a7) —
(a0, a1, a3, a2, a4, as, a7, ag)

is a “reversible XOR gate” =
“controlled NOT gate”:

(90, g1, 92) — (g0 @ g1. 91, G2).

Example with more qubits:

(a0, a1, a2, a3, as, as, ae, ar,

ag, a9, a10, 11, @12, 413, 14, a1s,
a16, a17, 18, @19, a20, 421, a22, a3,
a4, axs, a6, A27, A28, @29, a0, a3l)
— (ao, a1, a3, a2, as, as, ar, ae,

ag, a9, a11, 410, @12, 413, a15, a4,
a16, a17, 419, a18, a20, 421, a23, a2,

(30, di, d2, d3, d4, d5, 46, 37) |

(a0, a1, a2, a3, a4, as, a7, ag)
is a “Toffoli gate” =

“controlled controlled NOT
(g0, 91, 92) — (q0 ® q192, q

Example with more qubits:

(20, a1, a2, a3, a4, as, a6, a7,

dg, d9, 410, d11,d12, d13, d14,
d16, d17,d18, 419, 420, d21, 42
d24, d25, d26, d27, A28, d29, d3(
— (ag, a1, a2, a3, a4, as, ay, a
dg, d9, 410, d11, d12, d13, 415,
d16, d17,d18, 419, 420, d21, d2:
d24, d25, d26, d27, 428, d29, d3:

(ag, a1, a2, a3, aa, as, @, a7) —
(a0, a1, a3, a2, a4, as, a7, ag)

is a “reversible XOR gate” =
“controlled NOT gate”:

(90,91, 92) — (g0 @ q91. 91, §2).

Example with more qubits:

(a0, a1, @2, a3, as, as, ae, ar,

ag, a9, a10, 411, @12, 413, 14, a15s,
16, a17, 18, @19, 20, a1, a22, a3,
a4, axs, axe, a27, a2, a9, a0, as1)
— (ao, a1, a3, a2, as, as, ar, as,

ag, a9, a11, a10, @12, 413, a15, a4,
a16, a17, 419, @18, 20, 421, a23, a2,

(ag, a1, a2, a3, aa, as, @, a7) —
(a0, a1, a2, a3, a4, as, a7, ag)

is a “Toffoli gate” =
“controlled controlled NOT gate”:

(90,91, q2) — (g0 @ 9192, 91, G2).

Example with more qubits:

(a0, a1, @2, a3, as, as, ae, ar,

ag, a9, a10, a11, 12, 13, a4, 315,
a16, a17, a1g, 419, a0, a21, a22, a3,
a4, azs, axe, a27, a8, a29, asQ, asl)
— (ao, a1, a2, a3, as, as, ar, as,

ag, a9, a10, a11, 12, 13, a15, 314,
a16, a17, a1, 419, a0, a21, a23, a2,
aga, axs, axe, @27, a8, @29, @31, a30)-

1, a3, a4, as, ag, a7) —
13, a2, a4, as, ar, a6)
ersible XOR gate” =
led NOT gate":

12) — (g0 ® g1, 91, G2)-

- with more qubits:

12, d3, d4, d5, d6, d7,

0, a11, d12, @13, 314, a15,
a1g, a19, 20, a1, a22, a3,
ae, a27, 28, a29, a3, a31)
1, a3, a2, a4, as, a7, a6,

1, d10, @12, 313, a15, 314,
a19, a1g, 20, 421, a23, a2,

(ag, a1, a2, a3, aa, as, ap, a7) —
(a0, a1, a2, a3, a4, as, a7, ag)

is a “Toffoli gate” =

“controlled controlled NOT gate”:

(90,91, g2) — (g0 @ 9192, 91, G2)-

Example with more qubits:

(a0, a1, a2, a3, as, as, ae, ar,

ag, a9, a10, 11, @12, 413, 14, a1s,
16, a17, 18, @19, a20, 421, a22, a3,
a4, azs, axe, a27, a8, a29, a0, asl)
— (ao, a1, a2, a3, as, as, ar, ae,

ag, a9, a10, 11, @12, 413, a1, a4,
a16, a17, 18, @19, a20, 421, a23, a2,
an4, a5, aze, a27, @28, a29, a1, a30).-

Reversib

Say p is
of {0, 1,

General
these fa:
to obtai

(aP(O)’ 9,
— (ag,

e qubits:

5, d6, 47,

, 313, 314, a15,
20, @21, 422, a3,
28, 329, 430, a31)
4, as, ay, ae,

, 313, 315, 14,
20, @21, 423, @22,

(ag, a1, a2, a3, aa, as, a6, a7) —

(a0, a1, a2, a3, a4, as, a7, ag)
is a “Toffoli gate” =

“controlled controlled NOT gate”:

(90,91, q2) — (g0 @ 9192, 91, G2).

Example with more qubits:

(20, a1, a2, a3, a4, as, a6, a7,

dg, d9, d10, 411, 412, d13, 414, 415,
d16, d17, 418, 419, 420, d21, d22, d23,
a4, s, axe, a7, a8, a9, 330, a31)
— (ag, a1, a2, a3, a4, as, ay, ag,

ag, ag, a10, @11, 412, 413, a15, 14,
a16, 417, 418, 419, @20, 421, a23, 422,

Reversible comput

Say p is a permut.
of {0,1,...,2" —

General strategy t
these fast quantur
to obtain Index pe

(2p(0): 3p(1): -+ 2
—> (30, al,...,dapn

12).

d15,

), 323,
), a31)
.
314,

3, 322,

1, 330).

(ag, a1, a», a3, aa, as, ap, a7) —

(a0, a1, a2, a3, a4, as, a7, ag)
is a “Toffoli gate” =

“controlled controlled NOT gate”:

(90,91, g2) — (g0 @ 9192, 91, G2).

Example with more qubits:

(a0, a1, a2, a3, as, as, ae, ar,

ag, a9, a10, 11, @12, 413, 14, a1s,
a16, a17, 18, @19, a20, 421, a22, a3,
a4, azs, axe, a27, a8, a29, a0, asl)
— (ao, a1, a2, a3, as, as, ar, ae,

ag, a9, a10, 11, @12, 413, a1, a14,
a16, a17, 18, @19, a20, 421, a23, a2,

Reversible computation

Say p is a permutation
of {0,1,...,2" —1}.

General strategy to compose
these fast quantum operatio
to obtain index permutation

(ap(0): 2p(1): - -+ Ap(2n-1))
—> (ao, al, ..., aQn_l)Z

(ag, a1, a2, a3, aa, as, @, a7) —

(a0, a1, a2, a3, a4, as, a7, ag)
is a “Toffoli gate” =

“controlled controlled NOT gate”:

(90,91, q2) — (g0 @ 9142, 91, G2).

Example with more qubits:

(a0, a1, @2, a3, as, as, ae, ar,

ag, a9, a10, 411, @12, 413, 14, a15s,
16, a17, 18, @19, 20, a1, a22, a3,
a4, azs, axe, a27, a8, a29, asQ, asl)
— (ao, a1, a2, a3, as, as, ar, as,

ag, a9, a10, 411, @12, 413, a15, a4,
a16, a17, 18, @19, a20, 421, a23, a2,

Reversible computation

Say p is a permutation
of {0,1,...,2" —1}.

General strategy to compose
these fast quantum operations
to obtain index permutation

(3p(0): 2p(1): - -+ Ap(2n-1))
> (30, al, ..., aQn_l)Z

(ag, a1, a2, a3, aa, as, @, a7) —

(a0, a1, a2, a3, a4, as, a7, ag)
is a “Toffoli gate” =

“controlled controlled NOT gate”:

(90,91, q2) — (g0 @ 9142, 91, G2).

Example with more qubits:

(a0, a1, @2, a3, as, as, ae, ar,

ag, a9, a10, 411, @12, 413, 14, a15s,
16, a17, 18, @19, 20, a1, a22, a3,
a4, axs, axe, a27, a2, a9, a0, as1)
— (ao, a1, a2, a3, as, as, ar, as,

ag, a9, a10, 411, @12, 413, a15, a4,
a16, a17, 18, @19, a20, 421, a23, a2,

Reversible computation

Say p is a permutation
of {0,1,...,2" —1}.

General strategy to compose
these fast quantum operations
to obtain index permutation
(3p(0): 3p(1): -+ 3p(27-1))

—> (30, al, ..., aQn_l)Z

1. Build a traditional circuit
to compute j — p(j)
using NOT /XOR/AND gates.

2. Convert into reversible gates:
e.g., convert AND into Toffoli.

1, a3, a4, as, ag, a7) —

1, a3, a4, as, ar, ag)
ffoll gate” =

led controlled NOT gate”:

12) — (g0 ® q192, 91, g2).

- with more qubits:

12, d3, d4, d5, d6, d7,

0, a11, d12, @13, 314, a15,
a1g, a19, 20, a1, a22, a3,
ae, a27, 28, a29, a3, a31)
1,a2, a3, a4, as, a7, a6,

0, d11, @12, 313, d15, a14,
a1g, a19, 20, a21, a23, a2,

Reversible computation

Say p is a permutation
of {0,1,...,2" —1}.

General strategy to compose
these fast quantum operations
to obtain index permutation

(3p(0): 2p(1): - -+ Ap(2n-1))
—> (ao, al, ..., aQn_l)Z

1. Build a traditional circuit
to compute j — p(J)
using NOT /XOR/AND gates.

2. Convert into reversible gates:
e.g., convert AND into Toffoli.

Example
(ag, a1,

(a7, ag,
permuta

1. Build
to comp

\

q0

qo @1

5, g, a7)
5, a7, a6)

lled NOT gate”:

e qubits:

5, d6, 47,

, 313, 314, a15,
20, @21, 422, a3,
28, 329, 430, a31)
4, as, ay, ae,

, 313, 315, 14,
20, @21, 423, @22,

Reversible computation

Say p is a permutation
of {0,1,...,2" —1}.

General strategy to compose
these fast quantum operations
to obtain index permutation
(3 dp(2n— 1))

—> (aO al, C 32”—1)-

1. Build a traditional circuit
to compute j — p(j)
using NOT /XOR/AND gates.

2. Convert into reversible gates:
e.g., convert AND into Toffoli.

Example: Let's co

(ag, a1, a2, a3, aa, ¢

(a7, ag, a1, a2, a3, ¢
permutation g —

1. Build a traditio
to compute g +— ¢

gate” :

a5,
), @23,
), 331)

14,
3, d22,

1, 330).

Reversible computation

Say p is a permutation
of {0,1,...,2" —1}.

General strategy to compose
these fast quantum operations
to obtain index permutation

(3p(0): 2p(1): - -+ Ap(2n-1))
Fﬁ'(ao,al,...,QQn_l)i

1. Build a traditional circuit
to compute j — p(J)
using NOT /XOR/AND gates.

2. Convert into reversible gates:
e.g., convert AND into Toffoli.

Example: Let's compute

(ao, ai, a2, as, a4, as, ae, 37) |

(a7, ag, a1, a2, a3, a4, as, ag);
permutation g — g + 1 moc

1. Build a traditional circuit
to compute g — g+ 1 mod

qo0 qi1 G

N

€1 = 4190

qo @1 g1 © qo g ¢

Reversible computation

Say p is a permutation
of {0,1,...,2" —1}.

General strategy to compose
these fast quantum operations
to obtain index permutation
(3p(0): 3p(1): -+ 3p(27-1))

—> (30, al, ..., aQn_l)Z

1. Build a traditional circuit
to compute j — p(j)
using NOT /XOR/AND gates.

2. Convert into reversible gates:

e.g., convert AND into Toffoli.

Example: Let's compute
(ag, a1, a2, a3, aa, as, ap, a7) —

(a7, ag, a1, a2, a3, a4, as, agp);
permutation g — g + 1 mod 8.

1. Build a traditional circuit
to compute g — g + 1 mod 8.

q2

le computation

a permutation
20— 11

strategy to compose
st quantum operations
1 index permutation
p(1)r - - - ap(2”—1))
1,...,d0_1):

a traditional circuit

ute j — p(J)
DT /XOR/AND gates.

ert into reversible gates:

vert AND into Toffoli.

Example: Let's compute
(ag, a1, a2, a3, aa, as, ap, a7) —

(a7, ag, a1, a2, a3, a4, as, ag);
permutation g — g + 1 mod 8.

1. Build a traditional circuit
to compute g — g + 1 mod 8.

q0 di1 q2

N

€1 = 4190

qo @1 g1 © qo g2 D ¢y

2. Conv

Toffoli fi

(ag, a1, ¢
(ag, a1,

ation

ation

1}

0O COMPOSE

n operations
rmutation

p(2”—1))

_1):

nal circuit
)

AND gates.

versible gates:

into Toffoli.

Example: Let's compute
(ag, a1, a2, a3, aa, as, ap, a7) —

(a7, ag, a1, a2, a3, a4, as, agp);
permutation g — g + 1 mod 8.

1. Build a traditional circuit
to compute g — g + 1 mod 8.

q2

2. Convert into re

Toffoli for go < g

(ag, a1, a2, a3, aa, ¢
(ag, a1, a2, a7, aa, ¢

S.

1tes:

ol

Example: Let's compute
(ag, a1, a2, a3, aa, as, ap, a7) —

(a7, ag, a1, a2, a3, a4, as, ag);
permutation g — g + 1 mod 8.

1. Build a traditional circuit
to compute g — g + 1 mod 8.

q0 di1 q2

N

€1 = 4190

qo @1 g1 © qo g2 D ¢y

2. Convert into reversible g:

Toffoli for gy < g> & g19p:

(ag, a1, a2, a3, aa, as, ag, a7)
(ag, a1, a2, a7, aa, as, ae, a3).

Example: Let's compute
(ag, a1, a2, a3, aa, as, ap, a7) —

(a7, ag, a1, a2, a3, a4, as, agp);
permutation g — g + 1 mod 8.

1. Build a traditional circuit
to compute g — g + 1 mod 8.

q2

2. Convert into reversible gates.

Toffoli for g» < g> D g190p:
(ao, a1, a2, a3, aa, as, a6, a7) —
(ag, a1, a2, a7, aa, as, ae, a3).

Example: Let's compute
(ag, a1, a2, a3, aa, as, ap, a7) —

(a7, ag, a1, a2, a3, a4, as, agp);
permutation g — g + 1 mod 8.

1. Build a traditional circuit
to compute g — g + 1 mod 8.

q2

2. Convert into reversible gates.

Toffoli for g» < g> D g190p:
(ao, a1, a2, a3, aa, as, a6, a7) —
(ag, a1, a2, a7, aa, as, ae, a3).

Controlled NOT for g1 < g1 P qp:
(ag, a1, a2, a7, aa, as, a6, a3) —
(ag, a7, a», a1, aa, a3, ae, as).

Example: Let's compute
(ag, a1, a2, a3, aa, as, ap, a7) —

(a7, ag, a1, a2, a3, a4, as, agp);
permutation g — g + 1 mod 8.

1. Build a traditional circuit
to compute g — g + 1 mod 8.

q2

2. Convert into reversible gates.

Toffoli for g» < g> D g190p:
(ao, a1, a2, a3, aa, as, a6, a7) —
(ag, a1, a2, a7, aa, as, ae, a3).

Controlled NOT for g1 < g1 P qp:
(ag, a1, a2, a7, aa, as, a6, a3) —
(ag, a7, a», a1, aa, a3, ae, as).

NOT for gy + qgp @ 1
(ag, a7, a2, a1, a4, a3, ag, as) —
(a7, ag, a1, a2, a3, a4, as, ag).

: Let's compute

10, a3, a4, as, ag, a7) —
11, a2, a3, a4, as, 3g);
tion g — g+ 1 mod 8.

a traditional circuit
ute g — g+ 1 mod 8.

di1 q2

O\

€1 = 4190

d1 D qo g> D 1

2. Convert into reversible gates.

Toffoli for gy < g> & g19p:
(ag, a1, a2, a3, aa, as, ap, a7) —
(ag, a1, a2, a7, aa, as, ae, a3).

Controlled NOT for g1 + g1 @ qp:

(ag, a1, a2, a7, aa, as, ag, a3) —
(ag, a7, a», a1, aa, a3, ae, as).

NOT for gy + qgp @ 1
(ag, a7, a2, a1, a4, a3, ag, as) —
(a7, ag, a1, a2, a3, a4, as, ag).

This per
was dec

It didn't

For largse
need ma
Really w

mpute
5, a6, a7)

)4,35,36);
qg+ 1 mod 8.

nal circuit
1 + 1 mod 8.

q2

q> D 1

2. Convert into reversible gates.

Toffoli for g» < g2 D g190p:
(ao, a1, a2, a3, aa, as, a6, a7) —
(ag, a1, a2, a7, aa, as, ae, a3).

Controlled NOT for g1 + g1 @ qp:

(ag, a1, a2, a7, aa, as, a6, a3) —
(ag, a7, a», a1, aa, a3, ae, as).

NOT for gy + qgp @ 1
(ag, a7, a2, a1, a4, a3, ag, as) —
(a7, ag, a1, a2, a3, a4, as, ag).

This permutation
was deceptively ea

It didn't need mar

For large n, most
need many operat
Really want fast c

| 3.

2. Convert into reversible gates.

Toffoli for g» < g> & g19p:
(ag, a1, a2, a3, aa, as, ap, a7) —
(ag, a1, a2, a7, aa, as, ae, a3).

Controlled NOT for g1 + g1 @ qp:

(ag, a1, a2, a7, aa, as, ag, a3) —
(ag, a7, a», a1, aa, a3, ae, as).

NOT for gy + qgp @ 1
(ag, a7, a2, a1, a4, a3, ag, as) —
(a7, ag, a1, a2, a3, a4, as, ag).

This permutation example
was deceptively easy.

It didn't need many operatic

For large n, most permutati
need many operations = slc
Really want fast circuits.

2. Convert into reversible gates.

Toffoli for g» < g2 D g190p:
(ag, a1, a2, a3, aa, as, @, a7) —
(ag, a1, a2, a7, aa, as, ae, a3).

Controlled NOT for g1 < g1 @ qp:

(ag, a1, a2, a7, aa, as, a6, a3) —
(ag, a7, a», a1, aa, a3, ae, as).

NOT for gy + qgp @ 1
(ag, a7, a2, a1, a4, a3, ag, as) —
(a7, ag, a1, a2, a3, a4, as, ag).

This permutation example
was deceptively easy.

It didn't need many operations.

For large n, most permutations p
need many operations = slow.
Really want fast circuits.

2. Convert into reversible gates.

Toffoli for g» < g2 D g190p:
(ag, a1, a2, a3, aa, as, @, a7) —
(ag, a1, a2, a7, aa, as, ae, a3).

Controlled NOT for g1 < g1 @ qp:

(ag, a1, a2, a7, aa, as, a6, a3) —
(ag, a7, a», a1, aa, a3, ae, as).

NOT for gy + qgp @ 1
(ag, a7, a2, a1, a4, a3, ag, as) —
(a7, ag, a1, a2, a3, a4, as, ag).

This permutation example
was deceptively easy.

It didn't need many operations.

For large n, most permutations p
need many operations = slow.
Really want fast circuits.

Also, 1t didn't need extra storage:
circuit operated “in place” after
computation ¢ < g1gg was
merged Into gy < go P ¢y.

Typical circuits aren't in-place.

ert into reversible gates.

Or @2 <= g2 © 41490:
10, a3, a4, as, ag, a7y) —

12, d7, d4, dy, d6, 33).

ed NOT for g1 < g1 D qp:

10, a7, a4, as, ag, a3) —
10, a1, a4, a3, ag, as).

" qo < qo & 1:

10, a1, a4, a3, a6, a5) —
11, 2, a3, a4, as, ag).

This permutation example
was deceptively easy.

It didn't need many operations.

For large n, most permutations p
need many operations = slow.
Really want fast circuits.

Also, it didn't need extra storage:

circuit operated “in place” after
computation ¢; < g1gg was
merged Into gy < g» D ¢y.

Typical circuits aren't in-place.

Start frc
inputs b
b1 ="
bjio =

b = 1¢
specified

versible gates.

> D 4190
5, a6, A7)

5, 36, a3).

r g1 < q1 D qo:

5, a6, a3)
3, 36, a5).
P 1:

3, 36, d5)
4, as, 6).

This permutation example
was deceptively easy.

It didn't need many operations.

For large n, most permutations p
need many operations = slow.
Really want fast circuits.

Also, 1t didn't need extra storage:

circuit operated “in place” after
computation ¢; < g1gg was
merged Into gy < g2 P ¢y.

Typical circuits aren't in-place.

Start from any cir
inputs by, by, ...,
biy1 =1 bf(j1
bit2 =1 br(jyp

br = 1@ br(1)bgy
specified outputs.

1tes.

This permutation example
was deceptively easy.

It didn't need many operations.

For large n, most permutations p
need many operations = slow.
Really want fast circuits.

Also, it didn't need extra storage:

circuit operated “in place” after
computation ¢; < g1gg was
merged Into gy < g» D ¢y.

Typical circuits aren't in-place.

Start from any circuit:
inputs by, by, ..., b;;

bi+1 =1 bf(j11)bg(it1);
bjy2 =1 br(jy2)bg(it2);

br = 1 br(1) bg(7);
specified outputs.

This permutation example
was deceptively easy.

It didn't need many operations.

For large n, most permutations p
need many operations = slow.
Really want fast circuits.

Also, 1t didn't need extra storage:

circuit operated “in place” after
computation ¢; < g1gg was
merged Into gy < go P ¢y.

Typical circuits aren't in-place.

Start from any circuit:
inputs b1, by, ..., b,';

bit1 =1 br(j1)bg(it1);
bi2 = 1@ br(i12)bg(i12);

br = 1 ® (1) bg(7);
specified outputs.

This permutation example
was deceptively easy.

It didn't need many operations.

For large n, most permutations p
need many operations = slow.
Really want fast circuits.

Also, 1t didn't need extra storage:

circuit operated “in place” after
computation ¢; < g1gg was
merged Into gy < go P ¢y.

Typical circuits aren't in-place.

Start from any circuit:
inputs b1, by, ..., b,';

bit1 =1 br(j1)bg(it1);
bi2 = 1@ br(i12)bg(i12);

br = 1 ® (1) bg(7);
specified outputs.

Reversible but dirty:

inputs by, by, ..., bT;

bit1 < 1@ bit1 @ br(i11)bg(it1);
bit2 < 1@ bj12 @ br(i12)bg(i+2);

br <~ 1@ br & bf(T) bg(T)-
Same outputs if all of
bji1,..., by started as 0.

mutation example
ptively easy.

need many operations.

> n, most permutations p
ny operations = slow.
ant fast circuits.

didn’'t need extra storage:

perated “in place” after
ition ¢ < gi1qgp was

Into go < go» P 1.

circuits aren't in-place.

Start from any circuit:
inputs by, by, ..., b;;

bit1 =1 br(j1)bg(it1):
biy2 =1 br(jy2)bg(it2);

br = 1 ® br(1) bg(7);
specified outputs.

Reversible but dirty:

inputs by, by, ..., bT;

bit1 < 1 ® bit1 ® br(i11)bg(it1);
bit2 < 1@ bj12 @ br(i12)bg(it2);

br <~ 1® br @ bf(T) bg(T)-
Same outputs if all of
bji1,..., by started as 0.

Reversib

after fin

set non-

by
on

repea

NON-(

Original

(inputs)
(inputs,

Dirty rey

(in
(in

outs,

DUts,

Clean re

(in
(in

Outs,

Duts,

example

Sy.

1y operations.
permutations p

ions = slow.
IrCults.

d extra storage:

n place’ after

- d14o Was
g2 © C1.

2n't in-place.

Start from any circuit:

inputs by, by, ...

biy1 =1 by

, bj;
1) Dg (i

br = 1 ® (1) bg(7);
specified outputs.

Reversible but dirty:

inputs by, by, ..

. br;

bio1 4 1®bj1® bf(,-
b,'__2 — 16 b,'__2 D bf(,'_

1)

bit2 = 1@ br(jy2)bg(it2);

1) bg(it1)

2) bg(i+2)

br <~ 1@ br & bf(T) bg(T)-
Same outputs if all of

b,'_|_1, ..

., by started as 0.

Reversible and cle
after finishing dirt
set non-outputs b:
by repeating same
on non-outputs In

Original computat
(inputs) —
(inputs, dirt, outpu

Dirty reversible co
(inputs, zeros, zero

(inputs, dirt, outpu

Clean reversible cc
(inputs, zeros, zero

(inputs, zeros, outj

NS.

oNns p

W.

rage:

fter

CE.

Start from any circuit:

inputs by, by, ...

b:.

1= 1O br(iy1)bg(;

b:.

, bj;

2 = 1@ br(jy2)bg(iv

br = 1 ® br(1)bg(7);
specified outputs.

Reversible but dirty:

inputs by, by, ..

b:.

1 < 16 b,

b:.

., br;

> < 16 b,

+1) bg (i

+2) bg (i-

br <~ 1® br @ bf(T) bg(T)-
Same outputs if all of

bii1, ..

., bt started as 0.

Reversible and clean:

after finishing dirty computa

set non-outputs back to 0,

by
on

repeating same operation
non-outputs In reverse or

Original computation:

(inputs) —

(inputs, dirt, outputs).

Dirty reversible computation

(in
(in

outs, zeros, zeros) —

outs, dirt, outputs).

Clean reversible computatiol

(in
(in

outs, zeros, zeros) —

outs, zeros, outputs).

Start from any circuit: Reversible and clean:

inputs by, by, ..., b;; after finishing dirty computation,
bi+1 = 1@ bf(i1+1)bg(i+1); set non-outputs back to 0,
bit2 = 1@ br(iy2)bg(it2); by repeating same operations

on non-outputs in reverse order.

br = 1 ® (1) bg(7);

- Original computation:
specified outputs.

(inputs) —

Reversible but dirty: (inputs, dirt, outputs).
nputs by, by, ..., br; Dirty reversible computation:
bit1 < 1@ bj11 @ br(ir1)bg(it1); (in

bit2 < 1@ bj12 @ br(i10)bg(i+2); (in

outs, zeros, zeros) —

outs, dirt, outputs).

br < 1@ by & b(1yby(7). C.Iean reversible computation:
Same outputs if all of (inputs, zeros, zeros) —
bji1,..., by started as 0. (inputs, zeros, outputs).

m any Circuit:

1, by, ..., b;;

L@ br(j11)bg(i+1);
LD br(i12)bg(i+2);

B br(1)bg(T);
| outputs.

le but dirty:

1,b2,...,b7';

1@ bit1 ® br(ir1)bg(it1);
1 @ b2 @ br(j2)bg(i12);

® br & bf(T) bg(T)-
itputs if all of
, bt started as 0.

Reversible and clean:

after finishing dirty computation,

set non-outputs back to 0,

by
on

repeating same operations
non-outputs in reverse order.

Original computation:

(inputs) —

(inputs, dirt, outputs).

Dirty reversible computation:

(in
(in

outs, zeros, zeros) —

outs, dirt, outputs).

Clean reversible computation:

(in
(in

outs, zeros, zeros) —

outs, zeros, outputs).

Given fa
and fast

build fas
(x, zeros

Reversible and clean:

after finishing dirty computation,
set non-outputs back to 0,

by repeating same operations

on non-outputs in reverse order.

Original computation:
(inputs) —
(inputs, dirt, outputs).

Dirty reversible computation:
(inputs, zeros, zeros) +—

(inputs, dirt, outputs).

Clean reversible computation:
(inputs, zeros, zeros) —

(inputs, zeros, outputs).

Given fast circuit

dNdG

bui

fast circuit for
d fast reversibl

(x, zeros) — (p(x)

g (i

g (-

Reversible and clean:

after finishing dirty computation,
set non-outputs back to 0,

by repeating same operations

on non-outputs in reverse order.

Original computation:
(inputs) —
(inputs, dirt, outputs).

Dirty reversible computation:
(inputs, zeros, zeros) +—

(inputs, dirt, outputs).

Clean reversible computation:
(inputs, zeros, zeros) —

(inputs, zeros, outputs).

Given fast circuit for p

and fast circuit for p_l,

build fast reversible circuit f
(x, zeros) — (p(x), zeros).

Reversible and clean:

after finishing dirty computation,
set non-outputs back to 0,

by repeating same operations

on non-outputs in reverse order.

Original computation:
(inputs) —
(inputs, dirt, outputs).

Dirty reversible computation:
(inputs, zeros, zeros) +—

(inputs, dirt, outputs).

Clean reversible computation:
(inputs, zeros, zeros) —

(inputs, zeros, outputs).

Given fast circuit for p

and fast circuit for p_l,

build fast reversible circuit for
(x, zeros) — (p(x), zeros).

Reversible and clean:

after finishing dirty computation,
set non-outputs back to 0,

by repeating same operations

on non-outputs in reverse order.

Original computation:
(inputs) —
(inputs, dirt, outputs).

Dirty reversible computation:
(inputs, zeros, zeros) +—

(inputs, dirt, outputs).

Clean reversible computation:
(inputs, zeros, zeros) —

(inputs, zeros, outputs).

Given fast circuit for p

and fast circuit for p_l,

build fast reversible circuit for
(x, zeros) — (p(x), zeros).

Replace reversible bit operations

with Toffoli gates etc.

2n—|—z 2n—|—z

permuting C — C .

Permutation on first 2" entries is

(3p(0): 3p(1): - -+ @p(21-1))
— (30, al, ..., azn_l).

Typically prepare vectors
supported on first 2” entries
so don't care how permutation
acts on last 27172 — 2" entries.

le and clean:

shing dirty computation,

outputs back to 0,
ting same operations
utputs In reverse order.

computation:
—
dirt, outputs).

/ersible computation:
ZEros, Zeros)
dirt, outputs).

versible computation:
ZEeros, Zeros) —
zeros, outputs).

Given fast circuit for p

and fast circuit for p_l,

build fast reversible circuit for
(x, zeros) — (p(x), zeros).

Replace reversible bit operations

with Toffoli gates etc.

2n—|—z 2n—|—z

permuting C — C .

Permutation on first 2" entries is

(3p(0): 3p(1): - - -+ 3p(27-1))
— (ao, al, ..., azn_l).

Typically prepare vectors
supported on first 2” entries
so don't care how permutation
acts on last 27172 — 2" entries.

Warning
~ numb

In origin

This car

than nut
In the or

Many us
to comp
but ofte
Many sL

Crude *
don't ca
but seric
IS much

aN.

y computation,

1ck to O,
operations
reverse order.

lon:

ts).

mputation:
s) —
ts).

ymputation:
S) —
uts).

Given fast circuit for p

and fast circuit for p_l,

build fast reversible circuit for
(x, zeros) — (p(x), zeros).

Replace reversible bit operations

with Toffoli gates etc.

2n—|—z 2n—|—z

permuting C — C .

Permutation on first 2" entries is

(3p(0): 3p(1): - -+ p(21-1))
— (30, al, ..., azn_l).

Typically prepare vectors
supported on first 2” entries
so don't care how permutation
acts on last 27172 — 2" entries.

Warning: Number
~ number of bit ¢

in original p, p~1

This can be much
than number of bi
in the original circ

Many useful techn
to compress into f
but often these lo:
Many subtle trade

Crude “poly-time”
don’'t care about t
but serious crypta
IS much more prec

tion,

der.

Given fast circuit for p

and fast circuit for p_l,

build fast reversible circuit for
(x, zeros) — (p(x), zeros).

Replace reversible bit operations

with Toffoli gates etc.

2n—|—z 2n—|—z

permuting C — C .

Permutation on first 2" entries is

(3p(0): 3p(1): - - -+ 3p(27—1))
— (ao, al, ..., azn_l).

Typically prepare vectors
supported on first 2” entries
so don't care how permutation
acts on last 27172 — 2" entries.

Warning: Number of qubits
~ number of bit operation

—1

in original p, p~ " circuits.

This can be much larger
than number of bits stored
in the original circuits.

Many useful techniques

to compress into fewer qubi
but often these lose time.
Many subtle tradeoftfs.

Crude “poly-time” analyses
don't care about this,

but serious cryptanalysis

IS much more precise.

Given fast circuit for p

and fast circuit for p_l,

build fast reversible circuit for
(x, zeros) — (p(x), zeros).

Replace reversible bit operations

with Toffoli gates etc.

2n—|—z 2n—|—z

permuting C — C .

Permutation on first 2" entries is

(3p(0): 3p(1): - -+ p(21-1))
— (30, al, ..., azn_l).

Typically prepare vectors
supported on first 2” entries
so don't care how permutation
acts on last 27172 — 2" entries.

Warning: Number of qubits
~ number of bit operations

—1

in original p, p~* circuits.

This can be much larger
than number of bits stored
in the original circuits.

Many useful techniques

to compress into fewer qubits,
but often these lose time.
Many subtle tradeoffs.

Crude “poly-time” analyses
don't care about this,

but serious cryptanalysis

IS much more precise.

st circuit for p
circuit for p_l,

t reversible circuit for
) — (p(x), zeros).

reversible bit operations

foli gates etc.

n—+z n—+z
g C? 2

— C .

tion on first 2" entries is

p(1)r - - - ap(zn_l))
11, - -, azn_l).

/ prepare vectors

d on first 2" entries
care how permutation
last 2717Z — 2™ entries.

Warning: Number of qubits
~ number of bit operations

—1

in original p, p~ " circuits.

This can be much larger
than number of bits stored
in the original circuits.

Many useful techniques

to compress into fewer qubits,
but often these lose time.
Many subtle tradeoftfs.

Crude “poly-time” analyses
don't care about this,

but serious cryptanalysis

IS much more precise.

Fast quc

"Hadam

(20, a1)

for p Warning: Number of qubits Fast quantum ope

: pTl, | ~ nu.n?ber of bit1 o!aer?tions Hadamard"”
e circuit for in original p, p~* circuits. (a0, 21) — (a0 + 2
, Z€ros) This can be much larger
bit operations than number of bits stored
etc. . in the original circuits.
n—+—~2z
- C Many useful techniques
st 2" entries is to compress into fewer qubits,
p(27—1)) but often these lose time.
_1). Many subtle tradeoffs.
ectors Crude “poly-time” analyses
2" entries don’t care about this,
permutation but serious cryptanalysis

— 2" entries. IS much more precise.

or

l1ons

1es 1S

on

Warning: Number of qubits
~ number of bit operations

—1

in original p, p~ " circuits.

This can be much larger
than number of bits stored
in the original circuits.

Many useful techniques

to compress into fewer qubits,
but often these lose time.
Many subtle tradeoftfs.

Crude “poly-time” analyses
don't care about this,

but serious cryptanalysis

IS much more precise.

Fast quantum operations, p:

"Hadamard' :

(ao, 31) — (a() + ad1,dg — 31:

Warning: Number of qubits Fast quantum operations, part 2

~ number of bit operations
—1

"Hadamard' :

circuits.
(ao, 31) — (ao + a1,a0 — 31).

in original p, p

This can be much larger
than number of bits stored
in the original circuits.

Many useful techniques

to compress into fewer qubits,
but often these lose time.
Many subtle tradeoffs.

Crude “poly-time” analyses
don't care about this,

but serious cryptanalysis

IS much more precise.

Warning: Number of qubits Fast quantum operations, part 2

~ number of bit operations
—1

"Hadamard' :

circuits.
(ao, 31) — (ao + a1,a0 — 31).

in original p, p
This can be much larger
(a0, a1, a2, a3) —

than number of bits stored
(a() +a1,a0 — 31,32 + a3, ay — 33).

In the original circuits.

Many useful techniques

to compress into fewer qubits,
but often these lose time.
Many subtle tradeoffs.

Crude “poly-time” analyses
don't care about this,

but serious cryptanalysis

IS much more precise.

Warning: Number of qubits Fast quantum operations, part 2

~ number of bit operations
—1

"Hadamard' :

circuits.
(ao, 31) — (ao + a1,a0 — 31).

in original p, p
This can be much larger
(a0, a1, a2, a3) —

than number of bits stored
(a() +a1,a0 — 31,32 + a3, ay — 33).

In the original circuits.
Same for qubit 1:
(ag, a1, a2, az) —
(a() +a2,d] +az3,ap — an,al — 33).

Many useful techniques

to compress into fewer qubits,
but often these lose time.
Many subtle tradeoffs.

Crude “poly-time” analyses
don't care about this,

but serious cryptanalysis

IS much more precise.

Warning: Number of qubits
~ number of bit operations

—1

in original p, p~* circuits.

This can be much larger
than number of bits stored
in the original circuits.

Many useful techniques

to compress into fewer qubits,
but often these lose time.
Many subtle tradeoffs.

Crude “poly-time” analyses
don't care about this,

but serious cryptanalysis

IS much more precise.

Fast quantum operations, part 2

"Hadamard' :

(ao, 31) —> (ao + a1,d0 — 31).

(a0, a1, a2, a3)
(a() +a1,a0 — 31,32 + a3, ay — 33).

Same for qubit 1:
(a0, a1, a2, a3) —
(a() +a2,a1 +a3,d9 — a,al — 33).

Qubit 0 and then qubit 1:
(ag, a1, a2, a3) —
(ao+al,ao—al,ag+33,ag—ag) —>
(ag+a1+ax+az, a0 —a1+apx—as,
ao——al—ag—ag,ao—al—ag+33).

: Number of qubits
er of bit operations

al p, p~ 1 circuits.

' be much larger
mber of bits stored
Iginal circuits.

eful techniques

ress into fewer qubits,
n these lose time.
btle tradeoffs.

noly-time” analyses
re about this,

us cryptanalysis
more precise.

Fast quantum operations, part 2

"Hadamard' :

(ao, 31) — (a() + a1,a0 — 31).

(a0, a1, a2, a3) +
(ao +a1,a90 — 31,32 +a3,ay — 33).

Same for qubit 1:

(ag, a1, a», a3) —
(ag + ap, a1 + a3, ag — ap, a1 — a3).

Qubit 0 and then qubit 1:

(ag, a1, a2, a3) —
(ag+a1,ap—a1, ax+a3, a»—az) —
(ag+a1+ax+a3, ap—ay+ap—as,

ao——al—ag—ag,ao—al—ag+a3).

Repeat |
(1,0,0,.

Measurii
always

Measuri
can proc
Prloutpt

of qubits
yperations
Ircults.

larger
ts stored
uits.

ques
ewer qubits,

e time.
offs.

analyses
his,
nalysis
1Se.

Fast

quantum operations, part 2

"Hadamard' :

(ao, 31) —> (ao + a1,da0 — 31).

(a0, a1, a2, a3)
(a() +a1,a0 — 31,32 + a3, ay — 33).

Sam

e for qubit 1:

(ag, a1, a2, a3) —
(ag + ap, a1 + a3, ag — ap, a1 — a3).

Qub

it 0 and then qubit 1:

(ag, a1, a2, a3) —
(ap+a1,ap—a1, ax+az, ap—az) —

(a0 -

-d] +dp+as,ag—ai+ax — as,

d(

—31—32—33,30—31—32+a3).

Repeat n times: e
(1,0,0,...,0) — 1

Measuring (1, 0, 0,
always produces 0

Measuring (1,1, 1,
can produce any
Prloutput = q] =

S,

Fast

quantum operations, part 2

"Hadamard' :

(ao, 31) — (a() + a1,d0 — 31).

(a0, a1, a2, a3) +
(ao +a1,a90 — 31,32 +a3,ay — 33).

Sam

e for qubit 1:

(a0, a1, a2, a3) —
(ao +a2,a1 +a3,agp — a,al — 33).

Qub

it 0 and then qubit 1:

(ag, a1, a2, a3) —
(ap+a1,ap—a1, ax+a3z, ap—az) —

(a0 -

-d] +dp+az,dp—ai+a— as,

d(

—31—32—33,30—31—32+33).

Repeat n times: e.g.,

(1,0,0,...,0) — (1,1,1,...

Measuring (1,0,0,...,0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = g = 1/2".

Fast

quantum operations, part 2

"Hadamard' :

(ao, 31) —> (ao + a1,d0 — 31).

(a0, a1, a2, a3)
(a() +a1,a0 — 31,32 + a3, ay — 33).

Sam

e for qubit 1:

(a0, a1, a2, a3) —
(a() +a2,a1 +a3,d9 — a2, al — 33).

Qub

it 0 and then qubit 1:

(ag, a1, a2, a3) —
(ap+a1,ap—a1, ax+az, ap—az) —

(a0 -

-d] +dp+as,ag—ai+ax — as,

d(

—31—32—33,30—31—32+a3).

Repeat n times: e.g.,
(1,0,0,...,0) — (1,1,1,...,1).

Measuring (1,0,0,...,0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = q] = 1/2".

Fast quantum operations, part 2

"Hadamard' :

(ao, 31) —> (ao + 31,49 — 31).

(ag, a1, a2, a3) —

(a() +a1,a0 — 31,32 + a3, ay — 33).

Same for qubit 1:
(ag, a1, a2, az) —

(a() +adp,a1 +a3,ap — az, a1 — 33).

Qubit 0 and then qubit 1:
(ag, a1, a2, a3) —

(ag+a1,ap—a1, ax+a3, a»—az) —
(ag+a1+ax+az, ap—ar +ap—as,
ap +ai; — ap — as, ao—al—az—l—ag).

Repeat n times: e.g.,
(1,0,0,...,0) — (1,1,1,...,1).

Measuring (1,0,0,...,0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = q] = 1/2".

Aside from “normalization”
(irrelevant to measurement),
have Hadamard = Hadamard !,
so easily work backwards

from “uniform superposition”
(1,1,1,...,1) to “pure state”
(1,0,0,...,0).

intum operations, part 2

ard” :

— (ag + a1, a0 — a1).

92,33) —
,d) — d1,4d2 + a3, ay — 33).

r qubit 1:
92,33) —
,a1 +as, ap — a2, a1 — az).

and then qubit 1:

92,33) —>
ao—al,ag+ag,ag—33) —
+a+as,dg—ai+az— as,
—32—33,80—81—32—|—33).

Repeat n times: e.g.,

(1,0,0,...,0) — (1,1,1,...,1).

Measuring (1,0,0,...,0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = g = 1/2".

Aside from “normalization”
(irrelevant to measurement),
have Hadamard = Hadamard !,
so easily work backwards

from “uniform superposition”
(1,1,1,...,1) to “pure state”
(1,0,0,...,0).

Simon's

Assume:
satisfies
for every
Can we
given a -

rations, part 2

1,40 — a].)

1+ a3, ap — az).

0 — a», 31 — a3).

qubit 1:

+az, ap—az) —
ap —ai +az — as,
ag — a1 —32—|—33).

Repeat n times: e.g.,

(1,0,0,...,0)— (1,1,1,...,1).

Measuring (1,0,0,...,0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = q] = 1/2".

Aside from “normalization”
(irrelevant to measurement),
have Hadamard = Hadamard 1,
so easily work backwards

from “uniform superposition”
(1,1,1,...,1) to “pure state”
(1,0,0,...,0).

Simon’s algorithm

Assume: nonzero
satisfies f(x) = f(
for every x € {0, 1
Can we find this p
given a fast circuif

33) —

42 — a3,

2 + a3).

Repeat n times: e.g.,

(1,0,0,...,0) — (1,1,1,..

Measuring (1,0,0, ..., 0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = g = 1/2".

Aside from “normalization”
(irrelevant to measurement),
have Hadamard = Hadamard_l,

so easily work backwards

from “uniform superposition”
(1,1,1,...,1) to “pure state”

(1,0,0,...,0).

Simon’s algorithm

Assume: nonzero s € {0, 1}
satisfies f(x) = f(x @ s)
for every x € {0, 1}".

Can we find this period s,
given a fast circuit for 7

Repeat n times: e.g.,

(1,0,0,...,0)— (1,1,1,...,1).

Measuring (1,0,0, ..., 0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = q] = 1/2".

Aside from “normalization”
(irrelevant to measurement),

have Hadamard = Hadamard_l,

so easily work backwards
from “uniform superposition”
(1,1,1,...,1) to “pure state”
(1,0,0,...,0).

Simon’s algorithm

Assume: nonzero s € {0,1}"
satisfies f(x) = f(x @ s)

for every x € {0,1}".

Can we find this period s,
given a fast circuit for 7

Repeat n times: e.g.,

(1,0,0,...,0)— (1,1,1,...,1).

Measuring (1,0,0, ..., 0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = q] = 1/2".

Aside from “normalization”
(irrelevant to measurement),

have Hadamard = Hadamard_l,

so easily work backwards
from “uniform superposition”
(1,1,1,...,1) to “pure state”
(1,0,0,...,0).

Simon’s algorithm

Assume: nonzero s € {0,1}"
satisfies f(x) = f(x @ s)

for every x € {0,1}".

Can we find this period s,
given a fast circuit for 7

We don't have enough data
if £ has many periods.

Assume: only periods are 0, s.

Repeat n times: e.g.,

(1,0,0,...,0)— (1,1,1,...,1).

Measuring (1,0,0,...,0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = q] = 1/2".

Aside from “normalization”
(irrelevant to measurement),
have Hadamard = Hadamard 1,
so easily work backwards

from “uniform superposition”
(1,1,1,...,1) to “pure state”
(1,0,0,...,0).

Simon’s algorithm

Assume: nonzero s € {0,1}"
satisfies f(x) = f(x @ s)

for every x € {0,1}".

Can we find this period s,
given a fast circuit for 7

We don't have enough data
if £ has many periods.

Assume: only periods are 0, s.

Traditional solution:

Compute f for many inputs,
sort, analyze collisions.
Success probability is very low
until #inputs approaches 2"/2.

n times: e.g.,

., 0)—(1,1,1,...,1).

g (1,0,0,...,0)
roduces 0.

g (1,1,1,...,1)
luce any output:
t=gq|=1/2".

om ‘normalization”

nt to measurement),
damard = Hadamard 1,
~work backwards

niform superposition”
.., 1) to “pure state”

.,0).

Simon’s algorithm

Assume: nonzero s € {0, 1}"
satisfies f(x) = f(x @ s)

for every x € {0, 1}".

Can we find this period s,
given a fast circuit for 7

We don't have enough data
if £ has many periods.

Assume: only periods are 0, s.

Traditional solution:

Compute f for many inputs,
sort, analyze collisions.
Success probability is very low

until #inputs approaches 2"/2.

Simon's
IS much,

Say f m
using z

for rever

Prepare
In pure :

vector (

Use n-fo
to move
into unif
(1,1,1,.
with 2"

utput:
1/2"

alization”
surement),
Hadamard 1,
kwards
erposition”
“pure state”

Simon’s algorithm

Assume: nonzero s € {0,1}"
satisfies f(x) = f(x @ s)

for every x € {0,1}".

Can we find this period s,
given a fast circuit for f7

We don't have enough data
if £ has many periods.

Assume: only periods are 0, s.

Traditional solution:

Compute f for many inputs,
sort, analyze collisions.
Success probability is very low

until #inputs approaches 2"/2.

Simon’s algorithm

IS much, much, m

Say f maps n bits
using z “ancilla” |
for reversibility.

Prepare n+ m + :
In pure zero state:
vector (1,0,0,...)

Use n-fold Hadam
to move first n qu

into uniform supel
(1,1,1,...,1,0,0,
with 2" entries 1,

Simon’s algorithm

Assume: nonzero s € {0, 1}"
satisfies f(x) = f(x @ s)

for every x € {0, 1}".

Can we find this period s,
given a fast circuit for 7

We don't have enough data
if £ has many periods.

Assume: only periods are 0, s.

Traditional solution:

Compute f for many inputs,
sort, analyze collisions.
Success probability is very low

until #inputs approaches 2"/2.

Simon’s algorithm
IS much, much, much faster

Say f maps n bits to m bits
using z “ancilla” bits
for reversibility.

Prepare n+ m + z qubits
In pure zero state:
vector (1,0,0,...).

Use n-fold Hadamard
to move first n qubits

into uniform superposition:
(1,1,1,...,1,0,0,...)
with 2" entries 1, others O.

Simon’s algorithm

Assume: nonzero s € {0,1}"
satisfies f(x) = f(x @ s)

for every x € {0,1}".

Can we find this period s,
given a fast circuit for f7

We don't have enough data
if f has many periods.

Assume: only periods are 0, s.

Traditional solution:

Compute f for many inputs,
sort, analyze collisions.
Success probability is very low

until #inputs approaches 2"/2.

Simon’s algorithm
Is much, much, much faster.

Say f maps n bits to m bits,
using z “ancilla” bits
for reversibility.

Prepare n+ m + z qubits
In pure zero state:
vector (1,0,0,...).

Use n-fold Hadamard
to move first n qubits

into uniform superposition:
(1,1,1,...,1,0,0,...)
with 2" entries 1, others O.

algorithm

nonzero s € {0,1}"
f(x)=f(x®s)
rx €40,1}".
find this period s,
fast circuit for f7

t have enough data
many periods.

only periods are 0, s.

1al solution:

e { for many inputs,
lyze collisions.
probability Is very low

1puts approaches on/2.

Simon’s algorithm
IS much, much, much faster.

Say f maps n bits to m bits,

using z “ancilla” bits
for reversibility.

Prepare n+ m + z qubits
In pure zero state:
vector (1,0,0,...).

Use n-fold Hadamard

to move first n qubits

into uniform superposition:
(1,1,1,...,1,0,0,...)
with 2" entries 1, others O.

Apply fa
for rever
1 in pos
moves T«

Note syr
1 at (q,
1 at (g ¢

Apply n-
Measure

output I

Repeat |
Use Gau
to (prob

s € {0,1}"
X @ s)

1.

eriod s,

- for 7

bugh data
ods.

ods are 0, s.

n:
ny inputs,
lons.

/ 1S very low

-oaches 21/2.

Simon’s algorithm
Is much, much, much faster.

Say f maps n bits to m bits,

using z “ancilla” bits
for reversibility.

Prepare n+ m + z qubits
In pure zero state:
vector (1,0,0,...).

Use n-fold Hadamard
to move first n qubits

into uniform superposition:
(1,1,1,...,1,0,0,...)
with 2" entries 1, others O.

Apply fast vector |
for reversible f col
1 in position (g, 0,
moves to position

Note symmetry be

1 at (q,f(q),0) ai
1 at (g® s, f(q),!

Apply n-fold Hada

Measure. By symu
output Is orthogor

Repeat n + 10 tim
Use Gaussian elim
to (probably) find

W

Simon’s algorithm

IS much, much, much faster.

Say f maps n bits to m bits,

using z “ancilla” bits
for reversibility.

Prepare n+ m + z qubits
In pure zero state:
vector (1,0,0,...).

Use n-fold Hadamard

to move first n qubits

into uniform superposition:
(1,1,1,...,1,0,0,...)
with 2" entries 1, others O.

Apply fast vector permutatic
for reversible f computation
1 in position (g, 0, 0)

moves to position (q, f(q), (

Note symmetry between
1 at (q,f(qg),0) and
1 at (g® s, f(q),0).

Apply n-fold Hadamard.

Measure. By symmetry,
output Is orthogonal to s.

Repeat n + 10 times.
Use Gaussian elimination
to (probably) find s.

Simon’s algorithm
Is much, much, much faster.

Say f maps n bits to m bits,

using z “ancilla” bits
for reversibility.

Prepare n+ m + z qubits
In pure zero state:
vector (1,0,0,...).

Use n-fold Hadamard
to move first n qubits

into uniform superposition:
(1,1,1,...,1,0,0,...)
with 2" entries 1, others O.

Apply fast vector permutation
for reversible f computation:
1 in position (g, 0, 0)

moves to position (g, f(q),0).

Note symmetry between
1 at (q,f(qg),0) and
1 at (g®s,f(q),0).

Apply n-fold Hadamard.

Measure. By symmetry,
output Is orthogonal to s.

Repeat n + 10 times.
Use Gaussian elimination
to (probably) find s.

algorithm
much, much faster.

aps n bits to m bits,
“ancilla” bits
sibility.

n+ m+ z qubits

7ero state:
1,0,0,...).

ld Hadamard

first n qubits

orm superposition:
..,1,0,0,...)
entries 1, others 0.

Apply fast vector permutation
for reversible f computation:
1 in position (g, 0, 0)

moves to position (g, f(q),0).

Note symmetry between
1 at (q,f(qg),0) and
1 at (g®s,f(q),0).

Apply n-fold Hadamard.

Measure. By symmetry,
output Is orthogonal to s.

Repeat n + 10 times.
Use Gaussian elimination
to (probably) find s.

Grover's

Assume:
has f(s)

Traditio
compute
hope to

Success
until 1

Grover's
reversibl
Typicall
IS small

easily be

uch faster.

to m bits,
Its

7 qubits

ard
bits
‘position:

others 0.

Apply fast vector permutation
for reversible f computation:
1 in position (g, 0, 0)

moves to position (g, f(q),0).

Note symmetry between
1 at (q,f(qg),0) and
1 at (g®s,f(q),0).

Apply n-fold Hadamard.

Measure. By symmetry,
output Is orthogonal to s.

Repeat n + 10 times.
Use Gaussian elimination
to (probably) find s.

Grover's algorithm

Assum

e: unique s

has f(s) = 0.

Traditional algorit

compute f for ma

hope to find outpt

Success probabilit

until #£inputs appl

Grover's algorithm

reversi
Typica
IS SMa

ole computs

ly: reversib
| enough th

easily

heats tradit

Apply fast vector permutation
for reversible f computation:
1 in position (g, 0, 0)

moves to position (g, f(q),0).

Note symmetry between
1 at (q,f(qg),0) and
1 at (g®s,f(q),0).

Apply n-fold Hadamard.

Measure. By symmetry,
output Is orthogonal to s.

Repeat n + 10 times.
Use Gaussian elimination
to (probably) find s.

Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Traditional algorithm to finc
compute f for many inputs,
hope to find output O.

Success probability is very Ic
until #inputs approaches 2"

Grover's algorithm takes onl
reversible computations of f
Typically: reversibility overh
Is small enough that this

easily beats traditional algor

Apply fast vector permutation
for reversible f computation:
1 in position (g, 0, 0)

moves to position (g, f(q),0).

Note symmetry between
1 at (q,f(qg),0) and
1 at (g®s,f(q),0).

Apply n-fold Hadamard.

Measure. By symmetry,
output Is orthogonal to s.

Repeat n + 10 times.
Use Gaussian elimination
to (probably) find s.

Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output O.
Success pro

nability 1s very low

until #inputs approaches 2",

Grover's algorithm takes only on/2

reversi
Typica
IS SMa

ole computations of f.

ly: reversibility
| enough that t

easily

heats traditiona

overhead

IS

algorithm.

st vector permutation
sible f computation:

tion (g, 0,0)

> position (q, f(g), 0).

nmetry between
f(g),0) and
b s, f(q),0).

fold Hadamard.

. By symmetry,
s orthogonal to s.

n + 10 times.
ssian elimination

ably) find s.

Grover's algorithm

Assume: un

ique s € {0, 1}"

has f(s) = 0.

Traditional algorithm to find s:

compute f
hope to finc

o~
=

or many Iinputs,
output 0.

Success pro

nability 1s very low

until #inputs approaches 2",

Grover's alg

orithm takes only 27/2

reversible computations of f.

Typically: reversibility overhead

Is small enough that this

easily beats

traditional algorithm.

Start frc
over all

Step 1.

bg = —:
bg = aq
This is f

Step 2:
Negate .
This Is &

Repeat
about 0.

Measure
With hig

permutation
mputation:

0)

tween
1d

).
mard.

metry,
al to s.

es.
Ination
S.

Grover's algorithm

(9. £(2), 0)

Assume: unique s € {0, 1}"
has f(s) = 0.

Traditional algorithm to find s:

compute f for many inputs,

hope to find output O.
Success pro

nability 1s very low

until #inputs approaches 2",

Grover's algorithm takes only on/2

reversi
Typica
IS SMa

ole computations of f.

ly: reversibility
| enough that t

easily

heats traditiona

overhead

IS

algorithm.

Start from uniforn
over all n-bit strin

Step 1: Set a «+ I

bg = aq otherwise
This i1s fast.

Step 2: “Grover d
Negate a around |
This is also fast.

Repeat steps 1 an
about 0.58 - 2057

Measure the n qul
With high probabi

on

Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Traditional algorithm to find s:
compute f for many inputs,
hope to find output O.

Success probability is very low
until #inputs approaches 2",

Grover's algorithm takes only on/2
reversible computations of f.
Typically: reversibility overhead

Is small enough that this

easily beats traditional algorithm.

Start from uniform superpos
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average
This is also fast.

Repeat steps 1 and 2
about 0.58 - 2027 times.

Measure the n qubits.
With high probability this fii

Grover's algorithm Start from uniform superposition

Assume: unique s € {0, 1} over all n-bit strings q.

has f(s) = 0. Step 1: Set a < b where
bg = —aq if f(q) =0,

Traditional algorithm to find s: |
by = aq otherwise.

compute f for many inputs,

. This is fast.
hope to find output O. S 15 Tast
Success probability is very low Step 2: “Grover diffusion”.
until #inputs approaches 2". Negate a around Its average.

Grover's algorithm takes only on/2 This is also fast.

reversible computations of f. Repeat steps 1 and 2

Typically: reversibility overhead about 0.58 - 2927 times.

Is small enough that this .
& Measure the n qubits.

With high probability this finds s.

easily beats traditional algorithm.

“algorithm

unique s € {0, 1}"
= 0.

1al algorithm to find s:
 f for many inputs,
find output O.

probability is very low
1puts approaches 2"

algorithm takes only 2//2
e computations of f.

/. reversibility overhead
enough that this

ats traditional algorithm.

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —aq if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 2027 times.

Measure the n qubits.
With high probability this finds s.

Graph o
for an e
after O s

1.0—

—0.5+

-1.0—

| Start from uniform superposition Graph of g — aq
c {0,117 over all n-bit strings q. for an example wi

Step 1: Set a < b where after O steps:

A _ 1.0
hm to find s: bg = —aq 1t f(q) 0 |
. by = aq otherwise.
Ny INputs, o
0. This is fast. 05l
/ 1S very low Step 2: “Grover diffusion”.
-0oaches 2", Negate a around Its average. 00

' takes only n/2 This is also fast.

itions of f. Repeat steps 1 and 2 05
ility overhead about 0.58 - 2927 times.

at this | Measure the n qubits. 10!
onal algorithm.

With high probability this finds s.

| s:

W

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 2027 times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq

for an example with n = 12

after O steps:

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq

for an example with n = 12

after O steps:

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq

for an example with n = 12
after Step 1:

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq

for an example with n = 12
after Step 1 + Step 2:

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq

for an example with n = 12
after Step 1 + Step 2 + Step 1:

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq

for an example with n = 12
after 2 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq

for an example with n = 12
after 3 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq

for an example with n = 12
after 4 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq

for an example with n = 12
after 5 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq

for an example with n = 12
after 6 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq

for an example with n = 12
after 7 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq

for an example with n = 12
after 8 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq

for an example with n = 12
after 9 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq

for an example with n = 12
after 10 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq

for an example with n = 12
after 11 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq

for an example with n = 12
after 12 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq

for an example with n = 12
after 13 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq

for an example with n = 12
after 14 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq

for an example with n = 12
after 15 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq

for an example with n = 12
after 16 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq

for an example with n = 12
after 17 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq

for an example with n = 12
after 18 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq

for an example with n = 12
after 19 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq

for an example with n = 12
after 20 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq

for an example with n = 12
after 25 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq

for an example with n = 12
after 30 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq
for an example with n = 12
after 35 x (Step 1 + Step 2):

1.0

0.5+

OO N E——————————

-0.5+

-1.0

Good moment to stop, measure.

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq

for an example with n = 12
after 40 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq
for an example with n = 12
after 45 x (Step 1 + Step 2):

1.0

0.5+

0.0

-0.5+

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq
for an example with n = 12
after 50 x (Step 1 + Step 2):

1.0

0.5+

0.0

-0.5+

-1.0

Traditional stopping point.

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq

for an example with n = 12
after 60 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq

for an example with n = 12
after 70 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq

for an example with n = 12
after 80 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq

for an example with n = 12
after 90 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0

Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq
for an example with n = 12
after 100 x (Step 1 + Step 2):

1.0

0.5+

0.0 b o

-0.5+

-1.0

Very bad stopping point.

m uniform superposition
n-bit strings g.

Set a < b where
g if f(q) =0,
otherwise.

ast.

“Grover diffusion” .
7 around Its average.
Iso fast.

steps 1 and 2
58 - 2097 times.

' the n qubits.
rh probability this finds s.

Graph of g — aq

for an example with n = 12
after 100 x (Step 1 + Step 2):

1.0

0.5+

0.0 b o

—0.5+

-1.0

Very bad stopping point.

g — aq
by a vec
(with fix
(1) ag f
(2) aq f

Step 1 -
act linea

Easily cc
and pow
to under
of state
= Prob.
after ~(

1 superposition
gs g.

) where
— O,

iffusion” .
LS average.

d 2
times.

JItS.

lity this finds s.

Graph of g — agq
for an example with n = 12
after 100 x (Step 1 + Step 2):

1.0

0.0 b o

-0.5+

-1.0

Very bad stopping point.

g — aq Is complet
by a vector of two
(with fixed multip
(1) ag for roots g;
(2) ag for non-roo

Step 1 + Step 2
act linearly on this

Easily compute eig
and powers of this
to understand evo
of state of Grover’
= Probabllity I1s =
after ~(m/4)20->"

1tion

1ds s.

Graph of g — aq
for an example with n = 12
after 100 x (Step 1 + Step 2):

1.0

0.0 b o

—0.5+

-1.0

Very bad stopping point.

g — aq Is completely descril
by a vector of two numbers
(with fixed multiplicities):
(1) ag for roots g;

(2) ag for non-roots q.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear ma

to understand evolution

of state of Grover's algorithi
= Probability 1s ~1

after ~(7/4)2°°" iterations

Graph of g — aq
for an example with n = 12
after 100 x (Step 1 + Step 2):

1.0

0.0 b o

-0.5+

-1.0

Very bad stopping point.

g — aq Is completely described
by a vector of two numbers
(with fixed multiplicities):

(1) ag for roots g;

(2) ag for non-roots q.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(7/4)2%°>" iterations.

f g +— ag
<ample with n = 12
) X (Step 1 + Step 2):

1 stopping point.

g — aq Is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) ag for roots g;

2) ag for non-roots q.
q

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues

and powers o

- this linear map

to understand

evolution

of state of Grover's algorithm.
= Probability i1s =1
after ~(7/4)2%°" iterations.

Notes ol

Textboo

Proof o

New

Proof I

Mislead
that bes
best pro

h n=12
1 + Step 2):

“point.

g — aq Is completely described
by a vector of two numbers
(with fixed multiplicities):

(1) ag for roots g;

(2) ag for non-roots q.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(7/4)2%°>" iterations.

Notes on provabili

Textbook algorithi

Proof of correctn:

J\

New algorithm

Y .
Proof of run tim

Mislead students |
that best algorithr
best proven algori

I\J
v

g — aq Is completely described
by a vector of two numbers
(with fixed multiplicities):

(1) ag for roots g;

(2) ag for non-roots q.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map

to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(7/4)2%°" iterations.

Notes on provability

Textbook algorithm analysis

Proof of correctness

A

New algorithm

Y
Proof of run time

Mislead students into thinki
that best algorithm =
best proven algorithm.

g — aq Is completely described
by a vector of two numbers
(with fixed multiplicities):

(1) ag for roots g;

(2) ag for non-roots q.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(7/4)2%°>" iterations.

Notes on provability

Textbook algorithm analysis:

Proof of correctness

J\

New algorithm

Y
Proof of run time

Mislead students into thinking
that best algorithm =
best proven algorithm.

Is completely described
tor of two numbers

ed multiplicities):

I roots q;

DI NON-roots q.

- Step 2
rly on this vector.

ympute eigenvalues
ers of this linear map

stand evolution

of Grover's algorithm.
ability I1s =1

7 /4)29-°" iterations.

Notes on provability

Textbook algorithm analysis:

Proof of correctness

A

New algorithm

Y
Proof of run time

Mislead students into thinking
that best algorithm =
best proven algorithm.

Reality:
cryptanc
are almc

ely described
numbers

licities):

ts q.

, vector.

renvalues

- linear map
lution

s algorithm.
-1
iterations.

Notes on provability

Textbook algorithm analysis:

Proof of correctness

I\

New algorithm

Y
Proof of run time

Mislead students into thinking
that best algorithm =
best proven algorithm.

Reality: state-of-t
cryptanalytic algol
are almost never r

yed

Notes on provability

Textbook algorithm analysis:

Proof of correctness

A

New algorithm

Y
Proof of run time

Mislead students into thinking
that best algorithm =
best proven algorithm.

Reality: state-of-the-art
cryptanalytic algorithms
are almost never proven.

Notes on provability

Textbook algorithm analysis:

Proof of correctness
A

New algorithm

Y
Proof of run time

Mislead students into thinking
that best algorithm =
best proven algorithm.

Reality: state-of-the-art
cryptanalytic algorithms
are almost never proven.

Notes on provability

Textbook algorithm analysis:

Proof of correctness
A

New algorithm

Y
Proof of run time

Mislead students into thinking
that best algorithm =
best proven algorithm.

Reality: state-of-the-art
cryptanalytic algorithms
are almost never proven.

lgnorant response:
“Work harder, find proofs!”

Notes on provability

Textbook algorithm analysis:

Proof of correctness
A

New algorithm

Y
Proof of run time

Mislead students into thinking
that best algorithm =
best proven algorithm.

Reality: state-of-the-art
cryptanalytic algorithms
are almost never proven.

lgnorant response:
“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist
for most of these algorithms.
So demanding proofs is silly.

Notes on provability

Textbook algorithm analysis:

Proof of correctness
A

New algorithm

Y
Proof of run time

Mislead students into thinking
that best algorithm =
best proven algorithm.

Reality: state-of-the-art
cryptanalytic algorithms
are almost never proven.

lgnorant response:
“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist
for most of these algorithms.
So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?
Answer: Real algorithm analysis
relies critically on heuristics and
computer experiments.

1 _provability

k algorithm analysis:

f correctness
A

algorithm

Y
of run time

students into thinking
t algorithm =
ven algorithm.

Reality: state-of-the-art
cryptanalytic algorithms
are almost never proven.

lgnorant response:
“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist
for most of these algorithms.
So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?
Answer: Real algorithm analysis
relies critically on heuristics and
computer experiments.

What ak
Want to
quantun
to figure
against

Ly

M analysis:

=SS

€

nto thinking
N =
thm.

Reality: state-of-the-art
cryptanalytic algorithms
are almost never proven.

lgnorant response:
“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist
for most of these algorithms.
So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?
Answer: Real algorithm analysis
relies critically on heuristics and
computer experiments.

What about quan
Want to analyze,
quantum algorithn
to figure out safe
against future qua

ng

Reality: state-of-the-art
cryptanalytic algorithms
are almost never proven.

lgnorant response:
“Work harder, find proofs!”

Consensus of the experts:
proofs probably do not exist

for most of these algorithms.

So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?

Answer: Real algorithm analysis
relies critically on heuristics and

computer experiments.

What about quantum algori
Want to analyze, optimize
quantum algorithms today
to figure out safe crypto
against future quantum atts

Reality: state-of-the-art
cryptanalytic algorithms
are almost never proven.

lgnorant response:
“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist
for most of these algorithms.
So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?
Answer: Real algorithm analysis
relies critically on heuristics and
computer experiments.

What about quantum algorithms?
Want to analyze, optimize
quantum algorithms today

to figure out safe crypto

against future quantum attack.

Reality: state-of-the-art
cryptanalytic algorithms
are almost never proven.

lgnorant response:
“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist
for most of these algorithms.
So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?
Answer: Real algorithm analysis
relies critically on heuristics and
computer experiments.

What about quantum algorithms?
Want to analyze, optimize
quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny gq. computer?
= Huge extrapolation errors.

Reality: state-of-the-art
cryptanalytic algorithms
are almost never proven.

lgnorant response:
“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist
for most of these algorithms.
So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?
Answer: Real algorithm analysis
relies critically on heuristics and
computer experiments.

What about quantum algorithms?
Want to analyze, optimize
quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny gq. computer?
= Huge extrapolation errors.

2. Faster algorithm-specific
simulation? Yes, sometimes.

Reality: state-of-the-art
cryptanalytic algorithms
are almost never proven.

lgnorant response:
“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist
for most of these algorithms.
So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?
Answer: Real algorithm analysis
relies critically on heuristics and
computer experiments.

What about quantum algorithms?
Want to analyze, optimize
quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny gq. computer?
= Huge extrapolation errors.

2. Faster algorithm-specific
simulation? Yes, sometimes.

3. Fast trapdoor simulation.
Simulator (like prover) knows
more than the algorithm does.

Tung Chou has implemented this,

found errors in two publications.

