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is a “reversible XOR gate” =
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(ag, a1, a», a3, aa, as, ap, a7) —

(a0, a1, a2, a3, a4, as, a7, ag)
is a “Toffoli gate” =

“controlled controlled NOT gate”:

(90,91, g2) — (g0 @ 9192, 91, G2).

Example with more qubits:

(a0, a1, a2, a3, as, as, ae, ar,

ag, a9, a10, 11, @12, 413, 14, a1s,
a16, a17, 18, @19, a20, 421, a22, a3,
a4, azs, axe, a27, a8, a29, a0, asl)
— (ao, a1, a2, a3, as, as, ar, ae,

ag, a9, a10, 11, @12, 413, a1, a14,
a16, a17, 18, @19, a20, 421, a23, a2,

Reversible computation

Say p is a permutation
of {0,1,...,2" —1}.

General strategy to compose
these fast quantum operatio
to obtain index permutation

(ap(0): 2p(1): - -+ Ap(2n-1))
—> (ao, al, ..., aQn_l)Z



(ag, a1, a2, a3, aa, as, @, a7) —

(a0, a1, a2, a3, a4, as, a7, ag)
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(ag, a1, a2, a3, aa, as, @, a7) —

(a0, a1, a2, a3, a4, as, a7, ag)
is a “Toffoli gate” =

“controlled controlled NOT gate”:

(90,91, q2) — (g0 @ 9142, 91, G2).

Example with more qubits:

(a0, a1, @2, a3, as, as, ae, ar,

ag, a9, a10, 411, @12, 413, 14, a15s,
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Reversible computation

Say p is a permutation
of {0,1,...,2" —1}.

General strategy to compose
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to obtain index permutation
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—> (30, al, ..., aQn_l)Z

1. Build a traditional circuit
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using NOT /XOR/AND gates.
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permutation g — g + 1 mod 8.
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Example: Let's compute
(ag, a1, a2, a3, aa, as, ap, a7) —

(a7, ag, a1, a2, a3, a4, as, agp);
permutation g — g + 1 mod 8.
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(ag, a1, a2, a7, aa, as, ae, a3).

Controlled NOT for g1 + g1 @ qp:
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(ag, a7, a», a1, aa, a3, ae, as).
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2. Convert into reversible gates.

Toffoli for g» < g> & g19p:
(ag, a1, a2, a3, aa, as, ap, a7) —
(ag, a1, a2, a7, aa, as, ae, a3).

Controlled NOT for g1 + g1 @ qp:

(ag, a1, a2, a7, aa, as, ag, a3) —
(ag, a7, a», a1, aa, a3, ae, as).

NOT for gy + qgp @ 1
(ag, a7, a2, a1, a4, a3, ag, as) —
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It didn't need many operatic

For large n, most permutati
need many operations = slc
Really want fast circuits.



2. Convert into reversible gates.

Toffoli for g» < g2 D g190p:
(ag, a1, a2, a3, aa, as, @, a7) —
(ag, a1, a2, a7, aa, as, ae, a3).

Controlled NOT for g1 < g1 @ qp:

(ag, a1, a2, a7, aa, as, a6, a3) —
(ag, a7, a», a1, aa, a3, ae, as).

NOT for gy + qgp @ 1
(ag, a7, a2, a1, a4, a3, ag, as) —
(a7, ag, a1, a2, a3, a4, as, ag ).

This permutation example
was deceptively easy.

It didn't need many operations.

For large n, most permutations p
need many operations = slow.
Really want fast circuits.



2. Convert into reversible gates.

Toffoli for g» < g2 D g190p:
(ag, a1, a2, a3, aa, as, @, a7) —
(ag, a1, a2, a7, aa, as, ae, a3).

Controlled NOT for g1 < g1 @ qp:

(ag, a1, a2, a7, aa, as, a6, a3) —
(ag, a7, a», a1, aa, a3, ae, as).

NOT for gy + qgp @ 1
(ag, a7, a2, a1, a4, a3, ag, as) —
(a7, ag, a1, a2, a3, a4, as, ag ).

This permutation example
was deceptively easy.

It didn't need many operations.

For large n, most permutations p
need many operations = slow.
Really want fast circuits.

Also, 1t didn't need extra storage:
circuit operated “in place” after
computation ¢ < g1gg was
merged Into gy < go P ¢y.

Typical circuits aren't in-place.
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This permutation example
was deceptively easy.

It didn't need many operations.

For large n, most permutations p
need many operations = slow.
Really want fast circuits.

Also, it didn't need extra storage:

circuit operated “in place” after
computation ¢; < g1gg was
merged Into gy < g» D ¢y.

Typical circuits aren't in-place.

Start from any circuit:
inputs by, by, ..., b;;

bi+1 =1 bf(j11)bg(it1);
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br = 1 br(1) bg(7);
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This permutation example
was deceptively easy.

It didn't need many operations.

For large n, most permutations p
need many operations = slow.
Really want fast circuits.

Also, 1t didn't need extra storage:

circuit operated “in place” after
computation ¢; < g1gg was
merged Into gy < go P ¢y.

Typical circuits aren't in-place.

Start from any circuit:
inputs b1, by, ..., b,';

bit1 =1 br(j1)bg(it1);
bi2 = 1@ br(i12)bg(i12);

br = 1 ® (1) bg(7);
specified outputs.



This permutation example
was deceptively easy.

It didn't need many operations.

For large n, most permutations p
need many operations = slow.
Really want fast circuits.

Also, 1t didn't need extra storage:

circuit operated “in place” after
computation ¢; < g1gg was
merged Into gy < go P ¢y.

Typical circuits aren't in-place.

Start from any circuit:
inputs b1, by, ..., b,';

bit1 =1 br(j1)bg(it1);
bi2 = 1@ br(i12)bg(i12);

br = 1 ® (1) bg(7);
specified outputs.

Reversible but dirty:

inputs by, by, ..., bT;

bit1 < 1@ bit1 @ br(i11)bg(it1);
bit2 < 1@ bj12 @ br(i12)bg(i+2);

br <~ 1@ br & bf(T) bg(T)-
Same outputs if all of
bji1,..., by started as 0.



mutation example
ptively easy.

need many operations.

> n, most permutations p
ny operations = slow.
ant fast circuits.

didn’'t need extra storage:

perated “in place” after
ition ¢ < gi1qgp was

Into go < go» P 1.

circuits aren't in-place.

Start from any circuit:
inputs by, by, ..., b;;

bit1 =1 br(j1)bg(it1):
biy2 =1 br(jy2)bg(it2);

br = 1 ® br(1) bg(7);
specified outputs.

Reversible but dirty:

inputs by, by, ..., bT;

bit1 < 1 ® bit1 ® br(i11)bg(it1);
bit2 < 1@ bj12 @ br(i12)bg(it2);

br <~ 1® br @ bf(T) bg(T)-
Same outputs if all of
bji1,..., by started as 0.

Reversib

after fin

set non-

by
on

repea

NON-(

Original

(inputs)
(inputs,

Dirty rey

(in
(in

outs,

DUts,

Clean re

(in
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Outs,
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example

Sy.

1y operations.
permutations p

ions = slow.
IrCults.

d extra storage:

n place’ after

- d14o Was
g2 © C1.

2n't in-place.

Start from any circuit:

inputs by, by, ...

biy1 =1 by

, bj;
1) Dg (i

br = 1 ® (1) bg(7);
specified outputs.

Reversible but dirty:

inputs by, by, ..

. br;

bio1 4 1®bj1® bf(,-
b,'__2 — 16 b,'__2 D bf(,'_

1)

bit2 = 1@ br(jy2)bg(it2);

1) bg(it1)

2) bg(i+2)

br <~ 1@ br & bf(T) bg(T)-
Same outputs if all of

b,'_|_1, ..

., by started as 0.

Reversible and cle
after finishing dirt
set non-outputs b:
by repeating same
on non-outputs In

Original computat
(inputs) —
(inputs, dirt, outpu

Dirty reversible co
(inputs, zeros, zero

(inputs, dirt, outpu

Clean reversible cc
(inputs, zeros, zero

(inputs, zeros, outj
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Start from any circuit:

inputs by, by, ...

b:.

1= 1O br(iy1)bg(;

b:.

, bj;

2 = 1@ br(jy2)bg(iv

br = 1 ® br(1)bg(7);
specified outputs.

Reversible but dirty:

inputs by, by, ..

b:.

1 < 16 b,

b:.

., br;

> < 16 b,

+1) bg (i

+2) bg (i-

br <~ 1® br @ bf(T) bg(T)-
Same outputs if all of

bii1, ..

., bt started as 0.

Reversible and clean:

after finishing dirty computa

set non-outputs back to 0,

by
on

repeating same operation
non-outputs In reverse or

Original computation:

(inputs) —

(inputs, dirt, outputs).

Dirty reversible computation

(in
(in

outs, zeros, zeros) —

outs, dirt, outputs).

Clean reversible computatiol

(in
(in

outs, zeros, zeros) —

outs, zeros, outputs).



Start from any circuit: Reversible and clean:

inputs by, by, ..., b;; after finishing dirty computation,
bi+1 = 1@ bf(i1+1)bg(i+1); set non-outputs back to 0,
bit2 = 1@ br(iy2)bg(it2); by repeating same operations

on non-outputs in reverse order.

br = 1 ® (1) bg(7);

- Original computation:
specified outputs.

(inputs) —

Reversible but dirty: (inputs, dirt, outputs).
nputs by, by, ..., br; Dirty reversible computation:
bit1 < 1@ bj11 @ br(ir1)bg(it1); (in

bit2 < 1@ bj12 @ br(i10)bg(i+2); (in

outs, zeros, zeros) —

outs, dirt, outputs).

br < 1@ by & b(1yby(7). C.Iean reversible computation:
Same outputs if all of (inputs, zeros, zeros) —
bji1,..., by started as 0. (inputs, zeros, outputs).




m any Circuit:

1, by, ..., b;;

L@ br(j11)bg(i+1);
LD br(i12)bg(i+2);

B br(1)bg(T);
| outputs.

le but dirty:

1,b2,...,b7';

1@ bit1 ® br(ir1)bg(it1);
1 @ b2 @ br(j2)bg(i12);

® br & bf(T) bg(T)-
itputs if all of
, bt started as 0.

Reversible and clean:

after finishing dirty computation,

set non-outputs back to 0,

by
on

repeating same operations
non-outputs in reverse order.

Original computation:

(inputs) —

(inputs, dirt, outputs).

Dirty reversible computation:

(in
(in

outs, zeros, zeros) —

outs, dirt, outputs).

Clean reversible computation:

(in
(in

outs, zeros, zeros) —

outs, zeros, outputs).

Given fa
and fast

build fas
(x, zeros




Reversible and clean:

after finishing dirty computation,
set non-outputs back to 0,

by repeating same operations

on non-outputs in reverse order.

Original computation:
(inputs) —
(inputs, dirt, outputs).

Dirty reversible computation:
(inputs, zeros, zeros) +—

(inputs, dirt, outputs).

Clean reversible computation:
(inputs, zeros, zeros) —

(inputs, zeros, outputs).

Given fast circuit

dNdG

bui

fast circuit for
d fast reversibl

(x, zeros) — (p(x)
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Reversible and clean:

after finishing dirty computation,
set non-outputs back to 0,

by repeating same operations

on non-outputs in reverse order.

Original computation:
(inputs) —
(inputs, dirt, outputs).

Dirty reversible computation:
(inputs, zeros, zeros) +—

(inputs, dirt, outputs).

Clean reversible computation:
(inputs, zeros, zeros) —

(inputs, zeros, outputs).

Given fast circuit for p

and fast circuit for p_l,

build fast reversible circuit f
(x, zeros) — (p(x), zeros).



Reversible and clean:

after finishing dirty computation,
set non-outputs back to 0,

by repeating same operations

on non-outputs in reverse order.

Original computation:
(inputs) —
(inputs, dirt, outputs).

Dirty reversible computation:
(inputs, zeros, zeros) +—

(inputs, dirt, outputs).

Clean reversible computation:
(inputs, zeros, zeros) —

(inputs, zeros, outputs).

Given fast circuit for p

and fast circuit for p_l,

build fast reversible circuit for
(x, zeros) — (p(x), zeros).



Reversible and clean:

after finishing dirty computation,
set non-outputs back to 0,

by repeating same operations

on non-outputs in reverse order.

Original computation:
(inputs) —
(inputs, dirt, outputs).

Dirty reversible computation:
(inputs, zeros, zeros) +—

(inputs, dirt, outputs).

Clean reversible computation:
(inputs, zeros, zeros) —

(inputs, zeros, outputs).

Given fast circuit for p

and fast circuit for p_l,

build fast reversible circuit for
(x, zeros) — (p(x), zeros).

Replace reversible bit operations

with Toffoli gates etc.

2n—|—z 2n—|—z

permuting C — C .

Permutation on first 2" entries is

(3p(0): 3p(1): - -+ @p(21-1))
— (30, al, ..., azn_l).

Typically prepare vectors
supported on first 2” entries
so don't care how permutation
acts on last 27172 — 2" entries.



le and clean:

shing dirty computation,

outputs back to 0,
ting same operations
utputs In reverse order.

computation:
—
dirt, outputs).

/ersible computation:
ZEros, Zeros)
dirt, outputs).

versible computation:
ZEeros, Zeros) —
zeros, outputs).

Given fast circuit for p

and fast circuit for p_l,

build fast reversible circuit for
(x, zeros) — (p(x), zeros).

Replace reversible bit operations

with Toffoli gates etc.

2n—|—z 2n—|—z

permuting C — C .

Permutation on first 2" entries is

(3p(0): 3p(1): - - -+ 3p(27-1))
— (ao, al, ..., azn_l).

Typically prepare vectors
supported on first 2” entries
so don't care how permutation
acts on last 27172 — 2" entries.
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Given fast circuit for p

and fast circuit for p_l,

build fast reversible circuit for
(x, zeros) — (p(x), zeros).

Replace reversible bit operations

with Toffoli gates etc.

2n—|—z 2n—|—z

permuting C — C .

Permutation on first 2" entries is

(3p(0): 3p(1): - -+ p(21-1))
— (30, al, ..., azn_l).

Typically prepare vectors
supported on first 2” entries
so don't care how permutation
acts on last 27172 — 2" entries.
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Given fast circuit for p

and fast circuit for p_l,

build fast reversible circuit for
(x, zeros) — (p(x), zeros).

Replace reversible bit operations

with Toffoli gates etc.

2n—|—z 2n—|—z

permuting C — C .

Permutation on first 2" entries is

(3p(0): 3p(1): - - -+ 3p(27—1))
— (ao, al, ..., azn_l).

Typically prepare vectors
supported on first 2” entries
so don't care how permutation
acts on last 27172 — 2" entries.

Warning: Number of qubits
~ number of bit operation

—1

in original p, p~ " circuits.

This can be much larger
than number of bits stored
in the original circuits.

Many useful techniques

to compress into fewer qubi
but often these lose time.
Many subtle tradeoftfs.

Crude “poly-time” analyses
don't care about this,

but serious cryptanalysis

IS much more precise.



Given fast circuit for p

and fast circuit for p_l,

build fast reversible circuit for
(x, zeros) — (p(x), zeros).

Replace reversible bit operations

with Toffoli gates etc.

2n—|—z 2n—|—z

permuting C — C .

Permutation on first 2" entries is

(3p(0): 3p(1): - -+ p(21-1))
— (30, al, ..., azn_l).

Typically prepare vectors
supported on first 2” entries
so don't care how permutation
acts on last 27172 — 2" entries.

Warning: Number of qubits
~ number of bit operations

—1

in original p, p~* circuits.

This can be much larger
than number of bits stored
in the original circuits.

Many useful techniques

to compress into fewer qubits,
but often these lose time.
Many subtle tradeoffs.

Crude “poly-time” analyses
don't care about this,

but serious cryptanalysis

IS much more precise.



st circuit for p
circuit for p_l,

t reversible circuit for
) — (p(x), zeros).

reversible bit operations

foli gates etc.
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g C? 2

— C .

tion on first 2" entries is

p(1)r - - - ap(zn_l))
11, - -, azn_l).

/ prepare vectors

d on first 2" entries
care how permutation
last 2717Z — 2™ entries.

Warning: Number of qubits
~ number of bit operations

—1

in original p, p~ " circuits.

This can be much larger
than number of bits stored
in the original circuits.

Many useful techniques

to compress into fewer qubits,
but often these lose time.
Many subtle tradeoftfs.

Crude “poly-time” analyses
don't care about this,

but serious cryptanalysis

IS much more precise.

Fast quc

"Hadam

(20, a1)



for p Warning: Number of qubits Fast quantum ope

: pTl, | ~ nu.n?ber of bit1 o!aer?tions Hadamard"”
e circuit for in original p, p~* circuits. (a0, 21) — (a0 + 2
, Z€ros) This can be much larger
bit operations than number of bits stored
etc. . in the original circuits.
n—+—~2z
- C Many useful techniques
st 2" entries is to compress into fewer qubits,
p(27—1)) but often these lose time.
_1). Many subtle tradeoffs.
ectors Crude “poly-time” analyses
2" entries don’t care about this,
permutation but serious cryptanalysis

— 2" entries. IS much more precise.
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Warning: Number of qubits
~ number of bit operations

—1

in original p, p~ " circuits.

This can be much larger
than number of bits stored
in the original circuits.

Many useful techniques

to compress into fewer qubits,
but often these lose time.
Many subtle tradeoftfs.

Crude “poly-time” analyses
don't care about this,

but serious cryptanalysis

IS much more precise.

Fast quantum operations, p:

"Hadamard' :

(ao, 31) — (a() + ad1,dg — 31:



Warning: Number of qubits Fast quantum operations, part 2

~ number of bit operations
—1

"Hadamard' :

circuits.
(ao, 31) — (ao + a1,a0 — 31).

in original p, p

This can be much larger
than number of bits stored
in the original circuits.

Many useful techniques

to compress into fewer qubits,
but often these lose time.
Many subtle tradeoffs.

Crude “poly-time” analyses
don't care about this,

but serious cryptanalysis

IS much more precise.




Warning: Number of qubits Fast quantum operations, part 2

~ number of bit operations
—1

"Hadamard' :

circuits.
(ao, 31) — (ao + a1,a0 — 31).

in original p, p
This can be much larger
(a0, a1, a2, a3) —

than number of bits stored
(a() +a1,a0 — 31,32 + a3, ay — 33).

In the original circuits.

Many useful techniques

to compress into fewer qubits,
but often these lose time.
Many subtle tradeoffs.

Crude “poly-time” analyses
don't care about this,

but serious cryptanalysis

IS much more precise.




Warning: Number of qubits Fast quantum operations, part 2

~ number of bit operations
—1

"Hadamard' :

circuits.
(ao, 31) — (ao + a1,a0 — 31).

in original p, p
This can be much larger
(a0, a1, a2, a3) —

than number of bits stored
(a() +a1,a0 — 31,32 + a3, ay — 33).

In the original circuits.
Same for qubit 1:
(ag, a1, a2, az) —
(a() +a2,d] +az3,ap — an,al — 33).

Many useful techniques

to compress into fewer qubits,
but often these lose time.
Many subtle tradeoffs.

Crude “poly-time” analyses
don't care about this,

but serious cryptanalysis

IS much more precise.




Warning: Number of qubits
~ number of bit operations

—1

in original p, p~* circuits.

This can be much larger
than number of bits stored
in the original circuits.

Many useful techniques

to compress into fewer qubits,
but often these lose time.
Many subtle tradeoffs.

Crude “poly-time” analyses
don't care about this,

but serious cryptanalysis

IS much more precise.

Fast quantum operations, part 2

"Hadamard' :

(ao, 31) —> (ao + a1,d0 — 31).

(a0, a1, a2, a3)
(a() +a1,a0 — 31,32 + a3, ay — 33).

Same for qubit 1:
(a0, a1, a2, a3) —
(a() +a2,a1 +a3,d9 — a,al — 33).

Qubit 0 and then qubit 1:
(ag, a1, a2, a3) —
(ao+al,ao—al,ag+33,ag—ag) —>
(ag+a1+ax+az, a0 —a1+apx—as,
ao——al—ag—ag,ao—al—ag+33).
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Fast quantum operations, part 2

"Hadamard' :

(ao, 31) — (a() + a1,a0 — 31).

(a0, a1, a2, a3) +
(ao +a1,a90 — 31,32 +a3,ay — 33).

Same for qubit 1:

(ag, a1, a», a3) —
(ag + ap, a1 + a3, ag — ap, a1 — a3).

Qubit 0 and then qubit 1:

(ag, a1, a2, a3) —
(ag+a1,ap—a1, ax+a3, a»—az) —
(ag+a1+ax+a3, ap—ay+ap—as,

ao——al—ag—ag,ao—al—ag+a3).

Repeat |
(1,0,0,.

Measurii
always

Measuri
can proc
Prloutpt
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Fast

quantum operations, part 2

"Hadamard' :

(ao, 31) —> (ao + a1,da0 — 31).

(a0, a1, a2, a3)
(a() +a1,a0 — 31,32 + a3, ay — 33).

Sam

e for qubit 1:

(ag, a1, a2, a3) —
(ag + ap, a1 + a3, ag — ap, a1 — a3).

Qub

it 0 and then qubit 1:

(ag, a1, a2, a3) —
(ap+a1,ap—a1, ax+az, ap—az) —

(a0 -

-d] +dp+as,ag—ai+ax — as,

d(

—31—32—33,30—31—32+a3).

Repeat n times: e
(1,0,0,...,0) — 1

Measuring (1, 0, 0,
always produces 0

Measuring (1,1, 1,
can produce any
Prloutput = q] =



S,

Fast

quantum operations, part 2

"Hadamard' :

(ao, 31) — (a() + a1,d0 — 31).

(a0, a1, a2, a3) +
(ao +a1,a90 — 31,32 +a3,ay — 33).

Sam

e for qubit 1:

(a0, a1, a2, a3) —
(ao +a2,a1 +a3,agp — a,al — 33).

Qub

it 0 and then qubit 1:

(ag, a1, a2, a3) —
(ap+a1,ap—a1, ax+a3z, ap—az) —

(a0 -

-d] +dp+az,dp—ai+a— as,

d(

—31—32—33,30—31—32+33).

Repeat n times: e.g.,

(1,0,0,...,0) — (1,1,1,...

Measuring (1,0,0,...,0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = g = 1/2".



Fast

quantum operations, part 2

"Hadamard' :

(ao, 31) —> (ao + a1,d0 — 31).

(a0, a1, a2, a3)
(a() +a1,a0 — 31,32 + a3, ay — 33).

Sam

e for qubit 1:

(a0, a1, a2, a3) —
(a() +a2,a1 +a3,d9 — a2, al — 33).

Qub

it 0 and then qubit 1:

(ag, a1, a2, a3) —
(ap+a1,ap—a1, ax+az, ap—az) —

(a0 -

-d] +dp+as,ag—ai+ax — as,

d(

—31—32—33,30—31—32+a3).

Repeat n times: e.g.,
(1,0,0,...,0) — (1,1,1,...,1).

Measuring (1,0,0,...,0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = q] = 1/2".



Fast quantum operations, part 2

"Hadamard' :

(ao, 31) —> (ao + 31,49 — 31).

(ag, a1, a2, a3) —

(a() +a1,a0 — 31,32 + a3, ay — 33).

Same for qubit 1:
(ag, a1, a2, az) —

(a() +adp,a1 +a3,ap — az, a1 — 33).

Qubit 0 and then qubit 1:
(ag, a1, a2, a3) —

(ag+a1,ap—a1, ax+a3, a»—az) —
(ag+a1+ax+az, ap—ar +ap—as,
ap +ai; — ap — as, ao—al—az—l—ag).

Repeat n times: e.g.,
(1,0,0,...,0) — (1,1,1,...,1).

Measuring (1,0,0,...,0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = q] = 1/2".

Aside from “normalization”
(irrelevant to measurement),
have Hadamard = Hadamard !,
so easily work backwards

from “uniform superposition”
(1,1,1,...,1) to “pure state”
(1,0,0,...,0).



intum operations, part 2

ard” :

— (ag + a1, a0 — a1).

92,33) —
,d) — d1,4d2 + a3, ay — 33).

r qubit 1:
92,33) —
,a1 +as, ap — a2, a1 — az).

and then qubit 1:

92,33) —>
ao—al,ag+ag,ag—33) —
+a+as,dg—ai+az— as,
—32—33,80—81—32—|—33).

Repeat n times: e.g.,

(1,0,0,...,0) — (1,1,1,...,1).

Measuring (1,0,0,...,0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = g = 1/2".

Aside from “normalization”
(irrelevant to measurement),
have Hadamard = Hadamard !,
so easily work backwards

from “uniform superposition”
(1,1,1,...,1) to “pure state”
(1,0,0,...,0).

Simon's

Assume:
satisfies
for every
Can we
given a -



rations, part 2

1,40 — a].)

1+ a3, ap — az).

0 — a», 31 — a3).

qubit 1:

+az, ap—az) —
ap —ai +az — as,
ag — a1 —32—|—33).

Repeat n times: e.g.,

(1,0,0,...,0)— (1,1,1,...,1).

Measuring (1,0,0,...,0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = q] = 1/2".

Aside from “normalization”
(irrelevant to measurement),
have Hadamard = Hadamard 1,
so easily work backwards

from “uniform superposition”
(1,1,1,...,1) to “pure state”
(1,0,0,...,0).

Simon’s algorithm

Assume: nonzero
satisfies f(x) = f(
for every x € {0, 1
Can we find this p
given a fast circuif



33) —

42 — a3,

2 + a3).

Repeat n times: e.g.,

(1,0,0,...,0) — (1,1,1,..

Measuring (1,0,0, ..., 0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = g = 1/2".

Aside from “normalization”
(irrelevant to measurement),
have Hadamard = Hadamard_l,

so easily work backwards

from “uniform superposition”
(1,1,1,...,1) to “pure state”

(1,0,0,...,0).

Simon’s algorithm

Assume: nonzero s € {0, 1}
satisfies f(x) = f(x @ s)
for every x € {0, 1}".

Can we find this period s,
given a fast circuit for 7



Repeat n times: e.g.,

(1,0,0,...,0)— (1,1,1,...,1).

Measuring (1,0,0, ..., 0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = q] = 1/2".

Aside from “normalization”
(irrelevant to measurement),

have Hadamard = Hadamard_l,

so easily work backwards
from “uniform superposition”
(1,1,1,...,1) to “pure state”
(1,0,0,...,0).

Simon’s algorithm

Assume: nonzero s € {0,1}"
satisfies f(x) = f(x @ s)

for every x € {0,1}".

Can we find this period s,
given a fast circuit for 7



Repeat n times: e.g.,

(1,0,0,...,0)— (1,1,1,...,1).

Measuring (1,0,0, ..., 0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = q] = 1/2".

Aside from “normalization”
(irrelevant to measurement),

have Hadamard = Hadamard_l,

so easily work backwards
from “uniform superposition”
(1,1,1,...,1) to “pure state”
(1,0,0,...,0).

Simon’s algorithm

Assume: nonzero s € {0,1}"
satisfies f(x) = f(x @ s)

for every x € {0,1}".

Can we find this period s,
given a fast circuit for 7

We don't have enough data
if £ has many periods.

Assume: only periods are 0, s.



Repeat n times: e.g.,

(1,0,0,...,0)— (1,1,1,...,1).

Measuring (1,0,0,...,0)
always produces 0.

Measuring (1,1,1,...,1)
can produce any output:
Prloutput = q] = 1/2".

Aside from “normalization”
(irrelevant to measurement),
have Hadamard = Hadamard 1,
so easily work backwards

from “uniform superposition”
(1,1,1,...,1) to “pure state”
(1,0,0,...,0).

Simon’s algorithm

Assume: nonzero s € {0,1}"
satisfies f(x) = f(x @ s)

for every x € {0,1}".

Can we find this period s,
given a fast circuit for 7

We don't have enough data
if £ has many periods.

Assume: only periods are 0, s.

Traditional solution:

Compute f for many inputs,
sort, analyze collisions.
Success probability is very low
until #inputs approaches 2"/2.
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about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq

for an example with n = 12
after 18 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.
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for an example with n = 12
after 19 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq

for an example with n = 12
after 20 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.
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after 25 x (Step 1 + Step 2):

1.0

0.5

0.0

-0.5

-1.0




Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq
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after 30 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq
for an example with n = 12
after 35 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq

for an example with n = 12
after 40 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq
for an example with n = 12
after 45 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq
for an example with n = 12
after 50 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq

for an example with n = 12
after 60 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq

for an example with n = 12
after 70 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq

for an example with n = 12
after 80 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq

for an example with n = 12
after 90 x (Step 1 + Step 2):
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Start from uniform superposition
over all n-bit strings q.

Step 1: Set a < b where
bg = —ag if f(q) =0,

by = aq otherwise.

This is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat steps 1 and 2
about 0.58 - 29" times.

Measure the n qubits.
With high probability this finds s.

Graph of g — aq
for an example with n = 12
after 100 x (Step 1 + Step 2):
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Reality: state-of-the-art
cryptanalytic algorithms
are almost never proven.

lgnorant response:
“Work harder, find proofs!”

Consensus of the experts:

proofs probably do not exist
for most of these algorithms.
So demanding proofs is silly.

Without proofs, how do we

analyze correctness+speed?
Answer: Real algorithm analysis
relies critically on heuristics and
computer experiments.

What about quantum algorithms?
Want to analyze, optimize
quantum algorithms today

to figure out safe crypto

against future quantum attack.

1. Simulate tiny gq. computer?
= Huge extrapolation errors.

2. Faster algorithm-specific
simulation? Yes, sometimes.

3. Fast trapdoor simulation.
Simulator (like prover) knows
more than the algorithm does.

Tung Chou has implemented this,

found errors in two publications.



