Introduction to quantum algorithms

Daniel J. Bernstein University of Illinois at Chicago & Technische Universiteit Eindhoven Data ("state") stored in n bits: an element of $\{0, 1\}^n$, often viewed as representing an element of $\{0, 1, ..., 2^n - 1\}$. Introduction to quantum algorithms

Daniel J. Bernstein

University of Illinois at Chicago & Technische Universiteit Eindhoven

Data ("state") stored in *n* bits: an element of $\{0, 1\}^n$, often viewed as representing an element of $\{0, 1, ..., 2^n - 1\}$.

State stored in n qubits: a nonzero element of \mathbf{C}^{2^n} . Retrieving this vector is tough!

Introduction to quantum algorithms

Daniel J. Bernstein University of Illinois at Chicago & Technische Universiteit Eindhoven

Data ("state") stored in *n* bits: an element of $\{0, 1\}^n$, often viewed as representing an element of $\{0, 1, ..., 2^n - 1\}$. State stored in *n* qubits: a nonzero element of \mathbf{C}^{2^n} . Retrieving this vector is tough! If *n* qubits have state $(a_0, a_1, \ldots, a_{2^n-1})$ then **measuring** the qubits produces an element of $\{0, 1, ..., 2^n - 1\}$ and destroys the state. Measurement produces element q with probability $|a_q|^2 / \sum_r |a_r|^2$.

tion to

n algorithms

. Bernstein

ty of Illinois at Chicago & che Universiteit Eindhoven

Data ("state") stored in *n* bits: an element of $\{0, 1\}^n$, often viewed as representing an element of $\{0, 1, ..., 2^n - 1\}$. State stored in *n* qubits: a nonzero element of $\mathbf{C}^{2''}$. Retrieving this vector is tough! If *n* qubits have state $(a_0, a_1, \ldots, a_{2^n-1})$ then **measuring** the qubits produces an element of $\{0, 1, ..., 2^n - 1\}$ and destroys the state. Measurement produces element q

with probability $|a_q|^2 / \sum_r |a_r|^2$.

Some ex (1, 0, 0, 0)" $|0\rangle$ " in Measure

ns

n is at Chicago & siteit Eindhoven

Data ("state") stored in *n* bits: an element of $\{0, 1\}^n$, often viewed as representing an element of $\{0, 1, ..., 2^n - 1\}$. State stored in *n* qubits: a nonzero element of $\mathbf{C}^{2''}$. Retrieving this vector is tough! If *n* qubits have state $(a_0, a_1, \ldots, a_{2^n-1})$ then **measuring** the qubits produces an element of $\{0, 1, ..., 2^n - 1\}$ and destroys the state. Measurement produces element qwith probability $|a_q|^2 / \sum_r |a_r|^2$.

ago & hoven

Data ("state") stored in *n* bits: an element of $\{0, 1\}^n$, often viewed as representing an element of $\{0, 1, ..., 2^n - 1\}$. State stored in *n* qubits: a nonzero element of \mathbf{C}^{2^n} . Retrieving this vector is tough! If *n* qubits have state $(a_0, a_1, \ldots, a_{2^n-1})$ then **measuring** the qubits produces an element of $\{0, 1, ..., 2^n - 1\}$ and destroys the state. Measurement produces element q with probability $|a_q|^2 / \sum_r |a_r|^2$.

Some examples of 3-qubit st

(1, 0, 0, 0, 0, 0, 0, 0) is

" $|0\rangle$ " in standard notation.

Measurement produces 0.

State stored in *n* qubits: a nonzero element of $\mathbf{C}^{2''}$. Retrieving this vector is tough!

If *n* qubits have state $(a_0, a_1, \ldots, a_{2^n-1})$ then **measuring** the qubits produces an element of $\{0, 1, ..., 2^n - 1\}$ and destroys the state. Measurement produces element q with probability $|a_q|^2 / \sum_r |a_r|^2$.

Some examples of 3-qubit states:

(1,0,0,0,0,0,0,0) is " $|0\rangle$ " in standard notation. Measurement produces 0.

State stored in *n* qubits: a nonzero element of $\mathbf{C}^{2''}$. Retrieving this vector is tough!

If *n* qubits have state $(a_0, a_1, \ldots, a_{2^n-1})$ then **measuring** the qubits produces an element of $\{0, 1, ..., 2^n - 1\}$ and destroys the state. Measurement produces element q with probability $|a_q|^2 / \sum_r |a_r|^2$.

Some examples of 3-qubit states:

(1, 0, 0, 0, 0, 0, 0, 0) is " $|0\rangle$ " in standard notation. Measurement produces 0.

(0, 0, 0, 0, 0, 0, 0, 1, 0) is " $|6\rangle$ " in standard notation. Measurement produces 6.

State stored in *n* qubits: a nonzero element of \mathbf{C}^{2^n} . Retrieving this vector is tough!

If *n* qubits have state $(a_0, a_1, \ldots, a_{2^n-1})$ then **measuring** the qubits produces an element of $\{0, 1, ..., 2^n - 1\}$ and destroys the state. Measurement produces element q with probability $|a_q|^2 / \sum_r |a_r|^2$.

Some examples of 3-qubit states:

(1, 0, 0, 0, 0, 0, 0, 0) is " $|0\rangle$ " in standard notation. Measurement produces 0.

(0, 0, 0, 0, 0, 0, 0, 1, 0) is " $|6\rangle$ " in standard notation. Measurement produces 6.

 $(0, 0, 0, 0, 0, 0, -7i, 0) = -7i|6\rangle$: Measurement produces 6.

State stored in *n* qubits: a nonzero element of \mathbf{C}^{2^n} . Retrieving this vector is tough!

If *n* qubits have state $(a_0, a_1, \ldots, a_{2^n-1})$ then measuring the qubits produces an element of $\{0, 1, ..., 2^n - 1\}$ and destroys the state. Measurement produces element q

with probability $|a_q|^2 / \sum_r |a_r|^2$.

Some examples of 3-qubit states: (1, 0, 0, 0, 0, 0, 0, 0) is " $|0\rangle$ " in standard notation. Measurement produces 0. (0, 0, 0, 0, 0, 0, 0, 1, 0) is " $|6\rangle$ " in standard notation. Measurement produces 6. $(0, 0, 0, 0, 0, 0, -7i, 0) = -7i|6\rangle$: Measurement produces 6. $(0, 0, 4, 0, 0, 0, 8, 0) = 4|2\rangle + 8|6\rangle$: Measurement produces 2 with probability 20%, 6 with probability 80%.

state") stored in *n* bits: ent of $\{0, 1\}^n$, ewed as representing ent of $\{0, 1, \ldots, 2^n - 1\}$.

ored in *n* qubits: ro element of $\mathbf{C}^{2''}$.

ng this vector is tough!

its have state

.., a_{2^n-1}) then ng the qubits produces ent of $\{0, 1, \ldots, 2^n - 1\}$

roys the state.

ment produces element q bability $|a_q|^2 / \sum_r |a_r|^2$.

Some examples of 3-qubit states:

(1, 0, 0, 0, 0, 0, 0, 0) is " $|0\rangle$ " in standard notation. Measurement produces 0.

(0, 0, 0, 0, 0, 0, 0, 1, 0) is " $|6\rangle$ " in standard notation. Measurement produces 6.

 $(0, 0, 0, 0, 0, 0, -7i, 0) = -7i|6\rangle$: Measurement produces 6.

 $(0, 0, 4, 0, 0, 0, 8, 0) = 4|2\rangle + 8|6\rangle$: Measurement produces

- 2 with probability 20%,
- 6 with probability 80%.

Fast qua

 (a_0, a_1, a_1) (a_1, a_0, a_0) is compl hence "o

ored in *n* bits: 1}ⁿ, presenting 1,...,2ⁿ — 1}.

- qubits:
- of \mathbf{C}^{2^n} .
- tor is tough!
- ate
- then
- bits produces
- $1, \ldots, 2^n 1\}$
- tate.
- luces element q

 $|a_r|^2 / \sum_r |a_r|^2$.

Some examples of 3-qubit states: (1, 0, 0, 0, 0, 0, 0, 0) is " $|0\rangle$ " in standard notation. Measurement produces 0.

(0, 0, 0, 0, 0, 0, 1, 0) is " $|6\rangle$ " in standard notation. Measurement produces 6.

 $(0, 0, 0, 0, 0, 0, -7i, 0) = -7i|6\rangle$: Measurement produces 6.

 $(0, 0, 4, 0, 0, 0, 8, 0) = 4|2\rangle + 8|6\rangle$: Measurement produces 2 with probability 20%, 6 with probability 80%.

Fast quantum ope


```
zh!
```

```
ICes
- 1}
```

ent q $r_r|^2$.

Some examples of 3-qubit states:

(1, 0, 0, 0, 0, 0, 0, 0) is " $|0\rangle$ " in standard notation. Measurement produces 0.

(0, 0, 0, 0, 0, 0, 0, 1, 0) is " $|6\rangle$ " in standard notation. Measurement produces 6.

$$(0, 0, 0, 0, 0, 0, -7i, 0) = -7i|6\rangle$$
:
Measurement produces 6.

 $(0, 0, 4, 0, 0, 0, 8, 0) = 4|2\rangle + 8|6\rangle$: Measurement produces

- 2 with probability 20%,
- 6 with probability 80%.

Fast quantum operations, pa

 $(a_1, a_0, a_3, a_2, a_5, a_4, a_7, a_6)$ is complementing index bit (hence "complementing qubit

 $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7)$

Some examples of 3-qubit states:

(1, 0, 0, 0, 0, 0, 0, 0) is " $|0\rangle$ " in standard notation. Measurement produces 0.

(0, 0, 0, 0, 0, 0, 0, 1, 0) is " $|6\rangle$ " in standard notation. Measurement produces 6.

 $(0, 0, 0, 0, 0, 0, -7i, 0) = -7i|6\rangle$: Measurement produces 6.

 $(0, 0, 4, 0, 0, 0, 8, 0) = 4|2\rangle + 8|6\rangle$: Measurement produces 2 with probability 20%, 6 with probability 80%.

Fast quantum operations, part 1

```
(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto
(a_1, a_0, a_3, a_2, a_5, a_4, a_7, a_6)
is complementing index bit 0,
hence "complementing qubit 0".
```

Some examples of 3-qubit states:

(1, 0, 0, 0, 0, 0, 0, 0) is " $|0\rangle$ " in standard notation. Measurement produces 0.

(0, 0, 0, 0, 0, 0, 0, 1, 0) is " $|6\rangle$ " in standard notation. Measurement produces 6.

 $(0, 0, 0, 0, 0, 0, -7i, 0) = -7i|6\rangle$: Measurement produces 6.

 $(0, 0, 4, 0, 0, 0, 8, 0) = 4|2\rangle + 8|6\rangle$: Measurement produces 2 with probability 20%, 6 with probability 80%.

Fast quantum operations, part 1

```
(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto
(a_1, a_0, a_3, a_2, a_5, a_4, a_7, a_6)
is complementing index bit 0,
hence "complementing qubit 0".
(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7)
is measured as (q_0, q_1, q_2),
representing q = q_0 + 2q_1 + 4q_2,
with probability |a_a|^2 / \sum_r |a_r|^2.
```

 $(a_1, a_0, a_3, a_2, a_5, a_4, a_7, a_6)$ is measured as $(q_0 \oplus 1, q_1, q_2)$, representing $q \oplus 1$, with probability $|a_q|^2 / \sum_r |a_r|^2$.

amples of 3-qubit states:

), 0, 0, 0, 0) is standard notation. ment produces 0.

), 0, 0, 1, 0) is standard notation. ment produces 6.

 $0, 0, 0, -7i, 0) = -7i|6\rangle$: ment produces 6.

 $(0, 0, 0, 8, 0) = 4|2\rangle + 8|6\rangle$: ment produces robability 20%, robability 80%.

Fast quantum operations, part 1

 $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_1, a_0, a_3, a_2, a_5, a_4, a_7, a_6)$ is complementing index bit 0, hence "complementing qubit 0".

 $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7)$ is measured as (q_0, q_1, q_2) , representing $q = q_0 + 2q_1 + 4q_2$, with probability $|a_q|^2 / \sum_r |a_r|^2$.

 $(a_1, a_0, a_3, a_2, a_5, a_4, a_7, a_6)$ is measured as $(q_0 \oplus 1, q_1, q_2)$, representing $q \oplus 1$, with probability $|a_q|^2 / \sum_r |a_r|^2$.

(a_0, a_1, a_1) (a_4, a_5, a_5) is "comp (q_0, q_1, q_1)

3-qubit states:

-) is
- notation.
- luces 0.
-) is
- notation.
- luces 6.
- $f(0) = -7i|6\rangle$: duces 6.

$$) = 4|2\rangle + 8|6\rangle$$
:
luces
20%,
80%.

Fast quantum operations, part 1

 $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_1, a_0, a_3, a_2, a_5, a_4, a_7, a_6)$ is complementing index bit 0, hence "complementing qubit 0".

 $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7)$ is measured as (q_0, q_1, q_2) , representing $q = q_0 + 2q_1 + 4q_2$, with probability $|a_q|^2 / \sum_r |a_r|^2$.

 $(a_1, a_0, a_3, a_2, a_5, a_4, a_7, a_6)$ is measured as $(q_0 \oplus 1, q_1, q_2)$, representing $q \oplus 1$, with probability $|a_q|^2 / \sum_r |a_r|^2$.

$(a_0, a_1, a_2, a_3, a_4, a_1)$ $(a_4, a_5, a_6, a_7, a_0, a_1)$ is "complementing $(q_0, q_1, q_2) \mapsto (q_0, q_1)$

tates:

Fast quantum operations, part 1

 $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_1, a_0, a_3, a_2, a_5, a_4, a_7, a_6)$ is complementing index bit 0, hence "complementing qubit 0".

 $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7)$ is measured as (q_0, q_1, q_2) , representing $q = q_0 + 2q_1 + 4q_2$, with probability $|a_q|^2 / \sum_r |a_r|^2$.

 $(a_1, a_0, a_3, a_2, a_5, a_4, a_7, a_6)$ is measured as $(q_0 \oplus 1, q_1, q_2)$, representing $q \oplus 1$, with probability $|a_q|^2 / \sum_r |a_r|^2$. $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \in$ $(a_4, a_5, a_6, a_7, a_0, a_1, a_2, a_3)$ is "complementing qubit 2": $(q_0, q_1, q_2) \mapsto (q_0, q_1, q_2 \oplus 2)$

 $i|6\rangle$:

8|6>:

Fast quantum operations, part 1

 $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_1, a_0, a_3, a_2, a_5, a_4, a_7, a_6)$ is complementing index bit 0, hence "complementing qubit 0".

 $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7)$ is measured as (q_0, q_1, q_2) , representing $q = q_0 + 2q_1 + 4q_2$, with probability $|a_{\alpha}|^2 / \sum_r |a_r|^2$.

 $(a_1, a_0, a_3, a_2, a_5, a_4, a_7, a_6)$ is measured as $(q_0 \oplus 1, q_1, q_2)$, representing $q \oplus 1$, with probability $|a_q|^2 / \sum_r |a_r|^2$. $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_4, a_5, a_6, a_7, a_0, a_1, a_2, a_3)$ is "complementing qubit 2": $(q_0, q_1, q_2) \mapsto (q_0, q_1, q_2 \oplus 1).$

Fast quantum operations, part 1

 $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_1, a_0, a_3, a_2, a_5, a_4, a_7, a_6)$ is complementing index bit 0, hence "complementing qubit 0".

 $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7)$ is measured as (q_0, q_1, q_2) , representing $q = q_0 + 2q_1 + 4q_2$, with probability $|a_q|^2 / \sum_r |a_r|^2$.

 $(a_1, a_0, a_3, a_2, a_5, a_4, a_7, a_6)$ is measured as $(q_0 \oplus 1, q_1, q_2)$, representing $q \oplus 1$, with probability $|a_q|^2 / \sum_r |a_r|^2$. $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_4, a_5, a_6, a_7, a_0, a_1, a_2, a_3)$ is "complementing qubit 2": $(q_0, q_1, q_2) \mapsto (q_0, q_1, q_2 \oplus 1).$ $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_0, a_4, a_2, a_6, a_1, a_5, a_3, a_7)$ is "swapping qubits 0 and 2": $(q_0, q_1, q_2) \mapsto (q_2, q_1, q_0).$

Fast quantum operations, part 1

 $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_1, a_0, a_3, a_2, a_5, a_4, a_7, a_6)$ is complementing index bit 0, hence "complementing qubit 0".

 $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7)$ is measured as (q_0, q_1, q_2) , representing $q = q_0 + 2q_1 + 4q_2$, with probability $|a_q|^2 / \sum_r |a_r|^2$.

 $(a_1, a_0, a_3, a_2, a_5, a_4, a_7, a_6)$ is measured as $(q_0 \oplus 1, q_1, q_2)$, representing $q \oplus 1$, with probability $|a_q|^2 / \sum_r |a_r|^2$. $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_4, a_5, a_6, a_7, a_0, a_1, a_2, a_3)$ is "complementing qubit 2": $(q_0, q_1, q_2) \mapsto (q_0, q_1, q_2 \oplus 1).$ $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_0, a_4, a_2, a_6, a_1, a_5, a_3, a_7)$ is "swapping qubits 0 and 2": $(q_0, q_1, q_2) \mapsto (q_2, q_1, q_0).$

Complementing qubit 2

- = swapping qubits 0 and 2
 - complementing qubit 0
 - \circ swapping qubits 0 and 2.

Similarly: swapping qubits *i*, *j*.

ntum operations, part 1

 $a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $a_3, a_2, a_5, a_4, a_7, a_6)$ ementing index bit 0, complementing qubit 0".

 $a_2, a_3, a_4, a_5, a_6, a_7)$ ared as (q_0, q_1, q_2) , ting $q = q_0 + 2q_1 + 4q_2$, bability $|a_q|^2 / \sum_r |a_r|^2$.

 $a_3, a_2, a_5, a_4, a_7, a_6$) ared as $(q_0 \oplus 1, q_1, q_2)$, ting $q \oplus 1$, bability $|a_q|^2 / \sum_r |a_r|^2$. $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_4, a_5, a_6, a_7, a_0, a_1, a_2, a_3)$ is "complementing qubit 2": $(q_0, q_1, q_2) \mapsto (q_0, q_1, q_2 \oplus 1).$ $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$

 $(a_0, a_1, a_2, a_3, a_1, a_5, a_3, a_7)$ is "swapping qubits 0 and 2": $(q_0, q_1, q_2) \mapsto (q_2, q_1, q_0).$

Complementing qubit 2 = swapping qubits 0 and 2 • complementing qubit 0 • swapping qubits 0 and 2.

Similarly: swapping qubits *i*, *j*.

 (a_0, a_1, a_1) (a_0, a_1, a_1) is a "rev "control (q_0, q_1, q_1) Example (a_0, a_1, a_1) *a*₈, *a*₉, *a*₂ *a*₁₆, *a*₁₇, *a*₂₄, *a*₂₅, \mapsto (a_0 , a*a*₈, *a*₉, *a*₂ *a*₁₆, *a*₁₇, *a*₂₄, *a*₂₅,

rations, part 1

 $a_5, a_6, a_7) \mapsto$ $a_4, a_7, a_6)$ index bit 0, nting qubit 0".

 $a_{5}, a_{6}, a_{7})$ $a_{1}, q_{2}),$ $a_{0} + 2q_{1} + 4q_{2},$ $a_{q}|^{2} / \sum_{r} |a_{r}|^{2}.$ $a_{4}, a_{7}, a_{6})$ $\oplus 1, q_{1}, q_{2}),$ $a_{1}|^{2} / \sum_{r} |a_{r}|^{2}.$

 $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_4, a_5, a_6, a_7, a_0, a_1, a_2, a_3)$ is "complementing qubit 2": $(q_0,q_1,q_2)\mapsto (q_0,q_1,q_2\oplus 1).$ $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_0, a_4, a_2, a_6, a_1, a_5, a_3, a_7)$ is "swapping qubits 0 and 2": $(q_0, q_1, q_2) \mapsto (q_2, q_1, q_0).$ Complementing qubit 2 = swapping qubits 0 and 2 complementing qubit 0 \circ swapping qubits 0 and 2.

Similarly: swapping qubits *i*, *j*.

(*a*₀, *a*₁, *a*₂, *a*₃, *a*₄, *a*₅ (*a*₀, *a*₁, *a*₃, *a*₂, *a*₄, *a*₄, *a*₄, *a*₁, *a*₁, *a*₁, *a*₁, *a*₂, *a*₁, *a*₁, *a*₂, *a*₁, *a*₁ is a "reversible XC "controlled NOT $(q_0,q_1,q_2)\mapsto (q_0)$ Example with mor (*a*₀, *a*₁, *a*₂, *a*₃, *a*₄, *a*₅ *a*₈, *a*₉, *a*₁₀, *a*₁₁, *a*₁₂ *a*₁₆, *a*₁₇, *a*₁₈, *a*₁₉, *a a*₂₄, *a*₂₅, *a*₂₆, *a*₂₇, *a* \mapsto (a_0 , a_1 , a_3 , a_2 , a_3 *a*₈, *a*₉, *a*₁₁, *a*₁₀, *a*₁₂ *a*₁₆, *a*₁₇, *a*₁₉, *a*₁₈, *a a*₂₄, *a*₂₅, *a*₂₇, *a*₂₆, *a*

<u>art 1</u>

 \rightarrow

D, t O".

 $-4q_2,$ $p_r|^2.$

12),

 $|r|^2$.

 $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_4, a_5, a_6, a_7, a_0, a_1, a_2, a_3)$ is "complementing qubit 2": $(q_0,q_1,q_2)\mapsto (q_0,q_1,q_2\oplus 1).$ $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_0, a_4, a_2, a_6, a_1, a_5, a_3, a_7)$ is "swapping qubits 0 and 2": $(q_0, q_1, q_2) \mapsto (q_2, q_1, q_0).$ Complementing qubit 2 = swapping qubits 0 and 2 complementing qubit 0

 \circ swapping qubits 0 and 2.

Similarly: swapping qubits *i*, *j*.

 $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7)$ $(a_0, a_1, a_3, a_2, a_4, a_5, a_7, a_6)$ is a "reversible XOR gate" = "controlled NOT gate": $(q_0,q_1,q_2)\mapsto (q_0\oplus q_1,q_1,q_1,q_1)$ Example with more qubits: *a*₈, *a*₉, *a*₁₀, *a*₁₁, *a*₁₂, *a*₁₃, *a*₁₄, *a*₁₆, *a*₁₇, *a*₁₈, *a*₁₉, *a*₂₀, *a*₂₁, *a*₂₂ a24, a25, a26, a27, a28, a29, a30 \mapsto (a_0 , a_1 , a_3 , a_2 , a_4 , a_5 , a_7 , a_8 *a*₈, *a*₉, *a*₁₁, *a*₁₀, *a*₁₂, *a*₁₃, *a*₁₅, *a*₁₆, *a*₁₇, *a*₁₉, *a*₁₈, *a*₂₀, *a*₂₁, *a*₂₃ *a*₂₄, *a*₂₅, *a*₂₇, *a*₂₆, *a*₂₈, *a*₂₉, *a*₃₅ $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_4, a_5, a_6, a_7, a_0, a_1, a_2, a_3)$ is "complementing qubit 2": $(q_0, q_1, q_2) \mapsto (q_0, q_1, q_2 \oplus 1).$

 $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_0, a_4, a_2, a_6, a_1, a_5, a_3, a_7)$ is "swapping qubits 0 and 2": $(q_0, q_1, q_2) \mapsto (q_2, q_1, q_0).$

Complementing qubit 2 = swapping qubits 0 and 2 • complementing qubit 0 • swapping qubits 0 and 2.

Similarly: swapping qubits *i*, *j*.

 $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_0, a_1, a_3, a_2, a_4, a_5, a_7, a_6)$ is a "reversible XOR gate" ="controlled NOT gate": $(q_0, q_1, q_2) \mapsto (q_0 \oplus q_1, q_1, q_2).$ Example with more qubits: *a*₈, *a*₉, *a*₁₀, *a*₁₁, *a*₁₂, *a*₁₃, *a*₁₄, *a*₁₅, *a*₁₆, *a*₁₇, *a*₁₈, *a*₁₉, *a*₂₀, *a*₂₁, *a*₂₂, *a*₂₃, $a_{24}, a_{25}, a_{26}, a_{27}, a_{28}, a_{29}, a_{30}, a_{31}$ \mapsto (*a*₀, *a*₁, *a*₃, *a*₂, *a*₄, *a*₅, *a*₇, *a*₆, *a*₈, *a*₉, *a*₁₁, *a*₁₀, *a*₁₂, *a*₁₃, *a*₁₅, *a*₁₄, *a*₁₆, *a*₁₇, *a*₁₉, *a*₁₈, *a*₂₀, *a*₂₁, *a*₂₃, *a*₂₂, $a_{24}, a_{25}, a_{27}, a_{26}, a_{28}, a_{29}, a_{31}, a_{30}$). $a_2, a_3, a_4, a_5, a_6, a_7) \mapsto a_6, a_7, a_0, a_1, a_2, a_3)$ plementing qubit 2'': $a_2) \mapsto (q_0, q_1, q_2 \oplus 1).$

 $a_2, a_3, a_4, a_5, a_6, a_7) \mapsto a_2, a_6, a_1, a_5, a_3, a_7)$ oping qubits 0 and 2": $a_2) \mapsto (q_2, q_1, q_0).$

nenting qubit 2 oing qubits 0 and 2 oplementing qubit 0 pping qubits 0 and 2.

: swapping qubits *i*, *j*.

 $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_0, a_1, a_3, a_2, a_4, a_5, a_7, a_6)$ is a "reversible XOR gate" "controlled NOT gate": $(q_0,q_1,q_2)\mapsto (q_0\oplus q_1,q_1)$ Example with more qubits: *a*₈, *a*₉, *a*₁₀, *a*₁₁, *a*₁₂, *a*₁₃, *a*₁₄ *a*₁₆, *a*₁₇, *a*₁₈, *a*₁₉, *a*₂₀, *a*₂₁, *a*₂ *a*₂₄, *a*₂₅, *a*₂₆, *a*₂₇, *a*₂₈, *a*₂₉, *a*₃ \mapsto (*a*₀, *a*₁, *a*₃, *a*₂, *a*₄, *a*₅, *a*₇, *a*₈, *a*₉, *a*₁₁, *a*₁₀, *a*₁₂, *a*₁₃, *a*₁₅ *a*₁₆, *a*₁₇, *a*₁₉, *a*₁₈, *a*₂₀, *a*₂₁, *a*₂ *a*₂₄, *a*₂₅, *a*₂₇, *a*₂₆, *a*₂₈, *a*₂₉, *a*₃

$) \mapsto$
)
=
, q ₂).
, <i>a</i> 15,
₂₂ , a ₂₃ ,
₃₀ , a ₃₁)
<i>a</i> ₆ ,
, <i>a</i> ₁₄ ,
23, a 22,
₃₁ , a ₃₀).

 (a_0, a_1, a_1) (a_0, a_1, a_1) is a "To "control (q_0, q_1, q_1) Example (a_0, a_1, a_1) *a*₈, *a*₉, *a*₂ *a*₁₆, *a*₁₇, *a*₂₄, *a*₂₅, \mapsto (a_0 , a*a*₈, *a*₉, *a*₂ *a*₁₆, *a*₁₇, *a*₂₄, *a*₂₅,

 $a_5, a_6, a_7) \mapsto$ a₁, a₂, a₃) g qubit 2": , q_1 , $q_2 \oplus 1)$. $a_5, a_6, a_7) \mapsto$ $a_5, a_3, a_7)$ cs 0 and 2": , q_1 , q_0). ubit 2 s 0 and 2ng qubit 0 its 0 and 2. g qubits *i*, *j*.

 $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_0, a_1, a_3, a_2, a_4, a_5, a_7, a_6)$ is a "reversible XOR gate" = "controlled NOT gate": $(q_0,q_1,q_2)\mapsto (q_0\oplus q_1,q_1,q_2).$ Example with more qubits: *a*₈, *a*₉, *a*₁₀, *a*₁₁, *a*₁₂, *a*₁₃, *a*₁₄, *a*₁₅, *a*₁₆, *a*₁₇, *a*₁₈, *a*₁₉, *a*₂₀, *a*₂₁, *a*₂₂, *a*₂₃, *a*₂₄, *a*₂₅, *a*₂₆, *a*₂₇, *a*₂₈, *a*₂₉, *a*₃₀, *a*₃₁) \mapsto (*a*₀, *a*₁, *a*₃, *a*₂, *a*₄, *a*₅, *a*₇, *a*₆, *a*₈, *a*₉, *a*₁₁, *a*₁₀, *a*₁₂, *a*₁₃, *a*₁₅, *a*₁₄, *a*₁₆, *a*₁₇, *a*₁₉, *a*₁₈, *a*₂₀, *a*₂₁, *a*₂₃, *a*₂₂, *a*₂₄, *a*₂₅, *a*₂₇, *a*₂₆, *a*₂₈, *a*₂₉, *a*₃₁, *a*₃₀).

 $(a_0, a_1, a_2, a_3, a_4, a_6)$ (*a*₀, *a*₁, *a*₂, *a*₃, *a*₄, *a*₄, *a*₁, *a*₂, *a*₃, *a*₄, *a*₁, *a*₁, *a*₂, *a*₃, *a*₄, *a*₁, *a*₁, *a*₂, *a*₁, *a*₁, *a*₂, *a*₁, *a*₁, *a*₁, *a*₂, *a*₁, *a*₁ is a "Toffoli gate" "controlled contro $(q_0, q_1, q_2) \mapsto (q_0)$ Example with mor (*a*₀, *a*₁, *a*₂, *a*₃, *a*₄, *a*₅ *a*₈, *a*₉, *a*₁₀, *a*₁₁, *a*₁₂ *a*₁₆, *a*₁₇, *a*₁₈, *a*₁₉, *a a*₂₄, *a*₂₅, *a*₂₆, *a*₂₇, *a* \mapsto (a_0 , a_1 , a_2 , a_3 , a_3 *a*₈, *a*₉, *a*₁₀, *a*₁₁, *a*₁₂ *a*₁₆, *a*₁₇, *a*₁₈, *a*₁₉, *a a*₂₄, *a*₂₅, *a*₂₆, *a*₂₇, *a*

 $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_0, a_1, a_3, a_2, a_4, a_5, a_7, a_6)$ is a "reversible XOR gate" = "controlled NOT gate": $(q_0,q_1,q_2)\mapsto (q_0\oplus q_1,q_1,q_2).$ Example with more qubits: *a*₈, *a*₉, *a*₁₀, *a*₁₁, *a*₁₂, *a*₁₃, *a*₁₄, *a*₁₅, *a*₁₆, *a*₁₇, *a*₁₈, *a*₁₉, *a*₂₀, *a*₂₁, *a*₂₂, *a*₂₃, $a_{24}, a_{25}, a_{26}, a_{27}, a_{28}, a_{29}, a_{30}, a_{31}$ \mapsto (*a*₀, *a*₁, *a*₃, *a*₂, *a*₄, *a*₅, *a*₇, *a*₆, *a*₈, *a*₉, *a*₁₁, *a*₁₀, *a*₁₂, *a*₁₃, *a*₁₅, *a*₁₄, *a*₁₆, *a*₁₇, *a*₁₉, *a*₁₈, *a*₂₀, *a*₂₁, *a*₂₃, *a*₂₂, $a_{24}, a_{25}, a_{27}, a_{26}, a_{28}, a_{29}, a_{31}, a_{30}$).

 \rightarrow

1).

 \rightarrow

'' -.

2.

, *j*.

 $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7)$ $(a_0, a_1, a_2, a_3, a_4, a_5, a_7, a_6)$ is a "Toffoli gate" = "controlled controlled NOT $(q_0,q_1,q_2)\mapsto (q_0\oplus q_1q_2,q_2)$ Example with more qubits: *a*₈, *a*₉, *a*₁₀, *a*₁₁, *a*₁₂, *a*₁₃, *a*₁₄, *a*₁₆, *a*₁₇, *a*₁₈, *a*₁₉, *a*₂₀, *a*₂₁, *a*₂₂ a24, a25, a26, a27, a28, a29, a30 \mapsto ($a_0, a_1, a_2, a_3, a_4, a_5, a_7, a_8$ *a*₈, *a*₉, *a*₁₀, *a*₁₁, *a*₁₂, *a*₁₃, *a*₁₅, *a*₁₆, *a*₁₇, *a*₁₈, *a*₁₉, *a*₂₀, *a*₂₁, *a*₂₃ *a*₂₄, *a*₂₅, *a*₂₆, *a*₂₇, *a*₂₈, *a*₂₉, *a*₃₅

 $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_0, a_1, a_3, a_2, a_4, a_5, a_7, a_6)$ is a "reversible XOR gate" = "controlled NOT gate": $(q_0, q_1, q_2) \mapsto (q_0 \oplus q_1, q_1, q_2).$

Example with more qubits: *a*₈, *a*₉, *a*₁₀, *a*₁₁, *a*₁₂, *a*₁₃, *a*₁₄, *a*₁₅, *a*₁₆, *a*₁₇, *a*₁₈, *a*₁₉, *a*₂₀, *a*₂₁, *a*₂₂, *a*₂₃, *a*₂₄, *a*₂₅, *a*₂₆, *a*₂₇, *a*₂₈, *a*₂₉, *a*₃₀, *a*₃₁) \mapsto (*a*₀, *a*₁, *a*₃, *a*₂, *a*₄, *a*₅, *a*₇, *a*₆, *a*₈, *a*₉, *a*₁₁, *a*₁₀, *a*₁₂, *a*₁₃, *a*₁₅, *a*₁₄, *a*₁₆, *a*₁₇, *a*₁₉, *a*₁₈, *a*₂₀, *a*₂₁, *a*₂₃, *a*₂₂, *a*₂₄, *a*₂₅, *a*₂₇, *a*₂₆, *a*₂₈, *a*₂₉, *a*₃₁, *a*₃₀).

 $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_0, a_1, a_2, a_3, a_4, a_5, a_7, a_6)$ is a "Toffoli gate" = $(q_0, q_1, q_2) \mapsto (q_0 \oplus q_1q_2, q_1, q_2).$ Example with more qubits: *a*₈, *a*₉, *a*₁₀, *a*₁₁, *a*₁₂, *a*₁₃, *a*₁₄, *a*₁₅, *a*₁₆, *a*₁₇, *a*₁₈, *a*₁₉, *a*₂₀, *a*₂₁, *a*₂₂, *a*₂₃, *a*₂₄, *a*₂₅, *a*₂₆, *a*₂₇, *a*₂₈, *a*₂₉, *a*₃₀, *a*₃₁) \mapsto (*a*₀, *a*₁, *a*₂, *a*₃, *a*₄, *a*₅, *a*₇, *a*₆, *a*₈, *a*₉, *a*₁₀, *a*₁₁, *a*₁₂, *a*₁₃, *a*₁₅, *a*₁₄, *a*₁₆, *a*₁₇, *a*₁₈, *a*₁₉, *a*₂₀, *a*₂₁, *a*₂₃, *a*₂₂, *a*₂₄, *a*₂₅, *a*₂₆, *a*₂₇, *a*₂₈, *a*₂₉, *a*₃₁, *a*₃₀).

- "controlled controlled NOT gate":

 $a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ a₃, a₂, a₄, a₅, a₇, a₆) ersible XOR gate" = led NOT gate": $(q_2)\mapsto (q_0\oplus q_1,q_1,q_2).$

e with more qubits:

*a*₂, *a*₃, *a*₄, *a*₅, *a*₆, *a*₇,

10, *a*11, *a*12, *a*13, *a*14, *a*15,

*a*₁₈, *a*₁₉, *a*₂₀, *a*₂₁, *a*₂₂, *a*₂₃, $a_{26}, a_{27}, a_{28}, a_{29}, a_{30}, a_{31})$

1, *a*₃, *a*₂, *a*₄, *a*₅, *a*₇, *a*₆,

1, *a*10, *a*12, *a*13, *a*15, *a*14,

*a*₁₉, *a*₁₈, *a*₂₀, *a*₂₁, *a*₂₃, *a*₂₂, *a*₂₇, *a*₂₆, *a*₂₈, *a*₂₉, *a*₃₁, *a*₃₀).

 $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_0, a_1, a_2, a_3, a_4, a_5, a_7, a_6)$ is a "Toffoli gate" = "controlled controlled NOT gate": $(q_0, q_1, q_2) \mapsto (q_0 \oplus q_1q_2, q_1, q_2).$ Example with more qubits: *a*₈, *a*₉, *a*₁₀, *a*₁₁, *a*₁₂, *a*₁₃, *a*₁₄, *a*₁₅, *a*₁₆, *a*₁₇, *a*₁₈, *a*₁₉, *a*₂₀, *a*₂₁, *a*₂₂, *a*₂₃, $a_{24}, a_{25}, a_{26}, a_{27}, a_{28}, a_{29}, a_{30}, a_{31}$ \mapsto (*a*₀, *a*₁, *a*₂, *a*₃, *a*₄, *a*₅, *a*₇, *a*₆, *a*₈, *a*₉, *a*₁₀, *a*₁₁, *a*₁₂, *a*₁₃, *a*₁₅, *a*₁₄, *a*₁₆, *a*₁₇, *a*₁₈, *a*₁₉, *a*₂₀, *a*₂₁, *a*₂₃, *a*₂₂, *a*₂₄, *a*₂₅, *a*₂₆, *a*₂₇, *a*₂₈, *a*₂₉, *a*₃₁, *a*₃₀).

Reversib

Say p is of {0, 1,

General these fas

to obtai

 $(a_{p(0)}, a_{p(0)})$ \mapsto (a_0 , a $a_5, a_6, a_7) \mapsto$ $a_5, a_7, a_6)$ $\mathsf{PR} \mathsf{gate}'' =$ gate": $\oplus q_1, q_1, q_2).$ e qubits: *a*₅, *a*₆, *a*₇, , *a*₁₃, *a*₁₄, *a*₁₅, ₂₀, *a*₂₁, *a*₂₂, *a*₂₃, ₂₈, *a*₂₉, *a*₃₀, *a*₃₁) 4, *a*₅, *a*₇, *a*₆, , *a*₁₃, *a*₁₅, *a*₁₄, ₂₀, *a*₂₁, *a*₂₃, *a*₂₂, ₂₈, *a*₂₉, *a*₃₁, *a*₃₀).

 $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_0, a_1, a_2, a_3, a_4, a_5, a_7, a_6)$ is a "Toffoli gate" = "controlled controlled NOT gate": $(q_0, q_1, q_2) \mapsto (q_0 \oplus q_1q_2, q_1, q_2).$ Example with more qubits: *a*₈, *a*₉, *a*₁₀, *a*₁₁, *a*₁₂, *a*₁₃, *a*₁₄, *a*₁₅, *a*₁₆, *a*₁₇, *a*₁₈, *a*₁₉, *a*₂₀, *a*₂₁, *a*₂₂, *a*₂₃, *a*₂₄, *a*₂₅, *a*₂₆, *a*₂₇, *a*₂₈, *a*₂₉, *a*₃₀, *a*₃₁) \mapsto (*a*₀, *a*₁, *a*₂, *a*₃, *a*₄, *a*₅, *a*₇, *a*₆, *a*₈, *a*₉, *a*₁₀, *a*₁₁, *a*₁₂, *a*₁₃, *a*₁₅, *a*₁₄, *a*₁₆, *a*₁₇, *a*₁₈, *a*₁₉, *a*₂₀, *a*₂₁, *a*₂₃, *a*₂₂, $a_{24}, a_{25}, a_{26}, a_{27}, a_{28}, a_{29}, a_{31}, a_{30}).$

Reversible comput

Say p is a permutance of $\{0, 1, \ldots, 2^n -$

General strategy to these fast quantum to obtain index per $(a_{p(0)}, a_{p(1)}, \dots, a_{p(n)})$ $\mapsto (a_0, a_1, \dots, a_{2^n})$

7₂).

 \rightarrow

_

 $a_{15},$ <u>2</u>, *a*₂₃,), *a*₃₁) 6, $a_{14},$

3, *a*₂₂,

_L, *a*₃₀).

 $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_0, a_1, a_2, a_3, a_4, a_5, a_7, a_6)$ is a "Toffoli gate" = "controlled controlled NOT gate": $(q_0, q_1, q_2) \mapsto (q_0 \oplus q_1q_2, q_1, q_2).$ Example with more qubits: *a*₈, *a*₉, *a*₁₀, *a*₁₁, *a*₁₂, *a*₁₃, *a*₁₄, *a*₁₅, *a*₁₆, *a*₁₇, *a*₁₈, *a*₁₉, *a*₂₀, *a*₂₁, *a*₂₂, *a*₂₃, $a_{24}, a_{25}, a_{26}, a_{27}, a_{28}, a_{29}, a_{30}, a_{31}$ \mapsto (*a*₀, *a*₁, *a*₂, *a*₃, *a*₄, *a*₅, *a*₇, *a*₆, *a*₈, *a*₉, *a*₁₀, *a*₁₁, *a*₁₂, *a*₁₃, *a*₁₅, *a*₁₄, *a*₁₆, *a*₁₇, *a*₁₈, *a*₁₉, *a*₂₀, *a*₂₁, *a*₂₃, *a*₂₂, $a_{24}, a_{25}, a_{26}, a_{27}, a_{28}, a_{29}, a_{31}, a_{30}$).

Say *p* is a permutation of $\{0, 1, \ldots, 2^n - 1\}$. General strategy to compose these fast quantum operation to obtain index permutation $(a_{p(0)}, a_{p(1)}, \ldots, a_{p(2^n-1)})$ \mapsto (*a*₀, *a*₁, ..., *a*₂*n*₋₁):

Reversible computation

 $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_0, a_1, a_2, a_3, a_4, a_5, a_7, a_6)$ is a "Toffoli gate" = "controlled controlled NOT gate": $(q_0, q_1, q_2) \mapsto (q_0 \oplus q_1q_2, q_1, q_2).$ Example with more qubits: (*a*₀, *a*₁, *a*₂, *a*₃, *a*₄, *a*₅, *a*₆, *a*₇, *a*₈, *a*₉, *a*₁₀, *a*₁₁, *a*₁₂, *a*₁₃, *a*₁₄, *a*₁₅, *a*₁₆, *a*₁₇, *a*₁₈, *a*₁₉, *a*₂₀, *a*₂₁, *a*₂₂, *a*₂₃, $a_{24}, a_{25}, a_{26}, a_{27}, a_{28}, a_{29}, a_{30}, a_{31}$) \mapsto (*a*₀, *a*₁, *a*₂, *a*₃, *a*₄, *a*₅, *a*₇, *a*₆, *a*₈, *a*₉, *a*₁₀, *a*₁₁, *a*₁₂, *a*₁₃, *a*₁₅, *a*₁₄, *a*₁₆, *a*₁₇, *a*₁₈, *a*₁₉, *a*₂₀, *a*₂₁, *a*₂₃, *a*₂₂, $a_{24}, a_{25}, a_{26}, a_{27}, a_{28}, a_{29}, a_{31}, a_{30}$).

Reversible computation

Say *p* is a permutation of $\{0, 1, \ldots, 2^n - 1\}$.

General strategy to compose these fast quantum operations to obtain index permutation $(a_{p(0)}, a_{p(1)}, \ldots, a_{p(2^n-1)})$ \mapsto (*a*₀, *a*₁, ..., *a*₂*n*₋₁):

 $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_0, a_1, a_2, a_3, a_4, a_5, a_7, a_6)$ is a "Toffoli gate" = "controlled controlled NOT gate": $(q_0, q_1, q_2) \mapsto (q_0 \oplus q_1q_2, q_1, q_2).$ Example with more qubits: *a*₈, *a*₉, *a*₁₀, *a*₁₁, *a*₁₂, *a*₁₃, *a*₁₄, *a*₁₅, *a*₁₆, *a*₁₇, *a*₁₈, *a*₁₉, *a*₂₀, *a*₂₁, *a*₂₂, *a*₂₃, $a_{24}, a_{25}, a_{26}, a_{27}, a_{28}, a_{29}, a_{30}, a_{31}$) \mapsto (*a*₀, *a*₁, *a*₂, *a*₃, *a*₄, *a*₅, *a*₇, *a*₆, *a*₈, *a*₉, *a*₁₀, *a*₁₁, *a*₁₂, *a*₁₃, *a*₁₅, *a*₁₄, *a*₁₆, *a*₁₇, *a*₁₈, *a*₁₉, *a*₂₀, *a*₂₁, *a*₂₃, *a*₂₂, $a_{24}, a_{25}, a_{26}, a_{27}, a_{28}, a_{29}, a_{31}, a_{30}$).

Reversible computation

Say *p* is a permutation of $\{0, 1, \ldots, 2^n - 1\}$.

General strategy to compose these fast quantum operations to obtain index permutation $(a_{p(0)}, a_{p(1)}, \ldots, a_{p(2^n-1)})$ \mapsto (*a*₀, *a*₁, ..., *a*₂*n*₋₁):

1. Build a traditional circuit to compute $j \mapsto p(j)$ using NOT/XOR/AND gates.

2. Convert into reversible gates:

e.g., convert AND into Toffoli.

 $a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ a₂, a₃, a₄, a₅, a₇, a₆) ffoli gate" = led controlled NOT gate": $(q_2)\mapsto (q_0\oplus q_1q_2,q_1,q_2).$

e with more qubits:

*a*₂, *a*₃, *a*₄, *a*₅, *a*₆, *a*₇,

10, *a*11, *a*12, *a*13, *a*14, *a*15,

*a*₁₈, *a*₁₉, *a*₂₀, *a*₂₁, *a*₂₂, *a*₂₃,

 $a_{26}, a_{27}, a_{28}, a_{29}, a_{30}, a_{31})$

1, *a*₂, *a*₃, *a*₄, *a*₅, *a*₇, *a*₆,

10, *a*11, *a*12, *a*13, *a*15, *a*14,

*a*₁₈, *a*₁₉, *a*₂₀, *a*₂₁, *a*₂₃, *a*₂₂, $a_{26}, a_{27}, a_{28}, a_{29}, a_{31}, a_{30}).$ Reversible computation

Say *p* is a permutation of $\{0, 1, \ldots, 2^n - 1\}$.

General strategy to compose these fast quantum operations to obtain index permutation $(a_{p(0)}, a_{p(1)}, \ldots, a_{p(2^n-1)})$ \mapsto (*a*₀, *a*₁, ..., *a*₂*n*₋₁):

1. Build a traditional circuit to compute $j \mapsto p(j)$ using NOT/XOR/AND gates.

2. Convert into reversible gates: e.g., convert AND into Toffoli.

Example (a_0, a_1, a_1) (a_7, a_0, a_0) permuta 1. Build to comp q_0 $q_0 \oplus 1$

 $a_5, a_6, a_7) \mapsto a_5, a_7, a_6$

lled NOT gate": $\oplus q_1q_2, q_1, q_2$).

e qubits:

a5, **a**6, **a**7,

, *a*₁₃, *a*₁₄, *a*₁₅,

₂₀, *a*₂₁, *a*₂₂, *a*₂₃,

₂₈, *a*₂₉, *a*₃₀, *a*₃₁)

14, *a*5, *a*7, *a*6,

, *a*₁₃, *a*₁₅, *a*₁₄,

20, *a*₂₁, *a*₂₃, *a*₂₂,

₂₈, *a*₂₉, *a*₃₁, *a*₃₀).

Reversible computation

Say p is a permutation of $\{0, 1, \ldots, 2^n - 1\}$.

General strategy to compose these fast quantum operations to obtain index permutation $(a_{p(0)}, a_{p(1)}, \dots, a_{p(2^n-1)})$ $\mapsto (a_0, a_1, \dots, a_{2^n-1})$:

1. Build a traditional circuit to compute $j \mapsto p(j)$ using NOT/XOR/AND gates.

Convert into reversible gates:
 e.g., convert AND into Toffoli.

gate": $_{1}, q_{2}).$

 $a_{15},$

<u>2</u>, *a*₂₃,

), *a*₃₁)

6,

*a*₁₄,

3, *a*₂₂,

_L, a₃₀).

Reversible computation

Say *p* is a permutation of $\{0, 1, \ldots, 2^n - 1\}$.

General strategy to compose these fast quantum operations to obtain index permutation $(a_{p(0)}, a_{p(1)}, \ldots, a_{p(2^n-1)})$ \mapsto (*a*₀, *a*₁, ..., *a*₂*n*₋₁):

1. Build a traditional circuit to compute $j \mapsto p(j)$ using NOT/XOR/AND gates.

2. Convert into reversible gates: e.g., convert AND into Toffoli.

Example: Let's compute

- $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7)$
- $(a_7, a_0, a_1, a_2, a_3, a_4, a_5, a_6);$
- permutation $q \mapsto q+1$ mod
- 1. Build a traditional circuit to compute $q \mapsto q + 1 \mod q$

Reversible computation

Say *p* is a permutation of $\{0, 1, \ldots, 2^n - 1\}$.

General strategy to compose these fast quantum operations to obtain index permutation $(a_{p(0)}, a_{p(1)}, \ldots, a_{p(2^n-1)})$ \mapsto (*a*₀, *a*₁, ..., *a*₂*n*₋₁):

1. Build a traditional circuit to compute $j \mapsto p(j)$ using NOT/XOR/AND gates.

2. Convert into reversible gates: e.g., convert AND into Toffoli.

Example: Let's compute $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_7, a_0, a_1, a_2, a_3, a_4, a_5, a_6);$ permutation $q \mapsto q + 1 \mod 8$. 1. Build a traditional circuit to compute $q \mapsto q + 1 \mod 8$. q_0 q_1

q_2

le computation

- a permutation ..., $2^n - 1$ }.
- strategy to compose st quantum operations n index permutation $p(1), \ldots, a_{p(2^n-1)})$
- $a_1, \ldots, a_{2^n-1})$:
- a traditional circuit ute $j \mapsto p(j)$ OT/XOR/AND gates.
- ert into reversible gates: vert AND into Toffoli.

Example: Let's compute

2. Conv Toffoli f (a_0, a_1, a_1) (a_0, a_1, a_1)

ation

ation 1}.

o compose n operations rmutation $p(2^n-1)$

nal circuit

(j)

AND gates.

versible gates: into Toffoli. Example: Let's compute $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_7, a_0, a_1, a_2, a_3, a_4, a_5, a_6);$ permutation $q \mapsto q + 1 \mod 8$.

1. Build a traditional circuit to compute $q \mapsto q + 1 \mod 8$.

2. Convert into re Toffoli for $q_2 \leftarrow q_2$ $(a_0, a_1, a_2, a_3, a_4, a_4)$ $(a_0, a_1, a_2, a_7, a_4, a_4)$

1. Build a traditional circuit to compute $q \mapsto q + 1 \mod 8$.

ns

- S.
- ates: oli.

2. Convert into reversible ga

Toffoli for $q_2 \leftarrow q_2 \oplus q_1 q_0$:

(*a*₀, *a*₁, *a*₂, *a*₃, *a*₄, *a*₅, *a*₆, *a*₇)

 $(a_0, a_1, a_2, a_7, a_4, a_5, a_6, a_3).$

1. Build a traditional circuit to compute $q \mapsto q + 1 \mod 8$.

2. Convert into reversible gates.

Toffoli for $q_2 \leftarrow q_2 \oplus q_1 q_0$: $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ (*a*₀, *a*₁, *a*₂, *a*₇, *a*₄, *a*₅, *a*₆, *a*₃).

1. Build a traditional circuit to compute $q \mapsto q + 1 \mod 8$.


```
2. Convert into reversible gates.
```

Toffoli for $q_2 \leftarrow q_2 \oplus q_1 q_0$: $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_0, a_1, a_2, a_7, a_4, a_5, a_6, a_3).$ $(a_0, a_1, a_2, a_7, a_4, a_5, a_6, a_3) \mapsto$

Controlled NOT for $q_1 \leftarrow q_1 \oplus q_0$:

- $(a_0, a_7, a_2, a_1, a_4, a_3, a_6, a_5).$

1. Build a traditional circuit to compute $q \mapsto q + 1 \mod 8$.


```
2. Convert into reversible gates.
Toffoli for q_2 \leftarrow q_2 \oplus q_1 q_0:
(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto
(a_0, a_1, a_2, a_7, a_4, a_5, a_6, a_3).
(a_0, a_1, a_2, a_7, a_4, a_5, a_6, a_3) \mapsto
(a_0, a_7, a_2, a_1, a_4, a_3, a_6, a_5).
NOT for q_0 \leftarrow q_0 \oplus 1:
(a_0, a_7, a_2, a_1, a_4, a_3, a_6, a_5) \mapsto
(a_7, a_0, a_1, a_2, a_3, a_4, a_5, a_6).
```

- Controlled NOT for $q_1 \leftarrow q_1 \oplus q_0$:

: Let's compute $a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ a₁, a₂, a₃, a₄, a₅, a₆); tion $q \mapsto q + 1 \mod 8$.

a traditional circuit ute $q \mapsto q + 1 \mod 8$.

2. Convert into reversible gates. Toffoli for $q_2 \leftarrow q_2 \oplus q_1 q_0$: $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_0, a_1, a_2, a_7, a_4, a_5, a_6, a_3).$ Controlled NOT for $q_1 \leftarrow q_1 \oplus q_0$: $(a_0, a_1, a_2, a_7, a_4, a_5, a_6, a_3) \mapsto$ $(a_0, a_7, a_2, a_1, a_4, a_3, a_6, a_5).$ NOT for $q_0 \leftarrow q_0 \oplus 1$: $(a_0, a_7, a_2, a_1, a_4, a_3, a_6, a_5) \mapsto$ $(a_7, a_0, a_1, a_2, a_3, a_4, a_5, a_6).$

This per was dece It didn't

For large need ma Really w

mpute

 $a_5, a_6, a_7)\mapsto a_4, a_5, a_6); <math>q+1 \mod 8.$

nal circuit

 $\eta + 1 \mod 8$.

2. Convert into reversible gates. Toffoli for $q_2 \leftarrow q_2 \oplus q_1 q_0$: $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_0, a_1, a_2, a_7, a_4, a_5, a_6, a_3).$ Controlled NOT for $q_1 \leftarrow q_1 \oplus q_0$: $(a_0, a_1, a_2, a_7, a_4, a_5, a_6, a_3) \mapsto$ $(a_0, a_7, a_2, a_1, a_4, a_3, a_6, a_5).$ NOT for $q_0 \leftarrow q_0 \oplus 1$: $(a_0, a_7, a_2, a_1, a_4, a_3, a_6, a_5) \mapsto$ $(a_7, a_0, a_1, a_2, a_3, a_4, a_5, a_6).$

This permutation was deceptively ea It didn't need mar For large *n*, most need many operat Really want *fast* c

18. 8. 2 $\exists C_1$ 2. Convert into reversible gates.

Toffoli for $q_2 \leftarrow q_2 \oplus q_1 q_0$: ($a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7$) \mapsto ($a_0, a_1, a_2, a_7, a_4, a_5, a_6, a_3$).

Controlled NOT for $q_1 \leftarrow q_1 \oplus q_0$: ($a_0, a_1, a_2, a_7, a_4, a_5, a_6, a_3$) \mapsto ($a_0, a_7, a_2, a_1, a_4, a_3, a_6, a_5$).

NOT for $q_0 \leftarrow q_0 \oplus 1$: ($a_0, a_7, a_2, a_1, a_4, a_3, a_6, a_5$) \mapsto ($a_7, a_0, a_1, a_2, a_3, a_4, a_5, a_6$). I nis pe was ded It didn' For larg need m Really v

This permutation example was deceptively easy.

- It didn't need many operation
- For large n, most permutation
- need many operations \Rightarrow slo
- Really want *fast* circuits.

2. Convert into reversible gates.

Toffoli for $q_2 \leftarrow q_2 \oplus q_1 q_0$: $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_0, a_1, a_2, a_7, a_4, a_5, a_6, a_3).$

Controlled NOT for $q_1 \leftarrow q_1 \oplus q_0$: $(a_0, a_1, a_2, a_7, a_4, a_5, a_6, a_3) \mapsto$ $(a_0, a_7, a_2, a_1, a_4, a_3, a_6, a_5).$

NOT for $q_0 \leftarrow q_0 \oplus 1$: $(a_0, a_7, a_2, a_1, a_4, a_3, a_6, a_5) \mapsto$ $(a_7, a_0, a_1, a_2, a_3, a_4, a_5, a_6).$

This permutation example was deceptively easy.

For large *n*, most permutations *p* need many operations \Rightarrow slow. Really want *fast* circuits.

- It didn't need many operations.

2. Convert into reversible gates.

Toffoli for $q_2 \leftarrow q_2 \oplus q_1 q_0$: $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $(a_0, a_1, a_2, a_7, a_4, a_5, a_6, a_3).$

Controlled NOT for $q_1 \leftarrow q_1 \oplus q_0$: $(a_0, a_1, a_2, a_7, a_4, a_5, a_6, a_3) \mapsto$ $(a_0, a_7, a_2, a_1, a_4, a_3, a_6, a_5).$

NOT for $q_0 \leftarrow q_0 \oplus 1$: $(a_0, a_7, a_2, a_1, a_4, a_3, a_6, a_5) \mapsto$ $(a_7, a_0, a_1, a_2, a_3, a_4, a_5, a_6).$

This permutation example was deceptively easy. It didn't need many operations. For large *n*, most permutations *p* need many operations \Rightarrow slow. Really want *fast* circuits. Also, it didn't need extra storage: circuit operated "in place" after computation $c_1 \leftarrow q_1 q_0$ was merged into $q_2 \leftarrow q_2 \oplus c_1$.

- Typical circuits aren't in-place.

ert into reversible gates.

or $q_2 \leftarrow q_2 \oplus q_1 q_0$: $a_2, a_3, a_4, a_5, a_6, a_7) \mapsto$ $a_2, a_7, a_4, a_5, a_6, a_3).$

ed NOT for $q_1 \leftarrow q_1 \oplus q_0$: $a_2, a_7, a_4, a_5, a_6, a_3) \mapsto$ $a_2, a_1, a_4, a_3, a_6, a_5).$

 $q_0 \leftarrow q_0 \oplus 1$: $a_2, a_1, a_4, a_3, a_6, a_5) \mapsto$ a₁, a₂, a₃, a₄, a₅, a₆).

This permutation example was deceptively easy.

It didn't need many operations.

For large *n*, most permutations *p* need many operations \Rightarrow slow. Really want *fast* circuits.

Also, it didn't need extra storage: circuit operated "in place" after computation $c_1 \leftarrow q_1 q_0$ was merged into $q_2 \leftarrow q_2 \oplus c_1$.

Typical circuits aren't in-place.

Start fro inputs b $b_{i+1} = 1$ $b_{i+2} = 1$ $b_T = 1 \in$

specified

versible gates.

 $p_2 \oplus q_1 q_0$: $p_5, a_6, a_7) \mapsto p_5, a_6, a_3).$

or $q_1 \leftarrow q_1 \oplus q_0$: $a_5, a_6, a_3) \mapsto a_3, a_6, a_5$.

 $\oplus 1$: $a_3, a_6, a_5) \mapsto a_4, a_5, a_6).$ This permutation example was deceptively easy.

It didn't need many operations.

For large *n*, most permutations *p* need many operations \Rightarrow slow. Really want *fast* circuits.

Also, it didn't need extra storage: circuit operated "in place" after computation $c_1 \leftarrow q_1 q_0$ was merged into $q_2 \leftarrow q_2 \oplus c_1$.

Typical circuits aren't in-place.

Start from any cire inputs $b_1, b_2, \ldots, b_{i+1} = 1 \oplus b_{f(i+1)}$ $b_{i+2} = 1 \oplus b_{f(i+2)}$ \ldots $b_T = 1 \oplus b_{f(T)} b_{g(t)}$

specified outputs.

ates.

 $1 \oplus q_0$:

 \rightarrow

This permutation example was deceptively easy.

It didn't need many operations.

For large *n*, most permutations *p* need many operations \Rightarrow slow. Really want *fast* circuits.

Also, it didn't need extra storage: circuit operated "in place" after computation $c_1 \leftarrow q_1 q_0$ was merged into $q_2 \leftarrow q_2 \oplus c_1$.

Typical circuits aren't in-place.

Start from any circuit: inputs $b_1, b_2, ..., b_i$; $b_{i+1} = 1 \oplus b_{f(i+1)} b_{g(i+1)};$ $b_{i+2} = 1 \oplus b_{f(i+2)} b_{g(i+2)};$ $b_T = 1 \oplus b_{f(T)} b_{g(T)};$ specified outputs.

This permutation example was deceptively easy.

It didn't need many operations.

For large *n*, most permutations *p* need many operations \Rightarrow slow. Really want *fast* circuits.

Also, it didn't need extra storage: circuit operated "in place" after computation $c_1 \leftarrow q_1 q_0$ was merged into $q_2 \leftarrow q_2 \oplus c_1$.

Typical circuits aren't in-place.

Start from any circuit: inputs $b_1, b_2, ..., b_i$; $b_{i+1} = 1 \oplus b_{f(i+1)} b_{g(i+1)};$ $b_{i+2} = 1 \oplus b_{f(i+2)} b_{g(i+2)};$. . .

 $b_T = 1 \oplus b_{f(T)} b_{g(T)};$ specified outputs.

This permutation example was deceptively easy.

It didn't need many operations.

For large *n*, most permutations *p* need many operations \Rightarrow slow. Really want *fast* circuits.

Also, it didn't need extra storage: circuit operated "in place" after computation $c_1 \leftarrow q_1 q_0$ was merged into $q_2 \leftarrow q_2 \oplus c_1$.

Typical circuits aren't in-place.

```
Start from any circuit:
inputs b_1, b_2, ..., b_i;
b_{i+1} = 1 \oplus b_{f(i+1)} b_{g(i+1)};
b_{i+2} = 1 \oplus b_{f(i+2)} b_{g(i+2)};
. . .
b_T = 1 \oplus b_{f(T)} b_{g(T)};
specified outputs.
Reversible but dirty:
inputs b_1, b_2, \ldots, b_T;
b_{i+1} \leftarrow 1 \oplus b_{i+1} \oplus b_{f(i+1)} b_{g(i+1)};
b_{i+2} \leftarrow 1 \oplus b_{i+2} \oplus b_{f(i+2)} b_{g(i+2)};
```

 $b_T \leftarrow 1 \oplus b_T \oplus b_{f(T)} b_{g(T)}$. Same outputs if all of b_{i+1}, \ldots, b_T started as 0.

mutation example eptively easy.

need many operations.

e n, most permutations p ny operations \Rightarrow slow. ant *fast* circuits.

didn't need extra storage: perated "in place" after ation $c_1 \leftarrow q_1 q_0$ was into $q_2 \leftarrow q_2 \oplus c_1$.

circuits aren't in-place.

Start from any circuit: inputs $b_1, b_2, ..., b_i$; $b_{i+1} = 1 \oplus b_{f(i+1)} b_{g(i+1)};$ $b_{i+2} = 1 \oplus b_{f(i+2)} b_{g(i+2)};$ $b_T = 1 \oplus b_{f(T)} b_{g(T)};$ specified outputs. Reversible but dirty: inputs b_1, b_2, \ldots, b_T ; $b_{i+1} \leftarrow 1 \oplus b_{i+1} \oplus b_{f(i+1)} b_{g(i+1)};$ $b_{i+2} \leftarrow 1 \oplus b_{i+2} \oplus b_{f(i+2)} b_{g(i+2)};$ $b_T \leftarrow 1 \oplus b_T \oplus b_{f(T)} b_{g(T)}$. Same outputs if all of b_{i+1}, \ldots, b_T started as 0.

Reversib after fin set nonby repea on non-o Original (inputs) (inputs, Dirty rev (inputs, (inputs, Clean re (inputs, (inputs,

example

sy.

ny operations.

permutations pions \Rightarrow slow. ircuits.

d extra storage: n place" after

 q_1q_0 was

 $q_2 \oplus c_1$.

en't in-place.

Start from any circuit: inputs $b_1, b_2, ..., b_i$; $b_{i+1} = 1 \oplus b_{f(i+1)} b_{g(i+1)};$ $b_{i+2} = 1 \oplus b_{f(i+2)} b_{g(i+2)};$ $b_T = 1 \oplus b_{f(T)} b_{g(T)};$ specified outputs. Reversible but dirty: inputs $b_1, b_2, ..., b_T$; $b_{i+1} \leftarrow 1 \oplus b_{i+1} \oplus b_{f(i+1)} b_{g(i+1)};$ $b_{i+2} \leftarrow 1 \oplus b_{i+2} \oplus b_{f(i+2)} b_{g(i+2)};$ $b_T \leftarrow 1 \oplus b_T \oplus b_{f(T)} b_{g(T)}$. Same outputs if all of b_{i+1}, \ldots, b_T started as 0.

Reversible and clear after finishing dirty set non-outputs bar by repeating same on non-outputs in Original computat (inputs) → (inputs, dirt, output

Dirty reversible co (inputs, zeros, zero

(inputs, dirt, outpu

Clean reversible co

(inputs, zeros, zero

(inputs, zeros, outp

ons.

ons *p* w.

orage: after

ce.

Start from any circuit: inputs $b_1, b_2, ..., b_i$; $b_{i+1} = 1 \oplus b_{f(i+1)} b_{g(i+1)};$ $b_{i+2} = 1 \oplus b_{f(i+2)} b_{g(i+2)};$ $b_T = 1 \oplus b_{f(T)} b_{g(T)};$ specified outputs. Reversible but dirty: inputs b_1, b_2, \ldots, b_T ; $b_{i+1} \leftarrow 1 \oplus b_{i+1} \oplus b_{f(i+1)} b_{g(i+1)};$ $b_{i+2} \leftarrow 1 \oplus b_{i+2} \oplus b_{f(i+2)} b_{g(i+2)};$ $b_T \leftarrow 1 \oplus b_T \oplus b_{f(T)} b_{g(T)}$. Same outputs if all of

 b_{i+1}, \ldots, b_T started as 0.

(inputs, (inputs,

- Reversible and clean: after finishing dirty compute set non-outputs back to 0, by repeating same operation on non-outputs in reverse or
- Original computation:
- $(\mathsf{inputs})\mapsto$
- (inputs, dirt, outputs).
- Dirty reversible computation
- (inputs, zeros, zeros) \mapsto
- (inputs, dirt, outputs).
- Clean reversible computation
- (inputs, zeros, zeros) \mapsto
- (inputs, zeros, outputs).

Start from any circuit: inputs $b_1, b_2, ..., b_i$; $b_{i+1} = 1 \oplus b_{f(i+1)} b_{g(i+1)};$ $b_{i+2} = 1 \oplus b_{f(i+2)} b_{g(i+2)};$. . .

 $b_T = 1 \oplus b_{f(T)} b_{g(T)};$ specified outputs.

Reversible but dirty: inputs b_1, b_2, \ldots, b_T ; $b_{i+1} \leftarrow 1 \oplus b_{i+1} \oplus b_{f(i+1)} b_{g(i+1)};$ $b_{i+2} \leftarrow 1 \oplus b_{i+2} \oplus b_{f(i+2)} b_{g(i+2)};$. . . $b_T \leftarrow 1 \oplus b_T \oplus b_{f(T)} b_{g(T)}$. Same outputs if all of b_{i+1}, \ldots, b_T started as 0.

Reversible and clean: after finishing dirty computation, set non-outputs back to 0, by repeating same operations on non-outputs in reverse order. Original computation: (inputs) \mapsto (inputs, dirt, outputs). Dirty reversible computation: (inputs, zeros, zeros) \mapsto (inputs, dirt, outputs). Clean reversible computation: (inputs, zeros, zeros) \mapsto (inputs, zeros, outputs).

om any circuit:

 $_1, b_2, \ldots, b_i;$ $l \oplus b_{f(i+1)}b_{g(i+1)};$ $l \oplus b_{f(i+2)}b_{g(i+2)};$

 $\oplus b_{f(T)}b_{g(T)};$ outputs.

le but dirty:

 $_1, b_2, \ldots, b_T;$ $1 \oplus b_{i+1} \oplus b_{f(i+1)}b_{g(i+1)};$ $1 \oplus b_{i+2} \oplus b_{f(i+2)}b_{g(i+2)};$

 $\oplus b_T \oplus b_{f(T)}b_{g(T)}.$ itputs if all of

, b_T started as 0.

Reversible and clean: after finishing dirty computation, set non-outputs back to 0, by repeating same operations on non-outputs in reverse order.

Original computation: (inputs) \mapsto (inputs, dirt, outputs).

Dirty reversible computation: (inputs, zeros, zeros) \mapsto (inputs, dirt, outputs).

Clean reversible computation: (inputs, zeros, zeros) \mapsto (inputs, zeros, outputs).

Given fa and fast build fas (x, zeros

cuit: b_i;

 $b_{g(i+1)};$ $b_{g(i+2)};$

(T);

 $f(T) b_{g(T)}$.

ed as 0.

Reversible and clean: after finishing dirty computation, set non-outputs back to 0, by repeating same operations on non-outputs in reverse order.

Original computation: (inputs) → (inputs, dirt, outputs).

Dirty reversible computation: (inputs, zeros, zeros) → (inputs, dirt, outputs).

Clean reversible computation: (inputs, zeros, zeros) \mapsto (inputs, zeros, outputs). Given fast circuit for and fast circuit for build fast reversibl $(x, zeros) \mapsto (p(x))$ Reversible and clean: after finishing dirty computation, set non-outputs back to 0, by repeating same operations on non-outputs in reverse order.

Original computation: (inputs) \mapsto (inputs, dirt, outputs).

Dirty reversible computation: (inputs, zeros, zeros) \mapsto (inputs, dirt, outputs).

Clean reversible computation: (inputs, zeros, zeros) \mapsto (inputs, zeros, outputs).

```
g(i+1)^{-1}
g(i+2)^{-1}
```

Given fast circuit for p and fast circuit for p^{-1} , build fast reversible circuit for $(x, \text{zeros}) \mapsto (p(x), \text{zeros}).$

Reversible and clean:

after finishing dirty computation, set non-outputs back to 0, by repeating same operations on non-outputs in reverse order.

Original computation: (inputs) \mapsto (inputs, dirt, outputs).

Dirty reversible computation: (inputs, zeros, zeros) \mapsto (inputs, dirt, outputs).

Clean reversible computation: (inputs, zeros, zeros) \mapsto (inputs, zeros, outputs).

Given fast circuit for p and fast circuit for p^{-1} , build fast reversible circuit for $(x, \text{zeros}) \mapsto (p(x), \text{zeros}).$

Reversible and clean:

after finishing dirty computation, set non-outputs back to 0, by repeating same operations on non-outputs in reverse order.

Original computation: (inputs) \mapsto (inputs, dirt, outputs).

Dirty reversible computation: (inputs, zeros, zeros) \mapsto (inputs, dirt, outputs).

Clean reversible computation: (inputs, zeros, zeros) \mapsto (inputs, zeros, outputs).

Given fast circuit for p and fast circuit for p^{-1} , build fast reversible circuit for $(x, \text{zeros}) \mapsto (p(x), \text{zeros}).$ Replace reversible bit operations with Toffoli gates etc. permuting $\mathbf{C}^{2^{n+z}} \rightarrow \mathbf{C}^{2^{n+z}}$.

Permutation on first 2^n entries is $(a_{p(0)}, a_{p(1)}, \ldots, a_{p(2^n-1)})$ \mapsto (*a*₀, *a*₁, ..., *a*₂*n*₋₁).

Typically prepare vectors supported on first 2^n entries so don't care how permutation acts on last $2^{n+z} - 2^n$ entries.

le and clean:

- ishing dirty computation,
- outputs back to 0,
- ting same operations outputs in reverse order.
- computation:

 \mapsto

- dirt, outputs).
- versible computation:
- $zeros, zeros) \mapsto$
- dirt, outputs).
- versible computation: $zeros, zeros) \mapsto$ zeros, outputs).

Given fast circuit for *p* and fast circuit for p^{-1} , build fast reversible circuit for $(x, \text{zeros}) \mapsto (p(x), \text{zeros}).$

Replace reversible bit operations with Toffoli gates etc. permuting $\mathbf{C}^{2^{n+z}} \rightarrow \mathbf{C}^{2^{n+z}}$.

Permutation on first 2^n entries is $(a_{p(0)}, a_{p(1)}, \ldots, a_{p(2^n-1)})$ \mapsto (*a*₀, *a*₁, ..., *a*₂*n*₋₁).

Typically prepare vectors supported on first 2^n entries so don't care how permutation acts on last $2^{n+z} - 2^n$ entries.

Warning pprox numb in origin This car than nui in the or Many us to comp but ofte Many su Crude " don't ca but serio is much

an:

y computation,

ack to 0,

operations

reverse order.

ion:

ts).

mputation:

 $(s) \mapsto$

mputation:

 $(s) \mapsto$

Given fast circuit for pand fast circuit for p^{-1} , build fast reversible circuit for $(x, \text{zeros}) \mapsto (p(x), \text{zeros}).$

Replace reversible bit operations with Toffoli gates etc. permuting $\mathbf{C}^{2^{n+z}} \to \mathbf{C}^{2^{n+z}}$.

Permutation on first 2^n entries is $(a_{p(0)}, a_{p(1)}, \dots, a_{p(2^n-1)})$ $\mapsto (a_0, a_1, \dots, a_{2^n-1}).$

Typically prepare vectors supported on first 2^n entries so don't care how permutation acts on last $2^{n+z} - 2^n$ entries.

Warning: Number pprox number of **bit** (in original p, p^{-1} This can be much than number of **b**i in the original circ Many useful techn to compress into f

but often these los Many subtle trade

Crude "poly-time" don't care about t but serious crypta is much more prec ition,

s der.

า:

Given fast circuit for p and fast circuit for p^{-1} , build fast reversible circuit for $(x, \text{zeros}) \mapsto (p(x), \text{zeros}).$ Replace reversible bit operations with Toffoli gates etc. permuting $\mathbf{C}^{2^{n+z}} \rightarrow \mathbf{C}^{2^{n+z}}$. Permutation on first 2^n entries is $(a_{p(0)}, a_{p(1)}, \ldots, a_{p(2^n-1)})$ \mapsto (*a*₀, *a*₁, ..., *a*₂*n*₋₁).

Typically prepare vectors supported on first 2^n entries so don't care how permutation acts on last $2^{n+z} - 2^n$ entries.

Warning: Number of **qubits** pprox number of **bit operation**s in original p, p^{-1} circuits. This can be much larger than number of **bits stored** in the original circuits. Many useful techniques to compress into fewer qubit but often these lose time. Many subtle tradeoffs. Crude "poly-time" analyses don't care about this, but serious cryptanalysis is much more precise.

Given fast circuit for p and fast circuit for p^{-1} , build fast reversible circuit for $(x, \text{zeros}) \mapsto (p(x), \text{zeros}).$

Replace reversible bit operations with Toffoli gates etc. permuting $\mathbf{C}^{2^{n+z}} \rightarrow \mathbf{C}^{2^{n+z}}$.

Permutation on first 2^n entries is $(a_{p(0)}, a_{p(1)}, \ldots, a_{p(2^n-1)})$ \mapsto (*a*₀, *a*₁, ..., *a*₂*n*₋₁).

Typically prepare vectors supported on first 2^n entries so don't care how permutation acts on last $2^{n+z} - 2^n$ entries.

Warning: Number of **qubits** \approx number of **bit operations** in original p, p^{-1} circuits. This can be much larger than number of **bits stored** in the original circuits. Many useful techniques to compress into fewer qubits, but often these lose time. Many subtle tradeoffs. Crude "poly-time" analyses don't care about this, but serious cryptanalysis is much more precise.

st circuit for p circuit for p^{-1} , st reversible circuit for $p(x) \mapsto (p(x), \text{zeros}).$

reversible bit operations foli gates etc. ng $\mathbf{C}^{2^{n+z}}
ightarrow \mathbf{C}^{2^{n+z}}$.

tion on first 2^n entries is $p(1), \ldots, a_{p(2^n-1)})$ $a_1, \ldots, a_{2^n-1}).$

/ prepare vectors ed on first 2^n entries care how permutation last $2^{n+z} - 2^n$ entries.

Warning: Number of **qubits** \approx number of **bit operations** in original p, p^{-1} circuits.

This can be much larger than number of **bits stored** in the original circuits.

Many useful techniques to compress into fewer qubits, but often these lose time. Many subtle tradeoffs.

Crude "poly-time" analyses don't care about this, but serious cryptanalysis is much more precise.

Fast qua

"Hadam (a_0, a_1)

- for p p^{-1} , e circuit for , zeros).
- bit operations etc. $\rightarrow \mathbf{C}^{2^{n+z}}$
- rst 2ⁿ entries is $p(2^{n}-1))$ $_{-1}).$
- vectors 2^n entries permutation
- -2^n entries.

Warning: Number of **qubits** \approx number of **bit operations** in original p, p^{-1} circuits.

This can be much larger than number of **bits stored** in the original circuits.

Many useful techniques to compress into fewer qubits, but often these lose time. Many subtle tradeoffs.

Crude "poly-time" analyses don't care about this, but serious cryptanalysis is much more precise.

Fast quantum ope

"Hadamard": $(a_0, a_1) \mapsto (a_0 + a_0)$

C	r	

cions

ies is

on

es.

Warning: Number of **qubits** \approx number of **bit operations** in original p, p^{-1} circuits.

This can be much larger than number of **bits stored** in the original circuits.

Many useful techniques to compress into fewer qubits, but often these lose time. Many subtle tradeoffs.

Crude "poly-time" analyses don't care about this, but serious cryptanalysis is much more precise.

"Hadamard":

Fast quantum operations, pa

$(a_0, a_1) \mapsto (a_0 + a_1, a_0 - a_1)$

Warning: Number of **qubits** \approx number of **bit operations** in original p, p^{-1} circuits.

This can be much larger than number of **bits stored** in the original circuits.

Many useful techniques to compress into fewer qubits, but often these lose time. Many subtle tradeoffs.

Crude "poly-time" analyses don't care about this, but serious cryptanalysis is much more precise.

Fast quantum operations, part 2

"Hadamard": $(a_0, a_1) \mapsto (a_0 + a_1, a_0 - a_1).$

Warning: Number of **qubits** \approx number of **bit operations** in original *p*, *p*⁻¹ circuits.

This can be much larger than number of **bits stored** in the original circuits.

Many useful techniques to compress into fewer qubits, but often these lose time. Many subtle tradeoffs.

Crude "poly-time" analyses don't care about this, but serious cryptanalysis is much more precise.

Fast quantum operations, part 2

"Hadamard": $(a_0, a_1) \mapsto (a_0 + a_1, a_0 - a_1).$ $(a_0, a_1, a_2, a_3) \mapsto$ $(a_0 + a_1, a_0 - a_1, a_2 + a_3, a_2 - a_3).$
Warning: Number of **qubits** \approx number of **bit operations** in original p, p^{-1} circuits.

This can be much larger than number of **bits stored** in the original circuits.

Many useful techniques to compress into fewer qubits, but often these lose time. Many subtle tradeoffs.

Crude "poly-time" analyses don't care about this, but serious cryptanalysis is much more precise.

Fast quantum operations, part 2

```
"Hadamard":
(a_0, a_1) \mapsto (a_0 + a_1, a_0 - a_1).
(a_0, a_1, a_2, a_3) \mapsto
(a_0 + a_1, a_0 - a_1, a_2 + a_3, a_2 - a_3).
Same for qubit 1:
(a_0, a_1, a_2, a_3) \mapsto
```

 $(a_0 + a_2, a_1 + a_3, a_0 - a_2, a_1 - a_3).$

Warning: Number of **qubits** \approx number of **bit operations** in original p, p^{-1} circuits.

This can be much larger than number of **bits stored** in the original circuits.

Many useful techniques to compress into fewer qubits, but often these lose time. Many subtle tradeoffs.

Crude "poly-time" analyses don't care about this, but serious cryptanalysis is much more precise.

Fast quantum operations, part 2

```
"Hadamard":
(a_0, a_1) \mapsto (a_0 + a_1, a_0 - a_1).
(a_0, a_1, a_2, a_3) \mapsto
(a_0 + a_1, a_0 - a_1, a_2 + a_3, a_2 - a_3).
Same for qubit 1:
(a_0, a_1, a_2, a_3) \mapsto
Qubit 0 and then qubit 1:
(a_0, a_1, a_2, a_3) \mapsto
(a_0 + a_1, a_0 - a_1, a_2 + a_3, a_2 - a_3) \mapsto
```

 $(a_0 + a_2, a_1 + a_3, a_0 - a_2, a_1 - a_3).$

 $(a_0 + a_1 + a_2 + a_3, a_0 - a_1 + a_2 - a_3,$

 $a_0 + a_1 - a_2 - a_3, a_0 - a_1 - a_2 + a_3).$

- : Number of **qubits** er of **bit operations** al p, p^{-1} circuits.
- be much larger mber of **bits stored** riginal circuits.
- seful techniques ress into fewer qubits, n these lose time. btle tradeoffs.
- poly-time" analyses re about this,
- ous cryptanalysis
- more precise.

Fast quantum operations, part 2

"Hadamard": $(a_0, a_1) \mapsto (a_0 + a_1, a_0 - a_1).$ $(a_0, a_1, a_2, a_3) \mapsto$ $(a_0 + a_1, a_0 - a_1, a_2 + a_3, a_2 - a_3).$ Same for qubit 1: $(a_0, a_1, a_2, a_3) \mapsto$ $(a_0 + a_2, a_1 + a_3, a_0 - a_2, a_1 - a_3).$ Qubit 0 and then qubit 1: $(a_0, a_1, a_2, a_3) \mapsto$ $(a_0 + a_1, a_0 - a_1, a_2 + a_3, a_2 - a_3) \mapsto$ $(a_0 + a_1 + a_2 + a_3, a_0 - a_1 + a_2 - a_3,$ $a_0 + a_1 - a_2 - a_3, a_0 - a_1 - a_2 + a_3).$

Repeat / (1,0,0,. Measuri always p Measuri can proc Pr[outpi

of qubits

circuits.

larger

ts stored

uits.

iques

ewer qubits,

se time.

offs.

analyses

his,

nalysis

ise.

Fast quantum operations, part 2 "Hadamard": $(a_0, a_1) \mapsto (a_0 + a_1, a_0 - a_1).$ $(a_0, a_1, a_2, a_3) \mapsto$ $(a_0 + a_1, a_0 - a_1, a_2 + a_3, a_2 - a_3).$ Same for qubit 1: $(a_0, a_1, a_2, a_3) \mapsto$ $(a_0 + a_2, a_1 + a_3, a_0 - a_2, a_1 - a_3).$ Qubit 0 and then qubit 1: $(a_0, a_1, a_2, a_3) \mapsto$ $(a_0 + a_1, a_0 - a_1, a_2 + a_3, a_2 - a_3) \mapsto$ $(a_0 + a_1 + a_2 + a_3, a_0 - a_1 + a_2 - a_3,$ $a_0 + a_1 - a_2 - a_3, a_0 - a_1 - a_2 + a_3).$

5

tS,

Fast quantum operations, part 2 "Hadamard": $(a_0, a_1) \mapsto (a_0 + a_1, a_0 - a_1).$ $(a_0, a_1, a_2, a_3) \mapsto$ $(a_0 + a_1, a_0 - a_1, a_2 + a_3, a_2 - a_3).$ Same for qubit 1: $(a_0, a_1, a_2, a_3) \mapsto$ $(a_0 + a_2, a_1 + a_3, a_0 - a_2, a_1 - a_3).$ Qubit 0 and then qubit 1: $(a_0, a_1, a_2, a_3) \mapsto$ $(a_0 + a_1, a_0 - a_1, a_2 + a_3, a_2 - a_3) \mapsto$ $(a_0 + a_1 + a_2 + a_3, a_0 - a_1 + a_2 - a_3,$ $a_0 + a_1 - a_2 - a_3, a_0 - a_1 - a_2 + a_3).$

Repeat (1, 0, 0, Measur always Measur can pro Pr[outp

Repeat *n* times: e.g., $(1, 0, 0, ..., 0) \mapsto (1, 1, 1, ...)$

- Measuring (1, 0, 0, . . . , 0) always produces 0.
- Measuring (1, 1, 1, ..., 1)can produce any output: $Pr[output = q] = 1/2^{n}.$

Fast quantum operations, part 2

"Hadamard": $(a_0, a_1) \mapsto (a_0 + a_1, a_0 - a_1).$ $(a_0, a_1, a_2, a_3) \mapsto$ $(a_0 + a_1, a_0 - a_1, a_2 + a_3, a_2 - a_3).$ Same for qubit 1: $(a_0, a_1, a_2, a_3) \mapsto$ $(a_0 + a_2, a_1 + a_3, a_0 - a_2, a_1 - a_3).$ Qubit 0 and then qubit 1: $(a_0, a_1, a_2, a_3) \mapsto$ $(a_0 + a_1, a_0 - a_1, a_2 + a_3, a_2 - a_3) \mapsto$ $(a_0 + a_1 + a_2 + a_3, a_0 - a_1 + a_2 - a_3, a_0 - a_1 + a_2 - a_3)$ $a_0 + a_1 - a_2 - a_3, a_0 - a_1 - a_2 + a_3).$

Repeat *n* times: e.g., $(1, 0, 0, \ldots, 0) \mapsto (1, 1, 1, \ldots, 1).$ Measuring (1, 0, 0, ..., 0)always produces 0. Measuring (1, 1, 1, ..., 1)can produce any output: $\Pr[\text{output} = q] = 1/2^{n}.$

Fast quantum operations, part 2

"Hadamard": $(a_0, a_1) \mapsto (a_0 + a_1, a_0 - a_1).$ $(a_0, a_1, a_2, a_3) \mapsto$ $(a_0 + a_1, a_0 - a_1, a_2 + a_3, a_2 - a_3).$ Same for qubit 1: $(a_0, a_1, a_2, a_3) \mapsto$ $(a_0 + a_2, a_1 + a_3, a_0 - a_2, a_1 - a_3).$ Qubit 0 and then qubit 1: $(a_0, a_1, a_2, a_3) \mapsto$ $(a_0 + a_1, a_0 - a_1, a_2 + a_3, a_2 - a_3) \mapsto$ $(a_0 + a_1 + a_2 + a_3, a_0 - a_1 + a_2 - a_3, a_0 - a_1 + a_2 - a_3, a_0 - a_1 + a_2 - a_3)$ $a_0 + a_1 - a_2 - a_3, a_0 - a_1 - a_2 + a_3).$

Repeat *n* times: e.g., $(1, 0, 0, \ldots, 0) \mapsto (1, 1, 1, \ldots, 1).$ Measuring (1, 0, 0, ..., 0)always produces 0. Measuring (1, 1, 1, ..., 1)can produce any output: $\Pr[\text{output} = q] = 1/2^{n}$. Aside from "normalization" (irrelevant to measurement), have Hadamard = Hadamard⁻¹, so easily work backwards from "uniform superposition" (1, 1, 1, ..., 1) to "pure state" $(1, 0, 0, \ldots, 0).$

antum operations, part 2 ard": \mapsto $(a_0 + a_1, a_0 - a_1).$ $a_2, a_3) \mapsto$ $, a_0 - a_1, a_2 + a_3, a_2 - a_3).$ r qubit 1: $a_2, a_3) \mapsto$ $, a_1 + a_3, a_0 - a_2, a_1 - a_3).$ and then qubit 1: $a_2, a_3) \mapsto$ $a_0 - a_1, a_2 + a_3, a_2 - a_3) \mapsto$ $+a_2+a_3$, $a_0-a_1+a_2-a_3$, $-a_2 - a_3, a_0 - a_1 - a_2 + a_3).$

Repeat *n* times: e.g., $(1, 0, 0, \ldots, 0) \mapsto (1, 1, 1, \ldots, 1).$ Measuring (1, 0, 0, ..., 0)always produces 0. Measuring (1, 1, 1, ..., 1)can produce any output: $\Pr[\text{output} = q] = 1/2^{n}.$ Aside from "normalization" (irrelevant to measurement), have Hadamard = Hadamard⁻¹, so easily work backwards from "uniform superposition" (1, 1, 1, ..., 1) to "pure state"

 $(1, 0, 0, \ldots, 0).$

Simon's

Assume: satisfies for every Can we given a

rations, part 2

 $b_1, a_0 - a_1).$

 $a_2 + a_3, a_2 - a_3).$

$$a_0 - a_2, a_1 - a_3).$$
qubit 1:

$$a_2 + a_3, a_2 - a_3) \mapsto a_0 - a_1 + a_2 - a_3, a_0 - a_1 - a_2 + a_3).$$

Repeat *n* times: e.g., $(1, 0, 0, \ldots, 0) \mapsto (1, 1, 1, \ldots, 1).$ Measuring (1, 0, 0, ..., 0) always produces 0. Measuring (1, 1, 1, ..., 1)can produce any output: $\Pr[\text{output} = q] = 1/2^{n}$. Aside from "normalization" (irrelevant to measurement), have Hadamard = Hadamard⁻¹, so easily work backwards from "uniform superposition"

(1, 1, 1, ..., 1) to "pure state" (1, 0, 0, ..., 0).

Simon's algorithm

Assume: nonzero satisfies f(x) = f(x)for every $x \in \{0, 1\}$ Can we find this p given a fast circuit

art 2

 $-a_{3}$).

 $-a_{3}$).

 $a_3) \mapsto$ $a_2 - a_3$, $a_2 + a_3).$

 $(1, 0, 0, \ldots, 0) \mapsto (1, 1, 1, \ldots, 1).$ Measuring (1, 0, 0, ..., 0)always produces 0. Measuring (1, 1, 1, ..., 1)can produce any output: $\Pr[\text{output} = q] = 1/2^{n}$. Aside from "normalization" (irrelevant to measurement), have Hadamard = Hadamard⁻¹, so easily work backwards from "uniform superposition" (1, 1, 1, ..., 1) to "pure state" $(1, 0, 0, \ldots, 0).$

Repeat *n* times: e.g.,

Simon's algorithm

Assume: nonzero $s \in \{0, 1\}$ satisfies $f(x) = f(x \oplus s)$ for every $x \in \{0, 1\}^n$. Can we find this period s, given a fast circuit for f?

Repeat *n* times: e.g., $(1, 0, 0, \ldots, 0) \mapsto (1, 1, 1, \ldots, 1).$

Measuring (1, 0, 0, ..., 0)always produces 0.

Measuring (1, 1, 1, ..., 1)can produce any output: $\Pr[\text{output} = q] = 1/2^{n}$.

Aside from "normalization" (irrelevant to measurement), have Hadamard = Hadamard⁻¹, so easily work backwards from "uniform superposition" (1, 1, 1, ..., 1) to "pure state" $(1, 0, 0, \ldots, 0).$

Simon's algorithm

Assume: nonzero $s \in \{0, 1\}^n$ satisfies $f(x) = f(x \oplus s)$ for every $x \in \{0, 1\}^n$. Can we find this period s, given a fast circuit for f?

Repeat *n* times: e.g., $(1, 0, 0, \ldots, 0) \mapsto (1, 1, 1, \ldots, 1).$

Measuring (1, 0, 0, ..., 0)always produces 0.

Measuring (1, 1, 1, ..., 1)can produce any output: $\Pr[\text{output} = q] = 1/2^{n}$.

Aside from "normalization" (irrelevant to measurement), have Hadamard = Hadamard⁻¹, so easily work backwards from "uniform superposition" (1, 1, 1, ..., 1) to "pure state" $(1, 0, 0, \ldots, 0).$

Simon's algorithm

Assume: nonzero $s \in \{0, 1\}^n$ satisfies $f(x) = f(x \oplus s)$ for every $x \in \{0, 1\}^n$. Can we find this period s, given a fast circuit for f? We don't have enough data

if f has many periods.

Assume: only periods are 0, s.

Repeat *n* times: e.g., $(1, 0, 0, \ldots, 0) \mapsto (1, 1, 1, \ldots, 1).$

Measuring (1, 0, 0, ..., 0)always produces 0.

Measuring (1, 1, 1, ..., 1)can produce any output: $\Pr[\text{output} = q] = 1/2^{n}$.

Aside from "normalization" (irrelevant to measurement), have Hadamard = Hadamard⁻¹, so easily work backwards from "uniform superposition" (1, 1, 1, ..., 1) to "pure state" $(1, 0, 0, \ldots, 0).$

Simon's algorithm

Assume: nonzero $s \in \{0, 1\}^n$ satisfies $f(x) = f(x \oplus s)$ for every $x \in \{0, 1\}^n$. Can we find this period s, given a fast circuit for f? We don't have enough data if f has many periods. Assume: only periods are 0, s. Traditional solution: Compute f for many inputs, sort, analyze collisions.

until #inputs approaches $2^{n/2}$.

- Success probability is very low

 $n ext{ times: e.g.,} \ \ldots, 0) \mapsto (1, 1, 1, \ldots, 1).$

ng (1,0,0,...,0) produces 0.

ng $(1, 1, 1, \dots, 1)$ duce any output: $ut = q] = 1/2^n$.

om "normalization" nt to measurement), damard = Hadamard⁻¹, work backwards niform superposition" ..., 1) to "pure state" ..., 0). Simon's algorithm

Assume: nonzero $s \in \{0, 1\}^n$ satisfies $f(x) = f(x \oplus s)$ for every $x \in \{0, 1\}^n$. Can we find this period s, given a fast circuit for f?

We don't have enough data if *f* has many periods. Assume: only periods are 0, *s*.

Traditional solution: Compute f for many inputs, sort, analyze collisions. Success probability is very low until #inputs approaches $2^{n/2}$.

Simon's is much, Say f m using z for rever Prepare in pure 2 vector (1 Use *n*-fc to move into unif (1, 1, 1, ...with 2^n

.g., (1,1,1,...,1). ...,0)

...,1)

output: $1/2^n$.

alization" surement), Hadamard⁻¹, kwards erposition"

"pure state"

Simon's algorithm

Assume: nonzero $s \in \{0, 1\}^n$ satisfies $f(x) = f(x \oplus s)$ for every $x \in \{0, 1\}^n$. Can we find this period s, given a fast circuit for f?

We don't have enough data if *f* has many periods. Assume: only periods are 0, *s*.

Traditional solution: Compute f for many inputs, sort, analyze collisions. Success probability is very low until #inputs approaches $2^{n/2}$.

Simon's algorithm is much, much, m Say f maps n bits using z "ancilla" k for reversibility. Prepare n + m + zin pure zero state: vector (1, 0, 0, ...) Use *n*-fold Hadam to move first n qu into uniform super $(1, 1, 1, \ldots, 1, 0, 0, \ldots)$ with 2^n entries 1,

, 1).

 d^{-1} .

,,

e"

Simon's algorithm

Assume: nonzero $s \in \{0, 1\}^n$ satisfies $f(x) = f(x \oplus s)$ for every $x \in \{0, 1\}^n$. Can we find this period s, given a fast circuit for f?

We don't have enough data if f has many periods. Assume: only periods are 0, s.

Traditional solution: Compute f for many inputs, sort, analyze collisions. Success probability is very low until #inputs approaches $2^{n/2}$.

- Simon's algorithm
- is much, much, much faster
- Say f maps n bits to m bits using z "ancilla" bits for reversibility.
- Prepare n + m + z qubits in pure zero state: vector (1, 0, 0, ...).
- Use *n*-fold Hadamard
- to move first *n* qubits
- into uniform superposition:
- $(1, 1, 1, \ldots, 1, 0, 0, \ldots)$
- with 2^n entries 1, others 0.

<u>Simon's algorithm</u>

Assume: nonzero $s \in \{0, 1\}^n$ satisfies $f(x) = f(x \oplus s)$ for every $x \in \{0, 1\}^n$. Can we find this period s, given a fast circuit for f?

We don't have enough data if f has many periods. Assume: only periods are 0, s.

Traditional solution: Compute f for many inputs, sort, analyze collisions. Success probability is very low until #inputs approaches $2^{n/2}$.

Simon's algorithm is much, much, much faster.

Say f maps n bits to m bits, using z "ancilla" bits for reversibility.

Prepare n + m + z qubits in pure zero state: vector (1, 0, 0, ...).

Use *n*-fold Hadamard to move first *n* qubits into uniform superposition: $(1, 1, 1, \ldots, 1, 0, 0, \ldots)$ with 2^n entries 1. others 0.

algorithm

nonzero $s \in \{0, 1\}^n$ $f(x) = f(x \oplus s)$ $x \in \{0, 1\}^n$. find this period s, fast circuit for f?

t have enough data many periods.

only periods are 0, s.

nal solution:

e f for many inputs, alyze collisions.

probability is very low nputs approaches $2^{n/2}$. Simon's algorithm is much, much, much faster.

Say f maps n bits to m bits, using z "ancilla" bits for reversibility.

Prepare n + m + z qubits in pure zero state: vector (1, 0, 0, ...).

Use *n*-fold Hadamard to move first *n* qubits into uniform superposition: $(1, 1, 1, \ldots, 1, 0, 0, \ldots)$ with 2^n entries 1, others 0.

Apply fa for rever 1 in pos moves to Note syr 1 at (q,1 at (q) Apply *n*-Measure output i Repeat / Use Gau to (prob $s \in \{0, 1\}^n$ $x \oplus s$) g^n . eriod s, for f?

ods.

ods are 0, *s*.

n:

ny inputs,

ions.

y is very low roaches 2^{n/2}. Simon's algorithm is much, much, much faster.

Say f maps n bits to m bits, using z "ancilla" bits for reversibility.

Prepare n + m + z qubits in pure zero state: vector (1, 0, 0, ...).

Use *n*-fold Hadamard to move first *n* qubits into uniform superposition: (1, 1, 1, ..., 1, 0, 0, ...)with 2^n entries 1, others 0. Apply fast vector for reversible f contained on f contained on (q, 0, q) moves to position

Note symmetry be 1 at (q, f(q), 0) as

1 at $(q \oplus s, f(q), 0)$

Apply *n*-fold Hada

Measure. By symmoutput is orthogon

Repeat n + 10 tim Use Gaussian elim to (probably) find

```
W
/2
```

S.

n

Simon's algorithm is much, much, much faster. Say f maps n bits to m bits, using z "ancilla" bits for reversibility.

Prepare n + m + z qubits in pure zero state: vector (1, 0, 0, ...).

Use *n*-fold Hadamard to move first *n* qubits into uniform superposition: $(1, 1, 1, \ldots, 1, 0, 0, \ldots)$ with 2^n entries 1, others 0.

Apply fast vector permutation for reversible f computation 1 in position (q, 0, 0)moves to position (q, f(q), 0)Note symmetry between 1 at (q, f(q), 0) and 1 at $(q \oplus s, f(q), 0)$. Apply *n*-fold Hadamard.

Repeat n + 10 times. Use Gaussian elimination to (probably) find s.

- Measure. By symmetry,
- output is orthogonal to s.

Simon's algorithm is much, much, much faster.

Say f maps n bits to m bits, using z "ancilla" bits for reversibility.

Prepare n + m + z qubits in pure zero state: vector (1, 0, 0, ...).

Use *n*-fold Hadamard to move first *n* qubits into uniform superposition: $(1, 1, 1, \ldots, 1, 0, 0, \ldots)$ with 2^n entries 1, others 0.

Apply fast vector permutation for reversible *f* computation: 1 in position (q, 0, 0)moves to position (q, f(q), 0). Note symmetry between 1 at (q, f(q), 0) and 1 at $(q \oplus s, f(q), 0)$. Apply *n*-fold Hadamard. Measure. By symmetry, output is orthogonal to s. Repeat n + 10 times. Use Gaussian elimination to (probably) find s.

algorithm much, much faster.

aps *n* bits to *m* bits, "ancilla" bits sibility.

n + m + z qubits zero state: 1,0,0,...).

Id Hadamard first *n* qubits form superposition:

 $\dots, 1, 0, 0, \dots)$ entries 1, others 0. Apply fast vector permutation for reversible *f* computation: 1 in position (q, 0, 0)moves to position (q, f(q), 0).

Note symmetry between 1 at (q, f(q), 0) and 1 at $(q \oplus s, f(q), 0)$.

Apply *n*-fold Hadamard.

Measure. By symmetry, output is orthogonal to s.

Repeat n + 10 times. Use Gaussian elimination to (probably) find s.

Grover's

Assume: has f(s)

- Traditio
- compute
- hope to
- Success until #i
- Grover's
- reversibl
- Typically is small
- easily be

uch faster.

to *m* bits, bits

z qubits

ard bits

position:

...) others 0. Apply fast vector permutation for reversible f computation: 1 in position (q, 0, 0)moves to position (q, f(q), 0).

Note symmetry between 1 at (q, f(q), 0) and 1 at $(q \oplus s, f(q), 0)$.

Apply *n*-fold Hadamard.

Measure. By symmetry, output is orthogonal to *s*.

Repeat n + 10 times. Use Gaussian elimination to (probably) find *s*.

Grover's algorithm

Assume: unique s has f(s) = 0.

Traditional algorith compute *f* for man hope to find output Success probability until #inputs appr

Grover's algorithm reversible computa Typically: reversib is small enough th easily beats traditi Apply fast vector permutation for reversible *f* computation: 1 in position (q, 0, 0)moves to position (q, f(q), 0).

Note symmetry between 1 at (q, f(q), 0) and 1 at $(q \oplus s, f(q), 0)$.

7

Apply *n*-fold Hadamard.

Measure. By symmetry, output is orthogonal to s.

Repeat n + 10 times. Use Gaussian elimination to (probably) find s.

has f(s) = 0.

Grover's algorithm

- Assume: unique $s \in \{0, 1\}^n$
- Traditional algorithm to find compute f for many inputs,
- hope to find output 0.
- Success probability is very lo
- until #inputs approaches 2^n
- Grover's algorithm takes onl
- reversible computations of f
- Typically: reversibility overh
- is small enough that this
- easily beats traditional algor

Apply fast vector permutation for reversible *f* computation: 1 in position (q, 0, 0)moves to position (q, f(q), 0).

Note symmetry between 1 at (q, f(q), 0) and 1 at $(q \oplus s, f(q), 0)$.

Apply *n*-fold Hadamard.

Measure. By symmetry, output is orthogonal to s.

Repeat n + 10 times. Use Gaussian elimination to (probably) find s.

Grover's algorithm

Assume: unique $s \in \{0, 1\}^n$ has f(s) = 0.

Traditional algorithm to find s: compute f for many inputs, hope to find output 0. Success probability is very low until #inputs approaches 2^n .

Grover's algorithm takes only $2^{n/2}$ reversible computations of f. Typically: reversibility overhead is small enough that this easily beats traditional algorithm.

- st vector permutation sible f computation: ition (q, 0, 0)o position (q, f(q), 0).
- mmetry between f(q), 0) and $\oplus s, f(q), 0$.
- fold Hadamard.
- By symmetry, sorthogonal to s.
- n + 10 times. ssian elimination ably) find *s*.

Grover's algorithm

Assume: unique $s \in \{0, 1\}^n$ has f(s) = 0.

Traditional algorithm to find s: compute f for many inputs, hope to find output 0. Success probability is very low until #inputs approaches 2^n .

Grover's algorithm takes only $2^{n/2}$ reversible computations of f. Typically: reversibility overhead is small enough that this easily beats traditional algorithm.

Start fro over all Step 1: $b_q = -a$ $b_q = a_q$ This is f Step 2: Negate . This is a Repeat s about 0. Measure With hig permutation mputation: (q, f(q), 0).

etween

nd

)).

mard.

metry,

nal to *s*.

les.

ination

S.

Grover's algorithm

Assume: unique $s \in \{0, 1\}^n$ has f(s) = 0.

Traditional algorithm to find s: compute f for many inputs, hope to find output 0. Success probability is very low until #inputs approaches 2^n .

Grover's algorithm takes only $2^{n/2}$ reversible computations of f. Typically: reversibility overhead is small enough that this easily beats traditional algorithm. Start from uniform over all *n*-bit string

- Step 1: Set $a \leftarrow k$
- $b_q = -a_q$ if $f(q) = b_q = a_q$ otherwise This is fast.
- Step 2: "Grover d
- Negate a around i
- This is also fast.
- Repeat steps 1 and about $0.58 \cdot 2^{0.5n}$
- Measure the *n* qui With high probabi

on

•

)).

Grover's algorithm

Assume: unique $s \in \{0, 1\}^n$ has f(s) = 0.

Traditional algorithm to find s: compute f for many inputs, hope to find output 0. Success probability is very low until #inputs approaches 2^{n} .

Grover's algorithm takes only $2^{n/2}$ reversible computations of f. Typically: reversibility overhead is small enough that this easily beats traditional algorithm.

Start from uniform superpos over all *n*-bit strings *q*.

Step 1: Set $a \leftarrow b$ where $b_q = -a_q$ if f(q) = 0, $b_q = a_q$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average This is also fast.

Repeat steps 1 and 2

about $0.58 \cdot 2^{0.5n}$ times.

Measure the *n* qubits.

With high probability this fi

Grover's algorithm

Assume: unique $s \in \{0, 1\}^n$ has f(s) = 0.

Traditional algorithm to find s: compute f for many inputs, hope to find output 0. Success probability is very low until #inputs approaches 2^{n} .

Grover's algorithm takes only $2^{n/2}$ reversible computations of f. Typically: reversibility overhead is small enough that this easily beats traditional algorithm.

Start from uniform superposition over all *n*-bit strings *q*. Step 1: Set $a \leftarrow b$ where $b_q = -a_q$ if f(q) = 0, $b_q = a_q$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the *n* qubits. With high probability this finds s.

algorithm

unique $s \in \{0, 1\}^n$ = 0.

nal algorithm to find s: e f for many inputs, find output 0. probability is very low nputs approaches 2^n .

algorithm takes only $2^{n/2}$ e computations of f. /: reversibility overhead enough that this eats traditional algorithm.

Start from uniform superposition over all *n*-bit strings *q*.

Step 1: Set $a \leftarrow b$ where $b_q = -a_q$ if f(q) = 0, $b_q = a_q$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the *n* qubits. With high probability this finds s.

 $\in \{0,1\}^n$

hm to find *s*: ny inputs,

ut 0.

, is very low

roaches 2ⁿ.

takes only $2^{n/2}$ to the set of the set

ility overhead

at this

onal algorithm.

Start from uniform superposition over all *n*-bit strings *q*.

Step 1: Set $a \leftarrow b$ where $b_q = -a_q$ if f(q) = 0, $b_q = a_q$ otherwise. This is fast.

Step 2: "Grover diffusion".
Negate a around its average.
This is also fast.

Repeat steps 1 and 2 about $0.58 \cdot 2^{0.5n}$ times.

Measure the *n* qubits. With high probability this finds *s*.

Graph of $q \mapsto a_q$ for an example with after 0 steps:

Start from uniform superposition
over all *n*-bit strings *q*.Graph
for an
after 0Step 1: Set
$$a \leftarrow b$$
 where
 $b_q = -a_q$ if $f(q) = 0$,
 $b_q = a_q$ otherwise.
This is fast.1.0Negate a_q otherwise.
This is fast.0.5Negate a around its average.0.0 $y 2^{n/2}$ This is also fast.Repeat steps 1 and 2
about $0.58 \cdot 2^{0.5n}$ times.-0.5ithm.Measure the *n* qubits.
With high probability this finds *s*.

У

of $q\mapsto a_q$ example with n = 120 steps:

Step 1: Set $a \leftarrow b$ where $b_q = -a_q$ if f(q) = 0, $b_q = a_q$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

```
Repeat steps 1 and 2
about 0.58 \cdot 2^{0.5n} times.
```

Measure the *n* qubits. With high probability this finds s.

Graph of $q \mapsto a_q$ for an example with n = 12after 0 steps:

Step 1: Set $a \leftarrow b$ where $b_q = -a_q$ if f(q) = 0, $b_q = a_q$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

```
Repeat steps 1 and 2
about 0.58 \cdot 2^{0.5n} times.
```

Measure the *n* qubits. With high probability this finds s.

Graph of $q \mapsto a_q$ for an example with n = 12after Step 1: 1.0

Step 1: Set $a \leftarrow b$ where $b_q = -a_q$ if f(q) = 0, $b_q = a_q$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

```
Repeat steps 1 and 2
about 0.58 \cdot 2^{0.5n} times.
```

Measure the *n* qubits. With high probability this finds s.

Step 1: Set $a \leftarrow b$ where $b_q = -a_q$ if f(q) = 0, $b_q = a_q$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

```
Repeat steps 1 and 2
about 0.58 \cdot 2^{0.5n} times.
```

Measure the *n* qubits. With high probability this finds s.

Step 1: Set $a \leftarrow b$ where $b_q = -a_q$ if f(q) = 0, $b_q = a_q$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

```
Repeat steps 1 and 2
about 0.58 \cdot 2^{0.5n} times.
```

Measure the *n* qubits. With high probability this finds s.

Graph of $q \mapsto a_q$ for an example with n = 12after $2 \times (\text{Step } 1 + \text{Step } 2)$: 1.0 0.5 0.0 -0.5 -1.0

Step 1: Set $a \leftarrow b$ where $b_q = -a_q$ if f(q) = 0, $b_q = a_q$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

```
Repeat steps 1 and 2
about 0.58 \cdot 2^{0.5n} times.
```


Step 1: Set $a \leftarrow b$ where $b_q = -a_q$ if f(q) = 0, $b_q = a_q$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

```
Repeat steps 1 and 2
about 0.58 \cdot 2^{0.5n} times.
```

Measure the *n* qubits. With high probability this finds s.

Graph of $q \mapsto a_q$ for an example with n = 12after $4 \times (\text{Step } 1 + \text{Step } 2)$: 1.0 0.5 0.0 -0.5 -1.0

Step 1: Set $a \leftarrow b$ where $b_q = -a_q$ if f(q) = 0, $b_q = a_q$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

```
Repeat steps 1 and 2
about 0.58 \cdot 2^{0.5n} times.
```


Step 1: Set $a \leftarrow b$ where $b_q = -a_q$ if f(q) = 0, $b_q = a_q$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

```
Repeat steps 1 and 2
about 0.58 \cdot 2^{0.5n} times.
```


Step 1: Set $a \leftarrow b$ where $b_q = -a_q$ if f(q) = 0, $b_q = a_q$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

```
Repeat steps 1 and 2
about 0.58 \cdot 2^{0.5n} times.
```

Measure the *n* qubits. With high probability this finds s.

Graph of $q \mapsto a_q$ for an example with n = 12after 7 \times (Step 1 + Step 2): 1.0 0.5 0.0 -0.5 -1.0

Step 1: Set $a \leftarrow b$ where $b_q = -a_q$ if f(q) = 0, $b_q = a_q$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

```
Repeat steps 1 and 2
about 0.58 \cdot 2^{0.5n} times.
```


Step 1: Set $a \leftarrow b$ where $b_q = -a_q$ if f(q) = 0, $b_q = a_q$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

```
Repeat steps 1 and 2
about 0.58 \cdot 2^{0.5n} times.
```


Step 1: Set $a \leftarrow b$ where $b_q = -a_q$ if f(q) = 0, $b_q = a_q$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

```
Repeat steps 1 and 2
about 0.58 \cdot 2^{0.5n} times.
```

Measure the *n* qubits. With high probability this finds s.

Graph of $q \mapsto a_q$ for an example with n = 12after $10 \times (\text{Step } 1 + \text{Step } 2)$: 1.0 0.5 0.0 -0.5 -1.0

Step 1: Set $a \leftarrow b$ where $b_q = -a_q$ if f(q) = 0, $b_q = a_q$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

```
Repeat steps 1 and 2
about 0.58 \cdot 2^{0.5n} times.
```


Step 1: Set $a \leftarrow b$ where $b_q = -a_q$ if f(q) = 0, $b_q = a_q$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

```
Repeat steps 1 and 2
about 0.58 \cdot 2^{0.5n} times.
```

Measure the *n* qubits. With high probability this finds s.

Graph of $q \mapsto a_q$ for an example with n = 12after $12 \times (\text{Step } 1 + \text{Step } 2)$: 1.0 0.5 0.0 -0.5 -1.0

Step 1: Set $a \leftarrow b$ where $b_q = -a_q$ if f(q) = 0, $b_q = a_q$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

```
Repeat steps 1 and 2
about 0.58 \cdot 2^{0.5n} times.
```


Step 1: Set $a \leftarrow b$ where $b_q = -a_q$ if f(q) = 0, $b_q = a_q$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

```
Repeat steps 1 and 2
about 0.58 \cdot 2^{0.5n} times.
```


Step 1: Set $a \leftarrow b$ where $b_q = -a_q$ if f(q) = 0, $b_q = a_q$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

```
Repeat steps 1 and 2
about 0.58 \cdot 2^{0.5n} times.
```


Step 1: Set $a \leftarrow b$ where $b_q = -a_q$ if f(q) = 0, $b_q = a_q$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

```
Repeat steps 1 and 2
about 0.58 \cdot 2^{0.5n} times.
```


Step 1: Set $a \leftarrow b$ where $b_q = -a_q$ if f(q) = 0, $b_q = a_q$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

```
Repeat steps 1 and 2
about 0.58 \cdot 2^{0.5n} times.
```


Step 1: Set $a \leftarrow b$ where $b_q = -a_q$ if f(q) = 0, $b_q = a_q$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

```
Repeat steps 1 and 2
about 0.58 \cdot 2^{0.5n} times.
```


Step 1: Set $a \leftarrow b$ where $b_q = -a_q$ if f(q) = 0, $b_q = a_q$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

```
Repeat steps 1 and 2
about 0.58 \cdot 2^{0.5n} times.
```


Step 1: Set $a \leftarrow b$ where $b_q = -a_q$ if f(q) = 0, $b_q = a_q$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

```
Repeat steps 1 and 2
about 0.58 \cdot 2^{0.5n} times.
```

Measure the *n* qubits. With high probability this finds s.

Graph of $q \mapsto a_q$ for an example with n = 12after $20 \times (\text{Step } 1 + \text{Step } 2)$: 1.0 0.5 0.0 -0.5 -1.0

Step 1: Set $a \leftarrow b$ where $b_q = -a_q$ if f(q) = 0, $b_q = a_q$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

```
Repeat steps 1 and 2
about 0.58 \cdot 2^{0.5n} times.
```


Step 1: Set $a \leftarrow b$ where $b_q = -a_q$ if f(q) = 0, $b_q = a_q$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

```
Repeat steps 1 and 2
about 0.58 \cdot 2^{0.5n} times.
```


Step 1: Set $a \leftarrow b$ where $b_q = -a_q$ if f(q) = 0, $b_q = a_q$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

```
Repeat steps 1 and 2
about 0.58 \cdot 2^{0.5n} times.
```

Measure the *n* qubits. With high probability this finds s.

Good moment to stop, measure.

Step 1: Set $a \leftarrow b$ where $b_q = -a_q$ if f(q) = 0, $b_q = a_q$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

```
Repeat steps 1 and 2
about 0.58 \cdot 2^{0.5n} times.
```

Measure the *n* qubits. With high probability this finds s.

0.0

-0.5

-1.0

_
-
4
1 7
1 1
-
-
-
-
-
-
-
-
- -
-
-
- - -
-
- - -
- - - -
-
- - - -
- - - -
- - - -
- - - - -
- - - - -
- - - -
- - - -
- - - - - -
- - - - - -
- - - - - - -
- - - - -
- - - - - - - -
- - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - -
- - - - - - - - -
- - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - -

Step 1: Set $a \leftarrow b$ where $b_q = -a_q$ if f(q) = 0, $b_q = a_q$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

```
Repeat steps 1 and 2
about 0.58 \cdot 2^{0.5n} times.
```


-
-
-
-
-
-
_
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Step 1: Set $a \leftarrow b$ where $b_q = -a_q$ if f(q) = 0, $b_q = a_q$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

```
Repeat steps 1 and 2
about 0.58 \cdot 2^{0.5n} times.
```

Measure the *n* qubits. With high probability this finds s.

Traditional stopping point.

-
-
-
-
-
-
_
-
=
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Step 1: Set $a \leftarrow b$ where $b_q = -a_q$ if f(q) = 0, $b_q = a_q$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

```
Repeat steps 1 and 2
about 0.58 \cdot 2^{0.5n} times.
```


Step 1: Set $a \leftarrow b$ where $b_q = -a_q$ if f(q) = 0, $b_q = a_q$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

```
Repeat steps 1 and 2
about 0.58 \cdot 2^{0.5n} times.
```


Step 1: Set $a \leftarrow b$ where $b_q = -a_q$ if f(q) = 0, $b_q = a_q$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

```
Repeat steps 1 and 2
about 0.58 \cdot 2^{0.5n} times.
```

Measure the *n* qubits. With high probability this finds s.

Graph of $q \mapsto a_q$ for an example with n = 12after $80 \times (\text{Step } 1 + \text{Step } 2)$: 1.0 0.5 0.0 -0.5 -1.0

-
-
-
-
-
-
 - -
 - -
 - -
 - - -
 - - - -
 - - - -

Step 1: Set $a \leftarrow b$ where $b_q = -a_q$ if f(q) = 0, $b_q = a_q$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

```
Repeat steps 1 and 2
about 0.58 \cdot 2^{0.5n} times.
```


Step 1: Set $a \leftarrow b$ where $b_q = -a_q$ if f(q) = 0, $b_q = a_q$ otherwise. This is fast.

Step 2: "Grover diffusion". Negate *a* around its average. This is also fast.

```
Repeat steps 1 and 2
about 0.58 \cdot 2^{0.5n} times.
```


om uniform superposition *n*-bit strings *q*.

Set $a \leftarrow b$ where a_q if f(q) = 0, otherwise.

ast.

"Grover diffusion". a around its average. lso fast.

steps 1 and 2 $58 \cdot 2^{0.5n}$ times.

the *n* qubits.

gh probability this finds s.

Graph of $q \mapsto a_q$ for an example with n = 12after $100 \times (\text{Step } 1 + \text{Step } 2)$:

Very bad stopping point.

n superposition gs q.

where

= 0,

iffusion".

ts average.

d 2

times.

oits.

lity this finds s.

Graph of $q \mapsto a_q$ for an example with n = 12after $100 \times (\text{Step } 1 + \text{Step } 2)$:

Very bad stopping point.

 $q \mapsto a_q$ is complet by a vector of two (with fixed multip) (1) a_q for roots q; (2) a_q for non-roo Step 1 + Step 2

act linearly on this

Easily compute eig

and powers of this

to understand evo

of state of Grover'

 \Rightarrow Probability is \approx

after $\approx (\pi/4)2^{0.5n}$

sition

(1) a_q for roots q;

nds s.

 $q \mapsto a_q$ is completely described by a vector of two numbers (with fixed multiplicities):

- (2) a_q for non-roots q.
- Step 1 +Step 2
- act linearly on this vector.
- Easily compute eigenvalues
- and powers of this linear ma
- to understand evolution
- of state of Grover's algorith \Rightarrow Probability is ≈ 1
- after $\approx (\pi/4)2^{0.5n}$ iterations

Graph of $q \mapsto a_q$ for an example with n = 12after $100 \times (\text{Step } 1 + \text{Step } 2)$:

Very bad stopping point.

 $q \mapsto a_q$ is completely described by a vector of two numbers (with fixed multiplicities): (1) a_q for roots q; (2) a_q for non-roots q. Step 1 +Step 2act linearly on this vector. Easily compute eigenvalues and powers of this linear map to understand evolution of state of Grover's algorithm. \Rightarrow Probability is ≈ 1 after $\approx (\pi/4)2^{0.5n}$ iterations.

```
f q\mapsto a_q
cample with n = 12
0 \times (\text{Step } 1 + \text{Step } 2):
```


d stopping point.

 $q \mapsto a_q$ is completely described by a vector of two numbers (with fixed multiplicities): (1) a_q for roots q; (2) a_q for non-roots q. Step 1 +Step 2act linearly on this vector. Easily compute eigenvalues and powers of this linear map to understand evolution of state of Grover's algorithm. \Rightarrow Probability is ≈ 1 after $\approx (\pi/4)2^{0.5n}$ iterations.

Notes or

Textboo

Proof o

Proof

Mislead that bes best pro

th n = 121 + Step 2):

point.

 $q \mapsto a_q$ is completely described by a vector of two numbers (with fixed multiplicities): (1) a_q for roots q; (2) a_q for non-roots q.

Step 1 +Step 2 act linearly on this vector.

Easily compute eigenvalues and powers of this linear map to understand evolution of state of Grover's algorithm. \Rightarrow Probability is ≈ 1 after $\approx (\pi/4)2^{0.5n}$ iterations.

Mislead students i that best algorithr best *proven* algorit
2):

 $q \mapsto a_q$ is completely described by a vector of two numbers (with fixed multiplicities): (1) a_q for roots q; (2) a_q for non-roots q. Step 1 +Step 2act linearly on this vector. Easily compute eigenvalues and powers of this linear map to understand evolution of state of Grover's algorithm. \Rightarrow Probability is ≈ 1 after $\approx (\pi/4)2^{0.5n}$ iterations.

Notes on provability

Textbook algorithm analysis

Mislead students into thinki that best algorithm =best *proven* algorithm.

 $q \mapsto a_q$ is completely described by a vector of two numbers (with fixed multiplicities): (1) a_q for roots q; (2) a_q for non-roots q.

Step 1 +Step 2act linearly on this vector.

Easily compute eigenvalues and powers of this linear map to understand evolution of state of Grover's algorithm. \Rightarrow Probability is ≈ 1 after $\approx (\pi/4)2^{0.5n}$ iterations.

Mislead students into thinking that best algorithm =best proven algorithm.

- is completely described tor of two numbers ed multiplicities):
- or roots q;
- or non-roots q.
- Step 2 rly on this vector.
- ompute eigenvalues vers of this linear map stand evolution of Grover's algorithm.
- ability is pprox 1 $\pi/4$)2^{0.5n} iterations.

Textbook algorithm analysis:

Mislead students into thinking that best algorithm = best *proven* algorithm.

Reality: cryptana are almo

ely described numbers licities):

ts *q*.

s vector.

genvalues

linear map

lution

s algorithm.

ะ1

iterations.

Notes on provability

Textbook algorithm analysis:

Mislead students into thinking that best algorithm = best *proven* algorithm.

Reality: state-of-t cryptanalytic algor are almost never p

р

n.

Reality: state-of-the-art cryptanalytic algorithms are almost never proven.

Textbook algorithm analysis:

Mislead students into thinking that best algorithm = best *proven* algorithm.

Reality: state-of-the-art cryptanalytic algorithms are almost never proven.

Textbook algorithm analysis:

Mislead students into thinking that best algorithm = best *proven* algorithm.

Reality: state-of-the-art cryptanalytic algorithms are almost never proven.

Ignorant response: "Work harder, find proofs!"

Textbook algorithm analysis:

Mislead students into thinking that best algorithm = best *proven* algorithm.

Reality: state-of-the-art cryptanalytic algorithms are almost never proven.

Ignorant response: "Work harder, find proofs!" Consensus of the experts: proofs probably do not *exist*

Consensus of the experts: proofs probably do not *exist* for most of these algorithms. So demanding proofs is silly.

Textbook algorithm analysis:

Mislead students into thinking that best algorithm =best *proven* algorithm.

Reality: state-of-the-art cryptanalytic algorithms are almost never proven. Ignorant response: "Work harder, find proofs!" Consensus of the experts:

proofs probably do not *exist* for most of these algorithms. So demanding proofs is silly.

Without proofs, how do we analyze correctness+speed? Answer: Real algorithm analysis relies critically on heuristics and computer experiments.

n provability

k algorithm analysis:

students into thinking t algorithm = ven algorithm.

Reality: state-of-the-art cryptanalytic algorithms are almost never proven.

Ignorant response:

"Work harder, find proofs!"

Consensus of the experts: proofs probably do not *exist* for most of these algorithms. So demanding proofs is silly.

Without proofs, how do we analyze correctness+speed? Answer: Real algorithm analysis relies critically on heuristics and computer experiments.

What al Want to quantun to figure against

ty

m analysis:

ess

]

e

nto thinking

n =

thm.

Reality: state-of-the-art cryptanalytic algorithms are almost never proven.

Ignorant response: "Work harder, find proofs!"

Consensus of the experts: proofs probably do not *exist* for most of these algorithms. So demanding proofs is silly.

Without proofs, how do we analyze correctness+speed? Answer: Real algorithm analysis relies critically on heuristics and **computer experiments**.

What about quant Want to analyze, of quantum algorithm to figure out safe against *future* qua

Ignorant response: "Work harder, find proofs!" Consensus of the experts: proofs probably do not *exist* for most of these algorithms. So demanding proofs is silly.

Without proofs, how do we analyze correctness+speed? Answer: Real algorithm analysis relies critically on heuristics and **computer experiments**. What about quantum algori Want to analyze, optimize quantum algorithms *today* to figure out safe crypto against *future* quantum atta

ng

Ignorant response: "Work harder, find proofs!"

Consensus of the experts: proofs probably do not *exist* for most of these algorithms. So demanding proofs is silly.

Without proofs, how do we analyze correctness+speed? Answer: Real algorithm analysis relies critically on heuristics and computer experiments.

What about quantum algorithms? Want to analyze, optimize quantum algorithms *today* to figure out safe crypto against *future* quantum attack.

Ignorant response: "Work harder, find proofs!"

Consensus of the experts: proofs probably do not *exist* for most of these algorithms. So demanding proofs is silly.

Without proofs, how do we analyze correctness+speed? Answer: Real algorithm analysis relies critically on heuristics and computer experiments.

What about quantum algorithms? Want to analyze, optimize quantum algorithms *today* to figure out safe crypto against *future* quantum attack.

1. Simulate *tiny* q. computer?

 \Rightarrow Huge extrapolation errors.

Ignorant response: "Work harder, find proofs!"

Consensus of the experts: proofs probably do not *exist* for most of these algorithms. So demanding proofs is silly.

Without proofs, how do we analyze correctness+speed? Answer: Real algorithm analysis relies critically on heuristics and computer experiments.

What about quantum algorithms? Want to analyze, optimize quantum algorithms *today* to figure out safe crypto against *future* quantum attack.

1. Simulate *tiny* q. computer?

 \Rightarrow Huge extrapolation errors.

2. Faster algorithm-specific simulation? Yes, sometimes.

Ignorant response: "Work harder, find proofs!"

Consensus of the experts: proofs probably do not *exist* for most of these algorithms. So demanding proofs is silly.

Without proofs, how do we analyze correctness+speed? Answer: Real algorithm analysis relies critically on heuristics and computer experiments.

What about quantum algorithms? Want to analyze, optimize quantum algorithms *today* to figure out safe crypto against *future* quantum attack.

1. Simulate *tiny* q. computer?

 \Rightarrow Huge extrapolation errors.

2. Faster algorithm-specific simulation? Yes, sometimes.

3. Fast trapdoor simulation. Simulator (like prover) knows more than the algorithm does. Tung Chou has implemented this, found errors in two publications.