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What about security proofs?

The fundamental goal

of “provable security”:

Prove that the whole system

is as secure as the primitive.

i.e.: Prove that the protocol

is as secure as the primitive.

Prove that the implementation

is as secure as the design.
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2013.01 Green:

State-of-the-art TLS proofs

are obviously unsatisfactory.

e.g. Defense vs. Bleichenbacher

requires “goofy made-up

assumption” for proof.

But that was “the good

news : : : The problem with

TLS is that we are cursed with

implementations.”

e.g. Defense vs. Bleichenbacher

is in wrong order in OpenSSL.

Does this allow timing attacks?
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exploiting analogous timing

variations in Java SSE, Cavium
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The whole concept of a

“public-key cryptosystem”

is a historical accident,

dangerously unauthenticated.

Do we seriously believe that

we’ll make HTTPS secure

by fixing the implementations?

Fix the bad crypto design.

Exercise: How many of these TLS

failures can a designer address?

Renegotiation attack.

Diginotar CA compromise.

BEAST CBC attack.

Trustwave HTTPS interception.

CRIME compression attack.

Lucky 13 padding/timing attack.

RC4 keystream bias.

TLS truncation.

gotofail signature-verification bug.

Triple Handshake.

Heartbleed buffer overread.

POODLE padding-oracle attack.

Winshock buffer overflow.
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The whole concept of a

“public-key cryptosystem”

is a historical accident,

dangerously unauthenticated.

Do we seriously believe that

we’ll make HTTPS secure

by fixing the implementations?

Fix the bad crypto design.

Exercise: How many of these TLS

failures can a designer address?

Renegotiation attack.

Diginotar CA compromise.

BEAST CBC attack.

Trustwave HTTPS interception.

CRIME compression attack.
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RC4 keystream bias.

TLS truncation.
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Heartbleed buffer overread.

POODLE padding-oracle attack.

Winshock buffer overflow.


