
Error-prone cryptographic designs

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

“The poor user is

given enough rope with which

to hang himself—something

a standard should not do.”

—1992 Rivest,

commenting on nonce generation

inside Digital Signature Algorithm

(1991 proposal by NIST,

1992 credited to NSA,

1994 standardized by NIST)

Crypto horror story #1

2010 Bushing–Marcan–Segher–

Sven “failOverflow” demolition

of Sony PS3 security system:

Sony had ignored requirement

to generate new random nonce

for each ECDSA signature.

⇒ Sony’s signatures leaked

Sony’s secret code-signing key.



Error-prone cryptographic designs

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

“The poor user is

given enough rope with which

to hang himself—something

a standard should not do.”

—1992 Rivest,

commenting on nonce generation

inside Digital Signature Algorithm

(1991 proposal by NIST,

1992 credited to NSA,

1994 standardized by NIST)

Crypto horror story #1

2010 Bushing–Marcan–Segher–

Sven “failOverflow” demolition

of Sony PS3 security system:

Sony had ignored requirement

to generate new random nonce

for each ECDSA signature.

⇒ Sony’s signatures leaked

Sony’s secret code-signing key.

Traditional response: Blame Sony.

Blame the crypto implementor.



Error-prone cryptographic designs

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

“The poor user is

given enough rope with which

to hang himself—something

a standard should not do.”

—1992 Rivest,

commenting on nonce generation

inside Digital Signature Algorithm

(1991 proposal by NIST,

1992 credited to NSA,

1994 standardized by NIST)

Crypto horror story #1

2010 Bushing–Marcan–Segher–

Sven “failOverflow” demolition

of Sony PS3 security system:

Sony had ignored requirement

to generate new random nonce

for each ECDSA signature.

⇒ Sony’s signatures leaked

Sony’s secret code-signing key.

Traditional response: Blame Sony.

Blame the crypto implementor.

Rivest’s response: Blame DSA.

Blame the crypto designer.



Error-prone cryptographic designs

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

“The poor user is

given enough rope with which

to hang himself—something

a standard should not do.”

—1992 Rivest,

commenting on nonce generation

inside Digital Signature Algorithm

(1991 proposal by NIST,

1992 credited to NSA,

1994 standardized by NIST)

Crypto horror story #1

2010 Bushing–Marcan–Segher–

Sven “failOverflow” demolition

of Sony PS3 security system:

Sony had ignored requirement

to generate new random nonce

for each ECDSA signature.

⇒ Sony’s signatures leaked

Sony’s secret code-signing key.

Traditional response: Blame Sony.

Blame the crypto implementor.

Rivest’s response: Blame DSA.

Blame the crypto designer.

Change DSA to avoid this pitfall!



Error-prone cryptographic designs

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

“The poor user is

given enough rope with which

to hang himself—something

a standard should not do.”

—1992 Rivest,

commenting on nonce generation

inside Digital Signature Algorithm

(1991 proposal by NIST,

1992 credited to NSA,

1994 standardized by NIST)

Crypto horror story #1

2010 Bushing–Marcan–Segher–

Sven “failOverflow” demolition

of Sony PS3 security system:

Sony had ignored requirement

to generate new random nonce

for each ECDSA signature.

⇒ Sony’s signatures leaked

Sony’s secret code-signing key.

Traditional response: Blame Sony.

Blame the crypto implementor.

Rivest’s response: Blame DSA.

Blame the crypto designer.

Change DSA to avoid this pitfall!

Crypto horror story #2

2005 Osvik–Shamir–Tromer:

65ms to steal Linux AES key

used for hard-disk encryption.

Attack process on same CPU

but without privileges.

Almost all AES implementations

use fast lookup tables.

Kernel’s secret AES key

influences table-load addresses,

influencing CPU cache state,

influencing measurable timings

of the attack process.

65ms to compute influence−1.



Error-prone cryptographic designs

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

“The poor user is

given enough rope with which

to hang himself—something

a standard should not do.”

—1992 Rivest,

commenting on nonce generation

inside Digital Signature Algorithm

(1991 proposal by NIST,

1992 credited to NSA,

1994 standardized by NIST)

Crypto horror story #1

2010 Bushing–Marcan–Segher–

Sven “failOverflow” demolition

of Sony PS3 security system:

Sony had ignored requirement

to generate new random nonce

for each ECDSA signature.

⇒ Sony’s signatures leaked

Sony’s secret code-signing key.

Traditional response: Blame Sony.

Blame the crypto implementor.

Rivest’s response: Blame DSA.

Blame the crypto designer.

Change DSA to avoid this pitfall!

Crypto horror story #2

2005 Osvik–Shamir–Tromer:

65ms to steal Linux AES key

used for hard-disk encryption.

Attack process on same CPU

but without privileges.

Almost all AES implementations

use fast lookup tables.

Kernel’s secret AES key

influences table-load addresses,

influencing CPU cache state,

influencing measurable timings

of the attack process.

65ms to compute influence−1.



Error-prone cryptographic designs

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

“The poor user is

given enough rope with which

to hang himself—something

a standard should not do.”

—1992 Rivest,

commenting on nonce generation

inside Digital Signature Algorithm

(1991 proposal by NIST,

1992 credited to NSA,

1994 standardized by NIST)

Crypto horror story #1

2010 Bushing–Marcan–Segher–

Sven “failOverflow” demolition

of Sony PS3 security system:

Sony had ignored requirement

to generate new random nonce

for each ECDSA signature.

⇒ Sony’s signatures leaked

Sony’s secret code-signing key.

Traditional response: Blame Sony.

Blame the crypto implementor.

Rivest’s response: Blame DSA.

Blame the crypto designer.

Change DSA to avoid this pitfall!

Crypto horror story #2

2005 Osvik–Shamir–Tromer:

65ms to steal Linux AES key

used for hard-disk encryption.

Attack process on same CPU

but without privileges.

Almost all AES implementations

use fast lookup tables.

Kernel’s secret AES key

influences table-load addresses,

influencing CPU cache state,

influencing measurable timings

of the attack process.

65ms to compute influence−1.



Crypto horror story #1

2010 Bushing–Marcan–Segher–

Sven “failOverflow” demolition

of Sony PS3 security system:

Sony had ignored requirement

to generate new random nonce

for each ECDSA signature.

⇒ Sony’s signatures leaked

Sony’s secret code-signing key.

Traditional response: Blame Sony.

Blame the crypto implementor.

Rivest’s response: Blame DSA.

Blame the crypto designer.

Change DSA to avoid this pitfall!

Crypto horror story #2

2005 Osvik–Shamir–Tromer:

65ms to steal Linux AES key

used for hard-disk encryption.

Attack process on same CPU

but without privileges.

Almost all AES implementations

use fast lookup tables.

Kernel’s secret AES key

influences table-load addresses,

influencing CPU cache state,

influencing measurable timings

of the attack process.

65ms to compute influence−1.



Crypto horror story #1

2010 Bushing–Marcan–Segher–

Sven “failOverflow” demolition

of Sony PS3 security system:

Sony had ignored requirement

to generate new random nonce

for each ECDSA signature.

⇒ Sony’s signatures leaked

Sony’s secret code-signing key.

Traditional response: Blame Sony.

Blame the crypto implementor.

Rivest’s response: Blame DSA.

Blame the crypto designer.

Change DSA to avoid this pitfall!

Crypto horror story #2

2005 Osvik–Shamir–Tromer:

65ms to steal Linux AES key

used for hard-disk encryption.

Attack process on same CPU

but without privileges.

Almost all AES implementations

use fast lookup tables.

Kernel’s secret AES key

influences table-load addresses,

influencing CPU cache state,

influencing measurable timings

of the attack process.

65ms to compute influence−1.

2012 Mowery–Keelveedhi–

Shacham: “We posit that any

data-cache timing attack against

x86 processors that does not

somehow subvert the prefetcher,

physical indexing, and massive

memory requirements of modern

programs is doomed to fail.”



Crypto horror story #1

2010 Bushing–Marcan–Segher–

Sven “failOverflow” demolition

of Sony PS3 security system:

Sony had ignored requirement

to generate new random nonce

for each ECDSA signature.

⇒ Sony’s signatures leaked

Sony’s secret code-signing key.

Traditional response: Blame Sony.

Blame the crypto implementor.

Rivest’s response: Blame DSA.

Blame the crypto designer.

Change DSA to avoid this pitfall!

Crypto horror story #2

2005 Osvik–Shamir–Tromer:

65ms to steal Linux AES key

used for hard-disk encryption.

Attack process on same CPU

but without privileges.

Almost all AES implementations

use fast lookup tables.

Kernel’s secret AES key

influences table-load addresses,

influencing CPU cache state,

influencing measurable timings

of the attack process.

65ms to compute influence−1.

2012 Mowery–Keelveedhi–

Shacham: “We posit that any

data-cache timing attack against

x86 processors that does not

somehow subvert the prefetcher,

physical indexing, and massive

memory requirements of modern

programs is doomed to fail.”



Crypto horror story #1

2010 Bushing–Marcan–Segher–

Sven “failOverflow” demolition

of Sony PS3 security system:

Sony had ignored requirement

to generate new random nonce

for each ECDSA signature.

⇒ Sony’s signatures leaked

Sony’s secret code-signing key.

Traditional response: Blame Sony.

Blame the crypto implementor.

Rivest’s response: Blame DSA.

Blame the crypto designer.

Change DSA to avoid this pitfall!

Crypto horror story #2

2005 Osvik–Shamir–Tromer:

65ms to steal Linux AES key

used for hard-disk encryption.

Attack process on same CPU

but without privileges.

Almost all AES implementations

use fast lookup tables.

Kernel’s secret AES key

influences table-load addresses,

influencing CPU cache state,

influencing measurable timings

of the attack process.

65ms to compute influence−1.

2012 Mowery–Keelveedhi–

Shacham: “We posit that any

data-cache timing attack against

x86 processors that does not

somehow subvert the prefetcher,

physical indexing, and massive

memory requirements of modern

programs is doomed to fail.”



Crypto horror story #2

2005 Osvik–Shamir–Tromer:

65ms to steal Linux AES key

used for hard-disk encryption.

Attack process on same CPU

but without privileges.

Almost all AES implementations

use fast lookup tables.

Kernel’s secret AES key

influences table-load addresses,

influencing CPU cache state,

influencing measurable timings

of the attack process.

65ms to compute influence−1.

2012 Mowery–Keelveedhi–

Shacham: “We posit that any

data-cache timing attack against

x86 processors that does not

somehow subvert the prefetcher,

physical indexing, and massive

memory requirements of modern

programs is doomed to fail.”



Crypto horror story #2

2005 Osvik–Shamir–Tromer:

65ms to steal Linux AES key

used for hard-disk encryption.

Attack process on same CPU

but without privileges.

Almost all AES implementations

use fast lookup tables.

Kernel’s secret AES key

influences table-load addresses,

influencing CPU cache state,

influencing measurable timings

of the attack process.

65ms to compute influence−1.

2012 Mowery–Keelveedhi–

Shacham: “We posit that any

data-cache timing attack against

x86 processors that does not

somehow subvert the prefetcher,

physical indexing, and massive

memory requirements of modern

programs is doomed to fail.”

2014 Irazoqui–Inci–Eisenbarth–

Sunar “Wait a minute! A fast,

Cross-VM attack on AES”

recovers “the AES keys

of OpenSSL 1.0.1 running inside

the victim VM” in 60 seconds

despite VMware virtualization.



Crypto horror story #2

2005 Osvik–Shamir–Tromer:

65ms to steal Linux AES key

used for hard-disk encryption.

Attack process on same CPU

but without privileges.

Almost all AES implementations

use fast lookup tables.

Kernel’s secret AES key

influences table-load addresses,

influencing CPU cache state,

influencing measurable timings

of the attack process.

65ms to compute influence−1.

2012 Mowery–Keelveedhi–

Shacham: “We posit that any

data-cache timing attack against

x86 processors that does not

somehow subvert the prefetcher,

physical indexing, and massive

memory requirements of modern

programs is doomed to fail.”

2014 Irazoqui–Inci–Eisenbarth–

Sunar “Wait a minute! A fast,

Cross-VM attack on AES”

recovers “the AES keys

of OpenSSL 1.0.1 running inside

the victim VM” in 60 seconds

despite VMware virtualization.

After many, many, many papers

on implementations and attacks,

today we still have an ecosystem

plagued with AES vulnerabilities.

Warning: more papers 6= security.



Crypto horror story #2

2005 Osvik–Shamir–Tromer:

65ms to steal Linux AES key

used for hard-disk encryption.

Attack process on same CPU

but without privileges.

Almost all AES implementations

use fast lookup tables.

Kernel’s secret AES key

influences table-load addresses,

influencing CPU cache state,

influencing measurable timings

of the attack process.

65ms to compute influence−1.

2012 Mowery–Keelveedhi–

Shacham: “We posit that any

data-cache timing attack against

x86 processors that does not

somehow subvert the prefetcher,

physical indexing, and massive

memory requirements of modern

programs is doomed to fail.”

2014 Irazoqui–Inci–Eisenbarth–

Sunar “Wait a minute! A fast,

Cross-VM attack on AES”

recovers “the AES keys

of OpenSSL 1.0.1 running inside

the victim VM” in 60 seconds

despite VMware virtualization.

After many, many, many papers

on implementations and attacks,

today we still have an ecosystem

plagued with AES vulnerabilities.

Warning: more papers 6= security.



Crypto horror story #2

2005 Osvik–Shamir–Tromer:

65ms to steal Linux AES key

used for hard-disk encryption.

Attack process on same CPU

but without privileges.

Almost all AES implementations

use fast lookup tables.

Kernel’s secret AES key

influences table-load addresses,

influencing CPU cache state,

influencing measurable timings

of the attack process.

65ms to compute influence−1.

2012 Mowery–Keelveedhi–

Shacham: “We posit that any

data-cache timing attack against

x86 processors that does not

somehow subvert the prefetcher,

physical indexing, and massive

memory requirements of modern

programs is doomed to fail.”

2014 Irazoqui–Inci–Eisenbarth–

Sunar “Wait a minute! A fast,

Cross-VM attack on AES”

recovers “the AES keys

of OpenSSL 1.0.1 running inside

the victim VM” in 60 seconds

despite VMware virtualization.

After many, many, many papers

on implementations and attacks,

today we still have an ecosystem

plagued with AES vulnerabilities.

Warning: more papers 6= security.



2012 Mowery–Keelveedhi–

Shacham: “We posit that any

data-cache timing attack against

x86 processors that does not

somehow subvert the prefetcher,

physical indexing, and massive

memory requirements of modern

programs is doomed to fail.”

2014 Irazoqui–Inci–Eisenbarth–

Sunar “Wait a minute! A fast,

Cross-VM attack on AES”

recovers “the AES keys

of OpenSSL 1.0.1 running inside

the victim VM” in 60 seconds

despite VMware virtualization.

After many, many, many papers

on implementations and attacks,

today we still have an ecosystem

plagued with AES vulnerabilities.

Warning: more papers 6= security.



2012 Mowery–Keelveedhi–

Shacham: “We posit that any

data-cache timing attack against

x86 processors that does not

somehow subvert the prefetcher,

physical indexing, and massive

memory requirements of modern

programs is doomed to fail.”

2014 Irazoqui–Inci–Eisenbarth–

Sunar “Wait a minute! A fast,

Cross-VM attack on AES”

recovers “the AES keys

of OpenSSL 1.0.1 running inside

the victim VM” in 60 seconds

despite VMware virtualization.

After many, many, many papers

on implementations and attacks,

today we still have an ecosystem

plagued with AES vulnerabilities.

Warning: more papers 6= security.

AES has a serious conflict

between security, simplicity, speed.

It’s tough to achieve security

while insisting on the AES design

—i.e., blaming the implementor.



2012 Mowery–Keelveedhi–

Shacham: “We posit that any

data-cache timing attack against

x86 processors that does not

somehow subvert the prefetcher,

physical indexing, and massive

memory requirements of modern

programs is doomed to fail.”

2014 Irazoqui–Inci–Eisenbarth–

Sunar “Wait a minute! A fast,

Cross-VM attack on AES”

recovers “the AES keys

of OpenSSL 1.0.1 running inside

the victim VM” in 60 seconds

despite VMware virtualization.

After many, many, many papers

on implementations and attacks,

today we still have an ecosystem

plagued with AES vulnerabilities.

Warning: more papers 6= security.

AES has a serious conflict

between security, simplicity, speed.

It’s tough to achieve security

while insisting on the AES design

—i.e., blaming the implementor.

Allowing the design to vary

makes security much easier.

Next-generation ciphers are

naturally constant-time and fast.



2012 Mowery–Keelveedhi–

Shacham: “We posit that any

data-cache timing attack against

x86 processors that does not

somehow subvert the prefetcher,

physical indexing, and massive

memory requirements of modern

programs is doomed to fail.”

2014 Irazoqui–Inci–Eisenbarth–

Sunar “Wait a minute! A fast,

Cross-VM attack on AES”

recovers “the AES keys

of OpenSSL 1.0.1 running inside

the victim VM” in 60 seconds

despite VMware virtualization.

After many, many, many papers

on implementations and attacks,

today we still have an ecosystem

plagued with AES vulnerabilities.

Warning: more papers 6= security.

AES has a serious conflict

between security, simplicity, speed.

It’s tough to achieve security

while insisting on the AES design

—i.e., blaming the implementor.

Allowing the design to vary

makes security much easier.

Next-generation ciphers are

naturally constant-time and fast.

The big picture

Crypto
designs

more complexity
less review

more attacks
less security

��
Crypto

implementations



2012 Mowery–Keelveedhi–

Shacham: “We posit that any

data-cache timing attack against

x86 processors that does not

somehow subvert the prefetcher,

physical indexing, and massive

memory requirements of modern

programs is doomed to fail.”

2014 Irazoqui–Inci–Eisenbarth–

Sunar “Wait a minute! A fast,

Cross-VM attack on AES”

recovers “the AES keys

of OpenSSL 1.0.1 running inside

the victim VM” in 60 seconds

despite VMware virtualization.

After many, many, many papers

on implementations and attacks,

today we still have an ecosystem

plagued with AES vulnerabilities.

Warning: more papers 6= security.

AES has a serious conflict

between security, simplicity, speed.

It’s tough to achieve security

while insisting on the AES design

—i.e., blaming the implementor.

Allowing the design to vary

makes security much easier.

Next-generation ciphers are

naturally constant-time and fast.

The big picture

Crypto
designs

more complexity
less review

more attacks
less security

��
Crypto

implementations



2012 Mowery–Keelveedhi–

Shacham: “We posit that any

data-cache timing attack against

x86 processors that does not

somehow subvert the prefetcher,

physical indexing, and massive

memory requirements of modern

programs is doomed to fail.”

2014 Irazoqui–Inci–Eisenbarth–

Sunar “Wait a minute! A fast,

Cross-VM attack on AES”

recovers “the AES keys

of OpenSSL 1.0.1 running inside

the victim VM” in 60 seconds

despite VMware virtualization.

After many, many, many papers

on implementations and attacks,

today we still have an ecosystem

plagued with AES vulnerabilities.

Warning: more papers 6= security.

AES has a serious conflict

between security, simplicity, speed.

It’s tough to achieve security

while insisting on the AES design

—i.e., blaming the implementor.

Allowing the design to vary

makes security much easier.

Next-generation ciphers are

naturally constant-time and fast.

The big picture

Crypto
designs

more complexity
less review

more attacks
less security

��
Crypto

implementations



After many, many, many papers

on implementations and attacks,

today we still have an ecosystem

plagued with AES vulnerabilities.

Warning: more papers 6= security.

AES has a serious conflict

between security, simplicity, speed.

It’s tough to achieve security

while insisting on the AES design

—i.e., blaming the implementor.

Allowing the design to vary

makes security much easier.

Next-generation ciphers are

naturally constant-time and fast.

The big picture

Crypto
designs

more complexity
less review

more attacks
less security

��
Crypto

implementations



After many, many, many papers

on implementations and attacks,

today we still have an ecosystem

plagued with AES vulnerabilities.

Warning: more papers 6= security.

AES has a serious conflict

between security, simplicity, speed.

It’s tough to achieve security

while insisting on the AES design

—i.e., blaming the implementor.

Allowing the design to vary

makes security much easier.

Next-generation ciphers are

naturally constant-time and fast.

The big picture

Primitive
designs

more complexity
less review

more attacks
less security

�� 


Primitive

implementations

,,

Protocol
designs

more complexity
less review

more attacks
less security

��
Protocol

implementations



After many, many, many papers

on implementations and attacks,

today we still have an ecosystem

plagued with AES vulnerabilities.

Warning: more papers 6= security.

AES has a serious conflict

between security, simplicity, speed.

It’s tough to achieve security

while insisting on the AES design

—i.e., blaming the implementor.

Allowing the design to vary

makes security much easier.

Next-generation ciphers are

naturally constant-time and fast.

The big picture

Primitive
designs

more complexity
less review

more attacks
less security

�� 


Primitive

implementations

,,

Protocol
designs

more complexity
less review

more attacks
less security

��
Protocol

implementations

Public review is naturally biased

towards the simplest targets,

ignoring complications of

protocols and implementations.

There’s much more public review

of, e.g., discrete logarithms

than of ECDSA signatures.



After many, many, many papers

on implementations and attacks,

today we still have an ecosystem

plagued with AES vulnerabilities.

Warning: more papers 6= security.

AES has a serious conflict

between security, simplicity, speed.

It’s tough to achieve security

while insisting on the AES design

—i.e., blaming the implementor.

Allowing the design to vary

makes security much easier.

Next-generation ciphers are

naturally constant-time and fast.

The big picture

Primitive
designs

more complexity
less review

more attacks
less security

�� 


Primitive

implementations

,,

Protocol
designs

more complexity
less review

more attacks
less security

��
Protocol

implementations

Public review is naturally biased

towards the simplest targets,

ignoring complications of

protocols and implementations.

There’s much more public review

of, e.g., discrete logarithms

than of ECDSA signatures.



After many, many, many papers

on implementations and attacks,

today we still have an ecosystem

plagued with AES vulnerabilities.

Warning: more papers 6= security.

AES has a serious conflict

between security, simplicity, speed.

It’s tough to achieve security

while insisting on the AES design

—i.e., blaming the implementor.

Allowing the design to vary

makes security much easier.

Next-generation ciphers are

naturally constant-time and fast.

The big picture

Primitive
designs

more complexity
less review

more attacks
less security

�� 


Primitive

implementations

,,

Protocol
designs

more complexity
less review

more attacks
less security

��
Protocol

implementations

Public review is naturally biased

towards the simplest targets,

ignoring complications of

protocols and implementations.

There’s much more public review

of, e.g., discrete logarithms

than of ECDSA signatures.



The big picture

Primitive
designs

more complexity
less review

more attacks
less security

�� 


Primitive

implementations

,,

Protocol
designs

more complexity
less review

more attacks
less security

��
Protocol

implementations

Public review is naturally biased

towards the simplest targets,

ignoring complications of

protocols and implementations.

There’s much more public review

of, e.g., discrete logarithms

than of ECDSA signatures.



The big picture

Primitive
designs

more complexity
less review

more attacks
less security

�� 


Primitive

implementations

,,

Protocol
designs

more complexity
less review

more attacks
less security

��
Protocol

implementations

Public review is naturally biased

towards the simplest targets,

ignoring complications of

protocols and implementations.

There’s much more public review

of, e.g., discrete logarithms

than of ECDSA signatures.

There’s much more public review

of the ECDSA design

than of ECDSA implementations.



The big picture

Primitive
designs

more complexity
less review

more attacks
less security

�� 


Primitive

implementations

,,

Protocol
designs

more complexity
less review

more attacks
less security

��
Protocol

implementations

Public review is naturally biased

towards the simplest targets,

ignoring complications of

protocols and implementations.

There’s much more public review

of, e.g., discrete logarithms

than of ECDSA signatures.

There’s much more public review

of the ECDSA design

than of ECDSA implementations.

There’s much more public review

of ECDSA implementations

than of ECDSA applications.



The big picture

Primitive
designs

more complexity
less review

more attacks
less security

�� 


Primitive

implementations

,,

Protocol
designs

more complexity
less review

more attacks
less security

��
Protocol

implementations

Public review is naturally biased

towards the simplest targets,

ignoring complications of

protocols and implementations.

There’s much more public review

of, e.g., discrete logarithms

than of ECDSA signatures.

There’s much more public review

of the ECDSA design

than of ECDSA implementations.

There’s much more public review

of ECDSA implementations

than of ECDSA applications.

What about security proofs?

The fundamental goal

of “provable security”:

Prove that the whole system

is as secure as the primitive.

i.e.: Prove that the protocol

is as secure as the primitive.

Prove that the implementation

is as secure as the design.

Then it’s safe for reviewers

to focus on the primitive design.



The big picture

Primitive
designs

more complexity
less review

more attacks
less security

�� 


Primitive

implementations

,,

Protocol
designs

more complexity
less review

more attacks
less security

��
Protocol

implementations

Public review is naturally biased

towards the simplest targets,

ignoring complications of

protocols and implementations.

There’s much more public review

of, e.g., discrete logarithms

than of ECDSA signatures.

There’s much more public review

of the ECDSA design

than of ECDSA implementations.

There’s much more public review

of ECDSA implementations

than of ECDSA applications.

What about security proofs?

The fundamental goal

of “provable security”:

Prove that the whole system

is as secure as the primitive.

i.e.: Prove that the protocol

is as secure as the primitive.

Prove that the implementation

is as secure as the design.

Then it’s safe for reviewers

to focus on the primitive design.



The big picture

Primitive
designs

more complexity
less review

more attacks
less security

�� 


Primitive

implementations

,,

Protocol
designs

more complexity
less review

more attacks
less security

��
Protocol

implementations

Public review is naturally biased

towards the simplest targets,

ignoring complications of

protocols and implementations.

There’s much more public review

of, e.g., discrete logarithms

than of ECDSA signatures.

There’s much more public review

of the ECDSA design

than of ECDSA implementations.

There’s much more public review

of ECDSA implementations

than of ECDSA applications.

What about security proofs?

The fundamental goal

of “provable security”:

Prove that the whole system

is as secure as the primitive.

i.e.: Prove that the protocol

is as secure as the primitive.

Prove that the implementation

is as secure as the design.

Then it’s safe for reviewers

to focus on the primitive design.



Public review is naturally biased

towards the simplest targets,

ignoring complications of

protocols and implementations.

There’s much more public review

of, e.g., discrete logarithms

than of ECDSA signatures.

There’s much more public review

of the ECDSA design

than of ECDSA implementations.

There’s much more public review

of ECDSA implementations

than of ECDSA applications.

What about security proofs?

The fundamental goal

of “provable security”:

Prove that the whole system

is as secure as the primitive.

i.e.: Prove that the protocol

is as secure as the primitive.

Prove that the implementation

is as secure as the design.

Then it’s safe for reviewers

to focus on the primitive design.



Public review is naturally biased

towards the simplest targets,

ignoring complications of

protocols and implementations.

There’s much more public review

of, e.g., discrete logarithms

than of ECDSA signatures.

There’s much more public review

of the ECDSA design

than of ECDSA implementations.

There’s much more public review

of ECDSA implementations

than of ECDSA applications.

What about security proofs?

The fundamental goal

of “provable security”:

Prove that the whole system

is as secure as the primitive.

i.e.: Prove that the protocol

is as secure as the primitive.

Prove that the implementation

is as secure as the design.

Then it’s safe for reviewers

to focus on the primitive design.

Maybe will succeed someday, but

needs to overcome huge problems.



Public review is naturally biased

towards the simplest targets,

ignoring complications of

protocols and implementations.

There’s much more public review

of, e.g., discrete logarithms

than of ECDSA signatures.

There’s much more public review

of the ECDSA design

than of ECDSA implementations.

There’s much more public review

of ECDSA implementations

than of ECDSA applications.

What about security proofs?

The fundamental goal

of “provable security”:

Prove that the whole system

is as secure as the primitive.

i.e.: Prove that the protocol

is as secure as the primitive.

Prove that the implementation

is as secure as the design.

Then it’s safe for reviewers

to focus on the primitive design.

Maybe will succeed someday, but

needs to overcome huge problems.

Problem 1: “Proofs” have errors.

Proofs are increasingly complex,

rarely reviewed, rarely automated.



Public review is naturally biased

towards the simplest targets,

ignoring complications of

protocols and implementations.

There’s much more public review

of, e.g., discrete logarithms

than of ECDSA signatures.

There’s much more public review

of the ECDSA design

than of ECDSA implementations.

There’s much more public review

of ECDSA implementations

than of ECDSA applications.

What about security proofs?

The fundamental goal

of “provable security”:

Prove that the whole system

is as secure as the primitive.

i.e.: Prove that the protocol

is as secure as the primitive.

Prove that the implementation

is as secure as the design.

Then it’s safe for reviewers

to focus on the primitive design.

Maybe will succeed someday, but

needs to overcome huge problems.

Problem 1: “Proofs” have errors.

Proofs are increasingly complex,

rarely reviewed, rarely automated.



Public review is naturally biased

towards the simplest targets,

ignoring complications of

protocols and implementations.

There’s much more public review

of, e.g., discrete logarithms

than of ECDSA signatures.

There’s much more public review

of the ECDSA design

than of ECDSA implementations.

There’s much more public review

of ECDSA implementations

than of ECDSA applications.

What about security proofs?

The fundamental goal

of “provable security”:

Prove that the whole system

is as secure as the primitive.

i.e.: Prove that the protocol

is as secure as the primitive.

Prove that the implementation

is as secure as the design.

Then it’s safe for reviewers

to focus on the primitive design.

Maybe will succeed someday, but

needs to overcome huge problems.

Problem 1: “Proofs” have errors.

Proofs are increasingly complex,

rarely reviewed, rarely automated.



What about security proofs?

The fundamental goal

of “provable security”:

Prove that the whole system

is as secure as the primitive.

i.e.: Prove that the protocol

is as secure as the primitive.

Prove that the implementation

is as secure as the design.

Then it’s safe for reviewers

to focus on the primitive design.

Maybe will succeed someday, but

needs to overcome huge problems.

Problem 1: “Proofs” have errors.

Proofs are increasingly complex,

rarely reviewed, rarely automated.



What about security proofs?

The fundamental goal

of “provable security”:

Prove that the whole system

is as secure as the primitive.

i.e.: Prove that the protocol

is as secure as the primitive.

Prove that the implementation

is as secure as the design.

Then it’s safe for reviewers

to focus on the primitive design.

Maybe will succeed someday, but

needs to overcome huge problems.

Problem 1: “Proofs” have errors.

Proofs are increasingly complex,

rarely reviewed, rarely automated.

Problem 2: Most proofs are of

security bounds that aren’t tight:

e.g. forking-lemma “security”

is pure deception for typical sizes.



What about security proofs?

The fundamental goal

of “provable security”:

Prove that the whole system

is as secure as the primitive.

i.e.: Prove that the protocol

is as secure as the primitive.

Prove that the implementation

is as secure as the design.

Then it’s safe for reviewers

to focus on the primitive design.

Maybe will succeed someday, but

needs to overcome huge problems.

Problem 1: “Proofs” have errors.

Proofs are increasingly complex,

rarely reviewed, rarely automated.

Problem 2: Most proofs are of

security bounds that aren’t tight:

e.g. forking-lemma “security”

is pure deception for typical sizes.

Problem 3: “Security” definitions

prioritize simplicity over accuracy.

e.g. is MAC-pad-encrypt secure?



What about security proofs?

The fundamental goal

of “provable security”:

Prove that the whole system

is as secure as the primitive.

i.e.: Prove that the protocol

is as secure as the primitive.

Prove that the implementation

is as secure as the design.

Then it’s safe for reviewers

to focus on the primitive design.

Maybe will succeed someday, but

needs to overcome huge problems.

Problem 1: “Proofs” have errors.

Proofs are increasingly complex,

rarely reviewed, rarely automated.

Problem 2: Most proofs are of

security bounds that aren’t tight:

e.g. forking-lemma “security”

is pure deception for typical sizes.

Problem 3: “Security” definitions

prioritize simplicity over accuracy.

e.g. is MAC-pad-encrypt secure?

Problem 4: Maybe the only way

to achieve the fundamental goal

is to switch to weak primitives.



What about security proofs?

The fundamental goal

of “provable security”:

Prove that the whole system

is as secure as the primitive.

i.e.: Prove that the protocol

is as secure as the primitive.

Prove that the implementation

is as secure as the design.

Then it’s safe for reviewers

to focus on the primitive design.

Maybe will succeed someday, but

needs to overcome huge problems.

Problem 1: “Proofs” have errors.

Proofs are increasingly complex,

rarely reviewed, rarely automated.

Problem 2: Most proofs are of

security bounds that aren’t tight:

e.g. forking-lemma “security”

is pure deception for typical sizes.

Problem 3: “Security” definitions

prioritize simplicity over accuracy.

e.g. is MAC-pad-encrypt secure?

Problem 4: Maybe the only way

to achieve the fundamental goal

is to switch to weak primitives.

Some advice to crypto designers

Creating or evaluating a design?

Think about the

implementations.

What will the implementors do?

What errors are likely

to appear in implementations?

Can you compensate for this?



What about security proofs?

The fundamental goal

of “provable security”:

Prove that the whole system

is as secure as the primitive.

i.e.: Prove that the protocol

is as secure as the primitive.

Prove that the implementation

is as secure as the design.

Then it’s safe for reviewers

to focus on the primitive design.

Maybe will succeed someday, but

needs to overcome huge problems.

Problem 1: “Proofs” have errors.

Proofs are increasingly complex,

rarely reviewed, rarely automated.

Problem 2: Most proofs are of

security bounds that aren’t tight:

e.g. forking-lemma “security”

is pure deception for typical sizes.

Problem 3: “Security” definitions

prioritize simplicity over accuracy.

e.g. is MAC-pad-encrypt secure?

Problem 4: Maybe the only way

to achieve the fundamental goal

is to switch to weak primitives.

Some advice to crypto designers

Creating or evaluating a design?

Think about the

implementations.

What will the implementors do?

What errors are likely

to appear in implementations?

Can you compensate for this?



What about security proofs?

The fundamental goal

of “provable security”:

Prove that the whole system

is as secure as the primitive.

i.e.: Prove that the protocol

is as secure as the primitive.

Prove that the implementation

is as secure as the design.

Then it’s safe for reviewers

to focus on the primitive design.

Maybe will succeed someday, but

needs to overcome huge problems.

Problem 1: “Proofs” have errors.

Proofs are increasingly complex,

rarely reviewed, rarely automated.

Problem 2: Most proofs are of

security bounds that aren’t tight:

e.g. forking-lemma “security”

is pure deception for typical sizes.

Problem 3: “Security” definitions

prioritize simplicity over accuracy.

e.g. is MAC-pad-encrypt secure?

Problem 4: Maybe the only way

to achieve the fundamental goal

is to switch to weak primitives.

Some advice to crypto designers

Creating or evaluating a design?

Think about the

implementations.

What will the implementors do?

What errors are likely

to appear in implementations?

Can you compensate for this?



Problem 1: “Proofs” have errors.

Proofs are increasingly complex,

rarely reviewed, rarely automated.

Problem 2: Most proofs are of

security bounds that aren’t tight:

e.g. forking-lemma “security”

is pure deception for typical sizes.

Problem 3: “Security” definitions

prioritize simplicity over accuracy.

e.g. is MAC-pad-encrypt secure?

Problem 4: Maybe the only way

to achieve the fundamental goal

is to switch to weak primitives.

Some advice to crypto designers

Creating or evaluating a design?

Think about the

implementations.

What will the implementors do?

What errors are likely

to appear in implementations?

Can you compensate for this?



Problem 1: “Proofs” have errors.

Proofs are increasingly complex,

rarely reviewed, rarely automated.

Problem 2: Most proofs are of

security bounds that aren’t tight:

e.g. forking-lemma “security”

is pure deception for typical sizes.

Problem 3: “Security” definitions

prioritize simplicity over accuracy.

e.g. is MAC-pad-encrypt secure?

Problem 4: Maybe the only way

to achieve the fundamental goal

is to switch to weak primitives.

Some advice to crypto designers

Creating or evaluating a design?

Think about the

implementations.

What will the implementors do?

What errors are likely

to appear in implementations?

Can you compensate for this?

Is the design a primitive?

Think about the protocols.

Is the design a protocol?

Think about the

higher-level protocols.

Will the system be secure?



Problem 1: “Proofs” have errors.

Proofs are increasingly complex,

rarely reviewed, rarely automated.

Problem 2: Most proofs are of

security bounds that aren’t tight:

e.g. forking-lemma “security”

is pure deception for typical sizes.

Problem 3: “Security” definitions

prioritize simplicity over accuracy.

e.g. is MAC-pad-encrypt secure?

Problem 4: Maybe the only way

to achieve the fundamental goal

is to switch to weak primitives.

Some advice to crypto designers

Creating or evaluating a design?

Think about the

implementations.

What will the implementors do?

What errors are likely

to appear in implementations?

Can you compensate for this?

Is the design a primitive?

Think about the protocols.

Is the design a protocol?

Think about the

higher-level protocols.

Will the system be secure?

Crypto horror story #3

HTTPS.



Problem 1: “Proofs” have errors.

Proofs are increasingly complex,

rarely reviewed, rarely automated.

Problem 2: Most proofs are of

security bounds that aren’t tight:

e.g. forking-lemma “security”

is pure deception for typical sizes.

Problem 3: “Security” definitions

prioritize simplicity over accuracy.

e.g. is MAC-pad-encrypt secure?

Problem 4: Maybe the only way

to achieve the fundamental goal

is to switch to weak primitives.

Some advice to crypto designers

Creating or evaluating a design?

Think about the

implementations.

What will the implementors do?

What errors are likely

to appear in implementations?

Can you compensate for this?

Is the design a primitive?

Think about the protocols.

Is the design a protocol?

Think about the

higher-level protocols.

Will the system be secure?

Crypto horror story #3

HTTPS.



Problem 1: “Proofs” have errors.

Proofs are increasingly complex,

rarely reviewed, rarely automated.

Problem 2: Most proofs are of

security bounds that aren’t tight:

e.g. forking-lemma “security”

is pure deception for typical sizes.

Problem 3: “Security” definitions

prioritize simplicity over accuracy.

e.g. is MAC-pad-encrypt secure?

Problem 4: Maybe the only way

to achieve the fundamental goal

is to switch to weak primitives.

Some advice to crypto designers

Creating or evaluating a design?

Think about the

implementations.

What will the implementors do?

What errors are likely

to appear in implementations?

Can you compensate for this?

Is the design a primitive?

Think about the protocols.

Is the design a protocol?

Think about the

higher-level protocols.

Will the system be secure?

Crypto horror story #3

HTTPS.



Some advice to crypto designers

Creating or evaluating a design?

Think about the

implementations.

What will the implementors do?

What errors are likely

to appear in implementations?

Can you compensate for this?

Is the design a primitive?

Think about the protocols.

Is the design a protocol?

Think about the

higher-level protocols.

Will the system be secure?

Crypto horror story #3

HTTPS.



Some advice to crypto designers

Creating or evaluating a design?

Think about the

implementations.

What will the implementors do?

What errors are likely

to appear in implementations?

Can you compensate for this?

Is the design a primitive?

Think about the protocols.

Is the design a protocol?

Think about the

higher-level protocols.

Will the system be secure?

Crypto horror story #3

HTTPS.

letsencrypt.org is a huge

improvement in HTTPS usability;

will obviously be widely used.

But is HTTPS actually secure?



Some advice to crypto designers

Creating or evaluating a design?

Think about the

implementations.

What will the implementors do?

What errors are likely

to appear in implementations?

Can you compensate for this?

Is the design a primitive?

Think about the protocols.

Is the design a protocol?

Think about the

higher-level protocols.

Will the system be secure?

Crypto horror story #3

HTTPS.

letsencrypt.org is a huge

improvement in HTTPS usability;

will obviously be widely used.

But is HTTPS actually secure?

“It’s not so bad

against passive eavesdroppers!”

—The eavesdroppers will start

forging (more) packets.



Some advice to crypto designers

Creating or evaluating a design?

Think about the

implementations.

What will the implementors do?

What errors are likely

to appear in implementations?

Can you compensate for this?

Is the design a primitive?

Think about the protocols.

Is the design a protocol?

Think about the

higher-level protocols.

Will the system be secure?

Crypto horror story #3

HTTPS.

letsencrypt.org is a huge

improvement in HTTPS usability;

will obviously be widely used.

But is HTTPS actually secure?

“It’s not so bad

against passive eavesdroppers!”

—The eavesdroppers will start

forging (more) packets.

“Then we’ll know they’re there!”

—Yes, we knew that already.

What we want is security.



Some advice to crypto designers

Creating or evaluating a design?

Think about the

implementations.

What will the implementors do?

What errors are likely

to appear in implementations?

Can you compensate for this?

Is the design a primitive?

Think about the protocols.

Is the design a protocol?

Think about the

higher-level protocols.

Will the system be secure?

Crypto horror story #3

HTTPS.

letsencrypt.org is a huge

improvement in HTTPS usability;

will obviously be widely used.

But is HTTPS actually secure?

“It’s not so bad

against passive eavesdroppers!”

—The eavesdroppers will start

forging (more) packets.

“Then we’ll know they’re there!”

—Yes, we knew that already.

What we want is security.

2013.01 Green:

State-of-the-art TLS proofs

are obviously unsatisfactory.

e.g. Defense vs. Bleichenbacher

requires “goofy made-up

assumption” for proof.



Some advice to crypto designers

Creating or evaluating a design?

Think about the

implementations.

What will the implementors do?

What errors are likely

to appear in implementations?

Can you compensate for this?

Is the design a primitive?

Think about the protocols.

Is the design a protocol?

Think about the

higher-level protocols.

Will the system be secure?

Crypto horror story #3

HTTPS.

letsencrypt.org is a huge

improvement in HTTPS usability;

will obviously be widely used.

But is HTTPS actually secure?

“It’s not so bad

against passive eavesdroppers!”

—The eavesdroppers will start

forging (more) packets.

“Then we’ll know they’re there!”

—Yes, we knew that already.

What we want is security.

2013.01 Green:

State-of-the-art TLS proofs

are obviously unsatisfactory.

e.g. Defense vs. Bleichenbacher

requires “goofy made-up

assumption” for proof.



Some advice to crypto designers

Creating or evaluating a design?

Think about the

implementations.

What will the implementors do?

What errors are likely

to appear in implementations?

Can you compensate for this?

Is the design a primitive?

Think about the protocols.

Is the design a protocol?

Think about the

higher-level protocols.

Will the system be secure?

Crypto horror story #3

HTTPS.

letsencrypt.org is a huge

improvement in HTTPS usability;

will obviously be widely used.

But is HTTPS actually secure?

“It’s not so bad

against passive eavesdroppers!”

—The eavesdroppers will start

forging (more) packets.

“Then we’ll know they’re there!”

—Yes, we knew that already.

What we want is security.

2013.01 Green:

State-of-the-art TLS proofs

are obviously unsatisfactory.

e.g. Defense vs. Bleichenbacher

requires “goofy made-up

assumption” for proof.



Crypto horror story #3

HTTPS.

letsencrypt.org is a huge

improvement in HTTPS usability;

will obviously be widely used.

But is HTTPS actually secure?

“It’s not so bad

against passive eavesdroppers!”

—The eavesdroppers will start

forging (more) packets.

“Then we’ll know they’re there!”

—Yes, we knew that already.

What we want is security.

2013.01 Green:

State-of-the-art TLS proofs

are obviously unsatisfactory.

e.g. Defense vs. Bleichenbacher

requires “goofy made-up

assumption” for proof.



Crypto horror story #3

HTTPS.

letsencrypt.org is a huge

improvement in HTTPS usability;

will obviously be widely used.

But is HTTPS actually secure?

“It’s not so bad

against passive eavesdroppers!”

—The eavesdroppers will start

forging (more) packets.

“Then we’ll know they’re there!”

—Yes, we knew that already.

What we want is security.

2013.01 Green:

State-of-the-art TLS proofs

are obviously unsatisfactory.

e.g. Defense vs. Bleichenbacher

requires “goofy made-up

assumption” for proof.

But that was “the good

news : : : The problem with

TLS is that we are cursed with

implementations.”

e.g. Defense vs. Bleichenbacher

is in wrong order in OpenSSL.

Does this allow timing attacks?



Crypto horror story #3

HTTPS.

letsencrypt.org is a huge

improvement in HTTPS usability;

will obviously be widely used.

But is HTTPS actually secure?

“It’s not so bad

against passive eavesdroppers!”

—The eavesdroppers will start

forging (more) packets.

“Then we’ll know they’re there!”

—Yes, we knew that already.

What we want is security.

2013.01 Green:

State-of-the-art TLS proofs

are obviously unsatisfactory.

e.g. Defense vs. Bleichenbacher

requires “goofy made-up

assumption” for proof.

But that was “the good

news : : : The problem with

TLS is that we are cursed with

implementations.”

e.g. Defense vs. Bleichenbacher

is in wrong order in OpenSSL.

Does this allow timing attacks?

2014.08 Meyer–Somorovsky–

Weiss–Schwenk–Schinzel–Tews:

Successful Bleichenbacher attacks,

exploiting analogous timing

variations in Java SSE, Cavium

NITROX SSL accelerator chip.



Crypto horror story #3

HTTPS.

letsencrypt.org is a huge

improvement in HTTPS usability;

will obviously be widely used.

But is HTTPS actually secure?

“It’s not so bad

against passive eavesdroppers!”

—The eavesdroppers will start

forging (more) packets.

“Then we’ll know they’re there!”

—Yes, we knew that already.

What we want is security.

2013.01 Green:

State-of-the-art TLS proofs

are obviously unsatisfactory.

e.g. Defense vs. Bleichenbacher

requires “goofy made-up

assumption” for proof.

But that was “the good

news : : : The problem with

TLS is that we are cursed with

implementations.”

e.g. Defense vs. Bleichenbacher

is in wrong order in OpenSSL.

Does this allow timing attacks?

2014.08 Meyer–Somorovsky–

Weiss–Schwenk–Schinzel–Tews:

Successful Bleichenbacher attacks,

exploiting analogous timing

variations in Java SSE, Cavium

NITROX SSL accelerator chip.



Crypto horror story #3

HTTPS.

letsencrypt.org is a huge

improvement in HTTPS usability;

will obviously be widely used.

But is HTTPS actually secure?

“It’s not so bad

against passive eavesdroppers!”

—The eavesdroppers will start

forging (more) packets.

“Then we’ll know they’re there!”

—Yes, we knew that already.

What we want is security.

2013.01 Green:

State-of-the-art TLS proofs

are obviously unsatisfactory.

e.g. Defense vs. Bleichenbacher

requires “goofy made-up

assumption” for proof.

But that was “the good

news : : : The problem with

TLS is that we are cursed with

implementations.”

e.g. Defense vs. Bleichenbacher

is in wrong order in OpenSSL.

Does this allow timing attacks?

2014.08 Meyer–Somorovsky–

Weiss–Schwenk–Schinzel–Tews:

Successful Bleichenbacher attacks,

exploiting analogous timing

variations in Java SSE, Cavium

NITROX SSL accelerator chip.



2013.01 Green:

State-of-the-art TLS proofs

are obviously unsatisfactory.

e.g. Defense vs. Bleichenbacher

requires “goofy made-up

assumption” for proof.

But that was “the good

news : : : The problem with

TLS is that we are cursed with

implementations.”

e.g. Defense vs. Bleichenbacher

is in wrong order in OpenSSL.

Does this allow timing attacks?

2014.08 Meyer–Somorovsky–

Weiss–Schwenk–Schinzel–Tews:

Successful Bleichenbacher attacks,

exploiting analogous timing

variations in Java SSE, Cavium

NITROX SSL accelerator chip.



2013.01 Green:

State-of-the-art TLS proofs

are obviously unsatisfactory.

e.g. Defense vs. Bleichenbacher

requires “goofy made-up

assumption” for proof.

But that was “the good

news : : : The problem with

TLS is that we are cursed with

implementations.”

e.g. Defense vs. Bleichenbacher

is in wrong order in OpenSSL.

Does this allow timing attacks?

2014.08 Meyer–Somorovsky–

Weiss–Schwenk–Schinzel–Tews:

Successful Bleichenbacher attacks,

exploiting analogous timing

variations in Java SSE, Cavium

NITROX SSL accelerator chip.

The whole concept of a

“public-key cryptosystem”

is a historical accident,

dangerously unauthenticated.



2013.01 Green:

State-of-the-art TLS proofs

are obviously unsatisfactory.

e.g. Defense vs. Bleichenbacher

requires “goofy made-up

assumption” for proof.

But that was “the good

news : : : The problem with

TLS is that we are cursed with

implementations.”

e.g. Defense vs. Bleichenbacher

is in wrong order in OpenSSL.

Does this allow timing attacks?

2014.08 Meyer–Somorovsky–

Weiss–Schwenk–Schinzel–Tews:

Successful Bleichenbacher attacks,

exploiting analogous timing

variations in Java SSE, Cavium

NITROX SSL accelerator chip.

The whole concept of a

“public-key cryptosystem”

is a historical accident,

dangerously unauthenticated.

Do we seriously believe that

we’ll make HTTPS secure

by fixing the implementations?

Fix the bad crypto design.



2013.01 Green:

State-of-the-art TLS proofs

are obviously unsatisfactory.

e.g. Defense vs. Bleichenbacher

requires “goofy made-up

assumption” for proof.

But that was “the good

news : : : The problem with

TLS is that we are cursed with

implementations.”

e.g. Defense vs. Bleichenbacher

is in wrong order in OpenSSL.

Does this allow timing attacks?

2014.08 Meyer–Somorovsky–

Weiss–Schwenk–Schinzel–Tews:

Successful Bleichenbacher attacks,

exploiting analogous timing

variations in Java SSE, Cavium

NITROX SSL accelerator chip.

The whole concept of a

“public-key cryptosystem”

is a historical accident,

dangerously unauthenticated.

Do we seriously believe that

we’ll make HTTPS secure

by fixing the implementations?

Fix the bad crypto design.

Exercise: How many of these TLS

failures can a designer address?

Renegotiation attack.

Diginotar CA compromise.

BEAST CBC attack.

Trustwave HTTPS interception.

CRIME compression attack.

Lucky 13 padding/timing attack.

RC4 keystream bias.

TLS truncation.

gotofail signature-verification bug.

Triple Handshake.

Heartbleed buffer overread.

POODLE padding-oracle attack.

Winshock buffer overflow.



2013.01 Green:

State-of-the-art TLS proofs

are obviously unsatisfactory.

e.g. Defense vs. Bleichenbacher

requires “goofy made-up

assumption” for proof.

But that was “the good

news : : : The problem with

TLS is that we are cursed with

implementations.”

e.g. Defense vs. Bleichenbacher

is in wrong order in OpenSSL.

Does this allow timing attacks?

2014.08 Meyer–Somorovsky–

Weiss–Schwenk–Schinzel–Tews:

Successful Bleichenbacher attacks,

exploiting analogous timing

variations in Java SSE, Cavium

NITROX SSL accelerator chip.

The whole concept of a

“public-key cryptosystem”

is a historical accident,

dangerously unauthenticated.

Do we seriously believe that

we’ll make HTTPS secure

by fixing the implementations?

Fix the bad crypto design.

Exercise: How many of these TLS

failures can a designer address?

Renegotiation attack.

Diginotar CA compromise.

BEAST CBC attack.

Trustwave HTTPS interception.

CRIME compression attack.

Lucky 13 padding/timing attack.

RC4 keystream bias.

TLS truncation.

gotofail signature-verification bug.

Triple Handshake.

Heartbleed buffer overread.

POODLE padding-oracle attack.

Winshock buffer overflow.



2013.01 Green:

State-of-the-art TLS proofs

are obviously unsatisfactory.

e.g. Defense vs. Bleichenbacher

requires “goofy made-up

assumption” for proof.

But that was “the good

news : : : The problem with

TLS is that we are cursed with

implementations.”

e.g. Defense vs. Bleichenbacher

is in wrong order in OpenSSL.

Does this allow timing attacks?

2014.08 Meyer–Somorovsky–

Weiss–Schwenk–Schinzel–Tews:

Successful Bleichenbacher attacks,

exploiting analogous timing

variations in Java SSE, Cavium

NITROX SSL accelerator chip.

The whole concept of a

“public-key cryptosystem”

is a historical accident,

dangerously unauthenticated.

Do we seriously believe that

we’ll make HTTPS secure

by fixing the implementations?

Fix the bad crypto design.

Exercise: How many of these TLS

failures can a designer address?

Renegotiation attack.

Diginotar CA compromise.

BEAST CBC attack.

Trustwave HTTPS interception.

CRIME compression attack.

Lucky 13 padding/timing attack.

RC4 keystream bias.

TLS truncation.

gotofail signature-verification bug.

Triple Handshake.

Heartbleed buffer overread.

POODLE padding-oracle attack.

Winshock buffer overflow.



2014.08 Meyer–Somorovsky–

Weiss–Schwenk–Schinzel–Tews:

Successful Bleichenbacher attacks,

exploiting analogous timing

variations in Java SSE, Cavium

NITROX SSL accelerator chip.

The whole concept of a

“public-key cryptosystem”

is a historical accident,

dangerously unauthenticated.

Do we seriously believe that

we’ll make HTTPS secure

by fixing the implementations?

Fix the bad crypto design.

Exercise: How many of these TLS

failures can a designer address?

Renegotiation attack.

Diginotar CA compromise.

BEAST CBC attack.

Trustwave HTTPS interception.

CRIME compression attack.

Lucky 13 padding/timing attack.

RC4 keystream bias.

TLS truncation.

gotofail signature-verification bug.

Triple Handshake.

Heartbleed buffer overread.

POODLE padding-oracle attack.

Winshock buffer overflow.


