Error-prone cryptographic designs

Daniel J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

Crypto horror story #1

“The poor user iIs

given enough rope with which

to hang himself—something

a standard should not do.”
—1992 Rivest,

commenting on nonce generation
inside Digital Signature Algorithm
(1991 proposal by NIST,

1992 credited to NSA,

1994 standardized by NIST)

2010 Bushing—Marcan—Segher—

Sven “failOverflow” demolition
of Sony PS3 security system:
Sony had ignored requirement
to generate new random nonce
for each ECDSA signature.

= Sony'’s signatures leaked
Sony's secret code-signing key.

Error-prone cryptographic designs

Daniel J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

Crypto horror story #1

“The poor user iIs

given enough rope with which

to hang himself—something

a standard should not do.”
—1992 Rivest,

commenting on nonce generation
inside Digital Signature Algorithm
(1991 proposal by NIST,

1992 credited to NSA,

1994 standardized by NIST)

2010 Bushing—Marcan—Segher—

Sven “failOverflow” demolition
of Sony PS3 security system:
Sony had ignored requirement
to generate new random nonce
for each ECDSA signature.

= Sony'’s signatures leaked
Sony's secret code-signing key.

Traditional response: Blame Sony.
Blame the crypto implementor.

Error-prone cryptographic designs

Daniel J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

“The poor user iIs

given enough rope with which

to hang himself—something

a standard should not do.”
—1992 Rivest,

commenting on nonce generation
inside Digital Signature Algorithm
(1991 proposal by NIST,

1992 credited to NSA,

1994 standardized by NIST)

Crypto horror story #1

2010 Bushing—Marcan—Segher—

Sven “failOverflow” demolition
of Sony PS3 security system:
Sony had ignored requirement
to generate new random nonce
for each ECDSA signature.

= Sony'’s signatures leaked
Sony's secret code-signing key.

Traditional response: Blame Sony.
Blame the crypto implementor.

Rivest's response: Blame DSA.
Blame the crypto designer.

Error-prone cryptographic designs

Daniel J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

Crypto horror story #1

“The poor user iIs

given enough rope with which

to hang himself—something

a standard should not do.”
—1992 Rivest,

commenting on nonce generation
inside Digital Signature Algorithm
(1991 proposal by NIST,

1992 credited to NSA,

1994 standardized by NIST)

2010 Bushing—Marcan—Segher—

Sven “failOverflow” demolition
of Sony PS3 security system:
Sony had ignored requirement
to generate new random nonce
for each ECDSA signature.

= Sony'’s signatures leaked
Sony's secret code-signing key.

Traditional response: Blame Sony.
Blame the crypto implementor.

Rivest's response: Blame DSA.
Blame the crypto designer.
Change DSA to avoid this pitfalll

one cryptographic designs

. Bernstein
ty of lllinois at Chicago &
he Universiteit Eindhoven

Crypto horror story #1

or user Is

ough rope with which
himself—something

rd should not do.”

Rivest,

ting on nonce generation
igital Signature Algorithm
oposal by NIST,

dited to NSA,

ndardized by NIST)

2010 Bushing—Marcan—Segher—

Sven “failOverflow” demolition
of Sony PS3 security system:
Sony had ignored requirement
to generate new random nonce
for each ECDSA signature.

= Sony'’s signatures leaked
Sony's secret code-signing key.

Traditional response: Blame Sony.

Blame the crypto implementor.

Rivest’'s response: Blame DSA.
Blame the crypto designer.
Change DSA to avoid this pitfall!

Crypto |

2005 Os
6bms to
used for
Attack g
but with

Almost :
use fast
Kernel's
influence

influenci
influenci
of the af
65ms to

graphic designs

0
is at Chicago &
siteit Eindhoven

 with which
something
not do."

nce generation
ature Algorithm
NIST,

ISA,

by NIST)

Crypto horror story #1

2010 Bushing—Marcan—Segher—

Sven “failOverflow” demolition
of Sony PS3 security system:
Sony had ignored requirement
to generate new random nonce
for each ECDSA signature.

— Sony'’s signatures leaked
Sony's secret code-signing key.

Traditional response: Blame Sony.
Blame the crypto implementor.

Rivest's response: Blame DSA.
Blame the crypto designer.
Change DSA to avoid this pitfalll

Crypto horror stor

2005 Osvik—=Sham
6bms to steal Lint
used for hard-disk
Attack process on
but without privile

Almost all AES in
use fast lookup ta
Kernel's secret AE
influences table-lo

influencing CPU c
influencing measu
of the attack proc
6bms to compute

2SIgNS

g0 &
hoven

Crypto horror story #1

ation
yrithm

2010 Bushing—Marcan—Segher—

Sven “failOverflow” demolition
of Sony PS3 security system:
Sony had ignored requirement
to generate new random nonce
for each ECDSA signature.

= Sony'’s signatures leaked
Sony's secret code-signing key.

Traditional response: Blame Sony.

Blame the crypto implementor.

Rivest’'s response: Blame DSA.
Blame the crypto designer.
Change DSA to avoid this pitfall!

Crypto horror story #2

2005 Osvik—Shamir—Tromer
65ms to steal Linux AES ke
used for hard-disk encryptiol

Attack process on same CPI

but without privileges.

Almost all AES implementat

use fast lookup tables.

Kernel's secret AES key

inf

inf

uences table-load address
uencing CPU cache state

influencing measurable timir

of the attack process.

65ms to compute influence™

Crypto horror story #1

2010 Bushing—Marcan—Segher—

Sven “failOverflow” demolition
of Sony PS3 security system:
Sony had ignored requirement
to generate new random nonce
for each ECDSA signature.

= Sony'’s signatures leaked
Sony's secret code-signing key.

Traditional response: Blame Sony.
Blame the crypto implementor.

Rivest's response: Blame DSA.
Blame the crypto designer.
Change DSA to avoid this pitfalll

Crypto horror story #2

2005 Osvik—Shamir—Tromer:

65ms to steal Linux AES key
used for hard-disk encryption.
Attack process on same CPU
but without privileges.

Almost all AES implementations
use fast lookup tables.

Kernel's secret AES key
influences table-load addresses,

influencing CPU cache state,
influencing measurable timings
of the attack process.

65ms to compute influence™!.

1orror story #1

shing—Marcan—Segher—

1lOverflow” demolition
PS3 security system:

d ignored requirement
ate new random nonce
ECDSA signature.

's signatures leaked
ecret code-signing key.

1al response: Blame Sony.

he crypto implementor.

response: Blame DSA.
he crypto designer.
DSA to avoid this pitfalll

Crypto horror story #2

2005 Osvik—Shamir—Tromer:
65ms to steal Linux AES key
used for hard-disk encryption.

Attack process on same CPU

but without privileges.

Almost all AES implementations

use fast lookup tables.

Kernel's secret AES key

inf

inf

uences table-load addresses,
uencing CPU cache state,

influencing measurable timings

of the attack process.

65ms to compute influence

—1

2012 Mc
Shachan
data-cac
X836 proc
somehov
physical
memory

program

y #1

rcan—Segher—
" demolition
1ty system:
requirement
andom nonce
ignature.

es leaked
-signing key.

se: Blame Sony.
) implementor.

Blame DSA.

) designer.
soid this pitfall!

Crypto horror story #2

2005 Osvik—Shamir—Tromer:

65ms to steal Linux AES key
used for hard-disk encryption.
Attack process on same CPU
but without privileges.

Almost all AES implementations
use fast lookup tables.

Kernel's secret AES key
influences table-load addresses,

influencing CPU cache state,
influencing measurable timings
of the attack process.

65ms to compute influence™!.

2012 Mowery—Kee
Shacham: “We pc
data-cache timing
x86 processors tha
somehow subvert -
physical indexing,
memory requireme
programs is doom:

er—
lon

Nt
1Cce

sSony.

antor.

SA.

itfalll

Crypto horror story #2

2005 Osvik—Shamir—Tromer:
65ms to steal Linux AES key
used for hard-disk encryption.

Attack process on same CPU

but without privileges.

Almost all AES implementations

use fast lookup tables.

Kernel's secret AES key

inf

inf

uences table-load addresses,
uencing CPU cache state,

influencing measurable timings

of the attack process.

65ms to compute influence

—1

2012 Mowery—Keelveedhi—
Shacham: “We posit that a

data-cache timing attack ag
x86 processors that does no
somehow subvert the prefetc
physical indexing, and massi
memory requirements of mo
programs is doomed to fail.’

Crypto horror story #2

2005 Osvik—Shamir—Tromer:

65ms to steal Linux AES key
used for hard-disk encryption.
Attack process on same CPU
but without privileges.

Almost all AES implementations
use fast lookup tables.

Kernel's secret AES key
influences table-load addresses,

influencing CPU cache state,
influencing measurable timings
of the attack process.

65ms to compute influence™!.

2012 Mowery—Keelveedhi—

Shacham: “We posit t

nat any

data-cache timing attack against

x86 processors that does not

somehow subvert the prefetcher,

physical indexing, and

massive

memory requirements of modern

programs Is doomed to

fail.”

Crypto horror story #2

2005 Osvik—Shamir—Tromer:

65ms to steal Linux AES key
used for hard-disk encryption.
Attack process on same CPU
but without privileges.

Almost all AES implementations
use fast lookup tables.

Kernel's secret AES key
influences table-load addresses,

influencing CPU cache state,
influencing measurable timings
of the attack process.

65ms to compute influence™!.

2012 Mowery—Keelveedhi—
Shacham: “We posit that any

data-cache timing attack against
x86 processors that does not
somehow subvert the prefetcher,
physical indexing, and massive
memory requirements of modern
programs is doomed to fail.”

2014 lrazoqui—Inci—Eisenbarth—
Sunar “Wait a minute! A fast,
Cross-VM attack on AES”
recovers "‘the AES keys

of OpenSSL 1.0.1 running inside
the victim VM" in 60 seconds
despite VMware virtualization.

1orror story #2

vik—=Shamir—Tromer:

steal Linux AES key
hard-disk encryption.
yrocess on same CPU
out privileges.

all AES implementations
lookup tables.

secret AES key

s table-load addresses,
ng CPU cache state,

ng measurable timings
'tack process.

compute influence™!.

2012 Mowery—Keelveedhi—
Shacham: “We posit that any

data-cache timing attack against
x86 processors that does not
somehow subvert the prefetcher,
physical indexing, and massive
memory requirements of modern
programs is doomed to fail.”

2014 lrazoqui—Inci—Eisenbarth—
Sunar “Wait a minute! A fast,
Cross-VM attack on AES”
recovers “the AES keys

of OpenSSL 1.0.1 running inside
the victim VM" in 60 seconds

despite VMware virtualization.

After m:
on Imple
today wi
plagued
Warning

y #2

r—Tromer:

Ix AES key
encryption.
same CPU

ges.

iplementations
bles.

S key

ad addresses,
ache state,
-able timings
ess.

influence™!.

2012 Mowery—Keelveedhi—
Shacham: “We posit that any

data-cache timing attack against
x86 processors that does not
somehow subvert the prefetcher,
physical indexing, and massive
memory requirements of modern
programs is doomed to fail.”

2014 lrazoqui—Inci—Eisenbarth—
Sunar “Wait a minute! A fast,
Cross-VM attack on AES”
recovers ‘the AES keys

of OpenSSL 1.0.1 running inside
the victim VM" in 60 seconds
despite VMware virtualization.

After many, many,
on Implementatior
today we still have

plagued with AES
Warning: more pa

IONS

€S,

\gS

2012 Mowery—Keelveedhi—
Shacham: “We posit that any

data-cache timing attack against
x86 processors that does not
somehow subvert the prefetcher,
physical indexing, and massive
memory requirements of modern
programs is doomed to fail.”

2014 lrazoqui—Inci—Eisenbarth—
Sunar “Wait a minute! A fast,
Cross-VM attack on AES”
recovers “the AES keys

of OpenSSL 1.0.1 running inside
the victim VM" in 60 seconds

despite VMware virtualization.

After many, many, many paj
on implementations and att:
today we still have an ecosy
plagued with AES vulnerabil
Warning: more papers # se

2012 Mowery—Keelveedhi—
Shacham: “We posit that any

data-cache timing attack against
x86 processors that does not
somehow subvert the prefetcher,
physical indexing, and massive
memory requirements of modern
programs is doomed to fail.”

2014 lrazoqui—Inci—Eisenbarth—
Sunar “Wait a minute! A fast,
Cross-VM attack on AES”
recovers "‘the AES keys

of OpenSSL 1.0.1 running inside
the victim VM" in 60 seconds
despite VMware virtualization.

After many, many, many papers
on implementations and attacks,
today we still have an ecosystem
plagued with AES vulnerabilities.
Warning: more papers # security.

2012 Mowery—Keelveedhi—
Shacham: “We posit that any

data-cache timing attack against
x86 processors that does not
somehow subvert the prefetcher,
physical indexing, and massive
memory requirements of modern
programs is doomed to fail.”

2014 lrazoqui—Inci—Eisenbarth—
Sunar “Wait a minute! A fast,
Cross-VM attack on AES”
recovers "‘the AES keys

of OpenSSL 1.0.1 running inside
the victim VM" in 60 seconds
despite VMware virtualization.

After many, many, many papers
on implementations and attacks,
today we still have an ecosystem
plagued with AES vulnerabilities.
Warning: more papers # security.

AES has a serious conflict
between security, simplicity, speed.
It's tough to achieve security

while insisting on the AES design
—I.e., blaming the implementor.

2012 Mowery—Keelveedhi—
Shacham: “We posit that any

data-cache timing attack against
x86 processors that does not
somehow subvert the prefetcher,
physical indexing, and massive
memory requirements of modern
programs is doomed to fail.”

2014 lrazoqui—Inci—Eisenbarth—
Sunar “Wait a minute! A fast,
Cross-VM attack on AES”
recovers "‘the AES keys

of OpenSSL 1.0.1 running inside
the victim VM" in 60 seconds
despite VMware virtualization.

After many, many, many papers
on implementations and attacks,
today we still have an ecosystem
plagued with AES vulnerabilities.
Warning: more papers # security.

AES has a serious conflict
between security, simplicity, speed.
It's tough to achieve security

while insisting on the AES design
—I.e., blaming the implementor.

Allowing the design to vary
makes security much easier.

Next-generation ciphers are
naturally constant-time and fast.

wery—Keelveedhi—

1. “We posit that any
he timing attack against
essors that does not

v subvert the prefetcher,
indexing, and massive
requirements of modern
s iIs doomed to fail.”

zoqui—Inci—Eisenbarth—
Nait a minute! A fast,
VI attack on AES”

“the AES keys
SSL 1.0.1 running inside

m VM in 60 seconds
vV Mware virtualization.

After many, many, many papers
on implementations and attacks,
today we still have an ecosystem
plagued with AES vulnerabilities.
Warning: more papers # security.

AES has a serious conflict

between security, simplicity, speed.

It's tough to achieve security
while insisting on the AES design
—I.e., blaming the implementor.

Allowing the design to vary
makes security much easier.

Next-generation ciphers are
naturally constant-time and fast.

The big

Cr
des

Cr

implem:

|lveedhi—

sit that any
attack against
t does not

the prefetcher,
and massive
nts of modern
=d to fail.”

—Eisenbarth—

jute! A fast,

on AES”

 keys

running inside
60 seconds

rtualization.

After many, many, many papers
on implementations and attacks,
today we still have an ecosystem
plagued with AES vulnerabilities.
Warning: more papers # security.

AES has a serious conflict

between security, simplicity, speed.

It's tough to achieve security
while insisting on the AES design
—I.e., blaming the implementor.

Allowing the design to vary
makes security much easier.

Next-generation ciphers are
naturally constant-time and fast.

The big picture

Crypto
designs

more Col
less re
more a
less se

Y
Crypto

Implementations

ny
ainst

“her,

dern

th—
St,

1side
ds

n.

After many, many, many papers
on implementations and attacks,
today we still have an ecosystem
plagued with AES vulnerabilities.
Warning: more papers # security.

AES has a serious conflict

between security, simplicity, speed.

It's tough to achieve security
while insisting on the AES design
—I.e., blaming the implementor.

Allowing the design to vary
makes security much easier.

Next-generation ciphers are
naturally constant-time and fast.

The big picture

Crypto
designs

more complexity
less review
more attacks
less security

Y
Crypto

implementations

After many, many, many papers
on implementations and attacks,
today we still have an ecosystem
plagued with AES vulnerabilities.
Warning: more papers # security.

AES has a serious conflict

between security, simplicity, speed.

It's tough to achieve security
while insisting on the AES design
—I.e., blaming the implementor.

Allowing the design to vary
makes security much easier.

Next-generation ciphers are
naturally constant-time and fast.

The big picture

Crypto
designs

more complexity
less review
more attacks
less security

Y
Crypto

Implementations

After many, many, many papers
on implementations and attacks,
today we still have an ecosystem
plagued with AES vulnerabilities.
Warning: more papers # security.

AES has a serious conflict

between security, simplicity, speed.

It's tough to achieve security
while insisting on the AES design
—I.e., blaming the implementor.

Allowing the design to vary
makes security much easier.

Next-generation ciphers are
naturally constant-time and fast.

The big picture

Primitive
designs

more complexity
less review
more attacks
less security

Y Y
Primitive Protocol
iImplementations designs

more complexity
less review

more attacks

less security

Y
Protocol

implementations

ANy, many, many papers
mentations and attacks,
e still have an ecosystem
with AES vulnerabilities.
: more papers % security.

. a serious conflict

security, simplicity, speed.

h to achieve security
isting on the AES design
laming the implementor.

- the design to vary
acurity much easier.

1eration ciphers are
/ constant-time and fast.

The big picture

Primitive
designs

more complexity
less review
more attacks
less security

Y v
Primitive Protocol
implementations designs

more complexity
less review

more attacks

less security

Y
Protocol

implementations

Public re
towards
ignoring
protocol

There's
of, e.g.,
than of

many papers
1s and attacks,
> an ecosystem
vulnerabilities.
pers # security.

conflict

simplicity, speed.

ve security
the AES design
> Implementor.

n to vary
ch easler.

phers are
-time and fast.

The big picture

Primitive
designs

Y
Primitive
iImplementations

more complexity
less review
more attacks
less security

more complexity
less review

more attacks

less security

4

Protocol
designs

Y
Protocol

implementations

Public review Is n:
towards the simple
ignoring complicat
protocols and imp

There's much mor

of, e.g., discrete Ic
than of ECDSA si,

Ders
1cks,
stem
Ities.
curity.

speed.

esign
ntor.

fast.

The big picture

Primitive
designs

more complexity
less review
more attacks
less security

Y v
Primitive Protocol
iImplementations designs

more complexity
less review

more attacks

less security

Y
Protocol

implementations

Public review is naturally bi:
towards the simplest targets
ignoring complications of

protocols and implementatic

There's much more public re
of, e.g., discrete logarithms
than of ECDSA signatures.

The big picture

Primitive
designs
more complexity

less review

more attacks
less security

Y 4
Primitive Protocol
iImplementations designs
more complexity
less review
more attacks
less security
Y
Protocol

implementations

Public review is naturally biased
towards the simplest targets,
ignoring complications of
protocols and implementations.

There's much more public review
of, e.g., discrete logarithms
than of ECDSA signatures.

The big picture Public review is naturally biased

towards the simplest targets,

Primitive | | R
designs ignoring complications of
more complexity protocols and implementations.
less review There's much more public review
more attacks | |
less security of, e.g., discrete logarithms
v Y than of ECDSA signatures.
Primitive Protocol
implementations designs There’s much more public review
more complexity of the ECDSA design
less review than of ECDSA implementations.

more attacks
less security

Y
Protocol

implementations

The big picture

Primitive
designs

less review

less security

Y
Primitive
iImplementations

implementations

more complexity

more attacks

more complexity
less review

more attacks

less security

4

Protocol
designs

Y
Protocol

Public review is naturally biased
towards the simplest targets,
ignoring complications of
protocols and implementations.

There's much more public review

of, e.g., discrete logarithms
than of ECDSA signatures.

There's much more public review

of the ECDSA design
than of ECDSA implementations.

There's much more public review
of ECDSA implementations
than of ECDSA applications.

picture

nitive
IZNS

more complexity
less review
more attacks
less security

Y v
nitive Protocol
entations designs

more complexity
less review

more attacks

less security

Y
Protocol

implementations

Public review is naturally biased
towards the simplest targets,
ignoring complications of
protocols and implementations.

There's much more public review
of, e.g., discrete logarithms
than of ECDSA signatures.

There's much more public review
of the ECDSA design

than of ECDSA implementations.

There's much more public review
of ECDSA implementations
than of ECDSA applications.

What ak

The fun
of “prov
Prove tf
IS as sec

l.e.: Pro
IS as sec
Prove tf
IS as secC
Then it
to focus

nplexity
View
ttacks
curity

4

Protocol
designs

mplexity
review
attacks
ecurity

Y
q Protocol

implementations

Public review is naturally biased
towards the simplest targets,
ignoring complications of
protocols and implementations.

There's much more public review
of, e.g., discrete logarithms
than of ECDSA signatures.

There's much more public review
of the ECDSA design

than of ECDSA implementations.

There's much more public review
of ECDSA implementations
than of ECDSA applications.

What about secur

The fundamental
of “provable secur
Prove that the wh
IS as secure as the

l.e.: Prove that th
IS as secure as the
Prove that the im
IS as secure as the
Then it's safe for
to focus on the pr

oCo|
gns

/

oCol
ntations

Public review is naturally biased
towards the simplest targets,
ignoring complications of
protocols and implementations.

There's much more public review
of, e.g., discrete logarithms
than of ECDSA signatures.

There's much more public review
of the ECDSA design

than of ECDSA implementations.

There's much more public review
of ECDSA implementations
than of ECDSA applications.

What about security proofs:

The fundamental goal
of “provable security”:
Prove that the whole systen
IS as secure as the primitive.

l.e.. Prove that the protoco
IS as secure as the primitive.
Prove that the implementat
Is as secure as the design.
Then it's safe for reviewers
to focus on the primitive de:

Public review is naturally biased
towards the simplest targets,
ignoring complications of
protocols and implementations.

There's much more public review
of, e.g., discrete logarithms
than of ECDSA signatures.

There's much more public review
of the ECDSA design

than of ECDSA implementations.

There's much more public review
of ECDSA implementations
than of ECDSA applications.

What about security proofs?

The fundamental goal
of “provable security’:
Prove that the whole system
IS as secure as the primitive.

I.e.: Prove that the protocol

IS as secure as the primitive.
Prove that the implementation
IS as secure as the design.
Then it's safe for reviewers

to focus on the primitive design.

Public review is naturally biased
towards the simplest targets,
ignoring complications of
protocols and implementations.

There's much more public review
of, e.g., discrete logarithms
than of ECDSA signatures.

There's much more public review
of the ECDSA design

than of ECDSA implementations.

There's much more public review
of ECDSA implementations
than of ECDSA applications.

What about security proofs?

The fundamental goal
of “provable security’:
Prove that the whole system
IS as secure as the primitive.

I.e.: Prove that the protocol

IS as secure as the primitive.
Prove that the implementation
IS as secure as the design.

Then it's safe for reviewers

to focus on the primitive design.

Maybe will succeed someday, but
needs to overcome huge problems.

eview Is naturally biased
the simplest targets,
complications of

s and implementations.

much more public review
discrete logarithms
ECDSA signatures.

much more public review
CDSA design

ECDSA implementations.

much more public review
A implementations
ECDSA applications.

What about security proofs?

The fundamental goal
of “provable security”:
Prove that the whole system
IS as secure as the primitive.

l.e.: Prove that the protocol

IS as secure as the primitive.
Prove that the implementation
IS as secure as the design.

Then it's safe for reviewers

to focus on the primitive design.

Maybe will succeed someday, but

needs to overcome huge problems.

Problem
Proofs a
rarely re

yturally biased
St targets,
ions of
lementations.

e public review
garithms
onatures.

e public review

1gn

1plementations.

e public review
entations
plications.

What about security proofs?

The fundamental goal
of “provable security’:
Prove that the whole system
IS as secure as the primitive.

I.e.: Prove that the protocol

IS as secure as the primitive.
Prove that the implementation
IS as secure as the design.

Then it's safe for reviewers

to focus on the primitive design.

Maybe will succeed someday, but

needs to overcome huge problems.

Problem 1: "Proo
Proofs are increas
rarely reviewed, ra

1sed

ns.

vView

View

tions.

vView

What about security proofs?

The fundamental goal
of “provable security”:
Prove that the whole system
IS as secure as the primitive.

l.e.: Prove that the protocol

IS as secure as the primitive.
Prove that the implementation
IS as secure as the design.

Then it's safe for reviewers

to focus on the primitive design.

Maybe will succeed someday, but

needs to overcome huge problems.

Problem 1: “Proofs” have e
Proofs are increasingly com;
rarely reviewed, rarely auton

What about security proofs?

The fundamental goal
of “provable security’:
Prove that the whole system
IS as secure as the primitive.

I.e.: Prove that the protocol

IS as secure as the primitive.
Prove that the implementation
IS as secure as the design.

Then it's safe for reviewers

to focus on the primitive design.

Maybe will succeed someday, but

needs to overcome huge problems.

Problem 1: “Proofs’ have errors.
Proofs are increasingly complex,
rarely reviewed, rarely automated.

What about security proofs?

The fundamental goal
of “provable security’:
Prove that the whole system
IS as secure as the primitive.

I.e.: Prove that the protocol

IS as secure as the primitive.
Prove that the implementation
IS as secure as the design.

Then it's safe for reviewers

to focus on the primitive design.

Maybe will succeed someday, but

needs to overcome huge problems.

Problem 1: “Proofs’ have errors.
Proofs are increasingly complex,
rarely reviewed, rarely automated.

Problem 2: Most proofs are of
security bounds that aren't tight:
e.g. forking-lemma “security”

is pure deception for typical sizes.

What about security proofs?

The fundamental goal
of “provable security’:
Prove that the whole system
IS as secure as the primitive.

I.e.: Prove that the protocol

IS as secure as the primitive.
Prove that the implementation
IS as secure as the design.

Then it's safe for reviewers

to focus on the primitive design.

Maybe will succeed someday, but

needs to overcome huge problems.

Problem 1: “Proofs’ have errors.
Proofs are increasingly complex,
rarely reviewed, rarely automated.

Problem 2: Most proofs are of
security bounds that aren't tight:
e.g. forking-lemma “security”

is pure deception for typical sizes.

Problem 3: “Security” definitions
prioritize simplicity over accuracy.
e.g. Is MAC-pad-encrypt secure?

What about security proofs?

The fundamental goal
of “provable security’:
Prove that the whole system
IS as secure as the primitive.

I.e.: Prove that the protocol

IS as secure as the primitive.
Prove that the implementation
IS as secure as the design.

Then it's safe for reviewers

to focus on the primitive design.

Maybe will succeed someday, but

needs to overcome huge problems.

Problem 1: “Proofs’ have errors.
Proofs are increasingly complex,
rarely reviewed, rarely automated.

Problem 2: Most proofs are of
security bounds that aren't tight:
e.g. forking-lemma “security”

is pure deception for typical sizes.

Problem 3: “Security” definitions
prioritize simplicity over accuracy.
e.g. Is MAC-pad-encrypt secure?

Problem 4: Maybe the only way
to achieve the fundamental goal
Is to switch to weak primitives.

yout security proofs?

damental goal
able security”
at the whole system
ure as the primitive.

ve that the protocol

ure as the primitive.

at the implementation
ure as the design.

s safe for reviewers

on the primitive design.

vill succeed someday, but

- overcome huge problems.

Problem 1: “Proofs’ have errors.
Proofs are increasingly complex,

rarely reviewed, rarely automated.

Problem 2: Most proofs are of
security bounds that aren't tight:
e.g. forking-lemma “security”

is pure deception for typical sizes.

Problem 3: “Security” definitions
prioritize simplicity over accuracy.
e.g. Is MAC-pad-encrypt secure?

Problem 4: Maybe the only way
to achieve the fundamental goal
Is to switch to weak primitives.

Some ac

Creating
Think a
implem
What w
What er
to appe:

Can you

ity proofs?

JoF]

ity
ole system

primitive.

e protocol
primitive.

plementation
design.

reviewers

imitive design.

d someday, but

> huge problems.

Problem 1: “Proofs’ have errors.
Proofs are increasingly complex,

rarely reviewed, rarely automated.

Problem 2: Most proofs are of
security bounds that aren't tight:
e.g. forking-lemma “security”

is pure deception for typical sizes.

Problem 3: “Security” definitions
prioritize simplicity over accuracy.
e.g. Is MAC-pad-encrypt secure?

Problem 4: Maybe the only way
to achieve the fundamental goal
Is to switch to weak primitives.

Some advice to cr

Creating or evalua
Think about the
implementations
What will the imp

What errors are lil
to appear in imple

Can you compens:

on

S1gn.

/. but

blems.

Problem 1: “Proofs’ have errors.
Proofs are increasingly complex,

rarely reviewed, rarely automated.

Problem 2: Most proofs are of
security bounds that aren't tight:
e.g. forking-lemma “security”

is pure deception for typical sizes.

Problem 3: “Security” definitions
prioritize simplicity over accuracy.
e.g. Is MAC-pad-encrypt secure?

Problem 4: Maybe the only way
to achieve the fundamental goal
Is to switch to weak primitives.

Some advice to crypto desig

Creating or evaluating a des
Think about the
implementations.
What will the implementors

What errors are likely

to appear In implementation
Can you compensate for thi:

Problem 1: “Proofs’ have errors.
Proofs are increasingly complex,

rarely reviewed, rarely automated.

Problem 2: Most proofs are of
security bounds that aren't tight:
e.g. forking-lemma “security”

is pure deception for typical sizes.

Problem 3: “Security” definitions
prioritize simplicity over accuracy.
e.g. Is MAC-pad-encrypt secure?

Problem 4: Maybe the only way
to achieve the fundamental goal
Is to switch to weak primitives.

Some advice to crypto designers

Creating or evaluating a design?
Think about the
implementations.
What will the implementors do?

What errors are likely
to appear in implementations?
Can you compensate for this?

Problem 1: “Proofs’ have errors.
Proofs are increasingly complex,

rarely reviewed, rarely automated.

Problem 2: Most proofs are of
security bounds that aren't tight:
e.g. forking-lemma “security”

is pure deception for typical sizes.

Problem 3: “Security” definitions
prioritize simplicity over accuracy.
e.g. Is MAC-pad-encrypt secure?

Problem 4: Maybe the only way
to achieve the fundamental goal
Is to switch to weak primitives.

Some advice to crypto designers

Creating or evaluating a design?
Think about the
implementations.
What will the implementors do?

What errors are likely
to appear in implementations?
Can you compensate for this?

Is the design a primitive?
Think about the protocols.
Is the design a protocol?
Think about the
higher-level protocols.

Will the system be secure?

1: “Proofs” have errors.
re increasingly complex,

viewed, rarely automated.

2. Most proofs are of
bounds that aren't tight:
ing-lemma “security”
leception for typical sizes.

3: “Security” definitions
 simplicity over accuracy.
|AC-pad-encrypt secure?

4. Maybe the only way
ve the fundamental goal
tch to weak primitives.

Some advice to crypto designers

Creating or evaluating a design?
Think about the
implementations.

W
W

to appear in Imp

nat will the implementors do?

nat errors are

ikely
ementations?

Can you compensate for this?

Is the design a primitive?

Think about the protocols.

Is the design a protocol?
Think about the
higher-level protocols.

Will the system be secure?

Crypto |

HTTPS.

fs" have errors.
ngly complex,

rely automated.

proofs are of
at aren't tight:
) 'security”

for typical sizes.

rity’ definitions
/ OVer accuracy.
ncrypt secure?

= the only way
damental goal
ak primitives.

Some advice to crypto designers

Creating or evaluating a design?
Think about the
implementations.
What will the implementors do?

What errors are likely
to appear in implementations?
Can you compensate for this?

Is the design a primitive?
Think about the protocols.
Is the design a protocol?
Think about the
higher-level protocols.

Will the system be secure?

Crypto horror stor

HTTPS.

rrors.
lex,

1ated.

of
ight:

SiZes.

1tions
uracy.
ure?

way
goal
€s.

Some advice to crypto designers

Creating or evaluating a design?
Think about the
implementations.
What will the implementors do?

What errors are likely

to appear in implementations?
Can you compensate for this?

Is the design a primitive?
Think about the protocols.
Is the design a protocol?
Think about the
higher-level protocols.

Will the system be secure?

Crypto horror story #3

HTTPS.

Some advice to crypto designers

Creating or evaluating a design?
Think about the
implementations.
What will the implementors do?

What errors are likely
to appear in implementations?
Can you compensate for this?

Is the design a primitive?
Think about the protocols.
Is the design a protocol?
Think about the
higher-level protocols.

Will the system be secure?

Crypto horror story #3

HTTPS.

Some advice to crypto designers

Crypto horror story #3

Creating or evaluating a design?
Think about the
implementations.
What will the implementors do?

What errors are likely
to appear in implementations?
Can you compensate for this?

Is the design a primitive?
Think about the protocols.
Is the design a protocol?
Think about the
higher-level protocols.

Will the system be secure?

HTTPS.

letsencrypt.org is a huge
improvement in HTTPS usability;
will obviously be widely used.
But is HTTPS actually secure?

Some advice to crypto designers

Crypto horror story #3

Creating or evaluating a design?
Think about the
implementations.
What will the implementors do?

What errors are likely
to appear in implementations?
Can you compensate for this?

Is the design a primitive?
Think about the protocols.
Is the design a protocol?
Think about the
higher-level protocols.

Will the system be secure?

HTTPS.

letsencrypt.org is a huge
improvement in HTTPS usability;
will obviously be widely used.
But is HTTPS actually secure?

“It's not so bad

against passive eavesdroppers!”
— T he eavesdroppers will start
forging (more) packets.

Some advice to crypto designers Crypto horror story #3

Creating or evaluating a design? HTTPS.
Think about the

_ _ letsencrypt.org is a huge
implementations.

improvement in HTTPS usability;

What will the implementors do- will obviously be widely used.

But is HTTPS actually secure?

What errors are likely
to appear in implementations?

Can you compensate for this? “It's not so bad

against passive eavesdroppers!”

Is the design a primitive? .
N < P — T'he eavesdroppers will start

Think about the protocols. forging (more) packets.

Is the design a protocol?
Think about the “Then we'll know they're there!”

higher-level protocols_ —Yes, we knew that alreacy.
Will the system be secure? What we want is security.

lvice to crypto designers

Crypto horror story #3

- or evaluating a design?
bout the

entations.

|l the implementors do?
rors are likely

r in implementations?
compensate for this?

sign a primitive?
bout the protocols.
sign a protocol?
bout the

evel protocols.
system be secure?

HTTPS.

letsencrypt.org iIs a huge
improvement in HTTPS usability;
will obviously be widely used.
But is HTTPS actually secure?

“It's not so bad

against passive eavesdroppers!”
— T he eavesdroppers will start
forging (more) packets.

“Then we'll know they 're there!l”

—Yes, we knew that already.
What we want Is security.

2013.01

State-of
are obvi

e.g. Def
requires
assumpt

vpto designers

Crypto horror story #3

ting a design?

lementors do?
cely
mentations?
te for this?

mitive?
protocols.
tocol?

ycols.
> secure”?

HTTPS.

letsencrypt.org is a huge
improvement in HTTPS usability;
will obviously be widely used.
But is HTTPS actually secure?

“It's not so bad

against passive eavesdroppers!”
— T he eavesdroppers will start
forging (more) packets.

“Then we'll know they 're there!”

—Yes, we knew that already.
What we want Is security.

2013.01 Green:

State-of-the-art T
are obviously unsa

e.g. Defense vs. B
requires “goofy m.
assumption’ for p

Crypto horror story #3

HTTPS.

letsencrypt.org is a huge
improvement in HTTPS usability;
will obviously be widely used.
But is HTTPS actually secure?

“It's not so bad

against passive eavesdroppers!”
— T he eavesdroppers will start
forging (more) packets.

“Then we'll know they 're there!l”

—Yes, we knew that already.
What we want Is security.

2013.01 Green:

State-of-the-art TLS proofs
are obviously unsatisfactory.

e.g. Defense vs. Bleichenbac
requires ‘goofy made-up
assumption’ for proof.

Crypto horror story #3

HTTPS.

letsencrypt.org is a huge
improvement in HTTPS usability;
will obviously be widely used.
But is HTTPS actually secure?

“It's not so bad

against passive eavesdroppers!”
— T he eavesdroppers will start
forging (more) packets.

“Then we'll know they 're there!”

—Yes, we knew that already.
What we want Is security.

2013.01 Green:

State-of-the-art TLS proofs
are obviously unsatisfactory.

e.g. Defense vs. Bleichenbacher
requires ‘goofy made-up
assumption’ for proof.

Crypto horror story #3

HTTPS.

letsencrypt.org is a huge

improvement in HTTPS usability;

will obviously be widely used.
But is HTTPS actually secure?

“It's not so bad

against passive eavesdroppers!”

— T he eavesdroppers will start

forging (more) packets.

“Then we'll know they're t

nerel”

—Yes, we knew that alreac
What we want Is security.

Y.

2013.01 Green:

State-of-the-art TLS proofs
are obviously unsatisfactory.

e.g. Defense vs. Bleichenbacher
requires ‘goofy made-up
assumption’ for proof.

But that was “the good

news ... The problem with
TLS is that we are cursed with
Implementations.”

e.g. Defense vs. Bleichenbacher
is in wrong order in OpenSSL.
Does this allow timing attacks?

1orror story #3

rypt.org is a huge

ment in HTTPS usability;

ously be widely used.

TTPS actually sec
- so bad

ure?

passive eavesdroppers!”

avesdroppers will start

‘more) packets.

e’ll know they're t

nerel”

ve knew that alreac

> want Is security.

Y.

2013.01 Green:

State-of-the-art TLS proofs
are obviously unsatisfactory.

e.g. Defense vs. Bleichenbacher
requires ‘goofy made-up
assumption’ for proof.

But that was “the good

news ... The problem with
TLS is that we are cursed with
Implementations.”

e.g. Defense vs. Bleichenbacher
is in wrong order in OpenSSL.
Does this allow timing attacks?

2014.08
Weiss—S
Successf
exploitin
variatior
NITRO>

y #3

r IS a huge

TTPS usability;

videly used.

ually sec

ure?

vesdroppers!”

ers will start

“kets.

they're t

nerel”

1at alreac

security.

Y.

2013.01 Green:

State-of-the-art TLS proofs
are obviously unsatisfactory.

e.g. Defense vs. Bleichenbacher
requires ‘goofy made-up
assumption” for proof.

But that was “the good

news ... The problem with
TLS is that we are cursed with
Implementations.”

e.g. Defense vs. Bleichenbacher
is in wrong order in OpenSSL.
Does this allow timing attacks?

2014.08 Meyer—Sc
Weiss—Schwenk-S
Successful Bleiche
exploiting analogo
variations in Java
NITROX SSL acce

bility;

re?

rsl”
art

erel”

2013.01 Green:

State-of-the-art TLS proofs
are obviously unsatisfactory.

e.g. Defense vs. Bleichenbacher
requires ‘goofy made-up
assumption’ for proof.

But that was “the good

news ... The problem with
TLS is that we are cursed with
Implementations.”

e.g. Defense vs. Bleichenbacher
is in wrong order in OpenSSL.
Does this allow timing attacks?

2014.08 Meyer—Somorovsky-
Weiss—Schwenk—Schinzel—Te
Successful Bleichenbacher a
exploiting analogous timing
variations in Java SSE, Cavi
NITROX SSL accelerator ch

2013.01 Green:

State-of-the-art TLS proofs
are obviously unsatisfactory.

e.g. Defense vs. Bleichenbacher
requires ‘goofy made-up
assumption’ for proof.

But that was “the good

news ... The problem with
TLS is that we are cursed with
Implementations.”

e.g. Defense vs. Bleichenbacher
is in wrong order in OpenSSL.
Does this allow timing attacks?

2014.08 Meyer—Somorovsky—
Weiss—Schwenk—Schinzel-Tews:
Successful Bleichenbacher attacks,
exploiting analogous timing
variations in Java SSE, Cavium
NITROX SSL accelerator chip.

2013.01 Green:

State-of-the-art TLS proofs
are obviously unsatisfactory.

e.g. Defense vs. Bleichenbacher
requires ‘goofy made-up
assumption’ for proof.

But that was “the good

news ... The problem with
TLS is that we are cursed with
Implementations.”

e.g. Defense vs. Bleichenbacher
is in wrong order in OpenSSL.
Does this allow timing attacks?

2014.08 Meyer—Somorovsky—
Weiss—Schwenk—Schinzel-Tews:
Successful Bleichenbacher attacks,
exploiting analogous timing
variations in Java SSE, Cavium
NITROX SSL accelerator chip.

The whole concept of a
“public-key cryptosystem”

Is a historical accident,
dangerously unauthenticated.

2013.01 Green:

State-of-the-art TLS proofs
are obviously unsatisfactory.

e.g. Defense vs. Bleichenbacher
requires ‘goofy made-up
assumption’ for proof.

But that was “the good
news ... The problem with
TLS is that we are cursed with

Implementations.”

e.g. Defense vs. Bleichenbacher
is in wrong order in OpenSSL.
Does this allow timing attacks?

2014.08 Meyer—Somorovsky—
Weiss—Schwenk—Schinzel-Tews:

Successful Bleichenbacher attacks,

exploiting analogous timing
variations in Java SSE, Cavium
NITROX SSL accelerator chip.

The whole concept of a
“public-key cryptosystem”

Is a historical accident,
dangerously unauthenticated.

Do we seriously believe that
we'll make HTTPS secure

by fixing the implementations?
Fix the bad crypto design.

Green:

-the-art TLS proofs
ously unsatisfactory.

ense vs. Bleichenbacher
“goofy made-up
ion" for proof.

- was the good

- The problem with
hat we are cursed with
ntations.”

ense vs. Bleichenbacher
ng order in OpenSSL.
s allow timing attacks?

2014.08 Meyer—Somorovsky—
Weiss—Schwenk—Schinzel-Tews:
Successful Bleichenbacher attacks,
exploiting analogous timing
variations in Java SSE, Cavium
NITROX SSL accelerator chip.

The whole concept of a
“public-key cryptosystem”

Is a historical accident,
dangerously unauthenticated.

Do we seriously believe that
we'll make HTTPS secure

by fixing the implementations?
Fix the bad crypto design.

Exercise
failures «

Renegot
Diginotz
BEAST
Trustwa
CRIME
Lucky 1.
RC4 key
TLS tru
gotofail
Triple H
Heartble
POODL
Winshoc

LS proofs
tistactory.

leichenbacher
ade-up
roof.

good
lem with
» cursed with

leichenbacher
n OpenSSL.
ning attacks?

2014.08 Meyer—Somorovsky—
Weiss—Schwenk—Schinzel-Tews:
Successful Bleichenbacher attacks,
exploiting analogous timing
variations in Java SSE, Cavium
NITROX SSL accelerator chip.

The whole concept of a
“public-key cryptosystem”

Is a historical accident,
dangerously unauthenticated.

Do we seriously believe that
we'll make HTTPS secure

by fixing the implementations?
Fix the bad crypto design.

Exercise: How ma
failures can a desi

Renegotiation att:
Diginotar CA com

BEAST CBC attax
Trustwave HT TP
CRIME compressi
Lucky 13 padding
RC4 keystream bi:
TLS truncation.

gotofail signature-
Triple Handshake.
Heartbleed buffer
POODLE padding
Winshock buffer o

her

Ith

her

ks?

2014.08 Meyer—Somorovsky—
Weiss—Schwenk—Schinzel-Tews:
Successful Bleichenbacher attacks,
exploiting analogous timing
variations in Java SSE, Cavium
NITROX SSL accelerator chip.

The whole concept of a
“public-key cryptosystem”

Is a historical accident,
dangerously unauthenticated.

Do we seriously believe that
we'll make HTTPS secure

by fixing the implementations?
Fix the bad crypto design.

Exercise: How many of thes

failures can a designer addre

Renegotiation attack.
Diginotar CA compromise.
BEAST CBC attack.
Trustwave HT TPS intercept
CRIME compression attack.
Lucky 13 padding/timing at
RC4 keystream bias.

TLS truncation.

gotofail signature-verificatio
Triple Handshake.
Heartbleed buffer overread.

POODLE padding-oracle att
Winshock buffer overflow.

2014.08 Meyer—Somorovsky—
Weiss—Schwenk—Schinzel-Tews:
Successful Bleichenbacher attacks,
exploiting analogous timing
variations in Java SSE, Cavium
NITROX SSL accelerator chip.

The whole concept of a
“public-key cryptosystem”

Is a historical accident,
dangerously unauthenticated.

Do we seriously believe that
we'll make HTTPS secure

by fixing the implementations?
Fix the bad crypto design.

Exercise: How many of these TLS

failures can a designer address?

Renegotiation attack.

Diginotar CA compromise.
BEAST CBC attack.

Trustwave HT TPS interception.
CRIME compression attack.
Lucky 13 padding/timing attack.
RC4 keystream bias.

TLS truncation.

gotofail signature-verification bug.
Triple Handshake.

Heartbleed buffer overread.

POODLE padding-oracle attack.
Winshock buffer overflow.

