Making sure

crypto stays insecure

Daniel J. Bernstein

University of lllinois at Chicago &
Technische Universiteit Eindhoven

Terrorist in Hong Kong

prepares to throw deadly weapon
at Chinese government workers.

Image credit: Reuters.




SUre

tays insecure

. Bernstein

ty of lllinois at Chicago &
he Universiteit Eindhoven

Terrorist in Hong Kong

prepares to throw deadly weapon
at Chinese government workers.

Image credit: Reuters.

Drug-de

Invades
begins s

Image ci



Ire
N

is at Chicago &
siteit Eindhoven

Terrorist in Hong Kong

prepares to throw deadly weapon
at Chinese government workers.

Image credit: Reuters.

Drug-dealing carte

invades city in Ma
begins selling addi

Image credit: Wik



go &
hoven

Terrorist in Hong Kong

prepares to throw deadly weapon
at Chinese government workers.

Image credit: Reuters.

Drug-dealing cartel “Starbuc
invades city in Morocco;
begins selling addictive liqui

Image credit: Wikipedia.



Terrorist in Hong Kong

prepares to throw deadly weapon
at Chinese government workers.

Image credit: Reuters.

Drug-dealing cartel “Starbucks”
invades city in Morocco;

begins selling addictive liquid.

Image credit: Wikipedia.



in Hong Kong Drug-dealing cartel “Starbucks” Pedophi
to throw deadly weapon invades city in Morocco; to remo
se government workers. begins selling addictive liquid. sexually

edit: Reuters. Image credit: Wikipedia. Image c




Kong
deadly weapon
ment workers.

ters.

Drug-dealing cartel “Starbucks”

invades city in Morocco;
begins selling addictive liquid.

Image credit: Wikipedia.

Pedophile convinc

to remove most of
sexually abuses ch

Image credit: Chil



apon
ers.

Drug-dealing cartel “Starbucks”

invades city in Morocco;
begins selling addictive liquid.

Image credit: Wikipedia.

Pedophile convinces helpless
to remove most of her cloth
sexually abuses child in publ

Image credit: Child pornogr



Drug-dealing cartel “Starbucks”

invades city in Morocco;
begins selling addictive liquid.

Image credit: Wikipedia.

Pedophile convinces helpless child

to remove most of her clothing;
sexually abuses child in public.

Image credit: Child pornographer.



aling cartel “Starbucks”

city in Morocco;
elling addictive liquid.

edit: Wikipedia.

Pedophile convinces helpless child

to remove most of her clothing;
sexually abuses child in public.

Image credit: Child pornographer.

theguardia

News | S5por
Offers Jobs

Series; Glenn Gree

NSA co
millions

Exclusive: To
all call data sh

« Read the Vel

Criminal
calling 1
sells clas

Image ci



| “Starbucks”
rOCCO:
ctive liquid.

Ipedia.

Pedophile convinces helpless child

to remove most of her clothing;
sexually abuses child in public.

Image credit: Child pornographer.

theguardian

News Sport | Comment  Cul
Offers Jobs

News » US news ) US natio

Series: Glenn Greenwald on security and i

NSA collecting pl
millions of Verizoj

Exclusive: Top secret court orde
all call data shows scale of dome

« Read the Verizon court order in

Criminal organizat
calling itself “The
sells classified gov:

Image credit: The



~ks”

Pedophile convinces helpless child

to remove most of her clothing;
sexually abuses child in public.

Image credit: Child pornographer.

theguardian

News Sport| Comment Culture  Business | ]
Offers Jobs

News ) US news ) US national security

Series: Glenn Greenwald on security and liberty

NSA collecting phone reco1
millions of Verizon custome

Exclusive: Top secret court order requiring Verizon
all call data shows scale of domestic surveillance u

« Read the Verizon court order in full here

Criminal organization
calling itself “The Guardian’
sells classified government s

Image credit: The Guardian



Pedophile convinces helpless child

to remove most of her clothing;
sexually abuses child in public.

Image credit: Child pornographer.

theguardian

News Sport | Comment  Culture | Business Money Life &
Offers Jobs

News ) US news ) US national security

Series: Glenn Greenwald on security and liberty

NSA collecting phone records of
millions of Verizon customers daily

Exclusive: Top secret court order requiring Verizon to hand over
all call data shows scale of domestic surveillance under Obama

« Read the Verizon court order in full here

Criminal organization
calling itself “The Guardian”
sells classified government secrets.

Image credit: The Guardian.



le convinces helpless child
ve most of her clothing;
abuses child in public.

edit: Child pornographer.

theguardian

News Sport| Comment Culture | Business Money | Life &
Offers Jobs

News ) US news ) US national security

Series: Glenn Greenwald on security and liberty

NSA collecting phone records of
millions of Verizon customers daily

Exclusive: Top secret court order requiring Verizon to hand over
all call data shows scale of domestic surveillance under Obama

« Read the Verizon court order in full here

Criminal organization
calling itself “The Guardian”
sells classified government secrets.

Image credit: The Guardian.

We have

everythil
so that
drug dec:

pedophil



es helpless child
- her clothing;
ild in public.

d pornographer.

theguardian

News Sport | Comment  Culture | Business Money Life &
Offers Jobs

News ) US news ) US national security

Series: Glenn Greenwald on security and liberty

NSA collecting phone records of
millions of Verizon customers daily

Exclusive: Top secret court order requiring Verizon to hand over
all call data shows scale of domestic surveillance under Obama

« Read the Verizon court order in full here

Criminal organization
calling itself “The Guardian”
sells classified government secrets.

Image credit: The Guardian.

We have to watch
everything that pe
so that we can cai
drug dealers, orga

pedophiles, murde



- child

Ing;
IC.

apher.

theguardian

News Sport| Comment Culture | Business Money | Life &
Offers Jobs

News ) US news ) US national security

Series: Glenn Greenwald on security and liberty

NSA collecting phone records of
millions of Verizon customers daily

Exclusive: Top secret court order requiring Verizon to hand over
all call data shows scale of domestic surveillance under Obama

« Read the Verizon court order in full here

Criminal organization
calling itself “The Guardian”
sells classified government secrets.

Image credit: The Guardian.

We have to watch and lister
everything that people are d
so that we can catch terrori:
drug dealers, organized crim

pedophiles, murderers, etc.



theguardian We have to watch and listen to

News Sport | Comment  Culture | Business Money Life & everything that peop|e are doing
Offers Jobs

so that we can catch terrorists,

News ) US news ) US national security

Series; Glenn Greenwald on security and liberty d rug aea |erS, Orga N IZed Crl m | Na |S,

NSA collecting phone records of pedophiles, murderers, etc.
millions of Verizon customers daily

Exclusive: Top secret court order requiring Verizon to hand over
all call data shows scale of domestic surveillance under Obama

« Read the Verizon court order in full here

Criminal organization
calling itself “The Guardian”
sells classified government secrets.

Image credit: The Guardian.




theguardian We have to watch and listen to

News Sport | Comment  Culture | Business Money Life & everything that peop|e are doing
Offers Jobs

so that we can catch terrorists,

News ) US news ) US national security

Series: Glenn Greenwald on security and liberty d rug C ea |ers, Orga N |Zed Cr| m | N a |S’
NSA collecting phone records of pedophiles, murderers, etc.
millions of Verizon customers daily

Exclusive: Top secret court order requiring Verizon to hand over . .

all call data shows scale of domestic surveillance under Obama We try to SyStematlca l ly monitor
« Read the Verizon court order in full here and record all Internet traffic.

. o But what if it’s encrypted?
Criminal organization

calling itself “The Guardian”
sells classified government secrets.

Image credit: The Guardian.




guardian We have to watch and listen to

News Sport | Comment  Culture | Business Money Life & everything that peop|e are doing
Offers Jobs

so that we can catch terrorists,

News ) US news ) US national security

Series; Glenn Greenwald on security and liberty d rug aea |erS, Orga N IZed Crl m | na |S,

NSA collecting phone records of pedophiles, murderers, etc.
millions of Verizon customers daily

Exclusive: Top secret court order requiring Verizon to hand over

all call data shows scale of domestic surveillance under Obama We try to SyStematica | |y monitor
» Read the Verizon court order in full here and record all Internet traffic.

. o But what if it’s encrypted?
Criminal organization

calling itself “The Guardian” This talk gives some examples

sells classified government secrets. of how we've manipulated

the world's crypto ecosystem

Image credit: The Guardian. so that we can understand

almost all of this traffic.




1

t | Comment Culture | Business | Money | Life &

news ) US national security

:nwald on security and liberty

llecting phone records of
- of Verizon customers daily

p secret court order requiring Verizon to hand over
ows scale of domestic surveillance under Obama

izon court order in full here

organization
self “The Guardian”
sified government secrets.

edit: The Guardian.

We have to watch and listen to
everything that people are doing
so that we can catch terrorists,
drug dealers, organized criminals,

pedophiles, murderers, etc.

We try to systematically monitor
and record all Internet traffic.
But what if it’s encrypted?

This talk gives some examples
of how we've manipulated

the world’s crypto ecosystem
so that we can understand
almost all of this traffic.

 (TSHSIVREL TO U
networks, and endpo

» (TS/SIVREL TO US
and/or mcreased con

o (TSHSIVRELTOUS
(o and frem targel en

o [TSASHREL T LIS

« (TSHSIREL TO US
technologies.

+ (TSHSIHREL TO US
a robust exploitation

(TS//SI//ECI SOL) |
specific named U.S.
and operations.
(TS//SI// ECI SOL)
entitiecs (A/B/C) and
SIGINT.

(TS//SI// ECI SOL)
foreign commercial
to make them exploi
(TS//SV/ECI SOL) |
specific operations,
related to SIGINT ¢
(TS//SI//ECI SOL)
the acquisition of cc
provider to worldwi
international comm
(TS//SI// ECI SOL)
SIGINT operations,



ture | Business  Money Life &

1al security

berty

10ne records of
n customers daily

r requiring Verizon to hand over
stic surveillance under Obama

full here

1on
Guardian”
ernment secrets.

Guardian.

We have to watch and listen to
everything that people are doing
so that we can catch terrorists,
drug dealers, organized criminals,

pedophiles, murderers, etc.

We try to systematically monitor
and record all Internet traffic.
But what if it's encrypted?

This talk gives some examples
of how we've manipulated

the world's crypto ecosystem
so that we can understand
almost all of this traffic.

« (TSHSIAREL TO USA, FVEY) Insert vulnerabilitie
networks, and endpoint communications devices use

» (TSHSIVREL TO USA, FVYEY) Collect target networ
and/or increased control over core networks

o [TSHSIVRELTO USA, FYEY) Leverape commercial
to and from target endpoints.

« (TSHSIVREL TO USA, FVEY) Exploit foreign truste

« (TSH/SIHREL TO USA, FVEY) Influence policies, st
technologies.

« (TS/SI/REL TO USA, FVEY) Make specific and ag
a robust exploitation capability agamst Next-Generat)

(TS//SI//ECI SOL) Fact that NSA/CSS work:
specific named U.S. commercial entities (A/]
and opecrations.

(TS//SI// ECI SOL) Fact that NSA/CSS work
entities (A/B/C) and operational details (devi
SIGINT.

(TS//SI// ECI SOL) Fact that NSA/CSS work
foreign commercial industry entities (M/N/O
to make them exploitable for SIGINT.
(TS/SI/ECI SOL) Facts related to NSA pers
specific operations, specific technology, spec
related to SIGINT enabling with specific con
(TS//SI/ECI SOL) Facts related to NSA/CS:
the acquisition of communications (content a
provider to worldwide customers; communic
international communications (cable, satellite
(TS//SI// ECI SOL) Facts that identify a U.S.
SIGINT operations, or human asset cooperati



Money | Life &

ds of
rs daily

to hand over
nder Obama

oCcrets.

We have to watch and listen to
everything that people are doing
so that we can catch terrorists,
drug dealers, organized criminals,

pedophiles, murderers, etc.

We try to systematically monitor
and record all Internet traffic.
But what if it’s encrypted?

This talk gives some examples
of how we've manipulated

the world’s crypto ecosystem
so that we can understand
almost all of this traffic.

« (TS/SIVREL TO USA, FVEY) Insert vulnerabilities into commercial encryption s
networks, and endpoint communications devices used by targets.

« (TS/SIVREL TO USA, FYEY) Collect target network data and metadata via COOperl
and/or increased control over core networks

« (TSHSI/REL TOUSA, FYEY) Leverage commercial capabilities to remotely deliver ol
to and from target endpoints.

» (TSASIVREL TO USA, FVEY) Exploit foreign trusted computing platforms and techs

« (TSHSIHREL TO USA, FVEY) Influence policies, standards and specification for co
technologies.

« {TS/SLYREL TO USA, FVEY) Make specific and aggressive investments to facilitate
a robust exploitation capability against Next-Generation Wircless (NGW) communica

(TS//SU/ECI SOL) Fact that NSA/CSS works with and has contractua
spectfic named U.S. commercial entities (A/B/C) to conduct SIGINT
and operations.

(TS//SI// ECI SOL) Fact that NSA/CSS works with specific named U.
entitics (A/B/C) and operational details (devices/products) to make the
SIGINT.

(TS//SU/ ECI SOL) Fact that NSA/CSS works with specific foreign ps
foreign commercial industry entities (M/N/Q) and operational details |
to make them exploitable for SIGINT.

(TS/SI/ECI 50L) Facts related to NSA personnel (under cover), opel
specific operations, specific technology, specific locations and covert
rclated to SIGINT enabling with specific commercial entities (A/B/C)
(TS/SIVECI SOL) Facts related to NSA/CSS working with U.S. com
the acquisition of communications (content and metadata) provided by
provider to worldwide customers; communications transiting the U.S..
international communications (cable, satellite, etc.) mediums provided
(TS/SI/ ECI SOL) Facts that identify a U.S. or foreign commercial p!
SIGINT operations, or human asset cooperating with NSA/CSS.



We have to watch and listen to
everything that people are doing
so that we can catch terrorists,
drug dealers, organized criminals,

pedophiles, murderers, etc.

We try to systematically monitor
and record all Internet traffic.
But what if it’s encrypted?

This talk gives some examples
of how we've manipulated

the world's crypto ecosystem
so that we can understand
almost all of this traffic.

 (TSHSIYREL TO USA, FVEY) Insert vulnerabilities into commercial encryption systems, I'l' systems,
networks, and endpoint communications devices used by targets.

« (TS/SIYREL TO USA, FVEY) Collect target network data and metadata via cooperative network carrers
and/or increased control over core networks

o [TSHSIYREL TO USA, FVEY) Leverage commercial capabilities to remotely deliver or recelve information
to and from target endpoints.

« (TS/SI/REL TO USA, FVEY) Exploit foreign trusted computing platforms and technologies.

« (TSH/SIVREL TO USA, FVEY) Influence policies, standards and specification for commercial public key
technologies.

« ({TS/SI/REL TO USA, FVEY) Make specific and aggressive investments to facilitate the development of
a robust exploitation capability against Next-Generation Wireless (NGW) communications.

(TS//SL//ECI SOL) Fact that NSA/CSS works with and has contractual relationships with
specific named U.S. commercial entities (A/B/C) to conduct SIGINT enabling programs
and opecrations.

(TS//SI// ECI SOL) Fact that NSA/CSS works with specific named U.S. commercial
entities (A/B/C) and operational details (devices/products) to make them exploitable for
SIGINT.

(TS//SI// ECI SOL) Fact that NSA/CSS works with specific foreign partners (X/Y/Z) and
foreign commercial industry entities (M/N/Q) and operational details (devices/products)
to make them exploitable for SIGINT.

(TS/SI/ECIT SOL) Facts related to NSA personnel (under cover), operational meetings,
specific operations, specific technology, specific locations and covert communications
related to SIGINT enabling with specific commercial entities (A/B/C).

(TS/SU/ECI SOL) Facts related to NSA/CSS working with U.S. commercial entities on
the acquisition of communications (content and metadata) provided by the U.S. service
provider to worldwide customers; communications transiting the U.S.; or access to
international communications (cable, satellite, etc.) mediums provided by the U.S. entity.
(TS/51// ECI SOL) Facts that identify a U.S. or foreign commercial platform conducting
SIGINT operations, or human asset cooperating with NSA/CSS.



» to watch and listen to
1g that people are doing
yve can catch terrorists,
lers, organized criminals,
es, murderers, etc.

o systematically monitor
rd all Internet traffic.
at if it’s encrypted?

< gives some examples
ve've manipulated

d's crypto ecosystem
yve can understand

|l of this traffic.

 (TS/SIVREL TO USA, FVEY) Insert vulnerabilities into commercial encryption systems, I'l' systems,
networks, and endpoint communications devices used by targets.

« (TS/SIVREL TO USA, FYEY) Collect target network data and metadata via '::l:'l".:'pl:.‘ﬁlli‘-'l'.‘ nelwork carmers
and/or increased control over core networks

« (TSHSI/REL TOQ USA, FYEY) Leverage commercial capabilities to remotely deliver or receive information
to and from target endpoints.

« (TS/SI/REL TO USA, FVEY) Exploit foreign trusted computing platfoerms and technologies.

« (TS/HSI/REL TO USA, FVEY) Influence policies, standards and specification for commercial public key
technologies.

« {TS/SLYREL TO USA, FVEY) Make specific and aggressive investments to facilitate the development of
a robust exploitation capability against Next-Generation Wireless (NGW) communications.

(TS//SU/ECI SOL) Fact that NSA/CSS works with and has contractual relationships with
specific named U.S. commercial entitics (A/B/C) to conduct SIGINT cnabling programs
and operations.

(TS//SI// ECI SOL) Fact that NSA/CSS works with specific named U.S. commercial
entitics (A/B/C) and operational details (devices/products) to make them exploitable for
SIGINT.

(TS//SU/ ECI SOL) Fact that NSA/CSS works with specific foreign partners (X/Y/Z) and
foreign commercial industry entities (M/N/O) and operational details (devices/products)
to make them exploitable for SIGINT.

(TS/SI/ECI S0OL) Facts related to NSA personnel (under cover), operational meetings,
specific operations, specific technology, specific locations and covert communications
rclated to SIGINT enabling with specific commercial entities (A/B/C).

(TS/SI/VECI SOL) Facts related to NSA/CSS working with U.S. commercial entities on
the acquisition of communications (content and metadata) provided by the U.S. service
provider to worldwide customers; communications transiting the U.S.; or access to
international communications (cable, satellite, etc.) mediums provided by the U.S. entity.
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international communications (cable, satellite, etc.) mediums provided by the U.S. entity.
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Break into computers; access
hundreds of millions of disks,
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Add back doors to hardware.

e.g. 2012 U.S. government report
says that Chinese-manufactured
routers provide “Chinese
intelligence services access to
telecommunication networks" .
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dynamically generated answers,
and unpredictable questions; also,
trouble guaranteeing freshness.

Deployment hits many snags.

Argue that it's too early
to look at “the hard problem”
when most data is still unsigned.
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