Picture credit: Rick Bowmer/AP

Disclaimers

How to use

the new 65-megawatt
Bluffdale supercomputer:
a gentle introduction

to cryptanalysis

D. J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

Picture credit: Rick Bowmer/AP

Disclaimers

How to use

the new 65-megawatt
Bluffdale supercomputer:
a gentle introduction

to cryptanalysis

D. J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

1. | don’t work for NSA.

Picture credit: Rick Bowmer/AP

Disclaimers

How to use

the new 65-megawatt
Bluffdale supercomputer:
a gentle introduction

to cryptanalysis

D. J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

1. | don’t work for NSA.

2. NSA hasn'’t told me anything.

Picture credit: Rick Bowmer/AP

Disclaimers

How to use

the new 65-megawatt
Bluffdale supercomputer:
a gentle introduction

to cryptanalysis

D. J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

1. I don't work for NSA.
2. NSA hasn'’t told me anything.

3. This is not a leak.

Picture credit: Rick Bowmer/AP

Disclaimers

How to use

the new 65-megawatt
Bluffdale supercomputer:
a gentle introduction

to cryptanalysis

D. J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

1. | don’t work for NSA.
2. NSA hasn'’t told me anything.
3. This is not a leak.

4. I'm assuming that
NSA is not stupid.

Picture credit: Rick Bowmer/AP

Disclaimers

How to use

the new 65-megawatt
Bluffdale supercomputer:
a gentle introduction

to cryptanalysis

D. J. Bernstein
University of lllinois at Chicago &
Technische Universiteit Eindhoven

1. | don’t work for NSA.
2. NSA hasn'’t told me anything.
3. This is not a leak.

4. I'm assuming that
NSA is not stupid.

5. Also assuming use of
traditional transistors—+wires,
probably with some optics;
plus long-term storage.
Quantum computing would
require different analysis.

edit: Rick Bowmer/AP

Disclaimers

use

65-megawatt

2 supercomputer:
introduction
analysis

rnstein
ty of lllinois at Chicago &
he Universiteit Eindhoven

1. | don’t work for NSA.

2. NSA hasn'’t told me anything.

3. This is not a leak.

4. I'm assuming that
NSA is not stupid.

5. Also assuming use of
traditional transistors+wires,
probably with some optics;
plus long-term storage.
Quantum computing would

require different analysis.

Cryptog

My miss
protect ¢
against

owmer /AP

Disclaimers

is at Chicago &
siteit Eindhoven

1. | don’t work for NSA.

2. NSA hasn'’t told me anything.

3. This is not a leak.

4. I'm assuming that
NSA is not stupid.

5. Also assuming use of
traditional transistors+wires,
probably with some optics;
plus long-term storage.
Quantum computing would
require different analysis.

Cryptographic cha

My mission: Cryp
protect every Inter
against espionage-

Disclaimers

g0 &
hoven

1. | don’t work for NSA.

2. NSA hasn'’t told me anything.

3. This is not a leak.

4. I'm assuming that
NSA is not stupid.

5. Also assuming use of
traditional transistors+wires,
probably with some optics;
plus long-term storage.
Quantum computing would
require different analysis.

Cryptographic challenges

My mission: Cryptographica
protect every Internet packe
against espionage+sabotage

Disclaimers

1. | don’t work for NSA.

2. NSA hasn'’t told me anything.

3. This is not a leak.

4. I'm assuming that
NSA is not stupid.

5. Also assuming use of
traditional transistors+wires,
probably with some optics;
plus long-term storage.
Quantum computing would
require different analysis.

Cryptographic challenges

My mission: Cryptographically
protect every Internet packet
against espionage-+sabotage.

Disclaimers

1. | don’t work for NSA.

2. NSA hasn'’t told me anything.

3. This is not a leak.

4. I'm assuming that
NSA is not stupid.

5. Also assuming use of
traditional transistors+wires,
probably with some optics;
plus long-term storage.
Quantum computing would
require different analysis.

Cryptographic challenges

My mission: Cryptographically
protect every Internet packet
against espionage-+sabotage.

User needs crypto to be fast
on devices designed primarily
for doing something else:

ol

1!_'-
=
Y

€IS

't work for NSA.
hasn't told me anything.
Is not a leak.

ssuming that
1ot stupid.

assuming use of

al transistors-+wires,
- with some optics;
>-term storage.

n computing would
litferent analysis.

Cryptographic challenges

My mission: Cryptographically
protect every Internet packet
against espionage-+sabotage.

User needs crypto to be fast
on devices designed primarily
for doing something else:

el

'!_'_
=
=

User als:
crypto t

Some ex
e 2009 e
signat!
(small
e 2010 ¢
signat!
(trivia
e 2012 «
signat
(some

r NSA.

d me anything.

ak.

hat

use of
ors-Fwires,
e optics;
rage.

ng would
nalysis.

Cryptographic challenges

My mission: Cryptographically
protect every Internet packet
against espionage-+sabotage.

User needs crypto to be fast
on devices designed primarily
for doing something else:

User also needs
crypto to be secu

Some examples of
e 2009 exploit of |
signatures in Tl
(small public col
e 2010 exploit of |
signatures In Plz
(trivial—stupid .
e 2012 exploit of |
signatures by Fl.
(somewhat large

hing.

Cryptographic challenges

My mission: Cryptographically
protect every Internet packet
against espionage-+sabotage.

User needs crypto to be fast
on devices designed primarily
for doing something else:

[S
i I..I
| Fy
1
S
iy -
Fat
= 2l - L]
F
“
-

e
LS
=
<

User also needs
crypto to be secure.

Some examples of crypto fa
e 2009 exploit of RSA-512
signatures in T| calculator
(small public computation
e 2010 exploit of ECDSA
signatures in PlayStation
(trivial—stupid Sony mist:
e 2012 exploit of MDb-base
signatures by Flame malw
(somewhat larger computz:

Cryptographic challenges

My mission: Cryptographically
protect every Internet packet
against espionage-+sabotage.

User needs crypto to be fast
on devices designed primarily
for doing something else:

User also needs
crypto to be secure.

Some examples of crypto failing:

e 2009 exploit of RSA-512
signatures in T| calculators
(small public computation);

e 2010 exploit of ECDSA
signatures in PlayStation 3
(trivial—stupid Sony mistake);

e 2012 exploit of MDb-based
signatures by Flame malware
(somewhat larger computation).

Cryptographic challenges

My mission: Cryptographically
protect every Internet packet
against espionage-+sabotage.

User needs crypto to be fast
on devices designed primarily
for doing something else:

=,
| - S8
-rl I.l..l
| ¥
II -
— 14
i
o
"
N
P
.- = 2 | Ba
- #
-
1
"

User also needs
crypto to be secure.

Some examples of crypto failing:

e 2009 exploit of RSA-512
signatures in T| calculators
(small public computation);

e 2010 exploit of ECDSA
signatures in PlayStation 3
(trivial—stupid Sony mistake);

e 2012 exploit of MDb-based
signatures by Flame malware
(somewhat larger computation).

Presumably many more examples
not known to the public.

raphic challenges

lon: Cryptographically
avery Internet packet
sspionage+-sabotage.

ds crypto to be fast
es designed primarily
r something else:

'|

User also needs
crypto to be secure.

Some examples of crypto failing:

e 2009 exploit of RSA-512
signatures in Tl calculators
(small public computation);

e 2010 exploit of ECDSA
signatures in PlayStation 3
(trivial—stupid Sony mistake);

e 2012 exploit of MD5-based
signatures by Flame malware

(somewhat larger computation).

Presumably many more examples
not known to the public.

Critical «

Which c
fit the u
= optin
cryptos
for each

llenges

tographically
net packet
-sabotage.

to be fast
d primarily
1g else:

|

User also needs
crypto to be secure.

Some examples of crypto failing:

e 2009 exploit of RSA-512
signatures in T| calculators
(small public computation);

e 2010 exploit of ECDSA
signatures in PlayStation 3
(trivial—stupid Sony mistake);

e 2012 exploit of MD5-based
signatures by Flame malware

(somewhat larger computation).

Presumably many more examples
not known to the public.

Critical questions:

Which cryptograp
fit the user’'s cost
= optimize choice
cryptosystem -+ .
for each user devic

User also needs
crypto to be secure.

Some examples of crypto failing:

e 2009 exploit of RSA-512
signatures in Tl calculators
(small public computation);

e 2010 exploit of ECDSA
signatures in PlayStation 3
(trivial—stupid Sony mistake);

e 2012 exploit of MD5-based
signatures by Flame malware

(somewhat larger computation).

Presumably many more examples
not known to the public.

Critical questions:

Which cryptographic system
fit the user's cost constraint
= optimize choice of
cryptosystem + algorithm
for each user device.

User also needs
crypto to be secure.

Some examples of crypto failing:

e 2009 exploit of RSA-512
signatures in T| calculators
(small public computation);

e 2010 exploit of ECDSA
signatures in PlayStation 3
(trivial—stupid Sony mistake);

e 2012 exploit of MD5-based
signatures by Flame malware

(somewhat larger computation).

Presumably many more examples
not known to the public.

Critical questions:

Which cryptographic systems
fit the user's cost constraints?
= optimize choice of
cryptosystem + algorithm
for each user device.

User also needs
crypto to be secure.

Some examples of crypto failing:

e 2009 exploit of RSA-512
signatures in T| calculators
(small public computation);

e 2010 exploit of ECDSA
signatures in PlayStation 3
(trivial—stupid Sony mistake);

e 2012 exploit of MD5-based
signatures by Flame malware

(somewhat larger computation).

Presumably many more examples
not known to the public.

Critical questions:

Which cryptographic systems
fit the user's cost constraints?
= optimize choice of
cryptosystem + algorithm
for each user device.

Which cryptographic systems
can be broken by attackers?
= optimize choice of
attack algorithm + device
for each cryptosystem.

User also needs
crypto to be secure.

Some examples of crypto failing:

e 2009 exploit of RSA-512
signatures in T| calculators
(small public computation);

e 2010 exploit of ECDSA
signatures in PlayStation 3
(trivial—stupid Sony mistake);

e 2012 exploit of MD5-based
signatures by Flame malware

(somewhat larger computation).

Presumably many more examples
not known to the public.

Critical questions:

Which cryptographic systems
fit the user's cost constraints?
= optimize choice of
cryptosystem + algorithm
for each user device.

Which cryptographic systems
can be broken by attackers?
= optimize choice of
attack algorithm + device
for each cryptosystem.

Heavy Interactions between
nigh-level algorithms and

ow-level computer architecture.

) needs
o be secure.

amples of crypto failing:
xploit of RSA-512

ures in Tl calculators
public computation);
xploit of ECDSA

ures in PlayStation 3
—stupid Sony mistake);
xploit of MD5-based
ures by Flame malware

what larger computation).

bly many more examples
vn to the public.

Critical questions:

Which cryptographic systems
fit the user's cost constraints?
= optimize choice of
cryptosystem + algorithm
for each user device.

Which cryptographic systems
can be broken by attackers?
= optimize choice of
attack algorithm + device
for each cryptosystem.

Heavy interactions between
nigh-level algorithms and

Theory

ow-level computer architecture.

Predictic
physicist
sometim

Commot
underlyn
calculati

€.

crypto failing:
RSA-512
calculators
mputation);
—CDSA
yStation 3
Sony mistake);
VID5-based

yme malware

r computation).

more examples
public.

Critical questions:

Which cryptographic systems
fit the user's cost constraints?
= optimize choice of
cryptosystem + algorithm
for each user device.

Which cryptographic systems
can be broken by attackers?
= optimize choice of
attack algorithm + device
for each cryptosystem.

Heavy Interactions between
nigh-level algorithms and

ow-level computer architecture.

Theory vs. experir

Predictions made
physicists are ofte|
sometimes wrong.

Common sources ¢
underlying models
calculations from -

ling:

dare

tion).

nples

Critical questions:

Which cryptographic systems
fit the user's cost constraints?
= optimize choice of
cryptosystem + algorithm
for each user device.

Which cryptographic systems
can be broken by attackers?
= optimize choice of
attack algorithm + device
for each cryptosystem.

Heavy interactions between
nigh-level algorithms and

ow-level computer architecture.

Theory vs. experiment

Predictions made by theoret
physicists are often disputed
sometimes wrong.

Common sources of error:
underlying models of physic:
calculations from those mod

Critical questions:

Which cryptographic systems
fit the user's cost constraints?
= optimize choice of
cryptosystem + algorithm
for each user device.

Which cryptographic systems
can be broken by attackers?
= optimize choice of
attack algorithm + device
for each cryptosystem.

Heavy Interactions between
nigh-level algorithms and

ow-level computer architecture.

Theory vs. experiment

Predictions made by theoretical
physicists are often disputed,
sometimes wrong.

Common sources of error:
underlying models of physics;
calculations from those models.

Critical questions:

Which cryptographic systems
fit the user's cost constraints?
= optimize choice of
cryptosystem + algorithm
for each user device.

Which cryptographic systems
can be broken by attackers?
= optimize choice of
attack algorithm + device
for each cryptosystem.

Heavy Interactions between
nigh-level algorithms and

Theory vs. experiment

ow-level computer architecture.

Predictions made by theoretical
physicists are often disputed,
sometimes wrong.

Common sources of error:
underlying models of physics;
calculations from those models.

Experiments aren't perfect
but catch many errors;
resolve many disputes;
orovide raw data

eading to new theories;

build more confidence than
theory alone can ever produce.

questions:

ryptographic systems
ser's cost constraints?
1ize choice of

ystem + algorithm
user device.

ryptographic systems
roken by attackers?
1ize choice of
1lgorithm + device
Cryptosystem.

‘teractions between
| algorithms and

| computer architecture.

Theory vs. experiment

Predictions made by theoretical
physicists are often disputed,
sometimes wrong.

Common sources of error:
underlying models of physics;
calculations from those models.

Experiments aren't perfect
but catch many errors;
resolve many disputes;
orovide raw data

eading to new theories;

ouild more confidence than
theory alone can ever produce.

Is physic
Of cours

Every fie
theoretic
regardin
experime
measure
we comy

niC systems
constraints?
> of
algorithm
€.

nic systems
attackers?
> of

+ device
tem.

, between
ms and

r architecture.

Theory vs. experiment

Predictions made by theoretical
physicists are often disputed,
sometimes wrong.

Common sources of error:
underlying models of physics;
calculations from those models.

Experiments aren't perfect
but catch many errors;
resolve many disputes;
orovide raw data

eading to new theories;

build more confidence than
theory alone can ever produce.

Is physics uniquely
Of course not.

Every field of scier
theoreticians make
regarding observal
experimental scien
measure those phe
we compare the re

S

S

ure.

Theory vs. experiment

Predictions made by theoretical
physicists are often disputed,
sometimes wrong.

Common sources of error:
underlying models of physics;
calculations from those models.

Experiments aren't perfect
but catch many errors;
resolve many disputes;
orovide raw data

eading to new theories;

ouild more confidence than
theory alone can ever produce.

Is physics uniquely error-pro
Of course not.

Every field of science:
theoreticians make predictio
regarding observable phenor
experimental scientists
measure those phenomena;
we compare the results.

Theory vs. experiment

Predictions made by theoretical
physicists are often disputed,
sometimes wrong.

Common sources of error:
underlying models of physics;
calculations from those models.

Experiments aren't perfect
but catch many errors;
resolve many disputes;
orovide raw data

eading to new theories;

build more confidence than
theory alone can ever produce.

Is physics uniquely error-prone?
Of course not.

Every field of science:
theoreticians make predictions
regarding observable phenomena;
experimental scientists

measure those phenomena;

we compare the results.

Theory vs. experiment Is physics uniquely error-prone?

. . Of course not.
Predictions made by theoretical

physicists are often disputed, Every field of science:
sometimes wrong. theoreticians make predictions

regarding observable phenomena;
Common sources of error:

. . experimental scientists
underlying models of physics; P

. measure those phenomena;
calculations from those models.

we compare the results.

Experiments aren't perfect

What if measurements are
but catch many errors;

. too expensive to carry out?
resolve many disputes;

. Measurements start with
rovide raw data

. . scaled-down experiments,
eading to new theories;

. . work up towards
build more confidence than P

the scale of interest.
theory alone can ever produce.

/S. experiment

ons made by theoretical
s are often disputed,
es wrong.

1 sources of error:
1g models of physics;
ons from those models.

ents aren't perfect

h many errors;

nany disputes;

raw data

0 new theories;

re confidence than
lone can ever produce.

Is physics uniquely error-prone?
Of course not.

Every field of science:
theoreticians make predictions
regarding observable phenomena;
experimental scientists

measure those phenomena;

we compare the results.

What if measurements are
too expensive to carry out?
Measurements start with
scaled-down experiments,
work up towards

the scale of interest.

Algorith
error-prc

Theoreti
regardin
These p
disputed

nent

by theoretical
n disputed,

of error:
of physics;

those models.

t perfect
TOrS;
Ites;

Ories:
nce than
ver produce.

Is physics uniquely error-prone?
Of course not.

Every field of science:
theoreticians make predictions
regarding observable phenomena;
experimental scientists

measure those phenomena;

we compare the results.

What if measurements are
too expensive to carry out?
Measurements start with
scaled-down experiments,
work up towards

the scale of interest.

Algorithm analysis

error-prone field o

Theoreticians mak
regarding algorithi
These predictions
disputed, sometim

Ical

els.

CE.

Is physics uniquely error-prone?
Of course not.

Every field of science:
theoreticians make predictions
regarding observable phenomena;
experimental scientists

measure those phenomena;

we compare the results.

What if measurements are
too expensive to carry out?
Measurements start with
scaled-down experiments,
work up towards

the scale of interest.

Algorithm analysis Is anothe

error-prone field of science.

Theoreticians make
regarding algorithm

oredictic

rerform

These predictions are often

disputed, sometimes wrong.

Is physics uniquely error-prone?
Of course not.

Every field of science:
theoreticians make predictions
regarding observable phenomena;
experimental scientists

measure those phenomena;

we compare the results.

What if measurements are
too expensive to carry out?
Measurements start with
scaled-down experiments,
work up towards

the scale of interest.

Algorithm analysis Is another

error-prone field of science.

Theoreticians make predictions

regarding algorithm performance.
These predictions are often
disputed, sometimes wrong.

Is physics uniquely error-prone?
Of course not.

Every field of science:
theoreticians make predictions
regarding observable phenomena;
experimental scientists

measure those phenomena;

we compare the results.

What if measurements are
too expensive to carry out?
Measurements start with
scaled-down experiments,
work up towards

the scale of interest.

Algorithm analysis Is another

error-prone field of science.

Theoreticians make predictions

regarding algorithm performance.
These predictions are often
disputed, sometimes wrong.

Particularly error-prone:
cryptanalytic extrapolations
from an academic computation
to a serious real-world attack.

Is physics uniquely error-prone?
Of course not.

Every field of science:
theoreticians make predictions

regarding observable phenomena;

experimental scientists
measure those phenomena;

we compare the results.

What if measurements are
too expensive to carry out?
Measurements start with
scaled-down experiments,
work up towards

the scale of interest.

Algorithm analysis Is another

error-prone field of science.

Theoreticians make predictions

regarding algorithm performance.

These predictions

are often

disputed, sometimes wrong.

Particularly error-prone:

cryptanalytic extrapolations

from an academic computation

to a serious real-world attack.

We catch errors, resolve disputes

by carrying out experiments:

actually running t
on the largest sca

nese algorithms

€ we Can.

s uniquely error-prone?
€ Nnot.

|ld of science:

lans make predictions

o observable phenomena;
antal scientists

those phenomena;

yare the results.

measurements are
nsive to carry out?
ments start with
own experiments,
towards

> of interest.

Algorithm analysis Is another

error-prone field of science.

Theoreticians make predictions

regarding algorithm performance.

These predictions

are often

disputed, sometimes wrong.

Particularly error-prone:

cryptanalytic extrapolations

from an academic computation

to a serious real-world attack.

We catch errors, resolve disputes

by carrying out experiments:

actually running t
on the largest sca

nese algorithms

€ we Can.

1980s se¢
QS fa

costs 21

' error-prone?

1Ce:
> predictions

)le phenomena;

tists
nomena;

sults.

ents are
arry out?
rt with
Iments,

Algorithm ana
error-prone fie

ysiIs IS another
d of science.

Theoreticians make predictions

regarding algorithm performance.

These predictions are often

disputed, sometimes wrong.

Particularly error-prone:

cryptanalytic extrapolations

from an academic computation

to a serious real-world attack.

We catch errors, resolve disputes

by carrying out experiments:

actually running these algorithms

on the largest scale we can.

1980s security eva
“QS" factorizatior
costs 2190 to brea

ns

Ne€na,

Algorithm analysis Is another

error-prone field of science.

Theoreticians make predictions

regarding algorithm performance.

These predictions

are often

disputed, sometimes wrong.

Particularly error-prone:

cryptanalytic extrapolations

from an academic computation

to a serious real-world attack.

We catch errors, resolve disputes

by carrying out experiments:

actually running t
on the largest sca

nese algorithms

€ we Can.

1980s security evaluation:

"QS" factorization algorithn
costs 2190 to break RSA-103

Algorithm analysis Is another

error-prone field of science.

Theoreticians make predictions

regarding algorithm performance.

These predictions

are often

disputed, sometimes wrong.

Particularly error-prone:

cryptanalytic extrapolations

from an academic computation

to a serious real-world attack.

We catch errors, resolve disputes

by carrying out experiments:

actually running t
on the largest sca

nese algorithms

€ we Can.

1980s security evaluation:

"QS" factorization algorithm
costs 2190 to break RSA-1024.

Algorithm analysis Is another

error-prone field of science.

Theoreticians make predictions

regarding algorithm performance.
These predictions are often
disputed, sometimes wrong.

Particularly error-prone:
cryptanalytic extrapolations
from an academic computation
to a serious real-world attack.

We catch errors, resolve disputes
by carrying out experiments:
actually running these algorithms

on the largest scale we can.

1980s security evaluation:

"QS" factorization algorithm
costs 2190 to break RSA-1024.

1990 Pollard: new “NFS".

Algorithm analysis Is another

error-prone field of science.

Theoreticians make predictions

regarding algorithm performance.
These predictions are often
disputed, sometimes wrong.

Particularly error-prone:
cryptanalytic extrapolations
from an academic computation
to a serious real-world attack.

We catch errors, resolve disputes
by carrying out experiments:
actually running these algorithms

on the largest scale we can.

1980s security evaluation:

"QS" factorization algorithm
costs 2190 to break RSA-1024.

1990 Pollard: new “NFS".

1991 Adleman: NFS
won't beat QS for RSA-1024.

Algorithm analysis Is another

error-prone field of science.

Theoreticians make predictions

regarding algorithm performance.
These predictions are often
disputed, sometimes wrong.

Particularly error-prone:
cryptanalytic extrapolations
from an academic computation
to a serious real-world attack.

We catch errors, resolve disputes
by carrying out experiments:
actually running these algorithms

on the largest scale we can.

1980s security evaluation:

"QS" factorization algorithm
costs 2190 to break RSA-1024.

1990 Pollard: new “NFS".

1991 Adleman: NFS
won't beat QS for RSA-1024.

Subsequent experiments =
NFS is much faster; maybe 2897

Algorithm analysis Is another

error-prone field of science.

Theoreticians make predictions

regarding algorithm performance.
These predictions are often
disputed, sometimes wrong.

Particularly error-prone:
cryptanalytic extrapolations
from an academic computation
to a serious real-world attack.

We catch errors, resolve disputes
by carrying out experiments:
actually running these algorithms

on the largest scale we can.

1980s security evaluation:

"QS" factorization algorithm
costs 2190 to break RSA-1024.

1990 Pollard: new “NFS".

1991 Adleman: NFS
won't beat QS for RSA-1024.

Subsequent experiments =
NFS is much faster; maybe 2897

Actual security of RSA-1024 is
still a matter of dispute: e.g.,
2009 Bos—Kaihara—Kleinjung—

Lenstra—Montgomery oppose
NIST's transition to RSA-2048.

m analysis Is another

ne field of science.

cians make predictions

o algorithm performance.
redictions are often
, sometimes wrong.

rly error-prone:

lytic extrapolations
academic computation
ous real-world attack.

h errors, resolve disputes
ng out experiments:
running these algorithms

argest scale we can.

1980s security evaluation:

"QS" factorization algorithm
costs 2100 to break RSA-1024.

1990 Pollard: new “NFS".

1991 Adleman: NFS
won't beat QS for RSA-1024.

Subsequent experiments =
NFS is much faster; maybe 2897

Actual security of RSA-1024 is
still a matter of dispute: e.g.,
2009 Bos—Kaihara—Kleinjung—

Lenstra—Montgomery oppose
NIST's transition to RSA-2048.

The att:

Enough

should r
on amol
required

But can
this amc

1S another
[science.

e predictions

n performance.
are often
es wrong.

rone:
\polations
computation
orld attack.

esolve disputes
periments:
1ese algorithms
e we can.

1980s security evaluation:

"QS" factorization algorithm
costs 2190 to break RSA-1024.

1990 Pollard: new “NFS".

1991 Adleman: NFS
won't beat QS for RSA-1024.

Subsequent experiments =
NFS is much faster; maybe 2897

Actual security of RSA-1024 is
still a matter of dispute: e.g.,
2009 Bos—Kaihara—Kleinjung—

Lenstra—Montgomery oppose
NIST's transition to RSA-2048.

The attacker's sug

Enough theory+e>
should reach conse
on amount of con
required to break .

But can the attacl
this amount of col

NS

dNCE.

1on

yutes

thms

1980s security evaluation:

"QS" factorization algorithm
costs 2100 to break RSA-1024.

1990 Pollard: new “NFS".

1991 Adleman: NFS
won't beat QS for RSA-1024.

Subsequent experiments =
NFS is much faster; maybe 2897

Actual security of RSA-1024 is
still a matter of dispute: e.g.,
2009 Bos—Kaihara—Kleinjung—
Lenstra—Montgomery oppose

NIST's transition to RSA-2048.

The attacker’'s supercomput

Enough theory+experiment
should reach consensus

on amount of computation
required to break a system.

But can the attacker perforr
this amount of computation

1980s security evaluation:

"QS" factorization algorithm
costs 2190 to break RSA-1024.

1990 Pollard: new “NFS".

1991 Adleman: NFS
won't beat QS for RSA-1024.

Subsequent experiments =
NFS is much faster; maybe 2897

Actual security of RSA-1024 is
still a matter of dispute: e.g.,
2009 Bos—Kaihara—Kleinjung—
Lenstra—Montgomery oppose

NIST's transition to RSA-2048.

The attacker’'s supercomputer

Enough theory+experiment
should reach consensus

on amount of computation
required to break a system.

But can the attacker perform
this amount of computation?

1980s security evaluation:

"QS" factorization algorithm
costs 2190 to break RSA-1024.

1990 Pollard: new “NFS".

1991 Adleman: NFS
won't beat QS for RSA-1024.

Subsequent experiments =
NFS is much faster; maybe 2897

Actual security of RSA-1024 is
still a matter of dispute: e.g.,
2009 Bos—Kaihara—Kleinjung—

Lenstra—Montgomery oppose
NIST's transition to RSA-2048.

The attacker’'s supercomputer

Enough theory+experiment
should reach consensus

on amount of computation
required to break a system.

But can the attacker perform
this amount of computation?

Hypothesize attacker resources.
This talk: $2 billion, 65MW.
Alternative: millions of

compromised Internet computers.

The interesting part: analyze
optimal use of those resources.

curity evaluation:

ctorization algori

thm

0 o break RSA-1024.

llard: new “NFS
leman: NFS

at QS for RSA-1024.

ent experiments

=

nuch faster; maybe 2807

ecurity of RSA-1
atter of dispute:

s—Kalhara—Kleinj

024 is

e.g.,
ung—

-Montgomery op

DOSE

ransition to RSA-2048.

The attacker’'s supercomputer

Enough theory+experiment
should reach consensus

on amount of computation
required to break a system.

But can the attacker perform
this amount of computation?

Hypothesize attacker resources.
This talk: $2 billion, 656MW.
Alternative: millions of

compromised Internet computers.

The interesting part: analyze
optimal use of those resources.

Commul

Bill Dall

“Commi

Mmore en:

luation:

1 algorithm
< RSA-1024.

“NFS”.

FS
RSA-1024.

ments =
r; maybe 2807

RSA-1024 is
Sspute: e.g.,
—Klelnjung—

ery oppose
to RSA-2048.

The attacker’'s supercomputer

Enough theory+experiment
should reach consensus

on amount of computation
required to break a system.

But can the attacker perform
this amount of computation?

Hypothesize attacker resources.
This talk: $2 billion, 65MW.
Alternative: millions of

compromised Internet computers.

The Interesting part: analyze
optimal use of those resources.

Communication vs

Bill Dally, 2013.06
“Communication 1
more energy than

4

The attacker’'s supercomputer

Enough theory+experiment

should reach consensus

on amount of computation

required to break a system.

But can the attacker perform

this amount of computation?

Hypothesize attacker resources.

T
A

compromised Internet computers.

nis talk: $2 bi

ternative: mil

lion, 6bMW.
lons of

The interesting part: analyze

optimal use of those resources.

Communication vs. arithmet

Bill Dally, 2013.06.17:
“Communication takes
more energy than arithmetic

The attacker’'s supercomputer Communication vs. arithmetic

Enough theory+experiment Bill Dally, 2013.06.17:
should reach consensus “Communication takes
on amount of computation more energy than arithmetic™.

required to break a system.

But can the attacker perform
this amount of computation?

Hypothesize attacker resources.
This talk: $2 billion, 65MW.
Alternative: millions of

compromised Internet computers.

The interesting part: analyze
optimal use of those resources.

The attacker’'s supercomputer

Enough theory+experiment
should reach consensus

on amount of computation
required to break a system.

But can the attacker perform
this amount of computation?

Hypothesize attacker resources.
This talk: $2 billion, 65MW.
Alternative: millions of

compromised Internet computers.

The interesting part: analyze
optimal use of those resources.

Communication vs. arithmetic

Bill Dally, 2013.06.17:
“Communication takes
more energy than arithmetic™.

Stephen S. Pawlowski,
2013.06.18: “The majority of
energy that we spend today
Is on transferring data.”

The attacker’'s supercomputer

Enough theory+experiment
should reach consensus

on amount of computation
required to break a system.

But can the attacker perform
this amount of computation?

Hypothesize attacker resources.
This talk: $2 billion, 65MW.
Alternative: millions of

compromised Internet computers.

The interesting part: analyze
optimal use of those resources.

Communication vs. arithmetic

Bill Dally, 2013.06.17:
“Communication takes
more energy than arithmetic™.

Stephen S. Pawlowski,
2013.06.18: “The majority of
energy that we spend today
Is on transferring data.”

Depends what you re doing!

Computations fundamentally vary
in amount of communication
(distance and volume)

and amount of arithmetic.

icker’s supercomputer

theory+experiment
each consensus

Int of computation
to break a system.

the attacker perform
unt of computation?

size attacker resources.
<: $2 billion, 656MW.
ive: millions of

nised Internet computers.

resting part: analyze
use of those resources.

Communication vs. arithmetic

Bill Dally, 2013.06.17:
“Communication takes
more energy than arithmetic™.

Stephen S. Pawlowski,
2013.06.18: “The majority of
energy that we spend today
is on transferring data.”

Depends what you re doing!

Computations fundamentally vary
in amount of communication
(distance and volume)

and amount of arithmetic.

Some al

Square r
n? arith

yercomputer Communication vs. arithmetic Some algorithms

(periment Bill Dally, 2013.06.17: Square matrix-vec
2NSus “Communication takes n? arithmetic.
putation more energy than arithmetic™.

A system. Stephen S. Pawlowski,

ker perform 2013.06.18: “The majority of

mputation? energy that we spend today

Is on transferring data.”
ker resources.

n, 6bMW. Depends what you 're doing!
ns of .
Computations fundamentally vary
‘net computers. . C

in amount of communication
rt: analyze (distance and volume)

Se resources. and amount of arithmetic.

er Communication vs. arithmetic Some algorithms using n? d

Bill Dally, 2013.06.17: Square matrix-vector produc
“Communication takes n? arithmetic.

more energy than arithmetic™.

Stephen S. Pawlowski,
n 2013.06.18: “The majority of
? energy that we spend today

o is on transferring data.”

Depends what you 're doing!
Computations fundamentally vary
uters. . L
in amount of communication
e (distance and volume)

es. and amount of arithmetic.

Communication vs. arithmetic Some algorithms using n? data:

Bill Dally, 2013.06.17: Square matrix-vector product:
“Communication takes n? arithmetic.

more energy than arithmetic™.

Stephen S. Pawlowski,
2013.06.18: “The majority of
energy that we spend today
Is on transferring data.”

Depends what you re doing!

Computations fundamentally vary
in amount of communication
(distance and volume)

and amount of arithmetic.

Communication vs. arithmetic Some algorithms using n? data:

Bill Dally, 2013.06.17: Square matrix-vector product:
“Communication takes n? arithmetic.

more energy than arithmetic’ . . .
&Y FFT for input size n?:

Stephen S. Pawlowski, n? lgn arithmetic.
2013.06.18: “The majority of
energy that we spend today
Is on transferring data.”

Depends what you re doing!

Computations fundamentally vary
in amount of communication
(distance and volume)

and amount of arithmetic.

Communication vs. arithmetic

Bill Dally, 2013.06.17:
“Communication takes
more energy than arithmetic™.

Stephen S. Pawlowski,
2013.06.18: “The majority of
energy that we spend today
Is on transferring data.”

Depends what you re doing!

Computations fundamentally vary
in amount of communication
(distance and volume)

and amount of arithmetic.

Some algorithms using n? data:

Square matrix-vector product:

n? arithmetic.

FFT for input size n?:

n? lgn arithmetic.

Matrix-matrix product:
typically n3 arithmetic
without Strassen etc.

Communication vs. arithmetic

Bill Dally, 2013.06.17:
“Communication takes
more energy than arithmetic™.

Stephen S. Pawlowski,
2013.06.18: “The majority of
energy that we spend today
Is on transferring data.”

Depends what you re doing!

Computations fundamentally vary
in amount of communication
(distance and volume)

and amount of arithmetic.

Some algorithms using n? data:

Square matrix-vector product:

n? arithmetic.

FFT for input size n?:

n? lgn arithmetic.

Matrix-matrix product:
typically n3 arithmetic
without Strassen etc.

Integrals in quantum chemistry,
many common Iterations,
graph algorithms, etc.:

n* arithmetic, sometimes more.

1ication vs. arithmetic

y, 2013.06.17:
Inication takes
ergy than arithmetic”.

S. Pawlowski,

18: “The majority of
hat we spend today
nsferring data.”

> what you re doing!

ations fundamentally vary
nt of communication

e and volume)

yunt of arithmetic.

Some algorithms using n? data:

Square matrix-vector product:

n? arithmetic.

FFT for input size n?:

n? lgn arithmetic.

Matrix-matrix product:
typically n3 arithmetic
without Strassen etc.

Integrals in quantum chemistry,
many common Iterations,

graph algorithms, etc.:
4

n~ arithmetic, sometimes more.

Chip are
IS enoug
all data

. arithmetic

17
-akes
arithmetic’ .

vsKi,
majority of

end today

Jata.”

're doing!

damentally vary
munication

me)

thmetic.

Some algorithms using n? data:

Square matrix-vector product:

n? arithmetic.

FFT for input size n?:

n? lgn arithmetic.

Matrix-matrix product:
typically n3 arithmetic
without Strassen etc.

Integrals in quantum chemistry,
many common Iterations,

graph algorithms, etc.:
4

n" arithmetic, sometimes more.

Chip area n2'¢

Is enough to store
all data for size-n

"
]

Hf

/ vary

Some algorithms using n? data:

Square matrix-vector product:

n? arithmetic.

FFT for input size n?:

n? lgn arithmetic.

Matrix-matrix product:
typically n3 arithmetic
without Strassen etc.

Integrals in quantum chemistry,
many common iterations,

graph algorithms, etc.:
n* arithmetic, sometimes more.

Chip area n2t¢
Is enough to store
all data for size-n? FFT.

Some algorithms using n? data:

Square matrix-vector product:

n? arithmetic.

FFT for input size n?:

n? lgn arithmetic.

Matrix-matrix product:
typically n3 arithmetic
without Strassen etc.

Integrals in quantum chemistry,
many common Iterations,

graph algorithms, etc.:
n* arithmetic, sometimes more.

Chip area n2'¢

Is enough to store
all data for size-n? FFT.

Some algorithms using n? data:

Square matrix-vector product:

n? arithmetic.

FFT for input size n?:

n? lgn arithmetic.

Matrix-matrix product:
typically n3 arithmetic
without Strassen etc.

Integrals in quantum chemistry,
many common Iterations,

graph algorithms, etc.:
4

n" arithmetic, sometimes more.

Chip area n2'¢

Is enough to store
all data for size-n? FFT.

Chip area n2t¢
s also enough for
n? parallel ALUs.

Some algorithms using n? data: Chip area n?t€

Is enough to store

Square matrix-vector product: 5
all data for size-n“ FFT.

n? arithmetic.

5 Chip area n°t¢

FFT for input size n |
is also enough for

n? lgn arithmetic. ,
n* parallel ALUs.

Matrix-matrix product: |
FFT takes time n¢,
thanks to parallelism? No!

Routing the FFT data
Integrals in quantum chemistry, occupies area n2te

typically n3 arithmetic
without Strassen etc.

many common iterations, for time nlte.

graph algorithms, etc.:

n* arithmetic, sometimes more.

Some algorithms using n? data:

Square matrix-vector product:

n? arithmetic.

FFT for input size n?:

n? lgn arithmetic.

Matrix-matrix product:
typically n3 arithmetic
without Strassen etc.

Integrals in quantum chemistry,
many common Iterations,

graph algorithms, etc.:
4

n" arithmetic, sometimes more.

Chip area n2'¢

Is enough to store
all data for size-n? FFT.

Chip area n2t¢
s also enough for
n? parallel ALUs.

FFT takes time n¢,
thanks to parallelism? No!

Routing the FFT data

occupies area n2te

for time nlte.

1981 Brent-Kung: need nlte

even without wire delays.

sorithms using n? data:

natrix-vector product:
metic.

Input size n?:

rithmetic.

natrix product:
n3 arithmetic

Strassen etc.

 In quantum chemistry,
mmon Iterations,
gorithms, etc.:

metic, sometimes more.

Chip area n2t¢

Is enough to store
all data for size-n? FFT.

Chip area n2t€

s also enough for
n? parallel ALUs.

FFT takes time n¢,
thanks to parallelism? No!

Routing the FFT data

occupies area n2te

for time nlT¢.

1981 Brent—-Kung: need nlte

even without wire delays.

Chip are
IS enoug
several 1

Routing
occuples
for time

Typical -
also occ
for time

Closer Ic
the ALU
althoug}

Ising n? data:

tor product:

duct:
1etic
{C.

Im chemistry,
rations,
etc.:

1etimes more.

Chip area n2'¢

Is enough to store
all data for size-n? FFT.

Chip area n2t¢
s also enough for
n? parallel ALUs.

FFT takes time n¢,
thanks to parallelism? No!

Routing the FFT data

occupies area n2te

for time nlte.

1981 Brent-Kung: need nlte

even without wire delays.

Chip area n2'¢

Is enough to store
several n X n mat

Routing matrix pr:
occupies area n2T
for time nite.

Typical n3 arithms
also occupies n? /

for time nlte.

Closer look at e:
the ALU cost dorr
although not by mr

ata: Chip area n?t€ Chip area n?t€
+ Is enough to store Is enough to store
- all data for size-n? FFT. several n X n matrices.
Chip area n?t¢ Routing matrix product
is also enough for occupies area n2te
n? parallel ALUs. for time nite.
FFT takes time n¢, Typical n3 arithmetic
thanks to parallelism? No! also occupies n2 ALUs
Routing the FFT data for time nite.
try, occupies area n2te
) .p |te Closer look at e:
or time n . .
the ALU cost dominates,
e 1981 Brent—-Kung: need nlte although not by much.
| even without wire delays.

Chip area n2'¢

Is enough to store
all data for size-n? FFT.

Chip area n2t¢

s also enough for
n? parallel ALUs.

FFT takes time n¢,
thanks to parallelism? No!

Routing the FFT data

occupies area n2te

for time nlte.

Chip area n2'¢
Is enough to store
several n X n matrices.

Routing matrix product
occupies area n2te
for time nite.

Typical n3 arithmetic
also occupies n? ALUs

for time nlte.

Closer look at e:

the ALU cost dominates,

1981 Brent-Kung: need nlte although not by much.

even without wire delays.

a n2+6

h to store
for size-n? FFT.

a n2+€

nough for
lel ALUs.

es time n¢
o parallelism? No!

the FFT data

area n2te

,n1+e_

ont—Kung: need nlte
hout wire delays.

Chip area n2t¢
Is enough to store
several n X n matrices.

Routing matrix product
occupies area n2te
for time nite.

Typical n3 arithmetic
also occupies n2 ALUs

for time nlT¢€.

Closer look at e:
the ALU cost dominates,
although not by much.

>90% o
of typic:
IS spent

<10% o
s Bluffd

1\

FFT.

sm? No!
Jata

need nlt¢

delays.

Chip area n2'¢

Is enough to store
several n X n matrices.

Routing matrix product
occupies area n2te
for time nite.

Typical n3 arithmetic
also occupies n? ALUs

for time nlte.

Closer look at e:

the ALU cost dominates,

although not by much.

>00% of the cost
of typical supercotr
IS spent on commi

<10% on ALUs.
Is Bluffdale built t

e

Chip area n2t¢
Is enough to store
several n X n matrices.

Routing matrix product
occupies area n2te
for time nite.

Typical n3 arithmetic
also occupies n2 ALUs

for time nlT¢.

Closer look at e:
the ALU cost dominates,
although not by much.

>00% of the cost
of typical supercomputers
IS spent on communication;

<10% on ALUs.

Is Bluffdale built this way?

Chip area n2'¢

Is enough to store
several n X n matrices.

Routing matrix product
occupies area n2te
for time nite.

Typical n3 arithmetic
also occupies n? ALUs

for time nlte.

Closer look at e:

the ALU cost dominates,

although not by much.

>00% of the cost
of typical supercomputers
IS spent on communication;

<10% on ALUs.

Is Bluffdale built this way?

Chip area n?t€ >90% of the cost
IS enough to store of typical supercomputers
several n X n matrices. IS spent on communication;

0

occupies area n2te Is Bluffdale built this way?
for time nite. No; NSA is not stupid.
Typical n3 arithmetic Doubling number of ALUs
also occupies n? ALUs would cost <10% extra.

for time nite. Would ~double performance

of matrix-matrix product
Closer look at e: P

the ALU cost dominates,
although not by much. NSA’s computations have a mix

and heavier-arith computations.

of heavy arith and heavy comm.

a n2+6

h to store
1 X 1 matrices.

matrix product

area nlte
nlte.

n3 arithmetic

upies n2 ALUs

,n1+e_

ok at e:

' cost dominates,

' not by much.

>00% of the cost
of typical supercomputers
IS spent on communication;

<10% on ALUs.

Is Bluffdale built this way?
No; NSA is not stupid.

Doubling number of ALUs

would cost <10% extra.

Would ~double performance
of matrix-matrix product

and heavier-arith computations.

NSA's computations have a mix
of heavy arith and heavy comm.

GPUs h:
but relat

commun

a few lo

Is Bluffa

rices.

oduct

otic
\LUs

inates,
wuch.

>00% of the cost
of typical supercomputers
IS spent on communication;

<10% on ALUs.

Is Bluffdale built this way?
No; NSA is not stupid.

Doubling number of ALUs

would cost <10% extra.

Would ~double performance
of matrix-matrix product

and heavier-arith computations.

NSA's computations have a mix
of heavy arith and heavy comm.

GPUs have many
but relatively little
communication ca
a few long wires t

Is Bluffdale built t

>00% of the cost
of typical supercomputers
IS spent on communication;

<10% on ALUs.

Is Bluffdale built this way?
No; NSA is not stupid.

Doubling number of ALUs

would cost <10% extra.

Would ~double performance
of matrix-matrix product

and heavier-arith computations.

NSA's computations have a mix
of heavy arith and heavy comm.

GPUs have many ALUs
but relatively little
communication capacity:
a few long wires to RAM.

Is Bluffdale built this way?

>00% of the cost
of typical supercomputers
IS spent on communication;

<10% on ALUs.

Is Bluffdale built this way?
No; NSA is not stupid.

Doubling number of ALUs

would cost <10% extra.

Would ~double performance
of matrix-matrix product

and heavier-arith computations.

NSA's computations have a mix
of heavy arith and heavy comm.

GPUs have many ALUs
but relatively little
communication capacity:
a few long wires to RAM.

Is Bluffdale built this way?

>00% of the cost
of typical supercomputers
IS spent on communication;

<10% on ALUs.

Is Bluffdale built this way?
No; NSA is not stupid.

Doubling number of ALUs

would cost <10% extra.

Would ~double performance
of matrix-matrix product

and heavier-arith computations.

NSA's computations have a mix
of heavy arith and heavy comm.

GPUs have many ALUs

but relatively little
communication capacity:
a few long wires to RAM.

Is Bluffdale built this way?
No; NSA is not stupid.

Adding communication
between adjacent ALUs
would cost very little.
Would drastically speed up
matrix-matrix product

and heavier-comm computations:
FFT, sorting, etc.

f the cost
| supercomputers

on communication;
n ALUs.

ale built this way?
\ Is not stupid.

> number of ALUs

st <10% extra.
sdouble performance
x-matrix product
vier-arith computations.

omputations have a mix
arith and heavy comm.

GPUs have many ALUs
but relatively little
communication capacity:
a few long wires to RAM.

Is Bluffdale built this way?
No; NSA is not stupid.

Adding communication
between adjacent ALUs
would cost very little.
Would drastically speed up
matrix-matrix product

and heavier-comm computations:

FFT, sorting, etc.

Docume
Intel Xe
and a fe
plus ad|

commun

Is Bluffa

mputers
inication;

his way?
upid.

of ALUs
extra.

srformance
roduct
“omputations.

ns have a mix
heavy comm.

GPUs have many ALUs

but relatively little
communication capacity:
a few long wires to RAM.

Is Bluffdale built this way?
No; NSA is not stupid.

Adding communication
between adjacent ALUs
would cost very little.
Would drastically speed up
matrix-matrix product

and heavier-comm computations:

FFT, sorting, etc.

Documentation te
Intel Xeon Phi has
and a few long wi
plus adjacent one
communication (ri

Is Bluffdale built t

v

ns.
mix

nm.

GPUs have many ALUs
but relatively little
communication capacity:
a few long wires to RAM.

Is Bluffdale built this way?
No; NSA is not stupid.

Adding communication
between adjacent ALUs
would cost very little.
Would drastically speed up
matrix-matrix product

and heavier-comm computations:

FFT, sorting, etc.

Documentation tells me tha
Intel Xeon Phi has many Al
and a few long wires to RAI
plus adjacent one-dimensior
communication (ring bus).

Is Bluffdale built this way?

GPUs have many ALUs
but relatively little
communication capacity:
a few long wires to RAM.

Is Bluffdale built this way?
No; NSA is not stupid.

Adding communication
between adjacent ALUs
would cost very little.
Would drastically speed up
matrix-matrix product

and heavier-comm computations:

FFT, sorting, etc.

Documentation tells me that
Intel Xeon Phi has many ALUs
and a few long wires to RAM
plus adjacent one-dimensional
communication (ring bus).

Is Bluffdale built this way?

GPUs have many ALUs

but relatively little
communication capacity:
a few long wires to RAM.

Is Bluffdale built this way?
No; NSA is not stupid.

Adding communication
between adjacent ALUs
would cost very little.
Would drastically speed up
matrix-matrix product

and heavier-comm computations:

FFT, sorting, etc.

Documentation tells me that
Intel Xeon Phi has many ALUs
and a few long wires to RAM
plus adjacent one-dimensional
communication (ring bus).

Is Bluffdale built this way?
No: NSA is not stupid.

Adding two-dimensional grid
would drastically speed up
heavy-comm computations.
e.g. 1977 Thompson—Kung.

Grid examples: MasPar; FPGAs.
But FPGAs have other problems.

ave many ALUs
Ively little
Ication capacity:
ng wires to RAM.

ale built this way?
\ Is not stupid.

communication

1 adjacent ALUs
st very little.
rastically speed up
natrix product

vier-comm computations:

ting, etc.

Documentation tells me that
Intel Xeon Phi has many ALUs
and a few long wires to RAM
plus adjacent one-dimensional
communication (ring bus).

Is Bluffdale built this way?
No; NSA is not stupid.

Adding two-dimensional grid
would drastically speed up
heavy-comm computations.
e.g. 1977 Thompson—Kung.

Grid examples: MasPar; FPGAs.
But FPGAs have other problems.

Save eve
with 3D
e.g. 198

Huge en

2D allow

energy 1

up to ve
3D 1s ha

Some lir
(most in
presuma
Progress
e.g., 4 x
is often

ALUs

pacity:
o RAM.

his way?
upid.

ation

t ALUs
tle.
speed up
Juct

computations:

Documentation tells me that
Intel Xeon Phi has many ALUs
and a few long wires to RAM
plus adjacent one-dimensional
communication (ring bus).

Is Bluffdale built this way?
No: NSA is not stupid.

Adding two-dimensional grid
would drastically speed up
heavy-comm computations.
e.g. 1977 Thompson—Kung.

Grid examples: MasPar; FPGAs.
But FPGAs have other problems.

Save even more ti

with 3D arrangem
e.g. 1983 Rosenbe

Huge engineering

2D allows easy sc:
energy input, heat
up to very large cl
3D is hard to scal

Some limited prog
(most interesting:
presumably used &
Progress often exz
e.g., 4 x 16384 X
is often called “3L

F10NS:

Documentation tells me that
Intel Xeon Phi has many ALUs
and a few long wires to RAM
plus adjacent one-dimensional
communication (ring bus).

Is Bluffdale built this way?
No; NSA is not stupid.

Adding two-dimensional grid
would drastically speed up
heavy-comm computations.
e.g. 1977 Thompson—Kung.

Grid examples: MasPar; FPGAs.
But FPGAs have other problems.

Save even more time
with 3D arrangement of ALl
e.g. 1983 Rosenberg.

Huge engineering challenge.

2D allows easy scaling of
energy input, heat output
up to very large chip area.
3D is hard to scale.

Some limited progress
(most interesting: optics),
presumably used by NSA.
Progress often exaggerated:
e.g., 4 x 16334 x 16334

is often called "3D".

Documentation tells me that
Intel Xeon Phi has many ALUs
and a few long wires to RAM
plus adjacent one-dimensional
communication (ring bus).

Is Bluffdale built this way?
No: NSA is not stupid.

Adding two-dimensional grid
would drastically speed up
heavy-comm computations.
e.g. 1977 Thompson—Kung.

Grid examples: MasPar; FPGAs.
But FPGAs have other problems.

Save even more time
with 3D arrangement of ALUs?
e.g. 1983 Rosenberg.

Huge engineering challenge.

2D allows easy scaling of
energy input, heat output
up to very large chip area.
3D is hard to scale.

Some limited progress
(most interesting: optics),
presumably used by NSA.
Progress often exaggerated:
e.g., 4 x 16384 x 16334

is often called “3D".

ntation tells me that
on Phi has many ALUs
w long wires to RAM
acent one-dimensional
ication (ring bus).

ale built this way?
\ Is not stupid.

two-dimensional grid
-astically speed up
ymm computations.

7 Thompson—Kung.

mples: MasPar; FPGAs.
5As have other problems.

Save even more time
with 3D arrangement of ALUs?
e.g. 1983 Rosenberg.

Huge engineering challenge.

2D allows easy scaling of
energy Iinput, heat output
up to very large chip area.
3D is hard to scale.

Some limited progress
(most interesting: optics),
presumably used by NSA.
Progress often exaggerated:
e.g., 4 x 16334 x 16334

is often called "3D".

Special

Typical
between
better p
from AS

MaSS-Mc

Some ex

ASICs b

lIs me that

> many ALUs
es to RAM
-dimensional
ng bus).

his way?
upid.

nsional grid
peed up
yutations.
on—Kung.

asPar: FPGAs.
bther problems.

Save even more time
with 3D arrangement of ALUs?
e.g. 1983 Rosenberg.

Huge engineering challenge.

2D allows easy scaling of
energy input, heat output
up to very large chip area.
3D is hard to scale.

Some limited progress
(most interesting: optics),
presumably used by NSA.
Progress often exaggerated:
e.g., 4 x 16384 x 16334

is often called “3D".

Special vs. genera

Typical cryptanaly
between 100X anc
better performanc
from ASICs than f

mass-market CPU

Some exceptions,
ASICs bring massi

Us

al

id

GAs.

lems.

Save even more time
with 3D arrangement of ALUs?
e.g. 1983 Rosenberg.

Huge engineering challenge.

2D allows easy scaling of
energy Iinput, heat output
up to very large chip area.
3D is hard to scale.

Some limited progress
(most interesting: optics),
presumably used by NSA.
Progress often exaggerated:
e.g., 4 x 16334 x 16334

is often called "3D".

Special vs. general purpose

Typical cryptanalytic arith:
between 100x and 1000 x
better performance per tran
from ASICs than from
mass-market CPUs, GPUs.

Some exceptions, but overal
ASICs bring massive speedu

Save even more time
with 3D arrangement of ALUs?
e.g. 1983 Rosenberg.

Huge engineering challenge.

2D allows easy scaling of
energy input, heat output
up to very large chip area.
3D is hard to scale.

Some limited progress
(most interesting: optics),
presumably used by NSA.
Progress often exaggerated:
e.g., 4 x 16334 x 16334

is often called “3D".

Special vs. general purpose

Typical cryptanalytic arith:
between 100x and 1000 x

better performance per transistor
from ASICs than from
mass-market CPUs, GPUs.

Some exceptions, but overall
ASICs bring massive speedup.

Save even more time
with 3D arrangement of ALUs?
e.g. 1983 Rosenberg.

Huge engineering challenge.

2D allows easy scaling of
energy input, heat output
up to very large chip area.
3D is hard to scale.

Some limited progress
(most interesting: optics),
presumably used by NSA.
Progress often exaggerated:
e.g., 4 x 16334 x 16334

is often called “3D".

Special vs. general purpose

Typical cryptanalytic arith:
between 100x and 1000 x

better performance per transistor
from ASICs than from
mass-market CPUs, GPUs.

Some exceptions, but overall
ASICs bring massive speedup.

Only in cryptanalysis? No.
Estimated ASIC improvement
from preliminary scan of other
supercomputing arith problems:
usually >10x, often >100x.

n more time
arrangement of ALUs?
3 Rosenberg.

gineering challenge.

/s easy scaling of
1put, heat output
ry large chip area.
rd to scale.

nited progress
teresting: optics),
bly used by NSA.
 often exaggerated:
16384 x 163384
called “3D".

Special vs. general purpose

Typical cryptanalytic arith:
between 100x and 1000 x

better performance per transistor
from ASICs than from
mass-market CPUs, GPUs.

Some exceptions, but overall
ASICs bring massive speedup.

Only in cryptanalysis? No.
Estimated ASIC improvement
from preliminary scan of other
supercomputing arith problems:
usually >10x, often >100x.

Frequen
chips sp
on deco

= CPU
reduce 1
by addir

apply sa
to multi

me

ent of ALUs?
rg.

challenge.

ling of
output
1Ip area.

o)

ress
optics),

y NSA.

ggerated:

16334
)

Special vs. general purpose

Typical cryptanalytic arith:
between 100x and 1000 x

better performance per transistor
from ASICs than from
mass-market CPUs, GPUs.

Some exceptions, but overall

ASICs bring massive speedup.

Only in cryptanalysis? No.
Estimated ASIC improvement
from preliminary scan of other
supercomputing arith problems:
usually >10x, often >100x.

Frequent observat

chips spend area,
on decoding+sche

= CPU/GPU des
reduce Insn-handli
by adding vectoriz
apply same instruc
to multiple data/t

Js?

Special vs. general purpose

Typical cryptanalytic arith:
between 100x and 1000 x

better performance per transistor
from ASICs than from
mass-market CPUs, GPUs.

Some exceptions, but overall
ASICs bring massive speedup.

Only in cryptanalysis? No.
Estimated ASIC improvement
from preliminary scan of other
supercomputing arith problems:
usually >10x, often >100x.

Frequent observation:
chips spend area, time, ener
on decoding+scheduling ins

= CPU/GPU design trend:
reduce insn-handling cost
by adding vectorization—
apply same instruction

to multiple data/threads.

Special vs. general purpose

Typical cryptanalytic arith:
between 100x and 1000 x

better performance per transistor
from ASICs than from
mass-market CPUs, GPUs.

Some exceptions, but overall
ASICs bring massive speedup.

Only in cryptanalysis? No.
Estimated ASIC improvement
from preliminary scan of other
supercomputing arith problems:
usually >10x, often >100x.

Frequent observation:

chips spend area, time, energy
on decoding-+scheduling insns.

= CPU/GPU design trend:
reduce insn-handling cost
by adding vectorization—
apply same instruction

to multiple data/threads.

Special vs. general purpose

Typical cryptanalytic arith:
between 100x and 1000 x

better performance per transistor

from ASICs than from
mass-market CPUs, GPUs.

Some exceptions, but overall
ASICs bring massive speedup.

Only in cryptanalysis? No.
Estimated ASIC improvement
from preliminary scan of other

supercomputing arith problems:

usually >10x, often >100x.

Frequent observation:

chips spend area, time, energy
on decoding-+scheduling insns.

= CPU/GPU design trend:
reduce insn-handling cost
by adding vectorization—
apply same instruction

to multiple data/threads.

But this does nothing

to reduce costs of
reading data from reg file,
writing data to reg file.

vS. general purpose

cryptanalytic arith:
100x and 1000 x
erformance per transistor

|1Cs than from
rket CPUs, GPUs.

ceptions, but overall
ring massive speedup.

cryptanalysis? No.

d ASIC improvement
liminary scan of other
nputing arith problems:
>10x, often >100x.

Frequent observation:
chips spend area, time, energy

on decoding-+scheduling insns.

= CPU/GPU design trend:
reduce insn-handling cost
by adding vectorization—
apply same instruction

to multiple data/threads.

But this does nothing

to reduce costs of
reading data from reg file,
writing data to reg file.

Obvious
reduce t
combine
doing m
between

Example
to comp

CPU rec
compute

With sej
CPU rec
writes; r

compute

| purpose

tic arith:

] 1000 x

e per transistor
rom

s, GPUs.

but overall
ve speedup.

sis? No.
nprovement
can of other
1th problems:
en >100x.

Frequent observation:

chips spenc

on decoding-+scheduling insns.

area, time, energy

= CPU/GPU design trend:
reduce insn-handling cost

by adding vectorization—

apply same instruction

to multiple data/threads.

But this does nothing

to reduce costs of

reading data from reg file,

writing data to reg file.

Obvious strategy t
reduce these reg ¢
combine arith ope
doing more arith

between read and

Example: Build ci
to compute Y + .
CPU reads regs z,
computes zy + z;

With separate mul
CPU reads z, y; c
writes: reads back
computes zy + 2;

Frequent observation: Obvious strategy to

chips spend area, time, energy reduce these reg costs:
on decoding+scheduling insns. combine arith operations,
. . | ith
sistor = CPU/GPU design trend: doing more arit

. . between read and write.
reduce insn-handling cost

by adding vectorization— Example: Build circuit
| apply same instruction to compute zy + z.
to multiple data/threads. CPU reads regs z, v, z;
) But this does nothing computes Ty + z; writes.
t to reduce costs of With separate mul, add:
or reading data from reg file, CPU reads z, y; computes z
e writing data to reg file. writes; reads back; reads z;

computes Ty + z; writes.

Frequent observation:

chips spend area, time, energy

on decoding-+scheduling insns.

= CPU/GPU design trend:
reduce insn-handling cost
by adding vectorization—
apply same instruction

to multiple data/threads.

But this does nothing

to reduce costs of
reading data from reg file,
writing data to reg file.

Obvious strategy to
reduce these reg costs:
combine arith operations,
doing more arith

between read and write.

Example: Build circuit
to compute Y + 2.

CPU reads regs z, v, z;
computes zy + z; writes.

With separate mul, add:

CPU reads z, y; computes zy;
writes; reads back; reads z;
computes Ty + z; writes.

t observation:
end area, time, energy

ding+scheduling insns.

/GPU design trend:
1sn-handling cost
g vectorization—
me Instruction

ple data/threads.

does nothing

e costs of

data from reg file,
lata to reg file.

Obvious strategy to
reduce these reg costs:
combine arith operations,
doing more arith

between read and write.

Example: Build circuit
to compute zy + 2.

CPU reads regs z, v, z;
computes zy + z; writes.

With separate mul, add:

CPU reads z, y; computes zy;
writes; reads back; reads z;
computes Ty + z; writes.

Commot
evolved

Chip des
single-pr
eventual
circuit f

jon:
time, energy

duling insns.

gn trend:
ng cost
ation—
“tion
hreads.

1INg

reg file,
r file.

Obvious strategy to
reduce these reg costs:
combine arith operations,
doing more arith

between read and write.

Example: Build circuit
to compute Yy + 2.

CPU reads regs z, v, z;
computes zy + z; writes.

With separate mul, add:

CPU reads z, y; computes zvy;
writes; reads back; reads z;
computes Ty + z; writes.

Common fp opera
evolved In this wa

Chip designer saw
single-precision fp
eventually spent a
circuit for those m

gy

NS.

Obvious strategy to
reduce these reg costs:
combine arith operations,
doing more arith

between read and write.

Example: Build circuit
to compute Yy + 2.

CPU reads regs z, v, z;
computes zy + z; writes.

With separate mul, add:

CPU reads z, y; computes zy;

writes: reads back: reads z:
computes Ty + z; writes.

Common fp operations
evolved in this way.

Chip designer saw many
single-precision fp muls,
eventually spent area on
circuit for those muls.

Obvious strategy to Common fp operations
reduce these reg costs: evolved in this way.
combine arith operations,

| | Chip designer saw many
doing more arith

| single-precision fp muls,
between read and write.
eventually spent area on
Example: Build circuit circuit for those muls.
to compute Yy + 2.
CPU reads regs z, v, z;

computes zy + z; writes.

With separate mul, add:

CPU reads z, y; computes zy;
writes; reads back; reads z;
computes Ty + z; writes.

Obvious strategy to
reduce these reg costs:
combine arith operations,
doing more arith

between read and write.

Example: Build circuit
to compute Yy + 2.

CPU reads regs z, v, z;
computes zy + z; writes.

With separate mul, add:

CPU reads z, y; computes zy;
writes; reads back; reads z;
computes Ty + z; writes.

Common fp operations
evolved in this way.

Chip designer saw many
single-precision fp muls,
eventually spent area on
circuit for those muls.

Then spent much more area
to expand the multiplier
to double-precision fp.

Obvious strategy to
reduce these reg costs:
combine arith operations,
doing more arith

between read and write.

Example: Build circuit
to compute Yy + 2.

CPU reads regs z, v, z;
computes zy + z; writes.

With separate mul, add:

CPU reads z, y; computes zy;
writes; reads back; reads z;
computes Ty + z; writes.

Common fp operations
evolved in this way.

Chip designer saw many
single-precision fp muls,
eventually spent area on
circuit for those muls.

Then spent much more area
to expand the multiplier
to double-precision fp.

But people still run many
single-precision computations.
The multiplier transistors are
mostly sitting idle.

strategy to

hese reg costs:
arith operations,
ore arith

read and write.

: Build circuit
ute zy + 2.

ds regs =, v, 2;
s TY + Z; writes.

yarate mul, add:

ds z, y; computes zy;
eads back; reads z;

s TY + z; writes.

Common fp operations
evolved in this way.

Chip designer saw many
single-precision fp muls,
eventually spent area on
circuit for those muls.

Then spent much more area
to expand the multiplier
to double-precision fp.

But people still run many

single-precision computations.

The multiplier transistors are
mostly sitting idle.

Another
Your ap|
mul-sub-

In 1ts Inr

Should (
include |
4 separa

0
Osts:
rations,

write.

rcult
2.

Y, 2,
writes.

|, add:
omputes zy;
' reads z;
writes.

Common fp operations
evolved In this way.

Chip designer saw many
single-precision fp muls,
eventually spent area on
circuit for those muls.

Then spent much more area
to expand the multiplier
to double-precision fp.

But people still run many

single-precision computations.

The multiplier transistors are
mostly sitting idle.

Another example:
Your application d
mul-sub-sub-sub-s
In its inner loop.

Should CPU desig
iInclude mul circuit

4 separate sub cir¢

Common fp operations
evolved in this way.

Chip designer saw many
single-precision fp muls,
eventually spent area on
circuit for those muls.

Then spent much more area
to expand the multiplier
to double-precision fp.

But people still run many

single-precision computations.

The multiplier transistors are
mostly sitting idle.

Another example:
Your application does
mul-sub-sub-sub-sub
In I1ts inner loop.

Should CPU designer
include mul circult,
4 separate sub circuits?

Common fp operations
evolved In this way.

Chip designer saw many
single-precision fp muls,
eventually spent area on
circuit for those muls.

Then spent much more area
to expand the multiplier
to double-precision fp.

But people still run many

single-precision computations.

The multiplier transistors are
mostly sitting idle.

Another example:
Your application does
mul-sub-sub-sub-sub
In its inner loop.

Should CPU designer
include mul circuit,
4 separate sub circuits?

Common fp operations
evolved In this way.

Chip designer saw many
single-precision fp muls,
eventually spent area on
circuit for those muls.

Then spent much more area
to expand the multiplier
to double-precision fp.

But people still run many

single-precision computations.

The multiplier transistors are
mostly sitting idle.

Another example:
Your application does
mul-sub-sub-sub-sub
In its inner loop.

Should CPU designer

include mul circuit,
4 separate sub circuits?

Same CPU then runs
another application.
Subtraction circuits are
mostly sitting idle.

Common fp operations
evolved In this way.

Chip designer saw many
single-precision fp muls,
eventually spent area on
circuit for those muls.

Then spent much more area
to expand the multiplier
to double-precision fp.

But people still run many

single-precision computations.

The multiplier transistors are
mostly sitting idle.

Another example:
Your application does
mul-sub-sub-sub-sub
In its inner loop.

Should CPU designer

include mul circuit,
4 separate sub circuits?

Same CPU then runs
another application.
Subtraction circuits are
mostly sitting idle.

CPU designer says no,
reduces area per core.

= Your application runs slowly.

1 fp operations
in this way.

igner saw many
ecision fp muls,
ly spent area on
or those muls.

ent much more area
\d the multiplier
e-precision fp.

ple still run many

ecision computations.

tiplier transistors are
sitting idle.

Another example:
Your application does
mul-sub-sub-sub-sub
In I1ts inner loop.

Should CPU designer
include mul circuit,

4 separate sub circuits?

Same CPU then runs
another application.
Subtraction circuits are
mostly sitting idle.

CPU designer says no,
reduces area per core.
= Your application runs slowly.

Many Al
beyond
e Squari

than r
e Skip n
e Reduc

what |

e Add v

if appl
e ctcC.

tions
.

many
muls,
rea on
uls.

more area
tiplier
1 fp.

n many

mputations.

1sistors are
e.

Another example:
Your application does
mul-sub-sub-sub-sub
In its inner loop.

Should CPU designer

include mul circuit,
4 separate sub circuits?

Same CPU then runs
another application.
Subtraction circuits are
mostly sitting idle.

CPU designer says no,
reduces area per core.
= Your application runs slowly.

Many ASIC fp spe
beyond today's CF
e Squaring is chea

than multiplicat
e Skip most norm
e Reduce precisior

what Is actually
e Add very fast sq

if application ne
® ctcC.

S.

Another example:
Your application does
mul-sub-sub-sub-sub
In I1ts inner loop.

Should CPU designer
include mul circuit,

4 separate sub circuits?

Same CPU then runs
another application.
Subtraction circuits are
mostly sitting idle.

CPU designer says no,
reduces area per core.
= Your application runs slowly.

Many ASIC fp speec

beyond today's CPL

ups

s/GPUs

e Squaring is cheaper

than multiplication.

e Skip most normalizations.

e Reduce precision to

what Is actually needed.

e Add very fast sqrt

if application needs it.

® ctcC.

Another example:
Your application does
mul-sub-sub-sub-sub
In its inner loop.

Should CPU designer
include mul circuit,

4 separate sub circuits?

Same CPU then runs
another application.
Subtraction circuits are
mostly sitting idle.

CPU designer says no,
reduces area per core.
= Your application runs slowly.

Many ASIC fp speedups

beyond today's CPL

s/GPUs:

e Squaring is cheaper

than multiplication.

e Skip most normalizations.

e Reduce precision to

what Is actually needed.

e Add very fast sqrt

if application needs it.

® ctcC.

Another example:
Your application does
mul-sub-sub-sub-sub
In its inner loop.

Should CPU designer

include mul circuit,
4 separate sub circuits?

Same CPU then runs
another application.
Subtraction circuits are
mostly sitting idle.

CPU designer says no,
reduces area per core.
= Your application runs slowly.

Many ASIC fp speedups
beyond today's CPUs/GPUs:
e Squaring is cheaper

than multiplication.
e Skip most normalizations.
e Reduce precision to

what Is actually needed.
e Add very fast sqrt

if application needs it.
® ctcC.

Cryptanalysis involves
many multiplications

but also a much wider
variety of operations.

Even larger ASIC speedups.

example:
olication does
-sub-sub-sub
er loop.

_PU designer
mul circuit,

te sub circuits?

°U then runs
application.
Ion circults are
sitting idle.

Signer says no,
area per core.

application runs slowly:.

Many ASIC fp speedups

beyond today's CPUs/GPUs:

e Squaring is cheaper

than multiplication.
e Skip most normalizations.
e Reduce precision to

what Is actually needed.
e Add very fast sqrt

if application needs it.
® etcC.

Cryptanalysis involves
many multiplications

but also a much wider
variety of operations.

Even larger ASIC speedups.

So NSA
for each

The sm:
ASIC de
Not a se
for $2 bi

oes
ub

ner

“ults’?

Ins

S are
e.

' NO,
ore.

n runs slowly.

Many ASIC fp speedups

beyond today's CPUs/GPUs:

e Squaring is cheaper

than multiplication.
e Skip most normalizations.
e Reduce precision to

what Is actually needed.
e Add very fast sqrt

if application needs it.
® ctcC.

Cryptanalysis involves
many multiplications

but also a much wider
variety of operations.

Even larger ASIC speedups.

So NSA builds AS
for each applicatic

The small problen
ASIC design effort
Not a serious issue
for $2 billion.

wly.

Many ASIC fp speedups

beyond today's CPUs/GPUs:

e Squaring is cheaper

than multiplication.
e Skip most normalizations.
e Reduce precision to

what Is actually needed.
e Add very fast sqrt

if application needs it.
® etcC.

Cryptanalysis involves
many multiplications

but also a much wider
variety of operations.

Even larger ASIC speedups.

So NSA builds ASICs
for each application?

The small problem:
ASIC design effort.
Not a serious Issue
for $2 billion.

Many ASIC fp speedups

beyond today's CPUs/GPUs:

e Squaring is cheaper

than multiplication.
e Skip most normalizations.
e Reduce precision to

what Is actually needed.
e Add very fast sqrt

if application needs it.
® ctcC.

Cryptanalysis involves
many multiplications

but also a much wider
variety of operations.

Even larger ASIC speedups.

So NSA builds ASICs
for each application?

The small problem:
ASIC design effort.
Not a serious Issue
for $2 billion.

Many ASIC fp speedups

beyond today's CPUs/GPUs:

e Squaring is cheaper

than multiplication.
e Skip most normalizations.
e Reduce precision to

what Is actually needed.
e Add very fast sqrt

if application needs it.
® ctcC.

Cryptanalysis involves
many multiplications

but also a much wider
variety of operations.

Even larger ASIC speedups.

So NSA builds ASICs
for each application?

The small problem:
ASIC design effort.
Not a serious Issue
for $2 billion.

The big problem:
Unpredictable application mix.

NSA will want some agility
to adapt to new computations
and stop old computations.

Quantify using historical data:
how long is an ASIC useful?

SIC fp speec

today’'s CPL

ups

s/GPUs:

ng Is cheaper

nultiplication.

1ost normalizations.

e precision to

s actually needed.

ery fast sqrt

ication needs it.

alysis involves

ultiplications

a much wider

f operations.

ger ASIC speedups.

So NSA builds ASICs
for each application?

The small problem:
ASIC design effort.
Not a serious Issue
for $2 billion.

The big problem:
Unpredictable application mix.

NSA will want some agility
to adapt to new computations
and stop old computations.

Quantify using historical data:
how long is an ASIC useful?

Obvious
some AS
mix of a
Integrate

Take a g
Add exa
XYZZLY
plus son
Think al
XYZ/[?
Still sim

New CP
Merge s

If not ir

edups
’Us /GPUs:
per

on.
alizations.
1 1O
needed.
It

eds It.

lves
ns
nder
ns.

speedups.

So NSA builds ASICs
for each application?

The small problem:
ASIC design effort.
Not a serious Issue
for $2 billion.

The big problem:
Unpredictable application mix.

NSA will want some agility
to adapt to new computations
and stop old computations.

Quantify using historical data:
how long is an ASIC useful?

Obvious solution f
some ASICs, plus
mix of applicatiol
iIntegrated circuits

Take a general-pu
Add exactly the b
XYZ/ZY needed by
plus some vectoriz
Think ahead, add
XYZ/? XZ/ZY? X

Still similar cost t«

New CPU for eact
Merge similar app

If not much cost |

So NSA builds ASICs
for each application?

The small problem:
ASIC design effort.
Not a serious Issue
for $2 billion.

The big problem:
Unpredictable application mix.

NSA will want some agility
to adapt to new computations
and stop old computations.

Quantify using historical data:
how long is an ASIC useful?

Obvious solution for NSA:
some ASICs, plus heterogen:
mix of application-tuned
integrated circuits (ATICs).

Take a general-purpose CPL
Add exactly the big insn
XYZ/ZY needed by applicati
plus some vectorization.
Think ahead, add agility:
XYZZL? XZZY? XYQZZY?
Still similar cost to ASIC.

New CPU for each applicati

Merge similar applications

If not much cost in area.

So NSA builds ASICs
for each application?

The small problem:
ASIC design effort.
Not a serious Issue
for $2 billion.

The big problem:
Unpredictable application mix.

NSA will want some agility
to adapt to new computations
and stop old computations.

Quantify using historical data:
how long is an ASIC useful?

Obvious solution for NSA:
some ASICs, plus heterogeneous
mix of application-tuned

integrated circuits (ATICs).

Take a general-purpose CPU.
Add exactly the big insn
XYZZY needed by application,
plus some vectorization.

Think ahead, add agility:
XYZZL? XZZY? XYQZZY?
Still similar cost to ASIC.

New CPU for each application.

Merge similar applications

If not much cost In area.

builds ASICs
application?

|| problem:
sign effort.
rious Issue
|lion.

problem:

“table application mix.
| want some agility

- to new computations
) old computations.

/ using historical data:
r is an ASIC useful?

Obvious solution for NSA:

some ASICs, plus heterogeneous
mix of application-tuned
integrated circuits (ATICs).

Take a general-purpose CPU.
Add exactly the big insn
XYZ/ZY needed by application,
plus some vectorization.

Think ahead, add agility:
XYZZL? XZZY? XYQZZY?
Still similar cost to ASIC.

New CPU for each application.

Merge similar applications

If not much cost in area.

1-slide E

Critical -
and imp

|1Cs
n?

\v

lication mix.
ne agility
omputations
yutations.

torical data:
|C useful?

Obvious solution for NSA:

some ASICs, plus heterogeneous
mix of application-tuned
integrated circuits (ATICs).

Take a general-purpose CPU.
Add exactly the big insn
XYZZY needed by application,
plus some vectorization.

Think ahead, add agility:
XYZZL? XZZY? XYQZZY?
Still similar cost to ASIC.

New CPU for each application.

Merge similar applications

If not much cost In area.

1-slide Bluffdale u

Critical for algoritl
and implementor:

ns

Obvious solution for NSA:

some ASICs, plus heterogeneous
mix of application-tuned
integrated circuits (ATICs).

Take a general-purpose CPU.
Add exactly the big insn
XYZ/ZY needed by application,
plus some vectorization.

Think ahead, add agility:
XYZZL? XZZY? XYQZZY?
Still similar cost to ASIC.

New CPU for each application.

Merge similar applications

If not much cost in area.

1-slide Bluffdale user guide

Critical for algorithm design
and implementor:

Obvious solution for NSA:

some ASICs, plus heterogeneous
mix of application-tuned
integrated circuits (ATICs).

Take a general-purpose CPU.
Add exactly the big insn
XYZZY needed by application,
plus some vectorization.

Think ahead, add agility:
XYZZL? XZZY? XYQZZY?
Still similar cost to ASIC.

New CPU for each application.

Merge similar applications

If not much cost In area.

1-slide Bluffdale user guide

Critical for algorithm designer
and implementor:

Obvious solution for NSA:

some ASICs, plus heterogeneous
mix of application-tuned
integrated circuits (ATICs).

Take a general-purpose CPU.
Add exactly the big insn
XYZZY needed by application,
plus some vectorization.

Think ahead, add agility:
XYZZL? XZZY? XYQZZY?
Still similar cost to ASIC.

New CPU for each application.

Merge similar applications

If not much cost In area.

1-slide Bluffdale user guide

Critical for algorithm designer
and implementor:

Massive parallelism.

Obvious solution for NSA:

some ASICs, plus heterogeneous
mix of application-tuned
integrated circuits (ATICs).

Take a general-purpose CPU.
Add exactly the big insn
XYZZY needed by application,
plus some vectorization.

Think ahead, add agility:
XYZZL? XZZY? XYQZZY?
Still similar cost to ASIC.

New CPU for each application.

Merge similar applications

If not much cost In area.

1-slide Bluffdale user guide

Critical for algorithm designer
and implementor:

Massive parallelism.

Grid communication.

Obvious solution for NSA:

some ASICs, plus heterogeneous
mix of application-tuned
integrated circuits (ATICs).

Take a general-purpose CPU.
Add exactly the big insn
XYZZY needed by application,
plus some vectorization.

Think ahead, add agility:
XYZZL? XZZY? XYQZZY?
Still similar cost to ASIC.

New CPU for each application.

Merge similar applications

If not much cost In area.

1-slide Bluffdale user guide

Critical for algorithm designer
and implementor:

Massive parallelism.
Grid communication.

Multiple instruction sets
with very useful instructions.

Obvious solution for NSA:

some ASICs, plus heterogeneous
mix of application-tuned
integrated circuits (ATICs).

Take a general-purpose CPU.
Add exactly the big insn
XYZZY needed by application,
plus some vectorization.

Think ahead, add agility:
XYZZL? XZZY? XYQZZY?
Still similar cost to ASIC.

New CPU for each application.

Merge similar applications

If not much cost In area.

1-slide Bluffdale user guide

Critical for algorithm designer
and implementor:

Massive parallelism.
Grid communication.

Multiple instruction sets
with very useful instructions.

Some vectorization.

Obvious solution for NSA:

some ASICs, plus heterogeneous

mix of application-tuned
integrated circuits (ATICs).

Take a general-purpose CPU.
Add exactly the big insn

XYZZY needed by application,

plus some vectorization.
Think ahead, add agility:
XYZZL? XZZY? XYQZZY?
Still similar cost to ASIC.

Merge similar applications

If not much cost In area.

1-slide Bluffdale user guide

New CPU for each application.

Critical for algorithm designer
and implementor:

Massive parallelism.
Grid communication.

Multiple instruction sets
with very useful instructions.

Some vectorization.

Occasional faults.

Obvious solution for NSA: 1-slide Bluffdale user guide
some ASICs, plus heterogeneous

_ o Critical for algorithm designer
mix of application-tuned

. L and implementor:
integrated circuits (ATICs).

Massive parallelism.
Take a general-purpose CPU.
Add exactly the big insn Grid communication.
XYZZY needed by application,

plus some vectorization.
Think ahead, add agility:

Multiple instruction sets
with very useful instructions.

XYZZ? XZZY? XYQZZY? Some vectorization.

Still similar cost to ASIC. Occasional faults.

New CPU for each application. Need to understand cryptanalysis:
Merge similar applications ECM, sparse linear algebra,

if not much cost in area. differentials, FFTs, much more.

