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Obvious solution for NSA: 1-slide Bluffdale user guide
some ASICs, plus heterogeneous

_ o Critical for algorithm designer
mix of application-tuned

. L and implementor:
integrated circuits (ATICs).

Massive parallelism.
Take a general-purpose CPU.
Add exactly the big insn Grid communication.
XYZZY needed by application,

plus some vectorization.
Think ahead, add agility:

Multiple instruction sets
with very useful instructions.

XYZZ? XZZY? XYQZZY? Some vectorization.

Still similar cost to ASIC. Occasional faults.

New CPU for each application. Need to understand cryptanalysis:
Merge similar applications ECM, sparse linear algebra,

if not much cost in area. differentials, FFTs, much more.




