
Picture credit: Rick Bowmer/AP

How to use

the new 65-megawatt

Bluffdale supercomputer:

a gentle introduction

to cryptanalysis

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Disclaimers

Picture credit: Rick Bowmer/AP

How to use

the new 65-megawatt

Bluffdale supercomputer:

a gentle introduction

to cryptanalysis

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Disclaimers

1. I don’t work for NSA.

Picture credit: Rick Bowmer/AP

How to use

the new 65-megawatt

Bluffdale supercomputer:

a gentle introduction

to cryptanalysis

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Disclaimers

1. I don’t work for NSA.

2. NSA hasn’t told me anything.

Picture credit: Rick Bowmer/AP

How to use

the new 65-megawatt

Bluffdale supercomputer:

a gentle introduction

to cryptanalysis

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Disclaimers

1. I don’t work for NSA.

2. NSA hasn’t told me anything.

3. This is not a leak.

Picture credit: Rick Bowmer/AP

How to use

the new 65-megawatt

Bluffdale supercomputer:

a gentle introduction

to cryptanalysis

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Disclaimers

1. I don’t work for NSA.

2. NSA hasn’t told me anything.

3. This is not a leak.

4. I’m assuming that

NSA is not stupid.

Picture credit: Rick Bowmer/AP

How to use

the new 65-megawatt

Bluffdale supercomputer:

a gentle introduction

to cryptanalysis

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Disclaimers

1. I don’t work for NSA.

2. NSA hasn’t told me anything.

3. This is not a leak.

4. I’m assuming that

NSA is not stupid.

5. Also assuming use of

traditional transistors+wires,

probably with some optics;

plus long-term storage.

Quantum computing would

require different analysis.

Picture credit: Rick Bowmer/AP

How to use

the new 65-megawatt

Bluffdale supercomputer:

a gentle introduction

to cryptanalysis

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Disclaimers

1. I don’t work for NSA.

2. NSA hasn’t told me anything.

3. This is not a leak.

4. I’m assuming that

NSA is not stupid.

5. Also assuming use of

traditional transistors+wires,

probably with some optics;

plus long-term storage.

Quantum computing would

require different analysis.

Cryptographic challenges

My mission: Cryptographically

protect every Internet packet

against espionage+sabotage.

Picture credit: Rick Bowmer/AP

How to use

the new 65-megawatt

Bluffdale supercomputer:

a gentle introduction

to cryptanalysis

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Disclaimers

1. I don’t work for NSA.

2. NSA hasn’t told me anything.

3. This is not a leak.

4. I’m assuming that

NSA is not stupid.

5. Also assuming use of

traditional transistors+wires,

probably with some optics;

plus long-term storage.

Quantum computing would

require different analysis.

Cryptographic challenges

My mission: Cryptographically

protect every Internet packet

against espionage+sabotage.

Picture credit: Rick Bowmer/AP

How to use

the new 65-megawatt

Bluffdale supercomputer:

a gentle introduction

to cryptanalysis

D. J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Disclaimers

1. I don’t work for NSA.

2. NSA hasn’t told me anything.

3. This is not a leak.

4. I’m assuming that

NSA is not stupid.

5. Also assuming use of

traditional transistors+wires,

probably with some optics;

plus long-term storage.

Quantum computing would

require different analysis.

Cryptographic challenges

My mission: Cryptographically

protect every Internet packet

against espionage+sabotage.

Disclaimers

1. I don’t work for NSA.

2. NSA hasn’t told me anything.

3. This is not a leak.

4. I’m assuming that

NSA is not stupid.

5. Also assuming use of

traditional transistors+wires,

probably with some optics;

plus long-term storage.

Quantum computing would

require different analysis.

Cryptographic challenges

My mission: Cryptographically

protect every Internet packet

against espionage+sabotage.

Disclaimers

1. I don’t work for NSA.

2. NSA hasn’t told me anything.

3. This is not a leak.

4. I’m assuming that

NSA is not stupid.

5. Also assuming use of

traditional transistors+wires,

probably with some optics;

plus long-term storage.

Quantum computing would

require different analysis.

Cryptographic challenges

My mission: Cryptographically

protect every Internet packet

against espionage+sabotage.

User needs crypto to be fast

on devices designed primarily

for doing something else:

Disclaimers

1. I don’t work for NSA.

2. NSA hasn’t told me anything.

3. This is not a leak.

4. I’m assuming that

NSA is not stupid.

5. Also assuming use of

traditional transistors+wires,

probably with some optics;

plus long-term storage.

Quantum computing would

require different analysis.

Cryptographic challenges

My mission: Cryptographically

protect every Internet packet

against espionage+sabotage.

User needs crypto to be fast

on devices designed primarily

for doing something else:

User also needs

crypto to be secure.

Some examples of crypto failing:

� 2009 exploit of RSA-512

signatures in TI calculators

(small public computation);

� 2010 exploit of ECDSA

signatures in PlayStation 3

(trivial—stupid Sony mistake);

� 2012 exploit of MD5-based

signatures by Flame malware

(somewhat larger computation).

Disclaimers

1. I don’t work for NSA.

2. NSA hasn’t told me anything.

3. This is not a leak.

4. I’m assuming that

NSA is not stupid.

5. Also assuming use of

traditional transistors+wires,

probably with some optics;

plus long-term storage.

Quantum computing would

require different analysis.

Cryptographic challenges

My mission: Cryptographically

protect every Internet packet

against espionage+sabotage.

User needs crypto to be fast

on devices designed primarily

for doing something else:

User also needs

crypto to be secure.

Some examples of crypto failing:

� 2009 exploit of RSA-512

signatures in TI calculators

(small public computation);

� 2010 exploit of ECDSA

signatures in PlayStation 3

(trivial—stupid Sony mistake);

� 2012 exploit of MD5-based

signatures by Flame malware

(somewhat larger computation).

Disclaimers

1. I don’t work for NSA.

2. NSA hasn’t told me anything.

3. This is not a leak.

4. I’m assuming that

NSA is not stupid.

5. Also assuming use of

traditional transistors+wires,

probably with some optics;

plus long-term storage.

Quantum computing would

require different analysis.

Cryptographic challenges

My mission: Cryptographically

protect every Internet packet

against espionage+sabotage.

User needs crypto to be fast

on devices designed primarily

for doing something else:

User also needs

crypto to be secure.

Some examples of crypto failing:

� 2009 exploit of RSA-512

signatures in TI calculators

(small public computation);

� 2010 exploit of ECDSA

signatures in PlayStation 3

(trivial—stupid Sony mistake);

� 2012 exploit of MD5-based

signatures by Flame malware

(somewhat larger computation).

Cryptographic challenges

My mission: Cryptographically

protect every Internet packet

against espionage+sabotage.

User needs crypto to be fast

on devices designed primarily

for doing something else:

User also needs

crypto to be secure.

Some examples of crypto failing:

� 2009 exploit of RSA-512

signatures in TI calculators

(small public computation);

� 2010 exploit of ECDSA

signatures in PlayStation 3

(trivial—stupid Sony mistake);

� 2012 exploit of MD5-based

signatures by Flame malware

(somewhat larger computation).

Cryptographic challenges

My mission: Cryptographically

protect every Internet packet

against espionage+sabotage.

User needs crypto to be fast

on devices designed primarily

for doing something else:

User also needs

crypto to be secure.

Some examples of crypto failing:

� 2009 exploit of RSA-512

signatures in TI calculators

(small public computation);

� 2010 exploit of ECDSA

signatures in PlayStation 3

(trivial—stupid Sony mistake);

� 2012 exploit of MD5-based

signatures by Flame malware

(somewhat larger computation).

Presumably many more examples

not known to the public.

Cryptographic challenges

My mission: Cryptographically

protect every Internet packet

against espionage+sabotage.

User needs crypto to be fast

on devices designed primarily

for doing something else:

User also needs

crypto to be secure.

Some examples of crypto failing:

� 2009 exploit of RSA-512

signatures in TI calculators

(small public computation);

� 2010 exploit of ECDSA

signatures in PlayStation 3

(trivial—stupid Sony mistake);

� 2012 exploit of MD5-based

signatures by Flame malware

(somewhat larger computation).

Presumably many more examples

not known to the public.

Critical questions:

Which cryptographic systems

fit the user’s cost constraints?

) optimize choice of

cryptosystem + algorithm

for each user device.

Cryptographic challenges

My mission: Cryptographically

protect every Internet packet

against espionage+sabotage.

User needs crypto to be fast

on devices designed primarily

for doing something else:

User also needs

crypto to be secure.

Some examples of crypto failing:

� 2009 exploit of RSA-512

signatures in TI calculators

(small public computation);

� 2010 exploit of ECDSA

signatures in PlayStation 3

(trivial—stupid Sony mistake);

� 2012 exploit of MD5-based

signatures by Flame malware

(somewhat larger computation).

Presumably many more examples

not known to the public.

Critical questions:

Which cryptographic systems

fit the user’s cost constraints?

) optimize choice of

cryptosystem + algorithm

for each user device.

Cryptographic challenges

My mission: Cryptographically

protect every Internet packet

against espionage+sabotage.

User needs crypto to be fast

on devices designed primarily

for doing something else:

User also needs

crypto to be secure.

Some examples of crypto failing:

� 2009 exploit of RSA-512

signatures in TI calculators

(small public computation);

� 2010 exploit of ECDSA

signatures in PlayStation 3

(trivial—stupid Sony mistake);

� 2012 exploit of MD5-based

signatures by Flame malware

(somewhat larger computation).

Presumably many more examples

not known to the public.

Critical questions:

Which cryptographic systems

fit the user’s cost constraints?

) optimize choice of

cryptosystem + algorithm

for each user device.

User also needs

crypto to be secure.

Some examples of crypto failing:

� 2009 exploit of RSA-512

signatures in TI calculators

(small public computation);

� 2010 exploit of ECDSA

signatures in PlayStation 3

(trivial—stupid Sony mistake);

� 2012 exploit of MD5-based

signatures by Flame malware

(somewhat larger computation).

Presumably many more examples

not known to the public.

Critical questions:

Which cryptographic systems

fit the user’s cost constraints?

) optimize choice of

cryptosystem + algorithm

for each user device.

User also needs

crypto to be secure.

Some examples of crypto failing:

� 2009 exploit of RSA-512

signatures in TI calculators

(small public computation);

� 2010 exploit of ECDSA

signatures in PlayStation 3

(trivial—stupid Sony mistake);

� 2012 exploit of MD5-based

signatures by Flame malware

(somewhat larger computation).

Presumably many more examples

not known to the public.

Critical questions:

Which cryptographic systems

fit the user’s cost constraints?

) optimize choice of

cryptosystem + algorithm

for each user device.

Which cryptographic systems

can be broken by attackers?

) optimize choice of

attack algorithm + device

for each cryptosystem.

User also needs

crypto to be secure.

Some examples of crypto failing:

� 2009 exploit of RSA-512

signatures in TI calculators

(small public computation);

� 2010 exploit of ECDSA

signatures in PlayStation 3

(trivial—stupid Sony mistake);

� 2012 exploit of MD5-based

signatures by Flame malware

(somewhat larger computation).

Presumably many more examples

not known to the public.

Critical questions:

Which cryptographic systems

fit the user’s cost constraints?

) optimize choice of

cryptosystem + algorithm

for each user device.

Which cryptographic systems

can be broken by attackers?

) optimize choice of

attack algorithm + device

for each cryptosystem.

Heavy interactions between

high-level algorithms and

low-level computer architecture.

User also needs

crypto to be secure.

Some examples of crypto failing:

� 2009 exploit of RSA-512

signatures in TI calculators

(small public computation);

� 2010 exploit of ECDSA

signatures in PlayStation 3

(trivial—stupid Sony mistake);

� 2012 exploit of MD5-based

signatures by Flame malware

(somewhat larger computation).

Presumably many more examples

not known to the public.

Critical questions:

Which cryptographic systems

fit the user’s cost constraints?

) optimize choice of

cryptosystem + algorithm

for each user device.

Which cryptographic systems

can be broken by attackers?

) optimize choice of

attack algorithm + device

for each cryptosystem.

Heavy interactions between

high-level algorithms and

low-level computer architecture.

Theory vs. experiment

Predictions made by theoretical

physicists are often disputed,

sometimes wrong.

Common sources of error:

underlying models of physics;

calculations from those models.

User also needs

crypto to be secure.

Some examples of crypto failing:

� 2009 exploit of RSA-512

signatures in TI calculators

(small public computation);

� 2010 exploit of ECDSA

signatures in PlayStation 3

(trivial—stupid Sony mistake);

� 2012 exploit of MD5-based

signatures by Flame malware

(somewhat larger computation).

Presumably many more examples

not known to the public.

Critical questions:

Which cryptographic systems

fit the user’s cost constraints?

) optimize choice of

cryptosystem + algorithm

for each user device.

Which cryptographic systems

can be broken by attackers?

) optimize choice of

attack algorithm + device

for each cryptosystem.

Heavy interactions between

high-level algorithms and

low-level computer architecture.

Theory vs. experiment

Predictions made by theoretical

physicists are often disputed,

sometimes wrong.

Common sources of error:

underlying models of physics;

calculations from those models.

User also needs

crypto to be secure.

Some examples of crypto failing:

� 2009 exploit of RSA-512

signatures in TI calculators

(small public computation);

� 2010 exploit of ECDSA

signatures in PlayStation 3

(trivial—stupid Sony mistake);

� 2012 exploit of MD5-based

signatures by Flame malware

(somewhat larger computation).

Presumably many more examples

not known to the public.

Critical questions:

Which cryptographic systems

fit the user’s cost constraints?

) optimize choice of

cryptosystem + algorithm

for each user device.

Which cryptographic systems

can be broken by attackers?

) optimize choice of

attack algorithm + device

for each cryptosystem.

Heavy interactions between

high-level algorithms and

low-level computer architecture.

Theory vs. experiment

Predictions made by theoretical

physicists are often disputed,

sometimes wrong.

Common sources of error:

underlying models of physics;

calculations from those models.

Critical questions:

Which cryptographic systems

fit the user’s cost constraints?

) optimize choice of

cryptosystem + algorithm

for each user device.

Which cryptographic systems

can be broken by attackers?

) optimize choice of

attack algorithm + device

for each cryptosystem.

Heavy interactions between

high-level algorithms and

low-level computer architecture.

Theory vs. experiment

Predictions made by theoretical

physicists are often disputed,

sometimes wrong.

Common sources of error:

underlying models of physics;

calculations from those models.

Critical questions:

Which cryptographic systems

fit the user’s cost constraints?

) optimize choice of

cryptosystem + algorithm

for each user device.

Which cryptographic systems

can be broken by attackers?

) optimize choice of

attack algorithm + device

for each cryptosystem.

Heavy interactions between

high-level algorithms and

low-level computer architecture.

Theory vs. experiment

Predictions made by theoretical

physicists are often disputed,

sometimes wrong.

Common sources of error:

underlying models of physics;

calculations from those models.

Experiments aren’t perfect

but catch many errors;

resolve many disputes;

provide raw data

leading to new theories;

build more confidence than

theory alone can ever produce.

Critical questions:

Which cryptographic systems

fit the user’s cost constraints?

) optimize choice of

cryptosystem + algorithm

for each user device.

Which cryptographic systems

can be broken by attackers?

) optimize choice of

attack algorithm + device

for each cryptosystem.

Heavy interactions between

high-level algorithms and

low-level computer architecture.

Theory vs. experiment

Predictions made by theoretical

physicists are often disputed,

sometimes wrong.

Common sources of error:

underlying models of physics;

calculations from those models.

Experiments aren’t perfect

but catch many errors;

resolve many disputes;

provide raw data

leading to new theories;

build more confidence than

theory alone can ever produce.

Is physics uniquely error-prone?

Of course not.

Every field of science:

theoreticians make predictions

regarding observable phenomena;

experimental scientists

measure those phenomena;

we compare the results.

Critical questions:

Which cryptographic systems

fit the user’s cost constraints?

) optimize choice of

cryptosystem + algorithm

for each user device.

Which cryptographic systems

can be broken by attackers?

) optimize choice of

attack algorithm + device

for each cryptosystem.

Heavy interactions between

high-level algorithms and

low-level computer architecture.

Theory vs. experiment

Predictions made by theoretical

physicists are often disputed,

sometimes wrong.

Common sources of error:

underlying models of physics;

calculations from those models.

Experiments aren’t perfect

but catch many errors;

resolve many disputes;

provide raw data

leading to new theories;

build more confidence than

theory alone can ever produce.

Is physics uniquely error-prone?

Of course not.

Every field of science:

theoreticians make predictions

regarding observable phenomena;

experimental scientists

measure those phenomena;

we compare the results.

Critical questions:

Which cryptographic systems

fit the user’s cost constraints?

) optimize choice of

cryptosystem + algorithm

for each user device.

Which cryptographic systems

can be broken by attackers?

) optimize choice of

attack algorithm + device

for each cryptosystem.

Heavy interactions between

high-level algorithms and

low-level computer architecture.

Theory vs. experiment

Predictions made by theoretical

physicists are often disputed,

sometimes wrong.

Common sources of error:

underlying models of physics;

calculations from those models.

Experiments aren’t perfect

but catch many errors;

resolve many disputes;

provide raw data

leading to new theories;

build more confidence than

theory alone can ever produce.

Is physics uniquely error-prone?

Of course not.

Every field of science:

theoreticians make predictions

regarding observable phenomena;

experimental scientists

measure those phenomena;

we compare the results.

Theory vs. experiment

Predictions made by theoretical

physicists are often disputed,

sometimes wrong.

Common sources of error:

underlying models of physics;

calculations from those models.

Experiments aren’t perfect

but catch many errors;

resolve many disputes;

provide raw data

leading to new theories;

build more confidence than

theory alone can ever produce.

Is physics uniquely error-prone?

Of course not.

Every field of science:

theoreticians make predictions

regarding observable phenomena;

experimental scientists

measure those phenomena;

we compare the results.

Theory vs. experiment

Predictions made by theoretical

physicists are often disputed,

sometimes wrong.

Common sources of error:

underlying models of physics;

calculations from those models.

Experiments aren’t perfect

but catch many errors;

resolve many disputes;

provide raw data

leading to new theories;

build more confidence than

theory alone can ever produce.

Is physics uniquely error-prone?

Of course not.

Every field of science:

theoreticians make predictions

regarding observable phenomena;

experimental scientists

measure those phenomena;

we compare the results.

What if measurements are

too expensive to carry out?

Measurements start with

scaled-down experiments,

work up towards

the scale of interest.

Theory vs. experiment

Predictions made by theoretical

physicists are often disputed,

sometimes wrong.

Common sources of error:

underlying models of physics;

calculations from those models.

Experiments aren’t perfect

but catch many errors;

resolve many disputes;

provide raw data

leading to new theories;

build more confidence than

theory alone can ever produce.

Is physics uniquely error-prone?

Of course not.

Every field of science:

theoreticians make predictions

regarding observable phenomena;

experimental scientists

measure those phenomena;

we compare the results.

What if measurements are

too expensive to carry out?

Measurements start with

scaled-down experiments,

work up towards

the scale of interest.

Algorithm analysis is another

error-prone field of science.

Theoreticians make predictions

regarding algorithm performance.

These predictions are often

disputed, sometimes wrong.

Theory vs. experiment

Predictions made by theoretical

physicists are often disputed,

sometimes wrong.

Common sources of error:

underlying models of physics;

calculations from those models.

Experiments aren’t perfect

but catch many errors;

resolve many disputes;

provide raw data

leading to new theories;

build more confidence than

theory alone can ever produce.

Is physics uniquely error-prone?

Of course not.

Every field of science:

theoreticians make predictions

regarding observable phenomena;

experimental scientists

measure those phenomena;

we compare the results.

What if measurements are

too expensive to carry out?

Measurements start with

scaled-down experiments,

work up towards

the scale of interest.

Algorithm analysis is another

error-prone field of science.

Theoreticians make predictions

regarding algorithm performance.

These predictions are often

disputed, sometimes wrong.

Theory vs. experiment

Predictions made by theoretical

physicists are often disputed,

sometimes wrong.

Common sources of error:

underlying models of physics;

calculations from those models.

Experiments aren’t perfect

but catch many errors;

resolve many disputes;

provide raw data

leading to new theories;

build more confidence than

theory alone can ever produce.

Is physics uniquely error-prone?

Of course not.

Every field of science:

theoreticians make predictions

regarding observable phenomena;

experimental scientists

measure those phenomena;

we compare the results.

What if measurements are

too expensive to carry out?

Measurements start with

scaled-down experiments,

work up towards

the scale of interest.

Algorithm analysis is another

error-prone field of science.

Theoreticians make predictions

regarding algorithm performance.

These predictions are often

disputed, sometimes wrong.

Is physics uniquely error-prone?

Of course not.

Every field of science:

theoreticians make predictions

regarding observable phenomena;

experimental scientists

measure those phenomena;

we compare the results.

What if measurements are

too expensive to carry out?

Measurements start with

scaled-down experiments,

work up towards

the scale of interest.

Algorithm analysis is another

error-prone field of science.

Theoreticians make predictions

regarding algorithm performance.

These predictions are often

disputed, sometimes wrong.

Is physics uniquely error-prone?

Of course not.

Every field of science:

theoreticians make predictions

regarding observable phenomena;

experimental scientists

measure those phenomena;

we compare the results.

What if measurements are

too expensive to carry out?

Measurements start with

scaled-down experiments,

work up towards

the scale of interest.

Algorithm analysis is another

error-prone field of science.

Theoreticians make predictions

regarding algorithm performance.

These predictions are often

disputed, sometimes wrong.

Particularly error-prone:

cryptanalytic extrapolations

from an academic computation

to a serious real-world attack.

Is physics uniquely error-prone?

Of course not.

Every field of science:

theoreticians make predictions

regarding observable phenomena;

experimental scientists

measure those phenomena;

we compare the results.

What if measurements are

too expensive to carry out?

Measurements start with

scaled-down experiments,

work up towards

the scale of interest.

Algorithm analysis is another

error-prone field of science.

Theoreticians make predictions

regarding algorithm performance.

These predictions are often

disputed, sometimes wrong.

Particularly error-prone:

cryptanalytic extrapolations

from an academic computation

to a serious real-world attack.

We catch errors, resolve disputes

by carrying out experiments:

actually running these algorithms

on the largest scale we can.

Is physics uniquely error-prone?

Of course not.

Every field of science:

theoreticians make predictions

regarding observable phenomena;

experimental scientists

measure those phenomena;

we compare the results.

What if measurements are

too expensive to carry out?

Measurements start with

scaled-down experiments,

work up towards

the scale of interest.

Algorithm analysis is another

error-prone field of science.

Theoreticians make predictions

regarding algorithm performance.

These predictions are often

disputed, sometimes wrong.

Particularly error-prone:

cryptanalytic extrapolations

from an academic computation

to a serious real-world attack.

We catch errors, resolve disputes

by carrying out experiments:

actually running these algorithms

on the largest scale we can.

1980s security evaluation:

“QS” factorization algorithm

costs 2100 to break RSA-1024.

Is physics uniquely error-prone?

Of course not.

Every field of science:

theoreticians make predictions

regarding observable phenomena;

experimental scientists

measure those phenomena;

we compare the results.

What if measurements are

too expensive to carry out?

Measurements start with

scaled-down experiments,

work up towards

the scale of interest.

Algorithm analysis is another

error-prone field of science.

Theoreticians make predictions

regarding algorithm performance.

These predictions are often

disputed, sometimes wrong.

Particularly error-prone:

cryptanalytic extrapolations

from an academic computation

to a serious real-world attack.

We catch errors, resolve disputes

by carrying out experiments:

actually running these algorithms

on the largest scale we can.

1980s security evaluation:

“QS” factorization algorithm

costs 2100 to break RSA-1024.

Is physics uniquely error-prone?

Of course not.

Every field of science:

theoreticians make predictions

regarding observable phenomena;

experimental scientists

measure those phenomena;

we compare the results.

What if measurements are

too expensive to carry out?

Measurements start with

scaled-down experiments,

work up towards

the scale of interest.

Algorithm analysis is another

error-prone field of science.

Theoreticians make predictions

regarding algorithm performance.

These predictions are often

disputed, sometimes wrong.

Particularly error-prone:

cryptanalytic extrapolations

from an academic computation

to a serious real-world attack.

We catch errors, resolve disputes

by carrying out experiments:

actually running these algorithms

on the largest scale we can.

1980s security evaluation:

“QS” factorization algorithm

costs 2100 to break RSA-1024.

Algorithm analysis is another

error-prone field of science.

Theoreticians make predictions

regarding algorithm performance.

These predictions are often

disputed, sometimes wrong.

Particularly error-prone:

cryptanalytic extrapolations

from an academic computation

to a serious real-world attack.

We catch errors, resolve disputes

by carrying out experiments:

actually running these algorithms

on the largest scale we can.

1980s security evaluation:

“QS” factorization algorithm

costs 2100 to break RSA-1024.

Algorithm analysis is another

error-prone field of science.

Theoreticians make predictions

regarding algorithm performance.

These predictions are often

disputed, sometimes wrong.

Particularly error-prone:

cryptanalytic extrapolations

from an academic computation

to a serious real-world attack.

We catch errors, resolve disputes

by carrying out experiments:

actually running these algorithms

on the largest scale we can.

1980s security evaluation:

“QS” factorization algorithm

costs 2100 to break RSA-1024.

1990 Pollard: new “NFS”.

Algorithm analysis is another

error-prone field of science.

Theoreticians make predictions

regarding algorithm performance.

These predictions are often

disputed, sometimes wrong.

Particularly error-prone:

cryptanalytic extrapolations

from an academic computation

to a serious real-world attack.

We catch errors, resolve disputes

by carrying out experiments:

actually running these algorithms

on the largest scale we can.

1980s security evaluation:

“QS” factorization algorithm

costs 2100 to break RSA-1024.

1990 Pollard: new “NFS”.

1991 Adleman: NFS

won’t beat QS for RSA-1024.

Algorithm analysis is another

error-prone field of science.

Theoreticians make predictions

regarding algorithm performance.

These predictions are often

disputed, sometimes wrong.

Particularly error-prone:

cryptanalytic extrapolations

from an academic computation

to a serious real-world attack.

We catch errors, resolve disputes

by carrying out experiments:

actually running these algorithms

on the largest scale we can.

1980s security evaluation:

“QS” factorization algorithm

costs 2100 to break RSA-1024.

1990 Pollard: new “NFS”.

1991 Adleman: NFS

won’t beat QS for RSA-1024.

Subsequent experiments)

NFS is much faster; maybe 280?

Algorithm analysis is another

error-prone field of science.

Theoreticians make predictions

regarding algorithm performance.

These predictions are often

disputed, sometimes wrong.

Particularly error-prone:

cryptanalytic extrapolations

from an academic computation

to a serious real-world attack.

We catch errors, resolve disputes

by carrying out experiments:

actually running these algorithms

on the largest scale we can.

1980s security evaluation:

“QS” factorization algorithm

costs 2100 to break RSA-1024.

1990 Pollard: new “NFS”.

1991 Adleman: NFS

won’t beat QS for RSA-1024.

Subsequent experiments)

NFS is much faster; maybe 280?

Actual security of RSA-1024 is

still a matter of dispute: e.g.,

2009 Bos–Kaihara–Kleinjung–

Lenstra–Montgomery oppose

NIST’s transition to RSA-2048.

Algorithm analysis is another

error-prone field of science.

Theoreticians make predictions

regarding algorithm performance.

These predictions are often

disputed, sometimes wrong.

Particularly error-prone:

cryptanalytic extrapolations

from an academic computation

to a serious real-world attack.

We catch errors, resolve disputes

by carrying out experiments:

actually running these algorithms

on the largest scale we can.

1980s security evaluation:

“QS” factorization algorithm

costs 2100 to break RSA-1024.

1990 Pollard: new “NFS”.

1991 Adleman: NFS

won’t beat QS for RSA-1024.

Subsequent experiments)

NFS is much faster; maybe 280?

Actual security of RSA-1024 is

still a matter of dispute: e.g.,

2009 Bos–Kaihara–Kleinjung–

Lenstra–Montgomery oppose

NIST’s transition to RSA-2048.

The attacker’s supercomputer

Enough theory+experiment

should reach consensus

on amount of computation

required to break a system.

But can the attacker perform

this amount of computation?

Algorithm analysis is another

error-prone field of science.

Theoreticians make predictions

regarding algorithm performance.

These predictions are often

disputed, sometimes wrong.

Particularly error-prone:

cryptanalytic extrapolations

from an academic computation

to a serious real-world attack.

We catch errors, resolve disputes

by carrying out experiments:

actually running these algorithms

on the largest scale we can.

1980s security evaluation:

“QS” factorization algorithm

costs 2100 to break RSA-1024.

1990 Pollard: new “NFS”.

1991 Adleman: NFS

won’t beat QS for RSA-1024.

Subsequent experiments)

NFS is much faster; maybe 280?

Actual security of RSA-1024 is

still a matter of dispute: e.g.,

2009 Bos–Kaihara–Kleinjung–

Lenstra–Montgomery oppose

NIST’s transition to RSA-2048.

The attacker’s supercomputer

Enough theory+experiment

should reach consensus

on amount of computation

required to break a system.

But can the attacker perform

this amount of computation?

Algorithm analysis is another

error-prone field of science.

Theoreticians make predictions

regarding algorithm performance.

These predictions are often

disputed, sometimes wrong.

Particularly error-prone:

cryptanalytic extrapolations

from an academic computation

to a serious real-world attack.

We catch errors, resolve disputes

by carrying out experiments:

actually running these algorithms

on the largest scale we can.

1980s security evaluation:

“QS” factorization algorithm

costs 2100 to break RSA-1024.

1990 Pollard: new “NFS”.

1991 Adleman: NFS

won’t beat QS for RSA-1024.

Subsequent experiments)

NFS is much faster; maybe 280?

Actual security of RSA-1024 is

still a matter of dispute: e.g.,

2009 Bos–Kaihara–Kleinjung–

Lenstra–Montgomery oppose

NIST’s transition to RSA-2048.

The attacker’s supercomputer

Enough theory+experiment

should reach consensus

on amount of computation

required to break a system.

But can the attacker perform

this amount of computation?

1980s security evaluation:

“QS” factorization algorithm

costs 2100 to break RSA-1024.

1990 Pollard: new “NFS”.

1991 Adleman: NFS

won’t beat QS for RSA-1024.

Subsequent experiments)

NFS is much faster; maybe 280?

Actual security of RSA-1024 is

still a matter of dispute: e.g.,

2009 Bos–Kaihara–Kleinjung–

Lenstra–Montgomery oppose

NIST’s transition to RSA-2048.

The attacker’s supercomputer

Enough theory+experiment

should reach consensus

on amount of computation

required to break a system.

But can the attacker perform

this amount of computation?

1980s security evaluation:

“QS” factorization algorithm

costs 2100 to break RSA-1024.

1990 Pollard: new “NFS”.

1991 Adleman: NFS

won’t beat QS for RSA-1024.

Subsequent experiments)

NFS is much faster; maybe 280?

Actual security of RSA-1024 is

still a matter of dispute: e.g.,

2009 Bos–Kaihara–Kleinjung–

Lenstra–Montgomery oppose

NIST’s transition to RSA-2048.

The attacker’s supercomputer

Enough theory+experiment

should reach consensus

on amount of computation

required to break a system.

But can the attacker perform

this amount of computation?

Hypothesize attacker resources.

This talk: $2 billion, 65MW.

Alternative: millions of

compromised Internet computers.

The interesting part: analyze

optimal use of those resources.

1980s security evaluation:

“QS” factorization algorithm

costs 2100 to break RSA-1024.

1990 Pollard: new “NFS”.

1991 Adleman: NFS

won’t beat QS for RSA-1024.

Subsequent experiments)

NFS is much faster; maybe 280?

Actual security of RSA-1024 is

still a matter of dispute: e.g.,

2009 Bos–Kaihara–Kleinjung–

Lenstra–Montgomery oppose

NIST’s transition to RSA-2048.

The attacker’s supercomputer

Enough theory+experiment

should reach consensus

on amount of computation

required to break a system.

But can the attacker perform

this amount of computation?

Hypothesize attacker resources.

This talk: $2 billion, 65MW.

Alternative: millions of

compromised Internet computers.

The interesting part: analyze

optimal use of those resources.

Communication vs. arithmetic

Bill Dally, 2013.06.17:

“Communication takes

more energy than arithmetic”.

1980s security evaluation:

“QS” factorization algorithm

costs 2100 to break RSA-1024.

1990 Pollard: new “NFS”.

1991 Adleman: NFS

won’t beat QS for RSA-1024.

Subsequent experiments)

NFS is much faster; maybe 280?

Actual security of RSA-1024 is

still a matter of dispute: e.g.,

2009 Bos–Kaihara–Kleinjung–

Lenstra–Montgomery oppose

NIST’s transition to RSA-2048.

The attacker’s supercomputer

Enough theory+experiment

should reach consensus

on amount of computation

required to break a system.

But can the attacker perform

this amount of computation?

Hypothesize attacker resources.

This talk: $2 billion, 65MW.

Alternative: millions of

compromised Internet computers.

The interesting part: analyze

optimal use of those resources.

Communication vs. arithmetic

Bill Dally, 2013.06.17:

“Communication takes

more energy than arithmetic”.

1980s security evaluation:

“QS” factorization algorithm

costs 2100 to break RSA-1024.

1990 Pollard: new “NFS”.

1991 Adleman: NFS

won’t beat QS for RSA-1024.

Subsequent experiments)

NFS is much faster; maybe 280?

Actual security of RSA-1024 is

still a matter of dispute: e.g.,

2009 Bos–Kaihara–Kleinjung–

Lenstra–Montgomery oppose

NIST’s transition to RSA-2048.

The attacker’s supercomputer

Enough theory+experiment

should reach consensus

on amount of computation

required to break a system.

But can the attacker perform

this amount of computation?

Hypothesize attacker resources.

This talk: $2 billion, 65MW.

Alternative: millions of

compromised Internet computers.

The interesting part: analyze

optimal use of those resources.

Communication vs. arithmetic

Bill Dally, 2013.06.17:

“Communication takes

more energy than arithmetic”.

The attacker’s supercomputer

Enough theory+experiment

should reach consensus

on amount of computation

required to break a system.

But can the attacker perform

this amount of computation?

Hypothesize attacker resources.

This talk: $2 billion, 65MW.

Alternative: millions of

compromised Internet computers.

The interesting part: analyze

optimal use of those resources.

Communication vs. arithmetic

Bill Dally, 2013.06.17:

“Communication takes

more energy than arithmetic”.

The attacker’s supercomputer

Enough theory+experiment

should reach consensus

on amount of computation

required to break a system.

But can the attacker perform

this amount of computation?

Hypothesize attacker resources.

This talk: $2 billion, 65MW.

Alternative: millions of

compromised Internet computers.

The interesting part: analyze

optimal use of those resources.

Communication vs. arithmetic

Bill Dally, 2013.06.17:

“Communication takes

more energy than arithmetic”.

Stephen S. Pawlowski,

2013.06.18: “The majority of

energy that we spend today

is on transferring data.”

The attacker’s supercomputer

Enough theory+experiment

should reach consensus

on amount of computation

required to break a system.

But can the attacker perform

this amount of computation?

Hypothesize attacker resources.

This talk: $2 billion, 65MW.

Alternative: millions of

compromised Internet computers.

The interesting part: analyze

optimal use of those resources.

Communication vs. arithmetic

Bill Dally, 2013.06.17:

“Communication takes

more energy than arithmetic”.

Stephen S. Pawlowski,

2013.06.18: “The majority of

energy that we spend today

is on transferring data.”

Depends what you’re doing!

Computations fundamentally vary

in amount of communication

(distance and volume)

and amount of arithmetic.

The attacker’s supercomputer

Enough theory+experiment

should reach consensus

on amount of computation

required to break a system.

But can the attacker perform

this amount of computation?

Hypothesize attacker resources.

This talk: $2 billion, 65MW.

Alternative: millions of

compromised Internet computers.

The interesting part: analyze

optimal use of those resources.

Communication vs. arithmetic

Bill Dally, 2013.06.17:

“Communication takes

more energy than arithmetic”.

Stephen S. Pawlowski,

2013.06.18: “The majority of

energy that we spend today

is on transferring data.”

Depends what you’re doing!

Computations fundamentally vary

in amount of communication

(distance and volume)

and amount of arithmetic.

Some algorithms using n2 data:

Square matrix-vector product:

n2 arithmetic.

The attacker’s supercomputer

Enough theory+experiment

should reach consensus

on amount of computation

required to break a system.

But can the attacker perform

this amount of computation?

Hypothesize attacker resources.

This talk: $2 billion, 65MW.

Alternative: millions of

compromised Internet computers.

The interesting part: analyze

optimal use of those resources.

Communication vs. arithmetic

Bill Dally, 2013.06.17:

“Communication takes

more energy than arithmetic”.

Stephen S. Pawlowski,

2013.06.18: “The majority of

energy that we spend today

is on transferring data.”

Depends what you’re doing!

Computations fundamentally vary

in amount of communication

(distance and volume)

and amount of arithmetic.

Some algorithms using n2 data:

Square matrix-vector product:

n2 arithmetic.

The attacker’s supercomputer

Enough theory+experiment

should reach consensus

on amount of computation

required to break a system.

But can the attacker perform

this amount of computation?

Hypothesize attacker resources.

This talk: $2 billion, 65MW.

Alternative: millions of

compromised Internet computers.

The interesting part: analyze

optimal use of those resources.

Communication vs. arithmetic

Bill Dally, 2013.06.17:

“Communication takes

more energy than arithmetic”.

Stephen S. Pawlowski,

2013.06.18: “The majority of

energy that we spend today

is on transferring data.”

Depends what you’re doing!

Computations fundamentally vary

in amount of communication

(distance and volume)

and amount of arithmetic.

Some algorithms using n2 data:

Square matrix-vector product:

n2 arithmetic.

Communication vs. arithmetic

Bill Dally, 2013.06.17:

“Communication takes

more energy than arithmetic”.

Stephen S. Pawlowski,

2013.06.18: “The majority of

energy that we spend today

is on transferring data.”

Depends what you’re doing!

Computations fundamentally vary

in amount of communication

(distance and volume)

and amount of arithmetic.

Some algorithms using n2 data:

Square matrix-vector product:

n2 arithmetic.

Communication vs. arithmetic

Bill Dally, 2013.06.17:

“Communication takes

more energy than arithmetic”.

Stephen S. Pawlowski,

2013.06.18: “The majority of

energy that we spend today

is on transferring data.”

Depends what you’re doing!

Computations fundamentally vary

in amount of communication

(distance and volume)

and amount of arithmetic.

Some algorithms using n2 data:

Square matrix-vector product:

n2 arithmetic.

FFT for input size n2:

n2 lgn arithmetic.

Communication vs. arithmetic

Bill Dally, 2013.06.17:

“Communication takes

more energy than arithmetic”.

Stephen S. Pawlowski,

2013.06.18: “The majority of

energy that we spend today

is on transferring data.”

Depends what you’re doing!

Computations fundamentally vary

in amount of communication

(distance and volume)

and amount of arithmetic.

Some algorithms using n2 data:

Square matrix-vector product:

n2 arithmetic.

FFT for input size n2:

n2 lgn arithmetic.

Matrix-matrix product:

typically n3 arithmetic

without Strassen etc.

Communication vs. arithmetic

Bill Dally, 2013.06.17:

“Communication takes

more energy than arithmetic”.

Stephen S. Pawlowski,

2013.06.18: “The majority of

energy that we spend today

is on transferring data.”

Depends what you’re doing!

Computations fundamentally vary

in amount of communication

(distance and volume)

and amount of arithmetic.

Some algorithms using n2 data:

Square matrix-vector product:

n2 arithmetic.

FFT for input size n2:

n2 lgn arithmetic.

Matrix-matrix product:

typically n3 arithmetic

without Strassen etc.

Integrals in quantum chemistry,

many common iterations,

graph algorithms, etc.:

n4 arithmetic, sometimes more.

Communication vs. arithmetic

Bill Dally, 2013.06.17:

“Communication takes

more energy than arithmetic”.

Stephen S. Pawlowski,

2013.06.18: “The majority of

energy that we spend today

is on transferring data.”

Depends what you’re doing!

Computations fundamentally vary

in amount of communication

(distance and volume)

and amount of arithmetic.

Some algorithms using n2 data:

Square matrix-vector product:

n2 arithmetic.

FFT for input size n2:

n2 lgn arithmetic.

Matrix-matrix product:

typically n3 arithmetic

without Strassen etc.

Integrals in quantum chemistry,

many common iterations,

graph algorithms, etc.:

n4 arithmetic, sometimes more.

Chip area n2+�

is enough to store

all data for size-n2 FFT.

Communication vs. arithmetic

Bill Dally, 2013.06.17:

“Communication takes

more energy than arithmetic”.

Stephen S. Pawlowski,

2013.06.18: “The majority of

energy that we spend today

is on transferring data.”

Depends what you’re doing!

Computations fundamentally vary

in amount of communication

(distance and volume)

and amount of arithmetic.

Some algorithms using n2 data:

Square matrix-vector product:

n2 arithmetic.

FFT for input size n2:

n2 lgn arithmetic.

Matrix-matrix product:

typically n3 arithmetic

without Strassen etc.

Integrals in quantum chemistry,

many common iterations,

graph algorithms, etc.:

n4 arithmetic, sometimes more.

Chip area n2+�

is enough to store

all data for size-n2 FFT.

Communication vs. arithmetic

Bill Dally, 2013.06.17:

“Communication takes

more energy than arithmetic”.

Stephen S. Pawlowski,

2013.06.18: “The majority of

energy that we spend today

is on transferring data.”

Depends what you’re doing!

Computations fundamentally vary

in amount of communication

(distance and volume)

and amount of arithmetic.

Some algorithms using n2 data:

Square matrix-vector product:

n2 arithmetic.

FFT for input size n2:

n2 lgn arithmetic.

Matrix-matrix product:

typically n3 arithmetic

without Strassen etc.

Integrals in quantum chemistry,

many common iterations,

graph algorithms, etc.:

n4 arithmetic, sometimes more.

Chip area n2+�

is enough to store

all data for size-n2 FFT.

Some algorithms using n2 data:

Square matrix-vector product:

n2 arithmetic.

FFT for input size n2:

n2 lgn arithmetic.

Matrix-matrix product:

typically n3 arithmetic

without Strassen etc.

Integrals in quantum chemistry,

many common iterations,

graph algorithms, etc.:

n4 arithmetic, sometimes more.

Chip area n2+�

is enough to store

all data for size-n2 FFT.

Some algorithms using n2 data:

Square matrix-vector product:

n2 arithmetic.

FFT for input size n2:

n2 lgn arithmetic.

Matrix-matrix product:

typically n3 arithmetic

without Strassen etc.

Integrals in quantum chemistry,

many common iterations,

graph algorithms, etc.:

n4 arithmetic, sometimes more.

Chip area n2+�

is enough to store

all data for size-n2 FFT.

Chip area n2+�

is also enough for

n2 parallel ALUs.

Some algorithms using n2 data:

Square matrix-vector product:

n2 arithmetic.

FFT for input size n2:

n2 lgn arithmetic.

Matrix-matrix product:

typically n3 arithmetic

without Strassen etc.

Integrals in quantum chemistry,

many common iterations,

graph algorithms, etc.:

n4 arithmetic, sometimes more.

Chip area n2+�

is enough to store

all data for size-n2 FFT.

Chip area n2+�

is also enough for

n2 parallel ALUs.

FFT takes time n�,

thanks to parallelism? No!

Routing the FFT data

occupies area n2+�

for time n1+�.

Some algorithms using n2 data:

Square matrix-vector product:

n2 arithmetic.

FFT for input size n2:

n2 lgn arithmetic.

Matrix-matrix product:

typically n3 arithmetic

without Strassen etc.

Integrals in quantum chemistry,

many common iterations,

graph algorithms, etc.:

n4 arithmetic, sometimes more.

Chip area n2+�

is enough to store

all data for size-n2 FFT.

Chip area n2+�

is also enough for

n2 parallel ALUs.

FFT takes time n�,

thanks to parallelism? No!

Routing the FFT data

occupies area n2+�

for time n1+�.

1981 Brent–Kung: need n1+�

even without wire delays.

Some algorithms using n2 data:

Square matrix-vector product:

n2 arithmetic.

FFT for input size n2:

n2 lgn arithmetic.

Matrix-matrix product:

typically n3 arithmetic

without Strassen etc.

Integrals in quantum chemistry,

many common iterations,

graph algorithms, etc.:

n4 arithmetic, sometimes more.

Chip area n2+�

is enough to store

all data for size-n2 FFT.

Chip area n2+�

is also enough for

n2 parallel ALUs.

FFT takes time n�,

thanks to parallelism? No!

Routing the FFT data

occupies area n2+�

for time n1+�.

1981 Brent–Kung: need n1+�

even without wire delays.

Chip area n2+�

is enough to store

several n� n matrices.

Routing matrix product

occupies area n2+�

for time n1+�.

Typical n3 arithmetic

also occupies n2 ALUs

for time n1+�.

Closer look at �:

the ALU cost dominates,

although not by much.

Some algorithms using n2 data:

Square matrix-vector product:

n2 arithmetic.

FFT for input size n2:

n2 lgn arithmetic.

Matrix-matrix product:

typically n3 arithmetic

without Strassen etc.

Integrals in quantum chemistry,

many common iterations,

graph algorithms, etc.:

n4 arithmetic, sometimes more.

Chip area n2+�

is enough to store

all data for size-n2 FFT.

Chip area n2+�

is also enough for

n2 parallel ALUs.

FFT takes time n�,

thanks to parallelism? No!

Routing the FFT data

occupies area n2+�

for time n1+�.

1981 Brent–Kung: need n1+�

even without wire delays.

Chip area n2+�

is enough to store

several n� n matrices.

Routing matrix product

occupies area n2+�

for time n1+�.

Typical n3 arithmetic

also occupies n2 ALUs

for time n1+�.

Closer look at �:

the ALU cost dominates,

although not by much.

Some algorithms using n2 data:

Square matrix-vector product:

n2 arithmetic.

FFT for input size n2:

n2 lgn arithmetic.

Matrix-matrix product:

typically n3 arithmetic

without Strassen etc.

Integrals in quantum chemistry,

many common iterations,

graph algorithms, etc.:

n4 arithmetic, sometimes more.

Chip area n2+�

is enough to store

all data for size-n2 FFT.

Chip area n2+�

is also enough for

n2 parallel ALUs.

FFT takes time n�,

thanks to parallelism? No!

Routing the FFT data

occupies area n2+�

for time n1+�.

1981 Brent–Kung: need n1+�

even without wire delays.

Chip area n2+�

is enough to store

several n� n matrices.

Routing matrix product

occupies area n2+�

for time n1+�.

Typical n3 arithmetic

also occupies n2 ALUs

for time n1+�.

Closer look at �:

the ALU cost dominates,

although not by much.

Chip area n2+�

is enough to store

all data for size-n2 FFT.

Chip area n2+�

is also enough for

n2 parallel ALUs.

FFT takes time n�,

thanks to parallelism? No!

Routing the FFT data

occupies area n2+�

for time n1+�.

1981 Brent–Kung: need n1+�

even without wire delays.

Chip area n2+�

is enough to store

several n� n matrices.

Routing matrix product

occupies area n2+�

for time n1+�.

Typical n3 arithmetic

also occupies n2 ALUs

for time n1+�.

Closer look at �:

the ALU cost dominates,

although not by much.

Chip area n2+�

is enough to store

all data for size-n2 FFT.

Chip area n2+�

is also enough for

n2 parallel ALUs.

FFT takes time n�,

thanks to parallelism? No!

Routing the FFT data

occupies area n2+�

for time n1+�.

1981 Brent–Kung: need n1+�

even without wire delays.

Chip area n2+�

is enough to store

several n� n matrices.

Routing matrix product

occupies area n2+�

for time n1+�.

Typical n3 arithmetic

also occupies n2 ALUs

for time n1+�.

Closer look at �:

the ALU cost dominates,

although not by much.

>90% of the cost

of typical supercomputers

is spent on communication;

<10% on ALUs.

Is Bluffdale built this way?

Chip area n2+�

is enough to store

all data for size-n2 FFT.

Chip area n2+�

is also enough for

n2 parallel ALUs.

FFT takes time n�,

thanks to parallelism? No!

Routing the FFT data

occupies area n2+�

for time n1+�.

1981 Brent–Kung: need n1+�

even without wire delays.

Chip area n2+�

is enough to store

several n� n matrices.

Routing matrix product

occupies area n2+�

for time n1+�.

Typical n3 arithmetic

also occupies n2 ALUs

for time n1+�.

Closer look at �:

the ALU cost dominates,

although not by much.

>90% of the cost

of typical supercomputers

is spent on communication;

<10% on ALUs.

Is Bluffdale built this way?

Chip area n2+�

is enough to store

all data for size-n2 FFT.

Chip area n2+�

is also enough for

n2 parallel ALUs.

FFT takes time n�,

thanks to parallelism? No!

Routing the FFT data

occupies area n2+�

for time n1+�.

1981 Brent–Kung: need n1+�

even without wire delays.

Chip area n2+�

is enough to store

several n� n matrices.

Routing matrix product

occupies area n2+�

for time n1+�.

Typical n3 arithmetic

also occupies n2 ALUs

for time n1+�.

Closer look at �:

the ALU cost dominates,

although not by much.

>90% of the cost

of typical supercomputers

is spent on communication;

<10% on ALUs.

Is Bluffdale built this way?

Chip area n2+�

is enough to store

several n� n matrices.

Routing matrix product

occupies area n2+�

for time n1+�.

Typical n3 arithmetic

also occupies n2 ALUs

for time n1+�.

Closer look at �:

the ALU cost dominates,

although not by much.

>90% of the cost

of typical supercomputers

is spent on communication;

<10% on ALUs.

Is Bluffdale built this way?

Chip area n2+�

is enough to store

several n� n matrices.

Routing matrix product

occupies area n2+�

for time n1+�.

Typical n3 arithmetic

also occupies n2 ALUs

for time n1+�.

Closer look at �:

the ALU cost dominates,

although not by much.

>90% of the cost

of typical supercomputers

is spent on communication;

<10% on ALUs.

Is Bluffdale built this way?

No; NSA is not stupid.

Doubling number of ALUs

would cost <10% extra.

Would �double performance

of matrix-matrix product

and heavier-arith computations.

NSA’s computations have a mix

of heavy arith and heavy comm.

Chip area n2+�

is enough to store

several n� n matrices.

Routing matrix product

occupies area n2+�

for time n1+�.

Typical n3 arithmetic

also occupies n2 ALUs

for time n1+�.

Closer look at �:

the ALU cost dominates,

although not by much.

>90% of the cost

of typical supercomputers

is spent on communication;

<10% on ALUs.

Is Bluffdale built this way?

No; NSA is not stupid.

Doubling number of ALUs

would cost <10% extra.

Would �double performance

of matrix-matrix product

and heavier-arith computations.

NSA’s computations have a mix

of heavy arith and heavy comm.

GPUs have many ALUs

but relatively little

communication capacity:

a few long wires to RAM.

Is Bluffdale built this way?

Chip area n2+�

is enough to store

several n� n matrices.

Routing matrix product

occupies area n2+�

for time n1+�.

Typical n3 arithmetic

also occupies n2 ALUs

for time n1+�.

Closer look at �:

the ALU cost dominates,

although not by much.

>90% of the cost

of typical supercomputers

is spent on communication;

<10% on ALUs.

Is Bluffdale built this way?

No; NSA is not stupid.

Doubling number of ALUs

would cost <10% extra.

Would �double performance

of matrix-matrix product

and heavier-arith computations.

NSA’s computations have a mix

of heavy arith and heavy comm.

GPUs have many ALUs

but relatively little

communication capacity:

a few long wires to RAM.

Is Bluffdale built this way?

Chip area n2+�

is enough to store

several n� n matrices.

Routing matrix product

occupies area n2+�

for time n1+�.

Typical n3 arithmetic

also occupies n2 ALUs

for time n1+�.

Closer look at �:

the ALU cost dominates,

although not by much.

>90% of the cost

of typical supercomputers

is spent on communication;

<10% on ALUs.

Is Bluffdale built this way?

No; NSA is not stupid.

Doubling number of ALUs

would cost <10% extra.

Would �double performance

of matrix-matrix product

and heavier-arith computations.

NSA’s computations have a mix

of heavy arith and heavy comm.

GPUs have many ALUs

but relatively little

communication capacity:

a few long wires to RAM.

Is Bluffdale built this way?

>90% of the cost

of typical supercomputers

is spent on communication;

<10% on ALUs.

Is Bluffdale built this way?

No; NSA is not stupid.

Doubling number of ALUs

would cost <10% extra.

Would �double performance

of matrix-matrix product

and heavier-arith computations.

NSA’s computations have a mix

of heavy arith and heavy comm.

GPUs have many ALUs

but relatively little

communication capacity:

a few long wires to RAM.

Is Bluffdale built this way?

>90% of the cost

of typical supercomputers

is spent on communication;

<10% on ALUs.

Is Bluffdale built this way?

No; NSA is not stupid.

Doubling number of ALUs

would cost <10% extra.

Would �double performance

of matrix-matrix product

and heavier-arith computations.

NSA’s computations have a mix

of heavy arith and heavy comm.

GPUs have many ALUs

but relatively little

communication capacity:

a few long wires to RAM.

Is Bluffdale built this way?

No; NSA is not stupid.

Adding communication

between adjacent ALUs

would cost very little.

Would drastically speed up

matrix-matrix product

and heavier-comm computations:

FFT, sorting, etc.

>90% of the cost

of typical supercomputers

is spent on communication;

<10% on ALUs.

Is Bluffdale built this way?

No; NSA is not stupid.

Doubling number of ALUs

would cost <10% extra.

Would �double performance

of matrix-matrix product

and heavier-arith computations.

NSA’s computations have a mix

of heavy arith and heavy comm.

GPUs have many ALUs

but relatively little

communication capacity:

a few long wires to RAM.

Is Bluffdale built this way?

No; NSA is not stupid.

Adding communication

between adjacent ALUs

would cost very little.

Would drastically speed up

matrix-matrix product

and heavier-comm computations:

FFT, sorting, etc.

Documentation tells me that

Intel Xeon Phi has many ALUs

and a few long wires to RAM

plus adjacent one-dimensional

communication (ring bus).

Is Bluffdale built this way?

>90% of the cost

of typical supercomputers

is spent on communication;

<10% on ALUs.

Is Bluffdale built this way?

No; NSA is not stupid.

Doubling number of ALUs

would cost <10% extra.

Would �double performance

of matrix-matrix product

and heavier-arith computations.

NSA’s computations have a mix

of heavy arith and heavy comm.

GPUs have many ALUs

but relatively little

communication capacity:

a few long wires to RAM.

Is Bluffdale built this way?

No; NSA is not stupid.

Adding communication

between adjacent ALUs

would cost very little.

Would drastically speed up

matrix-matrix product

and heavier-comm computations:

FFT, sorting, etc.

Documentation tells me that

Intel Xeon Phi has many ALUs

and a few long wires to RAM

plus adjacent one-dimensional

communication (ring bus).

Is Bluffdale built this way?

>90% of the cost

of typical supercomputers

is spent on communication;

<10% on ALUs.

Is Bluffdale built this way?

No; NSA is not stupid.

Doubling number of ALUs

would cost <10% extra.

Would �double performance

of matrix-matrix product

and heavier-arith computations.

NSA’s computations have a mix

of heavy arith and heavy comm.

GPUs have many ALUs

but relatively little

communication capacity:

a few long wires to RAM.

Is Bluffdale built this way?

No; NSA is not stupid.

Adding communication

between adjacent ALUs

would cost very little.

Would drastically speed up

matrix-matrix product

and heavier-comm computations:

FFT, sorting, etc.

Documentation tells me that

Intel Xeon Phi has many ALUs

and a few long wires to RAM

plus adjacent one-dimensional

communication (ring bus).

Is Bluffdale built this way?

GPUs have many ALUs

but relatively little

communication capacity:

a few long wires to RAM.

Is Bluffdale built this way?

No; NSA is not stupid.

Adding communication

between adjacent ALUs

would cost very little.

Would drastically speed up

matrix-matrix product

and heavier-comm computations:

FFT, sorting, etc.

Documentation tells me that

Intel Xeon Phi has many ALUs

and a few long wires to RAM

plus adjacent one-dimensional

communication (ring bus).

Is Bluffdale built this way?

GPUs have many ALUs

but relatively little

communication capacity:

a few long wires to RAM.

Is Bluffdale built this way?

No; NSA is not stupid.

Adding communication

between adjacent ALUs

would cost very little.

Would drastically speed up

matrix-matrix product

and heavier-comm computations:

FFT, sorting, etc.

Documentation tells me that

Intel Xeon Phi has many ALUs

and a few long wires to RAM

plus adjacent one-dimensional

communication (ring bus).

Is Bluffdale built this way?

No; NSA is not stupid.

Adding two-dimensional grid

would drastically speed up

heavy-comm computations.

e.g. 1977 Thompson–Kung.

Grid examples: MasPar; FPGAs.

But FPGAs have other problems.

GPUs have many ALUs

but relatively little

communication capacity:

a few long wires to RAM.

Is Bluffdale built this way?

No; NSA is not stupid.

Adding communication

between adjacent ALUs

would cost very little.

Would drastically speed up

matrix-matrix product

and heavier-comm computations:

FFT, sorting, etc.

Documentation tells me that

Intel Xeon Phi has many ALUs

and a few long wires to RAM

plus adjacent one-dimensional

communication (ring bus).

Is Bluffdale built this way?

No; NSA is not stupid.

Adding two-dimensional grid

would drastically speed up

heavy-comm computations.

e.g. 1977 Thompson–Kung.

Grid examples: MasPar; FPGAs.

But FPGAs have other problems.

Save even more time

with 3D arrangement of ALUs?

e.g. 1983 Rosenberg.

Huge engineering challenge.

2D allows easy scaling of

energy input, heat output

up to very large chip area.

3D is hard to scale.

Some limited progress

(most interesting: optics),

presumably used by NSA.

Progress often exaggerated:

e.g., 4� 16384� 16384

is often called “3D”.

GPUs have many ALUs

but relatively little

communication capacity:

a few long wires to RAM.

Is Bluffdale built this way?

No; NSA is not stupid.

Adding communication

between adjacent ALUs

would cost very little.

Would drastically speed up

matrix-matrix product

and heavier-comm computations:

FFT, sorting, etc.

Documentation tells me that

Intel Xeon Phi has many ALUs

and a few long wires to RAM

plus adjacent one-dimensional

communication (ring bus).

Is Bluffdale built this way?

No; NSA is not stupid.

Adding two-dimensional grid

would drastically speed up

heavy-comm computations.

e.g. 1977 Thompson–Kung.

Grid examples: MasPar; FPGAs.

But FPGAs have other problems.

Save even more time

with 3D arrangement of ALUs?

e.g. 1983 Rosenberg.

Huge engineering challenge.

2D allows easy scaling of

energy input, heat output

up to very large chip area.

3D is hard to scale.

Some limited progress

(most interesting: optics),

presumably used by NSA.

Progress often exaggerated:

e.g., 4� 16384� 16384

is often called “3D”.

GPUs have many ALUs

but relatively little

communication capacity:

a few long wires to RAM.

Is Bluffdale built this way?

No; NSA is not stupid.

Adding communication

between adjacent ALUs

would cost very little.

Would drastically speed up

matrix-matrix product

and heavier-comm computations:

FFT, sorting, etc.

Documentation tells me that

Intel Xeon Phi has many ALUs

and a few long wires to RAM

plus adjacent one-dimensional

communication (ring bus).

Is Bluffdale built this way?

No; NSA is not stupid.

Adding two-dimensional grid

would drastically speed up

heavy-comm computations.

e.g. 1977 Thompson–Kung.

Grid examples: MasPar; FPGAs.

But FPGAs have other problems.

Save even more time

with 3D arrangement of ALUs?

e.g. 1983 Rosenberg.

Huge engineering challenge.

2D allows easy scaling of

energy input, heat output

up to very large chip area.

3D is hard to scale.

Some limited progress

(most interesting: optics),

presumably used by NSA.

Progress often exaggerated:

e.g., 4� 16384� 16384

is often called “3D”.

Documentation tells me that

Intel Xeon Phi has many ALUs

and a few long wires to RAM

plus adjacent one-dimensional

communication (ring bus).

Is Bluffdale built this way?

No; NSA is not stupid.

Adding two-dimensional grid

would drastically speed up

heavy-comm computations.

e.g. 1977 Thompson–Kung.

Grid examples: MasPar; FPGAs.

But FPGAs have other problems.

Save even more time

with 3D arrangement of ALUs?

e.g. 1983 Rosenberg.

Huge engineering challenge.

2D allows easy scaling of

energy input, heat output

up to very large chip area.

3D is hard to scale.

Some limited progress

(most interesting: optics),

presumably used by NSA.

Progress often exaggerated:

e.g., 4� 16384� 16384

is often called “3D”.

Documentation tells me that

Intel Xeon Phi has many ALUs

and a few long wires to RAM

plus adjacent one-dimensional

communication (ring bus).

Is Bluffdale built this way?

No; NSA is not stupid.

Adding two-dimensional grid

would drastically speed up

heavy-comm computations.

e.g. 1977 Thompson–Kung.

Grid examples: MasPar; FPGAs.

But FPGAs have other problems.

Save even more time

with 3D arrangement of ALUs?

e.g. 1983 Rosenberg.

Huge engineering challenge.

2D allows easy scaling of

energy input, heat output

up to very large chip area.

3D is hard to scale.

Some limited progress

(most interesting: optics),

presumably used by NSA.

Progress often exaggerated:

e.g., 4� 16384� 16384

is often called “3D”.

Special vs. general purpose

Typical cryptanalytic arith:

between 100� and 1000�

better performance per transistor

from ASICs than from

mass-market CPUs, GPUs.

Some exceptions, but overall

ASICs bring massive speedup.

Documentation tells me that

Intel Xeon Phi has many ALUs

and a few long wires to RAM

plus adjacent one-dimensional

communication (ring bus).

Is Bluffdale built this way?

No; NSA is not stupid.

Adding two-dimensional grid

would drastically speed up

heavy-comm computations.

e.g. 1977 Thompson–Kung.

Grid examples: MasPar; FPGAs.

But FPGAs have other problems.

Save even more time

with 3D arrangement of ALUs?

e.g. 1983 Rosenberg.

Huge engineering challenge.

2D allows easy scaling of

energy input, heat output

up to very large chip area.

3D is hard to scale.

Some limited progress

(most interesting: optics),

presumably used by NSA.

Progress often exaggerated:

e.g., 4� 16384� 16384

is often called “3D”.

Special vs. general purpose

Typical cryptanalytic arith:

between 100� and 1000�

better performance per transistor

from ASICs than from

mass-market CPUs, GPUs.

Some exceptions, but overall

ASICs bring massive speedup.

Documentation tells me that

Intel Xeon Phi has many ALUs

and a few long wires to RAM

plus adjacent one-dimensional

communication (ring bus).

Is Bluffdale built this way?

No; NSA is not stupid.

Adding two-dimensional grid

would drastically speed up

heavy-comm computations.

e.g. 1977 Thompson–Kung.

Grid examples: MasPar; FPGAs.

But FPGAs have other problems.

Save even more time

with 3D arrangement of ALUs?

e.g. 1983 Rosenberg.

Huge engineering challenge.

2D allows easy scaling of

energy input, heat output

up to very large chip area.

3D is hard to scale.

Some limited progress

(most interesting: optics),

presumably used by NSA.

Progress often exaggerated:

e.g., 4� 16384� 16384

is often called “3D”.

Special vs. general purpose

Typical cryptanalytic arith:

between 100� and 1000�

better performance per transistor

from ASICs than from

mass-market CPUs, GPUs.

Some exceptions, but overall

ASICs bring massive speedup.

Save even more time

with 3D arrangement of ALUs?

e.g. 1983 Rosenberg.

Huge engineering challenge.

2D allows easy scaling of

energy input, heat output

up to very large chip area.

3D is hard to scale.

Some limited progress

(most interesting: optics),

presumably used by NSA.

Progress often exaggerated:

e.g., 4� 16384� 16384

is often called “3D”.

Special vs. general purpose

Typical cryptanalytic arith:

between 100� and 1000�

better performance per transistor

from ASICs than from

mass-market CPUs, GPUs.

Some exceptions, but overall

ASICs bring massive speedup.

Save even more time

with 3D arrangement of ALUs?

e.g. 1983 Rosenberg.

Huge engineering challenge.

2D allows easy scaling of

energy input, heat output

up to very large chip area.

3D is hard to scale.

Some limited progress

(most interesting: optics),

presumably used by NSA.

Progress often exaggerated:

e.g., 4� 16384� 16384

is often called “3D”.

Special vs. general purpose

Typical cryptanalytic arith:

between 100� and 1000�

better performance per transistor

from ASICs than from

mass-market CPUs, GPUs.

Some exceptions, but overall

ASICs bring massive speedup.

Only in cryptanalysis? No.

Estimated ASIC improvement

from preliminary scan of other

supercomputing arith problems:

usually >10�, often >100�.

Save even more time

with 3D arrangement of ALUs?

e.g. 1983 Rosenberg.

Huge engineering challenge.

2D allows easy scaling of

energy input, heat output

up to very large chip area.

3D is hard to scale.

Some limited progress

(most interesting: optics),

presumably used by NSA.

Progress often exaggerated:

e.g., 4� 16384� 16384

is often called “3D”.

Special vs. general purpose

Typical cryptanalytic arith:

between 100� and 1000�

better performance per transistor

from ASICs than from

mass-market CPUs, GPUs.

Some exceptions, but overall

ASICs bring massive speedup.

Only in cryptanalysis? No.

Estimated ASIC improvement

from preliminary scan of other

supercomputing arith problems:

usually >10�, often >100�.

Frequent observation:

chips spend area, time, energy

on decoding+scheduling insns.

) CPU/GPU design trend:

reduce insn-handling cost

by adding vectorization—

apply same instruction

to multiple data/threads.

Save even more time

with 3D arrangement of ALUs?

e.g. 1983 Rosenberg.

Huge engineering challenge.

2D allows easy scaling of

energy input, heat output

up to very large chip area.

3D is hard to scale.

Some limited progress

(most interesting: optics),

presumably used by NSA.

Progress often exaggerated:

e.g., 4� 16384� 16384

is often called “3D”.

Special vs. general purpose

Typical cryptanalytic arith:

between 100� and 1000�

better performance per transistor

from ASICs than from

mass-market CPUs, GPUs.

Some exceptions, but overall

ASICs bring massive speedup.

Only in cryptanalysis? No.

Estimated ASIC improvement

from preliminary scan of other

supercomputing arith problems:

usually >10�, often >100�.

Frequent observation:

chips spend area, time, energy

on decoding+scheduling insns.

) CPU/GPU design trend:

reduce insn-handling cost

by adding vectorization—

apply same instruction

to multiple data/threads.

Save even more time

with 3D arrangement of ALUs?

e.g. 1983 Rosenberg.

Huge engineering challenge.

2D allows easy scaling of

energy input, heat output

up to very large chip area.

3D is hard to scale.

Some limited progress

(most interesting: optics),

presumably used by NSA.

Progress often exaggerated:

e.g., 4� 16384� 16384

is often called “3D”.

Special vs. general purpose

Typical cryptanalytic arith:

between 100� and 1000�

better performance per transistor

from ASICs than from

mass-market CPUs, GPUs.

Some exceptions, but overall

ASICs bring massive speedup.

Only in cryptanalysis? No.

Estimated ASIC improvement

from preliminary scan of other

supercomputing arith problems:

usually >10�, often >100�.

Frequent observation:

chips spend area, time, energy

on decoding+scheduling insns.

) CPU/GPU design trend:

reduce insn-handling cost

by adding vectorization—

apply same instruction

to multiple data/threads.

Special vs. general purpose

Typical cryptanalytic arith:

between 100� and 1000�

better performance per transistor

from ASICs than from

mass-market CPUs, GPUs.

Some exceptions, but overall

ASICs bring massive speedup.

Only in cryptanalysis? No.

Estimated ASIC improvement

from preliminary scan of other

supercomputing arith problems:

usually >10�, often >100�.

Frequent observation:

chips spend area, time, energy

on decoding+scheduling insns.

) CPU/GPU design trend:

reduce insn-handling cost

by adding vectorization—

apply same instruction

to multiple data/threads.

Special vs. general purpose

Typical cryptanalytic arith:

between 100� and 1000�

better performance per transistor

from ASICs than from

mass-market CPUs, GPUs.

Some exceptions, but overall

ASICs bring massive speedup.

Only in cryptanalysis? No.

Estimated ASIC improvement

from preliminary scan of other

supercomputing arith problems:

usually >10�, often >100�.

Frequent observation:

chips spend area, time, energy

on decoding+scheduling insns.

) CPU/GPU design trend:

reduce insn-handling cost

by adding vectorization—

apply same instruction

to multiple data/threads.

But this does nothing

to reduce costs of

reading data from reg file,

writing data to reg file.

Special vs. general purpose

Typical cryptanalytic arith:

between 100� and 1000�

better performance per transistor

from ASICs than from

mass-market CPUs, GPUs.

Some exceptions, but overall

ASICs bring massive speedup.

Only in cryptanalysis? No.

Estimated ASIC improvement

from preliminary scan of other

supercomputing arith problems:

usually >10�, often >100�.

Frequent observation:

chips spend area, time, energy

on decoding+scheduling insns.

) CPU/GPU design trend:

reduce insn-handling cost

by adding vectorization—

apply same instruction

to multiple data/threads.

But this does nothing

to reduce costs of

reading data from reg file,

writing data to reg file.

Obvious strategy to

reduce these reg costs:

combine arith operations,

doing more arith

between read and write.

Example: Build circuit

to compute xy + z.

CPU reads regs x; y; z;

computes xy + z; writes.

With separate mul, add:

CPU reads x; y; computes xy;

writes; reads back; reads z;

computes xy + z; writes.

Special vs. general purpose

Typical cryptanalytic arith:

between 100� and 1000�

better performance per transistor

from ASICs than from

mass-market CPUs, GPUs.

Some exceptions, but overall

ASICs bring massive speedup.

Only in cryptanalysis? No.

Estimated ASIC improvement

from preliminary scan of other

supercomputing arith problems:

usually >10�, often >100�.

Frequent observation:

chips spend area, time, energy

on decoding+scheduling insns.

) CPU/GPU design trend:

reduce insn-handling cost

by adding vectorization—

apply same instruction

to multiple data/threads.

But this does nothing

to reduce costs of

reading data from reg file,

writing data to reg file.

Obvious strategy to

reduce these reg costs:

combine arith operations,

doing more arith

between read and write.

Example: Build circuit

to compute xy + z.

CPU reads regs x; y; z;

computes xy + z; writes.

With separate mul, add:

CPU reads x; y; computes xy;

writes; reads back; reads z;

computes xy + z; writes.

Special vs. general purpose

Typical cryptanalytic arith:

between 100� and 1000�

better performance per transistor

from ASICs than from

mass-market CPUs, GPUs.

Some exceptions, but overall

ASICs bring massive speedup.

Only in cryptanalysis? No.

Estimated ASIC improvement

from preliminary scan of other

supercomputing arith problems:

usually >10�, often >100�.

Frequent observation:

chips spend area, time, energy

on decoding+scheduling insns.

) CPU/GPU design trend:

reduce insn-handling cost

by adding vectorization—

apply same instruction

to multiple data/threads.

But this does nothing

to reduce costs of

reading data from reg file,

writing data to reg file.

Obvious strategy to

reduce these reg costs:

combine arith operations,

doing more arith

between read and write.

Example: Build circuit

to compute xy + z.

CPU reads regs x; y; z;

computes xy + z; writes.

With separate mul, add:

CPU reads x; y; computes xy;

writes; reads back; reads z;

computes xy + z; writes.

Frequent observation:

chips spend area, time, energy

on decoding+scheduling insns.

) CPU/GPU design trend:

reduce insn-handling cost

by adding vectorization—

apply same instruction

to multiple data/threads.

But this does nothing

to reduce costs of

reading data from reg file,

writing data to reg file.

Obvious strategy to

reduce these reg costs:

combine arith operations,

doing more arith

between read and write.

Example: Build circuit

to compute xy + z.

CPU reads regs x; y; z;

computes xy + z; writes.

With separate mul, add:

CPU reads x; y; computes xy;

writes; reads back; reads z;

computes xy + z; writes.

Frequent observation:

chips spend area, time, energy

on decoding+scheduling insns.

) CPU/GPU design trend:

reduce insn-handling cost

by adding vectorization—

apply same instruction

to multiple data/threads.

But this does nothing

to reduce costs of

reading data from reg file,

writing data to reg file.

Obvious strategy to

reduce these reg costs:

combine arith operations,

doing more arith

between read and write.

Example: Build circuit

to compute xy + z.

CPU reads regs x; y; z;

computes xy + z; writes.

With separate mul, add:

CPU reads x; y; computes xy;

writes; reads back; reads z;

computes xy + z; writes.

Common fp operations

evolved in this way.

Chip designer saw many

single-precision fp muls,

eventually spent area on

circuit for those muls.

Frequent observation:

chips spend area, time, energy

on decoding+scheduling insns.

) CPU/GPU design trend:

reduce insn-handling cost

by adding vectorization—

apply same instruction

to multiple data/threads.

But this does nothing

to reduce costs of

reading data from reg file,

writing data to reg file.

Obvious strategy to

reduce these reg costs:

combine arith operations,

doing more arith

between read and write.

Example: Build circuit

to compute xy + z.

CPU reads regs x; y; z;

computes xy + z; writes.

With separate mul, add:

CPU reads x; y; computes xy;

writes; reads back; reads z;

computes xy + z; writes.

Common fp operations

evolved in this way.

Chip designer saw many

single-precision fp muls,

eventually spent area on

circuit for those muls.

Frequent observation:

chips spend area, time, energy

on decoding+scheduling insns.

) CPU/GPU design trend:

reduce insn-handling cost

by adding vectorization—

apply same instruction

to multiple data/threads.

But this does nothing

to reduce costs of

reading data from reg file,

writing data to reg file.

Obvious strategy to

reduce these reg costs:

combine arith operations,

doing more arith

between read and write.

Example: Build circuit

to compute xy + z.

CPU reads regs x; y; z;

computes xy + z; writes.

With separate mul, add:

CPU reads x; y; computes xy;

writes; reads back; reads z;

computes xy + z; writes.

Common fp operations

evolved in this way.

Chip designer saw many

single-precision fp muls,

eventually spent area on

circuit for those muls.

Obvious strategy to

reduce these reg costs:

combine arith operations,

doing more arith

between read and write.

Example: Build circuit

to compute xy + z.

CPU reads regs x; y; z;

computes xy + z; writes.

With separate mul, add:

CPU reads x; y; computes xy;

writes; reads back; reads z;

computes xy + z; writes.

Common fp operations

evolved in this way.

Chip designer saw many

single-precision fp muls,

eventually spent area on

circuit for those muls.

Obvious strategy to

reduce these reg costs:

combine arith operations,

doing more arith

between read and write.

Example: Build circuit

to compute xy + z.

CPU reads regs x; y; z;

computes xy + z; writes.

With separate mul, add:

CPU reads x; y; computes xy;

writes; reads back; reads z;

computes xy + z; writes.

Common fp operations

evolved in this way.

Chip designer saw many

single-precision fp muls,

eventually spent area on

circuit for those muls.

Then spent much more area

to expand the multiplier

to double-precision fp.

Obvious strategy to

reduce these reg costs:

combine arith operations,

doing more arith

between read and write.

Example: Build circuit

to compute xy + z.

CPU reads regs x; y; z;

computes xy + z; writes.

With separate mul, add:

CPU reads x; y; computes xy;

writes; reads back; reads z;

computes xy + z; writes.

Common fp operations

evolved in this way.

Chip designer saw many

single-precision fp muls,

eventually spent area on

circuit for those muls.

Then spent much more area

to expand the multiplier

to double-precision fp.

But people still run many

single-precision computations.

The multiplier transistors are

mostly sitting idle.

Obvious strategy to

reduce these reg costs:

combine arith operations,

doing more arith

between read and write.

Example: Build circuit

to compute xy + z.

CPU reads regs x; y; z;

computes xy + z; writes.

With separate mul, add:

CPU reads x; y; computes xy;

writes; reads back; reads z;

computes xy + z; writes.

Common fp operations

evolved in this way.

Chip designer saw many

single-precision fp muls,

eventually spent area on

circuit for those muls.

Then spent much more area

to expand the multiplier

to double-precision fp.

But people still run many

single-precision computations.

The multiplier transistors are

mostly sitting idle.

Another example:

Your application does

mul-sub-sub-sub-sub

in its inner loop.

Should CPU designer

include mul circuit,

4 separate sub circuits?

Obvious strategy to

reduce these reg costs:

combine arith operations,

doing more arith

between read and write.

Example: Build circuit

to compute xy + z.

CPU reads regs x; y; z;

computes xy + z; writes.

With separate mul, add:

CPU reads x; y; computes xy;

writes; reads back; reads z;

computes xy + z; writes.

Common fp operations

evolved in this way.

Chip designer saw many

single-precision fp muls,

eventually spent area on

circuit for those muls.

Then spent much more area

to expand the multiplier

to double-precision fp.

But people still run many

single-precision computations.

The multiplier transistors are

mostly sitting idle.

Another example:

Your application does

mul-sub-sub-sub-sub

in its inner loop.

Should CPU designer

include mul circuit,

4 separate sub circuits?

Obvious strategy to

reduce these reg costs:

combine arith operations,

doing more arith

between read and write.

Example: Build circuit

to compute xy + z.

CPU reads regs x; y; z;

computes xy + z; writes.

With separate mul, add:

CPU reads x; y; computes xy;

writes; reads back; reads z;

computes xy + z; writes.

Common fp operations

evolved in this way.

Chip designer saw many

single-precision fp muls,

eventually spent area on

circuit for those muls.

Then spent much more area

to expand the multiplier

to double-precision fp.

But people still run many

single-precision computations.

The multiplier transistors are

mostly sitting idle.

Another example:

Your application does

mul-sub-sub-sub-sub

in its inner loop.

Should CPU designer

include mul circuit,

4 separate sub circuits?

Common fp operations

evolved in this way.

Chip designer saw many

single-precision fp muls,

eventually spent area on

circuit for those muls.

Then spent much more area

to expand the multiplier

to double-precision fp.

But people still run many

single-precision computations.

The multiplier transistors are

mostly sitting idle.

Another example:

Your application does

mul-sub-sub-sub-sub

in its inner loop.

Should CPU designer

include mul circuit,

4 separate sub circuits?

Common fp operations

evolved in this way.

Chip designer saw many

single-precision fp muls,

eventually spent area on

circuit for those muls.

Then spent much more area

to expand the multiplier

to double-precision fp.

But people still run many

single-precision computations.

The multiplier transistors are

mostly sitting idle.

Another example:

Your application does

mul-sub-sub-sub-sub

in its inner loop.

Should CPU designer

include mul circuit,

4 separate sub circuits?

Same CPU then runs

another application.

Subtraction circuits are

mostly sitting idle.

Common fp operations

evolved in this way.

Chip designer saw many

single-precision fp muls,

eventually spent area on

circuit for those muls.

Then spent much more area

to expand the multiplier

to double-precision fp.

But people still run many

single-precision computations.

The multiplier transistors are

mostly sitting idle.

Another example:

Your application does

mul-sub-sub-sub-sub

in its inner loop.

Should CPU designer

include mul circuit,

4 separate sub circuits?

Same CPU then runs

another application.

Subtraction circuits are

mostly sitting idle.

CPU designer says no,

reduces area per core.

) Your application runs slowly.

Common fp operations

evolved in this way.

Chip designer saw many

single-precision fp muls,

eventually spent area on

circuit for those muls.

Then spent much more area

to expand the multiplier

to double-precision fp.

But people still run many

single-precision computations.

The multiplier transistors are

mostly sitting idle.

Another example:

Your application does

mul-sub-sub-sub-sub

in its inner loop.

Should CPU designer

include mul circuit,

4 separate sub circuits?

Same CPU then runs

another application.

Subtraction circuits are

mostly sitting idle.

CPU designer says no,

reduces area per core.

) Your application runs slowly.

Many ASIC fp speedups

beyond today’s CPUs/GPUs:

� Squaring is cheaper

than multiplication.

� Skip most normalizations.

� Reduce precision to

what is actually needed.

� Add very fast sqrt

if application needs it.

� etc.

Common fp operations

evolved in this way.

Chip designer saw many

single-precision fp muls,

eventually spent area on

circuit for those muls.

Then spent much more area

to expand the multiplier

to double-precision fp.

But people still run many

single-precision computations.

The multiplier transistors are

mostly sitting idle.

Another example:

Your application does

mul-sub-sub-sub-sub

in its inner loop.

Should CPU designer

include mul circuit,

4 separate sub circuits?

Same CPU then runs

another application.

Subtraction circuits are

mostly sitting idle.

CPU designer says no,

reduces area per core.

) Your application runs slowly.

Many ASIC fp speedups

beyond today’s CPUs/GPUs:

� Squaring is cheaper

than multiplication.

� Skip most normalizations.

� Reduce precision to

what is actually needed.

� Add very fast sqrt

if application needs it.

� etc.

Common fp operations

evolved in this way.

Chip designer saw many

single-precision fp muls,

eventually spent area on

circuit for those muls.

Then spent much more area

to expand the multiplier

to double-precision fp.

But people still run many

single-precision computations.

The multiplier transistors are

mostly sitting idle.

Another example:

Your application does

mul-sub-sub-sub-sub

in its inner loop.

Should CPU designer

include mul circuit,

4 separate sub circuits?

Same CPU then runs

another application.

Subtraction circuits are

mostly sitting idle.

CPU designer says no,

reduces area per core.

) Your application runs slowly.

Many ASIC fp speedups

beyond today’s CPUs/GPUs:

� Squaring is cheaper

than multiplication.

� Skip most normalizations.

� Reduce precision to

what is actually needed.

� Add very fast sqrt

if application needs it.

� etc.

Another example:

Your application does

mul-sub-sub-sub-sub

in its inner loop.

Should CPU designer

include mul circuit,

4 separate sub circuits?

Same CPU then runs

another application.

Subtraction circuits are

mostly sitting idle.

CPU designer says no,

reduces area per core.

) Your application runs slowly.

Many ASIC fp speedups

beyond today’s CPUs/GPUs:

� Squaring is cheaper

than multiplication.

� Skip most normalizations.

� Reduce precision to

what is actually needed.

� Add very fast sqrt

if application needs it.

� etc.

Another example:

Your application does

mul-sub-sub-sub-sub

in its inner loop.

Should CPU designer

include mul circuit,

4 separate sub circuits?

Same CPU then runs

another application.

Subtraction circuits are

mostly sitting idle.

CPU designer says no,

reduces area per core.

) Your application runs slowly.

Many ASIC fp speedups

beyond today’s CPUs/GPUs:

� Squaring is cheaper

than multiplication.

� Skip most normalizations.

� Reduce precision to

what is actually needed.

� Add very fast sqrt

if application needs it.

� etc.

Cryptanalysis involves

many multiplications

but also a much wider

variety of operations.

Even larger ASIC speedups.

Another example:

Your application does

mul-sub-sub-sub-sub

in its inner loop.

Should CPU designer

include mul circuit,

4 separate sub circuits?

Same CPU then runs

another application.

Subtraction circuits are

mostly sitting idle.

CPU designer says no,

reduces area per core.

) Your application runs slowly.

Many ASIC fp speedups

beyond today’s CPUs/GPUs:

� Squaring is cheaper

than multiplication.

� Skip most normalizations.

� Reduce precision to

what is actually needed.

� Add very fast sqrt

if application needs it.

� etc.

Cryptanalysis involves

many multiplications

but also a much wider

variety of operations.

Even larger ASIC speedups.

So NSA builds ASICs

for each application?

The small problem:

ASIC design effort.

Not a serious issue

for $2 billion.

Another example:

Your application does

mul-sub-sub-sub-sub

in its inner loop.

Should CPU designer

include mul circuit,

4 separate sub circuits?

Same CPU then runs

another application.

Subtraction circuits are

mostly sitting idle.

CPU designer says no,

reduces area per core.

) Your application runs slowly.

Many ASIC fp speedups

beyond today’s CPUs/GPUs:

� Squaring is cheaper

than multiplication.

� Skip most normalizations.

� Reduce precision to

what is actually needed.

� Add very fast sqrt

if application needs it.

� etc.

Cryptanalysis involves

many multiplications

but also a much wider

variety of operations.

Even larger ASIC speedups.

So NSA builds ASICs

for each application?

The small problem:

ASIC design effort.

Not a serious issue

for $2 billion.

Another example:

Your application does

mul-sub-sub-sub-sub

in its inner loop.

Should CPU designer

include mul circuit,

4 separate sub circuits?

Same CPU then runs

another application.

Subtraction circuits are

mostly sitting idle.

CPU designer says no,

reduces area per core.

) Your application runs slowly.

Many ASIC fp speedups

beyond today’s CPUs/GPUs:

� Squaring is cheaper

than multiplication.

� Skip most normalizations.

� Reduce precision to

what is actually needed.

� Add very fast sqrt

if application needs it.

� etc.

Cryptanalysis involves

many multiplications

but also a much wider

variety of operations.

Even larger ASIC speedups.

So NSA builds ASICs

for each application?

The small problem:

ASIC design effort.

Not a serious issue

for $2 billion.

Many ASIC fp speedups

beyond today’s CPUs/GPUs:

� Squaring is cheaper

than multiplication.

� Skip most normalizations.

� Reduce precision to

what is actually needed.

� Add very fast sqrt

if application needs it.

� etc.

Cryptanalysis involves

many multiplications

but also a much wider

variety of operations.

Even larger ASIC speedups.

So NSA builds ASICs

for each application?

The small problem:

ASIC design effort.

Not a serious issue

for $2 billion.

Many ASIC fp speedups

beyond today’s CPUs/GPUs:

� Squaring is cheaper

than multiplication.

� Skip most normalizations.

� Reduce precision to

what is actually needed.

� Add very fast sqrt

if application needs it.

� etc.

Cryptanalysis involves

many multiplications

but also a much wider

variety of operations.

Even larger ASIC speedups.

So NSA builds ASICs

for each application?

The small problem:

ASIC design effort.

Not a serious issue

for $2 billion.

The big problem:

Unpredictable application mix.

NSA will want some agility

to adapt to new computations

and stop old computations.

Quantify using historical data:

how long is an ASIC useful?

Many ASIC fp speedups

beyond today’s CPUs/GPUs:

� Squaring is cheaper

than multiplication.

� Skip most normalizations.

� Reduce precision to

what is actually needed.

� Add very fast sqrt

if application needs it.

� etc.

Cryptanalysis involves

many multiplications

but also a much wider

variety of operations.

Even larger ASIC speedups.

So NSA builds ASICs

for each application?

The small problem:

ASIC design effort.

Not a serious issue

for $2 billion.

The big problem:

Unpredictable application mix.

NSA will want some agility

to adapt to new computations

and stop old computations.

Quantify using historical data:

how long is an ASIC useful?

Obvious solution for NSA:

some ASICs, plus heterogeneous

mix of application-tuned

integrated circuits (ATICs).

Take a general-purpose CPU.

Add exactly the big insn

XYZZY needed by application,

plus some vectorization.

Think ahead, add agility:

XYZZ? XZZY? XYQZZY?

Still similar cost to ASIC.

New CPU for each application.

Merge similar applications

if not much cost in area.

Many ASIC fp speedups

beyond today’s CPUs/GPUs:

� Squaring is cheaper

than multiplication.

� Skip most normalizations.

� Reduce precision to

what is actually needed.

� Add very fast sqrt

if application needs it.

� etc.

Cryptanalysis involves

many multiplications

but also a much wider

variety of operations.

Even larger ASIC speedups.

So NSA builds ASICs

for each application?

The small problem:

ASIC design effort.

Not a serious issue

for $2 billion.

The big problem:

Unpredictable application mix.

NSA will want some agility

to adapt to new computations

and stop old computations.

Quantify using historical data:

how long is an ASIC useful?

Obvious solution for NSA:

some ASICs, plus heterogeneous

mix of application-tuned

integrated circuits (ATICs).

Take a general-purpose CPU.

Add exactly the big insn

XYZZY needed by application,

plus some vectorization.

Think ahead, add agility:

XYZZ? XZZY? XYQZZY?

Still similar cost to ASIC.

New CPU for each application.

Merge similar applications

if not much cost in area.

Many ASIC fp speedups

beyond today’s CPUs/GPUs:

� Squaring is cheaper

than multiplication.

� Skip most normalizations.

� Reduce precision to

what is actually needed.

� Add very fast sqrt

if application needs it.

� etc.

Cryptanalysis involves

many multiplications

but also a much wider

variety of operations.

Even larger ASIC speedups.

So NSA builds ASICs

for each application?

The small problem:

ASIC design effort.

Not a serious issue

for $2 billion.

The big problem:

Unpredictable application mix.

NSA will want some agility

to adapt to new computations

and stop old computations.

Quantify using historical data:

how long is an ASIC useful?

Obvious solution for NSA:

some ASICs, plus heterogeneous

mix of application-tuned

integrated circuits (ATICs).

Take a general-purpose CPU.

Add exactly the big insn

XYZZY needed by application,

plus some vectorization.

Think ahead, add agility:

XYZZ? XZZY? XYQZZY?

Still similar cost to ASIC.

New CPU for each application.

Merge similar applications

if not much cost in area.

So NSA builds ASICs

for each application?

The small problem:

ASIC design effort.

Not a serious issue

for $2 billion.

The big problem:

Unpredictable application mix.

NSA will want some agility

to adapt to new computations

and stop old computations.

Quantify using historical data:

how long is an ASIC useful?

Obvious solution for NSA:

some ASICs, plus heterogeneous

mix of application-tuned

integrated circuits (ATICs).

Take a general-purpose CPU.

Add exactly the big insn

XYZZY needed by application,

plus some vectorization.

Think ahead, add agility:

XYZZ? XZZY? XYQZZY?

Still similar cost to ASIC.

New CPU for each application.

Merge similar applications

if not much cost in area.

So NSA builds ASICs

for each application?

The small problem:

ASIC design effort.

Not a serious issue

for $2 billion.

The big problem:

Unpredictable application mix.

NSA will want some agility

to adapt to new computations

and stop old computations.

Quantify using historical data:

how long is an ASIC useful?

Obvious solution for NSA:

some ASICs, plus heterogeneous

mix of application-tuned

integrated circuits (ATICs).

Take a general-purpose CPU.

Add exactly the big insn

XYZZY needed by application,

plus some vectorization.

Think ahead, add agility:

XYZZ? XZZY? XYQZZY?

Still similar cost to ASIC.

New CPU for each application.

Merge similar applications

if not much cost in area.

1-slide Bluffdale user guide

Critical for algorithm designer

and implementor:

So NSA builds ASICs

for each application?

The small problem:

ASIC design effort.

Not a serious issue

for $2 billion.

The big problem:

Unpredictable application mix.

NSA will want some agility

to adapt to new computations

and stop old computations.

Quantify using historical data:

how long is an ASIC useful?

Obvious solution for NSA:

some ASICs, plus heterogeneous

mix of application-tuned

integrated circuits (ATICs).

Take a general-purpose CPU.

Add exactly the big insn

XYZZY needed by application,

plus some vectorization.

Think ahead, add agility:

XYZZ? XZZY? XYQZZY?

Still similar cost to ASIC.

New CPU for each application.

Merge similar applications

if not much cost in area.

1-slide Bluffdale user guide

Critical for algorithm designer

and implementor:

So NSA builds ASICs

for each application?

The small problem:

ASIC design effort.

Not a serious issue

for $2 billion.

The big problem:

Unpredictable application mix.

NSA will want some agility

to adapt to new computations

and stop old computations.

Quantify using historical data:

how long is an ASIC useful?

Obvious solution for NSA:

some ASICs, plus heterogeneous

mix of application-tuned

integrated circuits (ATICs).

Take a general-purpose CPU.

Add exactly the big insn

XYZZY needed by application,

plus some vectorization.

Think ahead, add agility:

XYZZ? XZZY? XYQZZY?

Still similar cost to ASIC.

New CPU for each application.

Merge similar applications

if not much cost in area.

1-slide Bluffdale user guide

Critical for algorithm designer

and implementor:

Obvious solution for NSA:

some ASICs, plus heterogeneous

mix of application-tuned

integrated circuits (ATICs).

Take a general-purpose CPU.

Add exactly the big insn

XYZZY needed by application,

plus some vectorization.

Think ahead, add agility:

XYZZ? XZZY? XYQZZY?

Still similar cost to ASIC.

New CPU for each application.

Merge similar applications

if not much cost in area.

1-slide Bluffdale user guide

Critical for algorithm designer

and implementor:

Obvious solution for NSA:

some ASICs, plus heterogeneous

mix of application-tuned

integrated circuits (ATICs).

Take a general-purpose CPU.

Add exactly the big insn

XYZZY needed by application,

plus some vectorization.

Think ahead, add agility:

XYZZ? XZZY? XYQZZY?

Still similar cost to ASIC.

New CPU for each application.

Merge similar applications

if not much cost in area.

1-slide Bluffdale user guide

Critical for algorithm designer

and implementor:

Massive parallelism.

Obvious solution for NSA:

some ASICs, plus heterogeneous

mix of application-tuned

integrated circuits (ATICs).

Take a general-purpose CPU.

Add exactly the big insn

XYZZY needed by application,

plus some vectorization.

Think ahead, add agility:

XYZZ? XZZY? XYQZZY?

Still similar cost to ASIC.

New CPU for each application.

Merge similar applications

if not much cost in area.

1-slide Bluffdale user guide

Critical for algorithm designer

and implementor:

Massive parallelism.

Grid communication.

Obvious solution for NSA:

some ASICs, plus heterogeneous

mix of application-tuned

integrated circuits (ATICs).

Take a general-purpose CPU.

Add exactly the big insn

XYZZY needed by application,

plus some vectorization.

Think ahead, add agility:

XYZZ? XZZY? XYQZZY?

Still similar cost to ASIC.

New CPU for each application.

Merge similar applications

if not much cost in area.

1-slide Bluffdale user guide

Critical for algorithm designer

and implementor:

Massive parallelism.

Grid communication.

Multiple instruction sets

with very useful instructions.

Obvious solution for NSA:

some ASICs, plus heterogeneous

mix of application-tuned

integrated circuits (ATICs).

Take a general-purpose CPU.

Add exactly the big insn

XYZZY needed by application,

plus some vectorization.

Think ahead, add agility:

XYZZ? XZZY? XYQZZY?

Still similar cost to ASIC.

New CPU for each application.

Merge similar applications

if not much cost in area.

1-slide Bluffdale user guide

Critical for algorithm designer

and implementor:

Massive parallelism.

Grid communication.

Multiple instruction sets

with very useful instructions.

Some vectorization.

Obvious solution for NSA:

some ASICs, plus heterogeneous

mix of application-tuned

integrated circuits (ATICs).

Take a general-purpose CPU.

Add exactly the big insn

XYZZY needed by application,

plus some vectorization.

Think ahead, add agility:

XYZZ? XZZY? XYQZZY?

Still similar cost to ASIC.

New CPU for each application.

Merge similar applications

if not much cost in area.

1-slide Bluffdale user guide

Critical for algorithm designer

and implementor:

Massive parallelism.

Grid communication.

Multiple instruction sets

with very useful instructions.

Some vectorization.

Occasional faults.

Obvious solution for NSA:

some ASICs, plus heterogeneous

mix of application-tuned

integrated circuits (ATICs).

Take a general-purpose CPU.

Add exactly the big insn

XYZZY needed by application,

plus some vectorization.

Think ahead, add agility:

XYZZ? XZZY? XYQZZY?

Still similar cost to ASIC.

New CPU for each application.

Merge similar applications

if not much cost in area.

1-slide Bluffdale user guide

Critical for algorithm designer

and implementor:

Massive parallelism.

Grid communication.

Multiple instruction sets

with very useful instructions.

Some vectorization.

Occasional faults.

Need to understand cryptanalysis:

ECM, sparse linear algebra,

differentials, FFTs, much more.

