Jet list decoding

D. J. Bernstein
University of lllinois at Chicago

Thanks to: Cisco
University Research Program

And thanks to: NIST
grant 60NANB10D263

Divisors in intervals

Classic problem: Find all
divisors of N in [A— H, A+ H],
given positive integers N, A, H
with A > H.

Reformulation: In Q[z] define
g=Hzand f =(A+ Hz)/N.
Want all r € Q with |r| <1,
g(r) € Z, numerator(f(r)) = 1.

Classic solution for many cases:

Find small nonzero polynomial
pcZ+2Zf+Zfg C Qlx].

For each rational root r of ¢,
check whether A+ Hr divides V.

Understanding this solution
for H< (A— H)/6N/3:;

Understanding this solution
for H< (A— H)/6N/3:;

f=---4+Hz/N,
fg=-+H43/N

so det(1, f, fg) = H3/N?.
Lattice-basis reduction finds
¢ with coeffs < 2H/N?/3.

Understanding this solution
for H< (A— H)/6N/3:;

f=---4+Hz/N,
fg=-+H43/N

so det(1, f, fg) = H3/N?.
Lattice-basis reduction finds
¢ with coeffs < 2H/N?/3.

Take divisor of N in [A—H, A+H].
Write as A+ Hr; r € Q, |r| < 1.
Then |p(r)| < 6H/N?/3.

Understanding this solution
for H< (A— H)/6N/3:;

f=---4+Hz/N,
fg=-+H43/N

so det(1, f, fg) = H3/N?.
Lattice-basis reduction finds
¢ with coeffs < 2H/N?/3.

Take divisor of N in [A—H, A+H].
Write as A+ Hr; r € Q, |r| < 1.
Then |p(r)| < 6H/N?/3.

L, f(r), f(r)g(r) € ((A+Hr)/N)Z
so p(r) € (A+ Hr)/N)Z.

But (A+ Hr)/N > 6H/N?/3

so ¢(r) must be 0.

Classic generalization: Find all

given positive integers NV, A, B, H
with A > BH.

Mediocre approach: Detfine
g=Hzand f =(A+ BHz)/N.
Proceed as before.

Loses factor B? in det.

Classic generalization: Find all

given positive integers NV, A, B, H
with A > BH.

Mediocre approach: Detfine
g=Hzand f =(A+ BHz)/N.
Proceed as before.

Loses factor B? in det.

Much better approach: Define

g = Hz and f = (UA+ Hzx)/N,
assuming U € Z, UB —1 € NZ.
If Hr € Z and A+ BHr divides
then f(r) € ((A+ BHr)/N)Z.

Linear combinations as divisors

Further generalization: Find all
divisors As + Bt of N with
1 <s< J;|t| < H; gcd{s, t} =1.

Generalization of classic solution:

Define g = (H/J)z; U as before;
f=WA+(H/J))z)/N.

As before find small nonzero
pel+2f+12fg

Write each rational root of @ as
Jt/Hs with gcd{s,t} =1, s > 0.
Check whether As + Bt divides N
with s < J and |t| < H.

Understanding this solution
for HJ < (A— BH)/6N1/3:

det(1, f, fg) = H3/J3N?.
Lattice-basis reduction finds
¢ with coeffs < 2H/JN?/3.

If1<s<Jand|t| < H

and r = Jt/Hs then ‘5290(?")‘ =
‘goos2 + @15t/ H + g02t2J2/H2‘
< 3(2H/JN?/3)J2 = 6HJ/N?/3.

If also As + Bt divides N

then sf(r) = (UAs+t)/N €
((As + Bt)/N)Z and sg(r) € Z
so s°¢(r) € ((As + Bt)/N)Z.

1984 Lenstra: A+ Bt algorithm,
for proving primality:.

1986 Rivest—=Shamir: A+ ¢
for attacking constrained RSA.

Many subsequent generalizations.

2003 Bernstein: projective view,
but only affine applications.

Projective applications:
2007 Wu, 2008 Bernstein

(including this As+ Bt algorithm),
2009 Castagnos—Joux—
Laguillaumie—=Nguyen.

Higher multiplicities

Generalization of A 4 t algorithm:

Choose a multiplicity &
and a lattice dimension 4.

Find small nonzero ¢ €
Z+Zf+Zf°+ -+ ZfF
+ZfRg+Zfrg?+ - +ZfFgt L
det =

(H/N)Z(ﬁ—l)/Z NE—k)({—k—1)/2

so |¢| <
L (HINYED/2 g (k) (E—k—1)/2¢,

But ¢(r) € (divisor/N)*Z.

Optimize: large £ with k ~ 6/
if A—H=N°.
#{t possibilities searched} = NO*

Same for A + Bt etc.

1996 Coppersmith:

A + t with multiplicities: N?*-
various generalizations.

But algorithm was slower:
identified lattice via dual.

1997 Howgrave-Graham:
this algorithm; skip dualization;
simply write down f* etc.

The gcd tweak

t

Minor twea

: Find all A4+ ¢t with

< H anc

gcd{A+t, N} > NY.

These t's include previous t's:
if A+t divides N and A+t > N
then gcd{A +t, N} > N

Solution: Compute the same ¢

from the same lattice as before.

For each rational root r of ¢,
check gcd{A + Hr, N} > NY.

1997 Sudan:

F,|z] instead of Z,
N=(z—-a1) - (z—ap),
multiplicity 1, dual algorithm,
for list decoding.

1999 Guruswami—Sudan:
same with high multiplicity.

1999 Goldreich—-Ron—-Sudan:
Z, multiplicity 1, dual.

2000 Boneh:
Z, high multiplicity.

The list-decoding application:

Given t mod pq, .. ., t mod py,
for distinct primes p1, ..., on,
can interpolate £t mod N
where Nl = 1102 - - - Pn.

Given same with some errors,
interpolation produces A where

all the other primes divide t — A;
i.e., gcd{t — A, N} is large.

Can find all ¢
in interval of length ~ O’
with ged{t — A, N} > N°.

RS and GRS codes—
“the GS decoder”:

Reconstruct ¢ € Fg[z] given
(t(a1), ..., t(an)) + errors;

distinct aq, ..., an € Fq;
#errors < (1 — 8)n;
degt < 6%n.

Reconstruct ¢ € Fg[z] given
(Bit(a1), ..., Brnt(ayn)) + errors;

nonzero (1, ..., LBn € Fyq;
H#errors < (1 — 0)n;
degt < 6°n.

Higher-degree polynomials

ged{N, p(t)} > N°.
#{t possibilities searched}
R~ N‘92/d if » monic, degp = d.

1988 Hastad: 6 =1, £k =1.

1989 Vallée—Girault—Toffin:
=1 k=1, dual.

1996 Coppersmith:
¢ = 1, high multiplicity, dual.

1997 Howgrave-Graham:
6 = 1, high multiplicity.

2000 Boneh:
any 6, high multiplicity.

Gaussian divisors In intervals

New (7) problem: Find all
te{—-H,..., -1,0,1,..., H}
with Ag+t-+Aqs dividing No+ Nyi
in Z[1]/(3° + 1); assume Ag > H.

One approach: Take norms.

(Ag +t)? + A? divides N3 + N?.
Use standard degree-2 algorithm.
Works for H as (N2 + N2)8°/2

if (Ap — H)? + A2 = (N3 + N2)°.
Worse: Find divisor of Ng — N12

in [(Ag—H)?+A2, (Ag+H)*+A9],

using degree-1 algorithm.
Works for AgH = (N2 + N2)8°.

Another approach:

lattice-basis reduction over Z[7].
Works, but searches t € Z|1],
again wasting time.

Another approach:

lattice-basis reduction over Z[7].
Works, but searches t € Z|1],
again wasting time.

Better approach:
(Ao +t)? + A7 divides
(Ao +1t — A12)(No + Nyi)

so It divic

Also d

IVIC

es (Ag +t)N1 — A1 .
es Ng — N12.

gcd{ (Ag + t)Ny — Ay Ng, N3 + N2}
> (NG + NP

Works for H s (N2 + N2)#*.
assuming gcd{ g, N1} = 1.

Jet divisors

Easily generalize:
Aops + Bpt, other algebras, etc.
My main interest today:

the “1-jet” algebra Z[e]/e?.

To search for small (s,t) € Z x Z
with (Ag + A1€)s + (Bg + Bie)t

dividing Ng + Nie in Z[e]/e: use
gcd{A, N§} > (Ng)e where A =
(AgN1—A1Ng)s+(BogN1—B1Ny)t.

#{(s,t) searched} ~ (Ng)‘gz,
assuming gcd{ Ng, BoN1} = 1.

Searching for Ags + Bgt dividing
No would search only Ngz.

Classical binary Goppa codes

Fix g € {2,4,8,16,...}.

Fix distinct a1, ..., an € Fq.
Fix monic D € Fg|z]
coprime to N = |.(z — a;).

{(c1,.--, crn) € F
> ;¢i/(z—ai)=0in Fy[z]/D}.

lg#I >n — (lgq)deg D.

If D is squarefree then

min distance of [> 2deg D + 1.
Proof: e =] |;..._1(2 — a;) has

D dividing Ne'/e, hence €'; so

D? divides €', so dege’ > 2deg D.

If C € Fy|z] has

degC <n —degD and

i = C(ai)D(as) /N'(as) €
for all 2 then (cq, ..., cp) €T
since CD =) ,c;N/(z — a;).

All elements of [arise this way.

If #errors < (1 — 8)n and
n—degD —1= 82n . ie.

#errors < n — 1/n(n—deg D—1):
can use the GS decoder.

If C € Fy|z] has

degC <n —degD and

i = C(ai)D(as) /N'(as) €
for all 2 then (cq, ..., cp) €T
since CD =) ,c;N/(z — a;).

All elements of [arise this way.

If #errors < (1 — 8)n and
n—degD —1= 82n. ie.
#errors < n — 1/n(n—deg D—1):
can use the GS decoder.

2000 Koetter—Vardy:
This is not optimal;

can decode many more errors!

“The KV decoder':

Polynomial-time algorithm
for #errors < (1 — 8)n/2 and
n/2 —degD — 1= 6’277,/2,
i.e., #errors < n/2 —

V(n/2)((n/2) — deg D —1).

Exploits fact that errors

are required to be in F».

2011 Bernstein “Simplified high-
speed high-distance list decoding
for alternant codes”: adaptation
of Howgrave-Graham idea to KV.

If D is squarefree then
[o(...,D)=Ty(..., D?).
(1970 Goppa?; different, more
general, proof: 1975 Sugiyama-—
Kasahara—Hirasawa—Namekawa)

Allows decoding even more errors.

If #errors < deg D: can use
naive decoders for (..., D?).

If #errors < n —
v/n(n —2degD — 1):
can use GS etc. for [(..., D?).

If #errors < n/2 —
V(2 (n]2) = 2deg D~ 1)

can use KV etc. for (..., D?).

A different approach

1975 Patterson:

Assume D irreducible.

Given (w1, ..., wy) € FY —T,
compute s € Fgy[z]/D with

1/(s* +2) = ;wi/(z — a;).
Find shortest nonzero (ag, Bov/2)
in (D, 0)Fg[z] + (s, v/2)Fg[z]
Compute eg = a% —h@gz.

If #errors < deg D then
the errors are the roots of eg.

Why this works:

Say errors are (e, ..., en):
ie. (wy,...)—(e1,...) €Tl
and #{1:e; =1} < degD.

Write e = [|;...—1(2 — a4)

as a® + B%z. Then

B?/(a’+P%z) =e'/Je =1/(s%°+2)
in Fy[2]/D so (o, B+/2) €
(D,0)Fqlz] + (s,/2)Fqz].

det = Dy/z; |(a, Bv/Z)[” < |D
so (a, B+/z) is multiple

of shortest nonzero vector.
gcd{a, B} = 1 so mult is const.

What if #errors > deg D?
2008 Bernstein:

Find short

(a0, B0v/2), (a1,P1v/2)

generating the same lattice.

Then (a,B+/z) =
co(ao, Bov/z) + c1(a1, B1v/2)

for some ¢p, ¢1
SO e = eoc% + elc%.

Tweak e so gcd{e1, N} = 1.

Find e by finding small linear
combination of eg, e1 dividing V.

This algorithm decodes
same #errors as

GS applied to (..., D?),
and has a big advantage:
much smaller lattice rank.

See also 2007 Wu:
Reed—Solomon decoder
with same advantage.

KV applied to Iy(. .., D?)
decodes many more errors
but loses this advantage.
Is this tradeoff required?

New, jet list decoding:

Search for divisors of jet

N + N'e € Fylz][€] /€

as F4[z]-linear combinations of
eo + epe, e1 + eje.

In particular find desired

e+ ee=

(eo + epe)cs + (e1 + efe)c?.
Herrors should match D? KV,
using much smaller lattice rank!

