
Extending the Salsa20 nonce

D. J. Bernstein

University of Illinois at Chicago

DES had 64-bit block.

Highly troublesome by 1990s.

AES has 128-bit block.

Becoming troublesome now : : :



2006 Black–Halevi–Hevia–

Krawczyk–Krovetz–Rogaway:

“The number of messages

to be communicated in a

session : : : should not be

allowed to approach 2n=2.”



2006 Black–Halevi–Hevia–

Krawczyk–Krovetz–Rogaway:

“The number of messages

to be communicated in a

session : : : should not be

allowed to approach 2n=2.”

Why do they say this?

Answer: Their security proof

fails for #messages � 2n=2

(AES: #messages � 264),

and becomes quantitatively

useless long before that.

So what should users do?

No advice from 2006 BHHKKR.



Common user response: Rekeying.

128-bit “master” AES key k

produces 128-bit “session keys”.

First session key: AESk(1).

Second session key: AESk(2).

etc.

Each session key k0 is used

for limited #messages.

Typical use of session key:

AES-CTR, GCM, etc.

for at most (e.g.) 240 blocks.



In other words:

128-bit AES key k produces

AESAESk(1)(1); AESAESk(1)(2); : : :;

AESAESk(2)(1); AESAESk(2)(2); : : :;

AESAESk(3)(1); AESAESk(3)(2); : : :;

and so on.

This is really a new cipher

(m;n) 7! AESAESk(m)(n)

with a double-size input.



In other words:

128-bit AES key k produces

AESAESk(1)(1); AESAESk(1)(2); : : :;

AESAESk(2)(1); AESAESk(2)(2); : : :;

AESAESk(3)(1); AESAESk(3)(2); : : :;

and so on.

This is really a new cipher

(m;n) 7! AESAESk(m)(n)

with a double-size input.

Alert: User-designed cipher!

Is this cipher secure?



Not really. Feasible attack:

Collect AESAESk(n)(0)

for 240 inputs (n; 0).

Build 240 tiny search units,

each computing 248

iterates of k0 7! AESk0(0).

Good chance of collision

k0 = AESk(n) for some n; k0.

Find via distinguished points.

Then trivially compute

AESAESk(n)(1) etc.

Current chip technology:

< 1 year, < 1010 USD.



Two different philosophies for

stopping this type of attack:

1. “Use random nonces.”

Attack relies critically on

same input 0 being encrypted

by many session keys k0.

: : : but randomization still

leaves many security questions

and raises usability questions.



Two different philosophies for

stopping this type of attack:

1. “Use random nonces.”

Attack relies critically on

same input 0 being encrypted

by many session keys k0.

: : : but randomization still

leaves many security questions

and raises usability questions.

2. “Use longer keys.”

Master key produces

256-bit output block,

used as 256-bit session key.

We have good 256-bit ciphers!



I’ll focus on strategy #2.

Could generate 256-bit

k0 = (AESk(2n);AESk(2n + 1)).

Use k0 as key for 256-bit AES.



I’ll focus on strategy #2.

Could generate 256-bit

k0 = (AESk(2n);AESk(2n + 1)).

Use k0 as key for 256-bit AES.

But AES isn’t a great cipher:

� Small block, so distinguishable.

� Not much security margin.

� Uninspiring key schedule.

� Invites cache-timing attacks.

� Slow on most CPUs.

� Mediocre speed in hardware.

� Even slower with key expansion.



How about Salsa20?

� Large block; aims to be PRF.

� 150% security margin.

� Key at top, not on side.

� Naturally constant time.

� Fast across CPUs.

� Better than AES in hardware.

� No key expansion.

Can generate 256-bit k0 as

first 256 bits of Salsa20 stream

using 64-bit nonce n, key k.

Use k0 as Salsa20 session key.



Improvement #1:

Salsa20 is actually a function

producing 512-bit block from

256-bit key, 128-bit input.

Conventionally 128-bit input

is interpreted as 64-bit nonce

and 64-bit block counter

(so output blocks are a stream),

but function is designed

to be fast and secure

giving random access to blocks.

So allow 128 bits in n.

Generate 256-bit k0

as half of 512-bit block.



Improvement #2:

Look more closely

at how Salsa20 works:

initializes 512-bit block

publicly from input n;

adds 256-bit key k;

applies many unkeyed rounds;

adds 256-bit key k.

Take k0 as the other 256 bits.

) Skip final k addition.

Important here that

block is much bigger than k.

Compare to Even–Mansour etc.



What about security?

Recall feasible 128-bit attack.

Moving from 128 bits to 256 bits

puts attack very far out of reach.

Could there be better attacks?

1996 Bellare–Canetti–Krawczyk:

Can convert any q-query attack

into similarly efficient single-key

attack on original cipher, losing

factor � 2q in success probability.

Warning: FOCS 1996

“theorem” omits factor q.

Corrected in 2005 online version.



Better security proof, this paper:

1. Loss factor � q + 1.

� (`� 1)q + 1 for ` levels.

Compare to `q from 2005 BCK.

2. Allow independent ciphers

for master key, session keys.

Attack success probability

� � vs. master cipher,

� �0 vs. session cipher

) � � + q�0 vs. cascaded cipher.

Combining 1 and 2:

deduce `-level security

immediately from 2-level security.



2-level AES is breakable with

240 queries, space 240, time 248.

Is 1-level AES really more secure?



2-level AES is breakable with

240 queries, space 240, time 248.

Is 1-level AES really more secure?

No! 1996 Biham “key collisions”

break 240-user 1-level AES

in exactly the same way.

Traditional 1-user metric:

Breaking AES using q queries

costs 2128 by best attack known.

Biham’s multi-user metric:

2128=q by best attack known.



2-level AES is breakable with

240 queries, space 240, time 248.

Is 1-level AES really more secure?

No! 1996 Biham “key collisions”

break 240-user 1-level AES

in exactly the same way.

Traditional 1-user metric:

Breaking AES using q queries

costs 2128 by best attack known.

Biham’s multi-user metric:

2128=q by best attack known.

Loss factor � 2 between

2-level AES and 1-level AES

in this multi-user metric.


