
Software benchmarking

http://bench.cr.yp.to

D. J. Bernstein

University of Illinois at Chicago

Joint work with:

Tanja Lange

Technische Universiteit Eindhoven



Selecting cryptographic primitives

NIST’s final AES report, 2001:

“Security was the most important

factor in the evaluation : : :
Rijndael appears to offer an

adequate security margin. : : :
Serpent appears to offer a

high security margin.”

(Emphasis added.)

So why didn’t Serpent win?



Selecting cryptographic primitives

NIST’s final AES report, 2001:

“Security was the most important

factor in the evaluation : : :
Rijndael appears to offer an

adequate security margin. : : :
Serpent appears to offer a

high security margin.”

(Emphasis added.)

So why didn’t Serpent win?

Maybe hardware efficiency?

Or side-channel security?

Or something else?



Side channels: “The operations

used by Serpent are among the

easiest to defend against timing

and power attacks.”



Side channels: “The operations

used by Serpent are among the

easiest to defend against timing

and power attacks.”

Hardware speed: “Serpent is

well suited to restricted-space

environments : : : Fully pipelined

implementations of Serpent offer

the highest throughput of any

of the finalists for non-feedback

modes. : : : Efficiency is generally

very good, and Serpent’s speed is

independent of key size.”



Side channels: “The operations

used by Serpent are among the

easiest to defend against timing

and power attacks.”

Hardware speed: “Serpent is

well suited to restricted-space

environments : : : Fully pipelined

implementations of Serpent offer

the highest throughput of any

of the finalists for non-feedback

modes. : : : Efficiency is generally

very good, and Serpent’s speed is

independent of key size.”

Great! Why didn’t Serpent win?



Aha: Software speed!



Aha: Software speed! “Serpent

is generally the slowest of the

finalists in software speed for

encryption and decryption. : : :
Serpent provides consistently

low-end performance.”



Aha: Software speed! “Serpent

is generally the slowest of the

finalists in software speed for

encryption and decryption. : : :
Serpent provides consistently

low-end performance.”

Conclusion: “NIST judged

Rijndael to be the best overall

algorithm for the AES. Rijndael

appears to be consistently a very

good performer in both hardware

and software [and offers good

key agility, low memory, easy

defense, fast defense, flexibility,

parallelism].”



2007 NIST SHA-3 call: “The

security provided by an algorithm

is the most important factor

in the evaluation.”



2007 NIST SHA-3 call: “The

security provided by an algorithm

is the most important factor

in the evaluation.”

Will this factor alone decide the

winner? Perhaps, but I doubt it!

Many of the SHA-3 candidates

seem extremely hard to break.

Presumably decision will depend

partially on speed in software,

speed in hardware, speed of

implementations with various

side-channel defenses, etc.



Speed variability

Main question in this talk:

“How fast is hash software?”

Answer varies from

one hash function to another.

Perhaps this variability

is important to hash users.

Perhaps this variability will be

important in the SHA-3 selection.



Answer depends on

hash-function parameters.

On a 3200MHz AMD

Phenom II X4 955 (100f42),

changing from 256-bit output

to 512-bit output makes

BMW � 1:96� faster;

Blake � 1:05� faster;

SIMD � 1:06� slower;

SHAvite-3 � 1:45� slower;

ECHO � 1:71� slower;

Groestl � 2:06� slower.



Answer depends on #cores

used for hashing.

2.4GHz Intel Core 2 Duo E4600

(6fd) has 2 CPU cores

operating in parallel.

2.4GHz Intel Core 2 Quad Q6600

(6fb) has 4 CPU cores

operating in parallel.

Hash twice as many

messages per second!

Standard way to

reduce this dependence:

measure hash time on 1 core.



Warning: Single-core speed

is sometimes better than

speed of 4 cores

handling 4 messages in parallel.

Multiple active cores

can conflict in DRAM access etc.

Warning: Single-core speed�4

is usually better than

speed of 4 cores cooperating

to handle 1 long message.

Warning: These issues

(and more issues coming up)

have different effects

on different hash functions.



Back to the main question:

How fast is hash software?

Answer depends on CPU.

In one second, single-core

1500MHz Intel Pentium 4 (f0a)

computes SHA-512 hashes of

9500 4096-byte messages.

In one second, single-core

3192MHz Intel Pentium 4 (f43)

computes SHA-512 hashes of

21300 4096-byte messages.



Standard way to reduce this

dependence: count cycles; i.e.,

divide #seconds by clock speed.

1500MHz Intel Pentium 4 (f0a):

157924 cycles to hash a 4096-byte

message with SHA-512.

3192MHz Intel Pentium 4 (f43):

150128 cycles to hash a 4096-byte

message with SHA-512.

Note: Most CPUs have built-in

cycle counters; “RDTSC” etc.

Cycles are also a natural unit

for serious programmers.



Warning: Different CPUs

do different amounts of

computation in a cycle.

Warning: Different CPUs

with different speeds

can have the same name.

Warning: Some CPU operations

(e.g. DRAM access) do not scale

linearly with clock speed.

Warning: A CPU in 64-bit mode

is often faster (but sometimes

slower!) than the same CPU in

32-bit mode.



4096-byte SHA-512 timings:

53721 cycles: amd64 architecture

(64-bit), 3000MHz Intel Core 2

Duo E8400 (1067a).

80640 cycles: x86 architecture

(32-bit), 3000MHz Intel Core 2

Duo E8400 (1067a).

155304 cycles: 1900MHz Intel

Pentium 4 (f12).

427760 cycles: 333MHz Intel

Pentium 2 (652).

1352448 cycles: 416MHz ARM

XScale-PXA270 rev 4 (v5l).



4096-byte SHA-256 timings:

64143 cycles: amd64 architecture

(64-bit), 3000MHz Intel Core 2

Duo E8400 (1067a).

65241 cycles: x86 architecture

(32-bit), 3000MHz Intel Core 2

Duo E8400 (1067a).

142580 cycles: 1900MHz Intel

Pentium 4 (f12).

132342 cycles: 333MHz Intel

Pentium 2 (652).

160576 cycles: 416MHz ARM

XScale-PXA270 rev 4 (v5l).



How fast is hash software?

Answer depends on message

length: hashing long message

takes more time than

hashing short message.

SHA-512 timings on 3200MHz

AMD Phenom II X4 955 (100f42):

55915 cycles for 4096 bytes.

29038 cycles for 2048 bytes.

15584 cycles for 1024 bytes.

8861 cycles for 512 bytes.



Standard way to

reduce this dependence:

divide cycles by message length.

Warning: Still have dependence.

SHA-512 on the same Phenom:

13.65 cycles/byte for 4096 bytes.

14.18 cycles/byte for 2048 bytes.

15.22 cycles/byte for 1024 bytes.

17.30 cycles/byte for 512 bytes.

21.34 cycles/byte for 256 bytes.

29.35 cycles/byte for 128 bytes.

33.80 cycles/byte for 112 bytes.

19.03 cycles/byte for 111 bytes.

32.15 cycles/byte for 64 bytes.



SHA-512 cycles vs. bytes:

0

5000

10000

15000

20000

0 100 200 300 400 500 600



SHA-256 cycles vs. bytes:

0

5000

10000

15000

20000

0 100 200 300 400 500 600



Hamsi cycles vs. bytes:

0

5000

10000

15000

20000

0 100 200 300 400 500 600



ECHO-256 cycles vs. bytes:

0

5000

10000

15000

20000

0 100 200 300 400 500 600



Cycles vs. bytes:

0

5000

10000

15000

20000

0 100 200 300 400 500 600



How fast is hash software?

Answer depends on

implementation.

SHA-512: I wrote a simple

reference implementation.

OpenSSL 0.9.8k is 1:27� faster

than my implementation on a

typical Core 2 (for 1536 bytes).

SIMD256: The “vect128”

implementation is 5:66� faster

than the “opt” implementation

and 247:99� faster

than the “ref” implementation.



A user who cares about speed

won’t use a slow reference

implementation. He’ll use the

fastest implementation available.

Slowness of unused software has

no impact on user’s final speed.

The ultimate goal of benchmark

reports is to accurately predict

the speed that the user will see.

) Report speed of

the fastest implementation.



How fast is hash software?

Answer depends on compiler

and on compiler options.

SHAvite-3, Core 2, 1536 bytes:

36824 cycles: icc -O3 -static

44840 cycles: gcc -O

-fomit-frame-pointer

48832 cycles: gcc -O2

-fomit-frame-pointer



Warning: There are many other

effects on speed.

Answer depends on how much

code is in cache.

Answer depends on how many

table entries are in cache.

Answer depends on

input/output alignment.

Answer depends on

bytes being hashed.

Answer depends on details

of timing mechanism.



Benchmarking in the dark ages

“I’ve finally finished

my SANDstorm implementation!

Hmmm, how fast is it?”



Benchmarking in the dark ages

“I’ve finally finished

my SANDstorm implementation!

Hmmm, how fast is it?”

Traditional answer:

“I’ll write a timing tool!

I’ll check the clock,

10000� hash 256 bytes,

check the clock again,

subtract, divide by 10000.”



Benchmarking in the dark ages

“I’ve finally finished

my SANDstorm implementation!

Hmmm, how fast is it?”

Traditional answer:

“I’ll write a timing tool!

I’ll check the clock,

10000� hash 256 bytes,

check the clock again,

subtract, divide by 10000.”

Maybe more measurements:

“Oops, lots of overhead

in hashing 256 bytes.

I’ll try 4096 bytes.”



“Okay, 36.6 cycles/byte

for SANDstorm-256

on my 64-bit machine.

NIST says I have to beat SHA-2.

How fast is SHA-2?”



“Okay, 36.6 cycles/byte

for SANDstorm-256

on my 64-bit machine.

NIST says I have to beat SHA-2.

How fast is SHA-2?”

Traditional answer:

“I’ve written a SHA-256

implementation too.

Let’s see : : : 39.1 cycles/byte.

SANDstorm is faster!

This is a fair comparison, because

I wrote both implementations,

and put similar effort into both,

and measured both of them

with my own timing tool.”



Reality: This SHA-256 software

is embarrassingly slow.

SHA-256 users actually see

much better performance.

To the SANDstorm designer:

You think that SANDstorm can

be made faster too? Prove it!

There’s nothing “unfair” about

comparing best available code.

If SANDstorm can’t run quickly:

comparing lazy implementations

makes SANDstorm look better

than it actually is. Do we want to

reward slow functions? Stupid!



Every dark-ages implementor

builds his own timing tool.

Reports output as “Results”

in an implementation paper.

Summary:

Cryptographic implementor

is the benchmark implementor,

the benchmark operator, and

the competition’s misimplementor.



Every dark-ages implementor

builds his own timing tool.

Reports output as “Results”

in an implementation paper.

Summary:

Cryptographic implementor

is the benchmark implementor,

the benchmark operator, and

the competition’s misimplementor.

This pattern repeats for

every cryptographic implementor.

Hundreds (thousands?) of

separate ad-hoc timing tools

run on various hardware.



Moving out of the dark ages

European Union has funded

NESSIE project (2000–2003),

ECRYPT I network (2004–2008),

ECRYPT II network (2008–2012).

NESSIE’s performance evaluators

tuned C implementations

of many cryptographic systems,

all supporting the same API;

wrote a benchmarking toolkit;

ran the toolkit on 25 computers.

Many specific performance results:

e.g., 24 cycles/byte on P4

for 128-bit AES encryption.



ECRYPT I had five “virtual labs.”

STVL, symmetric-techniques lab,

included four working groups.

STVL WG 1, stream-cipher group,

ran eSTREAM (2004–2008).

De Cannière published

eSTREAM benchmarking toolkit.

Stream-cipher implementations

matching the benchmarking API

were contributed by designers,

published, often tuned;

benchmarked on many computers.

e.g. 18 cycles/byte on P4 for

third-party asm AES in toolkit.



2006: VAMPIRE, “Virtual

Application and Implementation

Lab,” started eBATS

(“ECRYPT Benchmarking

of Asymmetric Systems”),

measuring efficiency of public-key

encryption, signatures, DH.

Published a new toolkit.

Project is continuing.

Has written, collected, published

55 public-key implementations

matching the benchmarking API.

Benchmarked on many computers.



2008: VAMPIRE started eBASC

(“ECRYPT Benchmarking

of Stream Ciphers”) for

post-eSTREAM benchmarks.

VAMPIRE also started eBASH

(“ECRYPT Benchmarking

of All Submitted Hashes”).

eBACS (“ECRYPT Benchmarking

of Cryptographic Systems”)

includes eBATS, eBASH, eBASC.

Continues under ECRYPT II.

New toolkit, API; coordinated

with CACE library (NaCl).

AES now 14 cycles/byte on P4.



Many advantages of eBACS

over dark-ages benchmarking:

� >1000 compiler options.

� >100 machine-ABI pairs.

� Many message lengths.

� Very high reliability.

� Public verifiability.

� Real API, not only timing.

� Easy for implementor!

Today have 410 implementations.

Biggest disadvantage:

Report latency is high;

hard to use during development.

: : : but we’re working on this.



eBASH ! public

eBASH has already collected

180 implementations of

66 hash functions in 30 families.

http://bench.cr.yp.to

/results-hash.html

already shows

measurements on 87 machines;

124 machine-ABI combinations.

Each implementation is

recompiled 1353 times

with various compiler options

to identify best working option

for implementation, machine.



Online tables: medians, quartiles

of cycles/byte to hash

8-byte message,

64-byte message,

576-byte message,

1536-byte message,

4096-byte message,

(extrapolated) long message.

Actually have much more data.

e.g. Reports show best options.

e.g. Graphs show medians for

0-byte message, 1-byte message,

2-byte message, 3-byte message,

4-byte message, 5-byte message,

: : :, 2048-byte message.



Implementor ! eBASH

Define output size in api.h:

#define CRYPTO_BYTES 64



Implementor ! eBASH

Define output size in api.h:

#define CRYPTO_BYTES 64

Define hash function in hash.c,

e.g. wrapping existing NIST API:

#include "crypto_hash.h"

#include "SHA3api_ref.h"

int crypto_hash(

unsigned char *out,

const unsigned char *in,

unsigned long long inlen)

{ Hash(crypto_hash_BYTES*8

,in,inlen*8,out);

return 0; }



Send to the mailing list

the URL of a tar.gz

with one directory

crypto_hash/yourhash/ref

containing hash.c etc.

Measurements magically appear!

Much easier than trying

to do your own benchmarks.

More details and options:

http://bench.cr.yp.to

/call-hash.html



You can implement

someone else’s function

and show off how cool you are!

Example:

eBASH includes BLAKE speedups

from Peter Schwabe

and from Samuel Neves.

We’d like to see all second-round

SHA-3 candidates covered by

good implementations.

Contact us for coordination.


