
High-speed cryptography,

DNSSEC, and DNSCurve

D. J. Bernstein

University of Illinois at Chicago

NSF ITR–0716498

Stealing Internet mail: easy!

Given a mail message:

Your mail software

sends a DNS request,

receives a server address,

makes an SMTP connection,

sends the From/To lines,

sends the mail message.

Attackers can easily

see all of these packets

and change the packets.

Forging web pages: easy!

Starting from a URL:

Your browser

sends a DNS request,

receives a server address,

makes an HTTP connection,

sends an HTTP request,

receives a web page.

Attackers can easily

see all of these packets

and change the packets.

Solved by cryptography?

In theory:

Cryptography stops these attacks.

Solved by cryptography?

In theory:

Cryptography stops these attacks.

In practice:

Am I using cryptography?

Are you using cryptography?

Solved by cryptography?

In theory:

Cryptography stops these attacks.

In practice:

Am I using cryptography?

Are you using cryptography?

Occasionally yes; usually no.

Solved by cryptography?

In theory:

Cryptography stops these attacks.

In practice:

Am I using cryptography?

Are you using cryptography?

Occasionally yes; usually no.

Problem 1:

Most Internet protocols

do not support cryptography.

Why not? Obvious answer:

Hard for protocol designers

to integrate cryptography.

Some popular Internet protocols

do have cryptographic options.

Important example: HTTPS.

Some popular Internet protocols

do have cryptographic options.

Important example: HTTPS.

Problem 2:

Most implementations

of these protocols

do not support cryptography.

Why not? Obvious answer:

Hard for software authors

to integrate cryptography.

Much easier to implement

the non-cryptographic option.

Some popular implementations

do support cryptography.

Example: Apache.

Some popular implementations

do support cryptography.

Example: Apache.

Problem 3:

Most installations

of these implementations

do not support cryptography.

� 99% of the Apache servers on

the Internet do not enable SSL.

Why not? Obvious answer:

Hard for site administrators

to turn on the cryptography.

Some important installations

do support cryptography.

Example: SourceForge has paid

for an SSL certificate and set

up SSL servers. Try https://

sourceforge.net/account.

Some important installations

do support cryptography.

Example: SourceForge has paid

for an SSL certificate and set

up SSL servers. Try https://

sourceforge.net/account.

Problem 4: Cryptography is

not enabled for most data

at these installations.

Example: Try https://

sourceforge.net/community.

SourceForge redirects

your browser to http://

sourceforge.net/community.

Why does SourceForge actively

turn off cryptographic protection?

Why does SourceForge actively

turn off cryptographic protection?

Obvious answer: Enabling SSL

for more than a small fraction

of SourceForge connections

would massively overload

the SourceForge servers.

SourceForge doesn’t want to pay

for a bunch of extra computers.

Many companies sell

SSL-acceleration hardware,

but that costs money too.

Making progress

Obvious speed questions:

Why are cryptographic

computations so expensive?

Can crypto be faster,

without being easy to break?

Can crypto be fast enough

to solidly protect all of

SourceForge’s communications?

Can crypto be fast enough

to protect every Internet packet?

And questions beyond speed:

Can universal crypto be

easy to use and administer?

Can universal crypto be

easy to implement in software?

Can universal crypto be

easy to add to protocols?

Can universal crypto be usable?

U.S. government, last century:

“Encryption is dangerous!

It can be used by terrorists,

drug dealers, pedophiles,

and money launderers!”

U.S. government, last century:

“Encryption is dangerous!

It can be used by terrorists,

drug dealers, pedophiles,

and money launderers!”

I say: Criminals have been using

encryption for a long time.

Low speed? Hard to use?

They use it anyway.

We cannot stop them.

U.S. government, last century:

“Encryption is dangerous!

It can be used by terrorists,

drug dealers, pedophiles,

and money launderers!”

I say: Criminals have been using

encryption for a long time.

Low speed? Hard to use?

They use it anyway.

We cannot stop them.

What we can do is improve

the speed and usability of

cryptography for normal people.

My current mission:

Cryptographically protect

every Internet packet

against espionage,

corruption, and sabotage.

Confidentiality despite espionage:

Spies cannot understand packets.

Integrity despite corruption:

Forged packets are detected.

User does not see wrong data.

Availability despite sabotage:

User does see correct data.

Securing DNS

DNSCurve cryptographically

protects DNS packets

against espionage,

corruption, and sabotage.

DNSCurve is only for DNS,

but same ideas can be

adapted to many other protocols.

Warning: DNSCurve does not

hide packet length, sender, etc.

But it does provide confidentiality

for contents of packets, plus

strong integrity, availability.

Packet from DNSCurve client

to DNSCurve server:

� Here’s my public key.

� Here’s an encrypted DNS query.

Client encrypts, authenticates

using client’s secret key,

server’s public key.

Server verifies, decrypts

using server’s secret key,

client’s public key.

Packet from DNSCurve server

to DNSCurve client:

� Here’s an encrypted response.

Server encrypts, authenticates

using server’s secret key,

client’s public key.

Client verifies, decrypts

using client’s secret key,

server’s public key.

Every packet is authenticated.

Client verifies every packet

immediately upon receipt.

If packet fails verification,

client discards packet

and waits for correct packet.

Attacker can stop correct packet

by flooding the network,

but this consumes many more

attacker resources than

sending a few forged packets.

) Many fewer victims.

How does DNSCurve client

retrieve server’s public key?

Does it send more packets? No!

DNS architecture: DNS client

learns IP address of

.ubuntu.com DNS server

from .com DNS server.

The .com server says:

“The ubuntu.com DNS server

is named ns3

and has IP address 209.6.3.210.”

The name ns3 was selected by

the ubuntu.com administrator

and given to .com.

To announce

his DNSCurve server’s public key,

the ubuntu.com administrator

changes the name ns3 to

an encoding of the public key.

The DNSCurve client

sees the public key, begins

cryptographically protecting

communication with that server.

An older approach

1993.11 Galvin: “The DNS

Security design team of the

DNS working group met for one

morning at the Houston IETF.”

1994.02 Eastlake–Kaufman,

after months of discussions on

dns-security mailing list:

“DNSSEC” protocol specification.

Continued DNSSEC efforts

have received millions of dollars

of government grants: e.g.,

DISA to BIND; NSF to UCLA;

DHS to Secure64.

The Internet has nearly

80000000 *.com names.

The Internet has nearly

80000000 *.com names.

Surveys by DNSSEC developers,

last updated 2009.08.04,

have found 274 *.com

names with DNSSEC signatures.

116 on 2008.08.20; 274 > 116.

“Wow, exponential growth!”

The Internet has nearly

80000000 *.com names.

Surveys by DNSSEC developers,

last updated 2009.08.04,

have found 274 *.com

names with DNSSEC signatures.

116 on 2008.08.20; 274 > 116.

“Wow, exponential growth!”

The same surveys show

941 IP addresses worldwide

running DNSSEC servers.

DNSSEC’s design is driven by

fear of cryptographic overload.

Basic assumption: Busy servers

cannot afford per-query crypto.

Consequences:

DNSSEC has no encryption.

DNSSEC has no DoS protection.

DNSSEC precomputes signatures.

Signature is computed once;

saved; sent to many clients.

Hopefully the server can afford

to sign each DNS record once.

DNSSEC signatures do not

depend on fresh client data.

Consequences:

To limit replay attacks,

DNSSEC has to put

expiration times on signatures.

Normally 30 days;

short intervals cause problems.

Attackers can still

replay data for 30 days;

replay across clients; etc.

DNSCurve: every response is

freshly encrypted, authenticated.

To avoid punishing sysadmin,

DNSSEC requires new code in

every DNS-management tool.

Whenever a tool adds or changes

a DNS record, it also has to

precompute DNSSEC signature;

store DNSSEC signature; arrange

for re-signature before expiration.

Any mistakes destroy your domain

(“DNSSEC suicide”). 2009:

This happened to all ISC DLV

DNSSEC users. UCLA admin:

“The solution in all cases was to

disable DNSSEC validation.”

2009.06.02: “Today we reached

a significant milestone in

our effort to bolster online

security : : : [.ORG is] the first

open generic Top-Level Domain

to successfully sign our zone with

Domain Name Security Extensions

(DNSSEC). To date, the .ORG

zone is the largest domain registry

to implement this needed security

measure. : : : This process adds

new records to the zone, which

allows verification of the origin

authenticity and integrity of

data.”

Verification! Authenticity!

Integrity! Sounds great!

Verification! Authenticity!

Integrity! Sounds great!

Now I simply configure

the new .org public key

into my DNS software.

Because the .org servers

have implemented “this

needed security measure”

(signing with DNSSEC),

it is no longer possible

for attackers to forge

data from those servers!

Verification! Authenticity!

Integrity! Sounds great!

Now I simply configure

the new .org public key

into my DNS software.

Because the .org servers

have implemented “this

needed security measure”

(signing with DNSSEC),

it is no longer possible

for attackers to forge

data from those servers!

... or is it?

Suppose an attacker forges

a DNS packet from .org,

including exactly the same

DNSSEC signatures but

changing the NS+A records to

point to the attacker’s servers.

Suppose an attacker forges

a DNS packet from .org,

including exactly the same

DNSSEC signatures but

changing the NS+A records to

point to the attacker’s servers.

Fact: DNSSEC clients

will accept the forgery.

The signatures say nothing

about the NS+A records.

Suppose an attacker forges

a DNS packet from .org,

including exactly the same

DNSSEC signatures but

changing the NS+A records to

point to the attacker’s servers.

Fact: DNSSEC clients

will accept the forgery.

The signatures say nothing

about the NS+A records.

.org can’t actually handle signing

complete database, so it sends

“opt-out” signatures saying

“Sorry, no security here.”

Novice protocol-design error,

not forced by precomputation:

DNSSEC public keys are

distributed through an

ad-hoc channel.

Supporting this channel requires

changes in even more software:

registrar web interfaces,

registrar database tools, etc.

Even farther from being done

than the basic DNSSEC changes.

DNSCurve: reuse existing

server-name channel;

no changes to tools.

DNSSEC protocol details allow

astonishing DDoS amplification,

a giant step backwards in

the fight against amplifiers.

http://cr.yp.to/talks

/2009.08.10/slides.pdf

explains how 200 sites,

each sending just 3Mbps,

trigger a 20000Mbps flood

from the 941 DNSSEC servers

against any desired target.

DNSSEC signatures don’t exist

for names not on server.

When asked about nonexistent

ixyz.clegg.com,

the clegg.com server

returns signed statement

“There are no names between

imogene.clegg.com and

jennifer.clegg.com.”

The clegg.com administrator

disabled DNS “zone transfers”

— but then leaked the same data

by installing DNSSEC! Also wrote

a guide “DNSSEC in 6 minutes.”

Myth: These privacy violations

were fixed by NSEC3

(proposed standard, 2008).

Myth: These privacy violations

were fixed by NSEC3

(proposed standard, 2008).

Reality: DNSSEC+NSEC3

leaks private information

much more quickly

than classic DNS.

DNSSEC+NSEC3 gives away

hashes of existing names.

I currently have 9 computers

(9 2.4GHz Core 2 Quad CPUs;

part of www.win.tue.nl/cccc/)

hashing

Myth: These privacy violations

were fixed by NSEC3

(proposed standard, 2008).

Reality: DNSSEC+NSEC3

leaks private information

much more quickly

than classic DNS.

DNSSEC+NSEC3 gives away

hashes of existing names.

I currently have 9 computers

(9 2.4GHz Core 2 Quad CPUs;

part of www.win.tue.nl/cccc/)

hashing 5800000000000

name guesses per day.

Client has to verify DNSSEC

signature for each response.

DNSSEC tries to reduce

client-side costs through

choice of crypto primitive.

Many DNSSEC crypto options:

640-bit RSA, original specs;

768-bit RSA, many docs;

1024-bit RSA, current RFCs

(for “leaf nodes in the DNS”);

DSA, “10 to 40 times as slow

for verification” but faster for

signatures.

I say:

Using RSA-1024 is irresponsible.

2003: Shamir–Tromer et al.

concluded that 1024-bit RSA

was already breakable by

large companies and botnets.

$10 million: 1 key/year.

$120 million: 1 key/month.

2003: RSA Laboratories

recommended a transition to

2048-bit keys “over the remainder

of this decade.” 2007: NIST

made the same recommendation.

Will be a few years before

1024-bit RSA is breakable

by academics in small labs.

They’re finishing RSA-768 now.

Will be a few years before

1024-bit RSA is breakable

by academics in small labs.

They’re finishing RSA-768 now.

“RSA-1024: still secure

against honest attackers.”

Will be a few years before

1024-bit RSA is breakable

by academics in small labs.

They’re finishing RSA-768 now.

“RSA-1024: still secure

against honest attackers.”

What about serious attackers

using many more computers?

e.g. botnet operators?

Government is mandating

at least 2048-bit RSA

by the end of next year.

DNSSEC made breakable choices

such as 640-bit RSA

for no reason other than

fear of cryptographic overload.

DNSSEC needed more options

to survive the inevitable breaks.

Profusion of options made

DNSSEC crypto complicated,

hard to review for bugs.

2009: Emergency BIND upgrade.

Minor software bug meant

that DNSSEC DSA signatures

had always been trivial to forge.

Cryptography in DNSCurve

Critical cryptographic operations:

Encrypt and authenticate packet

using server’s secret key

and client’s public key.

Verify and decrypt packet

using client’s secret key

and server’s public key.

Need serious security,

not something breakable

today by Storm, NSA, : : :
(and next decade by academics).

Could use public-key encryption

(e.g., 4096-bit RSA encryption)

and public-key signatures

(e.g., 4096-bit RSA signatures).

But why use two separate

public-key operations?

Combined operations are faster.

Why use signatures

that everyone can verify?

Better to use authenticators

verifiable by the recipient.

When client and server

exchange several messages,

why use several separate

public-key operations?

Classic “hybrid” speedup:

Client and server

use public-key operations

to share a secret,

and use secret-key cryptography

to protect many messages.

Elliptic-curve cryptography:

Client has secret key ,
public key Curve().
Server has secret key s,
public key Curve(s).
Client, server can cache

shared secret Curve(s),
use secret-key cryptography

to protect many messages.

Introduced in 1985.

Today’s best attacks

against random elliptic curves

use as much computer power

as 1985’s best attacks.

1990s: ECC security criteria

were standardized by IEEE P1363.

NIST used IEEE P1363 procedure

to create several standard curves,

such as the “P-256” curve.

More recent research recommends

extra criteria to simplify and

acclerate secure implementations.

NIST P-256 flunks those criteria.

The new “Curve25519” curve

passes the IEEE P1363 criteria

and the extra criteria.

DNSCurve uses Curve25519.

So how fast is it?

New public-domain “Networking

and Cryptography library”,

http://nacl.cace-project.eu:

crypto_box encrypts and

authenticates a packet.

Can split crypto_box into

crypto_box_beforenm,

crypto_box_afternm

to cache and reuse shared secret.

crypto_box_open verifies and

decrypts a packet.

Using this software, a low-cost PC

with a 2.4GHz Core 2 Quad CPU

can encrypt and authenticate

50 billion packets/day

to 500 million clients.

Also highly space-efficient:

32 bytes for a public key;

similar overhead per packet.

Major code contributions

from Adam Langley (Google)

and Matthew Dempsky

(Mochi Media, now OpenDNS).

The total load on .com

is 38 billion packets/day

from 5 million clients.

“Project Titan”:

The .com operators

are spending $100000000

to be ready for a 200Gbps flood.

A worst-case 200Gbps

cryptographic flood

can be handled by a few thousand

PCs running this software.

