
High-speed cryptography

D. J. Bernstein

University of Illinois at Chicago

The UNIX command “dig

+dnssec -t any se @a.ns.se”

sends a 31-byte packet to IP

address 192.36.144.107, which

sends back a 3974-byte response.

The UNIX command “dig

+dnssec -t any se @a.ns.se”

sends a 31-byte packet to IP

address 192.36.144.107, which

sends back a 3974-byte response.

Can forge same 31-byte packet

with return address 198.41.0.4.

192.36.144.107 sends 3974-byte

packet to 198.41.0.4.

Can repeat trillions of times,

flooding 198.41.0.4 with data.

“Distributed denial-of-service

attack with 100� amplification.”

“Project Titan,” starting 2007:

VeriSign has been spending

>$100000000 to upgrade the

Internet’s .com DNS servers.

In a typical day in 2008, these

servers together handled 5 � 106

clients sending 35 � 109 queries.

Beginning of 2009: 38 � 109.

“Project Titan,” starting 2007:

VeriSign has been spending

>$100000000 to upgrade the

Internet’s .com DNS servers.

In a typical day in 2008, these

servers together handled 5 � 106

clients sending 35 � 109 queries.

Beginning of 2009: 38 � 109.

What about non-typical days

when servers were under attack?

VeriSign says: Will be prepared

for flood of 4 � 1012 packets/day

totalling 2 � 1015 bytes/day.

“DNSSEC,” starting 1993:

Cryptographic protection for DNS.

Millions of dollars of U.S. grants.

DNSSEC designers decided that

busy servers can’t handle

cryptographic computations.

) DNSSEC skips encryption

and precomputes all signatures.

) Massive usability problems

from signature storage, signature

expiration, dynamic data, etc.

“DNSSEC,” starting 1993:

Cryptographic protection for DNS.

Millions of dollars of U.S. grants.

DNSSEC designers decided that

busy servers can’t handle

cryptographic computations.

) DNSSEC skips encryption

and precomputes all signatures.

) Massive usability problems

from signature storage, signature

expiration, dynamic data, etc.

16 years later: The Internet has

� 80000000 *.com names.

“DNSSEC,” starting 1993:

Cryptographic protection for DNS.

Millions of dollars of U.S. grants.

DNSSEC designers decided that

busy servers can’t handle

cryptographic computations.

) DNSSEC skips encryption

and precomputes all signatures.

) Massive usability problems

from signature storage, signature

expiration, dynamic data, etc.

16 years later: The Internet has

� 80000000 *.com names.

� 300 have DNSSEC signatures.

If cryptography is too slow,

users turn it off.

If it might be too slow,

Internet designers turn it off

or screw it up—

reducing security,

compromising usability, etc.

If cryptography is too slow,

users turn it off.

If it might be too slow,

Internet designers turn it off

or screw it up—

reducing security,

compromising usability, etc.

My response:

1. Build strong cryptography

that’s self-evidently fast enough

to protect every Internet packet.

2. Implement it in usable form.

3. Deploy it!

Performance measurement

European Union has funded

NESSIE project (2000–2003),

ECRYPT I network (2004–2008),

ECRYPT II network (2008–2012).

Now 11 partners, 3 virtual labs.

VAMPIRE is the

“Virtual Application and

Implementation Lab” led by

Tanja Lange, Christof Paar.

One VAMPIRE project: eBACS,

“ECRYPT Benchmarking

of Cryptographic Systems.”

http://bench.cr.yp.to

eBACS toolkit includes

346 software implementations of

48 public-key primitives,

26 stream ciphers, and

50 hash functions.

Thanks to all contributors!

eBACS has collected, published

measurements on 78 machines;

112 machine-ABI combinations.

Each implementation is

recompiled 1226 times

with various compiler options

to identify best working option

for implementation, machine.

Implementation

European Union has also funded

“Computer-Aided Cryptography

Engineering” project (2008–2010).

12 partners, 5 work packages.

NaCl, “Networking and

Cryptography library,” is

main task of CACE WP 2, led by

D. J. Bernstein, Tanja Lange.

C NaCl news: first release!

Thanks to Adam Langley@Google,

Matthew Dempsky@Mochi Media.

http://nacl.cace-project.eu

Other libraries exist for

networking and cryptography:

e.g., OpenSSL library.

Compared to previous libraries,

NaCl improves security;

NaCl improves usability;

and NaCl improves speed.

First release prioritizes

high-speed high-security

cryptographic applications

that can’t survive without

state-of-the-art cryptography;

e.g., usable security for DNS.

The critical primitives

For every new client:

Use public-key cryptography

to share a secret key.

For every new packet:

Use secret-key cryptography

to authenticate packet and

(if desired) encrypt packet.

Main bottleneck can be

sharing secret keys or

encrypting packets or

authenticating packets.

Depends on data volume,

number of clients, etc.

Standard encryption method:

xor nth message with

AESk(n; 1);AESk(n; 2); : : :
where k is the secret key.

Typical code: 20 cycles/byte.

2008 Bernstein–Schwabe:

10:6 cycles/byte on Core 2,

14:1 cycles/byte on P4, etc.;

very low per-packet overhead.

2009 Käsper–Schwabe:

7:8 cycles/byte on Core 2;

low per-packet overhead.

Mild slowdown for 256-bit key.

Improve speed by changing cipher.

2004.11: eSTREAM (“ECRYPT

Stream Cipher Project”) calls for

submissions of stream ciphers.

Receives 34 submissions from 97

cryptographers around the world.

2008.04: After two hundred

papers and several conferences,

eSTREAM selects portfolio of

four fast software ciphers (and

some small hardware ciphers).

Much faster ciphers than AES.

e.g. 2:6 cycles/byte on Core 2

for my “Salsa20/12” cipher.

Combine with advances in

packet-authentication speed.

What does this mean in practice?

A 2.5GHz Intel Core 2 Quad

Q9300 CPU costs US$225.

Complete computer: $400.

This CPU has 4 cores.

Each core carries out

2:5 � 109 cycles/second.

CPU encrypts and authenticates

1011 typical-size packets/day;

keeps up with Gbps network

while leaving most cycles

free for other work.

But what about public-key costs?

Need, e.g., 256-bit elliptic-curve

single-scalar multiplication

for every new client—

i.e., every new public key.

What if there are billions

of different public keys?

Too many to cache them all?

What if an attacker sends

flood of new public keys?

(Hopefully not amplified!)

Will CPU be able to keep up?

Bernstein, ECC 2005, PKC 2006:

640838 Pentium M cycles for

high-security Diffie–Hellman;

specifically, Curve25519 ECDH.

Also good speeds on other CPUs.

More than twice as fast

as previous DH results

at similar security level.

Curve25519 is the Montgomery

curve y2 = x3 + 486662x2 + x
modulo the prime 2255 � 19.

Tuned for speed, security,

twist-security, et al.

Gaudry–Thomé, SPEED 2007,

ECC 2007:

New mpFq library produces

speed records on Core 2.

386000 cycles for Curve25519.

888000 cycles for binary (i.e.,

characteristic 2).

405000 cycles for genus 2.

Faster genus-2 curves exist,

but so far nobody has computed

a secure twist-secure example.

687000 cycles for binary genus 2.

Recall Project Titan:

VeriSign spending >$100000000

to be prepared for flood

of 4 � 1012 packets/day.

Worst case: Every packet

has a new public key.

4 � 1012 Curve25519’s/day.

Recall Project Titan:

VeriSign spending >$100000000

to be prepared for flood

of 4 � 1012 packets/day.

Worst case: Every packet

has a new public key.

4 � 1012 Curve25519’s/day.

Can handle these computations

using Gaudry–Thomé software

on < 2000 of the $400 computers.

Expensive but should fit

easily into VeriSign’s budget.

Can we further reduce costs?

Speed records now broken

in three (combinable!) ways.

Dai, reported May 2009, building

on 2009 Costigan–Schwabe:

better use of CPU instructions.

Speed records now broken

in three (combinable!) ways.

Dai, reported May 2009, building

on 2009 Costigan–Schwabe:

better use of CPU instructions.

Galbraith–Lin–Scott, ECC 2008,

Eurocrypt 2009:

Twist E(Fp2) for E=Fp;
exploit a fast endomorphism.

Current implementation uses

Edwards-form E=F2127�1:

x2 + y2 = 1 + 42x2y2.

Speed records now broken

in three (combinable!) ways.

Dai, reported May 2009, building

on 2009 Costigan–Schwabe:

better use of CPU instructions.

Galbraith–Lin–Scott, ECC 2008,

Eurocrypt 2009:

Twist E(Fp2) for E=Fp;
exploit a fast endomorphism.

Current implementation uses

Edwards-form E=F2127�1:

x2 + y2 = 1 + 42x2y2.

Bernstein, Crypto 2009:

something completely different.

Edwards curves

Fix a non-binary field k.
Edwards addition law for

curve x2 + y2 = 1 + dx2y2

with d 2 k� f0; 1g:

x3 =
x1y2 + y1x2

1 + dx1x2y1y2
,

y3 =
y1y2 � x1x2

1� dx1x2y1y2
.

Every elliptic curve over k
with a point of order 4

is birationally equivalent over k
to an Edwards curve over k.

2007 Bernstein–Lange:

If d is not a square in k then

f(x; y) 2 k� k :

x2 + y2 = 1 + dx2y2g
is a commutative group

under Edwards addition law.

The denominators

1 + dx1x2y1y2,

1� dx1x2y1y2

are never zero.

No exceptional cases!

1995 Bosma–Lenstra theorem:

“The smallest cardinality of a

complete system of addition laws

on E equals two.”

1995 Bosma–Lenstra theorem:

“The smallest cardinality of a

complete system of addition laws

on E equals two.” : : : meaning:

Any addition formula

for a Weierstrass curve E
in projective coordinates

must have exceptional cases

in E(k)� E(k), where

k = algebraic closure of k.

1995 Bosma–Lenstra theorem:

“The smallest cardinality of a

complete system of addition laws

on E equals two.” : : : meaning:

Any addition formula

for a Weierstrass curve E
in projective coordinates

must have exceptional cases

in E(k)� E(k), where

k = algebraic closure of k.
Edwards addition formula has

exceptional cases for E(k)
: : : but not for E(k).
We do computations in E(k).

Completeness eases

implementations, avoids

simple side-channel attacks.

What about elliptic curves

without points of order 4?

What about elliptic curves

over binary fields?

Continuing project (B.–L.):

For every elliptic curve E,

find complete addition law for E
with best possible speeds.

Maybe slower than Edwards

but maybe still useful.

Some Newton polygons

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�

�� J

J

J

J

J

J

J

Short Weierstrass

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�

�� O

O

O

O

O

O

O

O

Jacobi quartic

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�

�

�
�

?

?

?

?

?

?

?

?

Hessian

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�

�
Edwards

1893 Baker: genus is generically

number of interior points.

2000 Poonen–Villegas classified

polygons with 1 interior point.

How to generalize Edwards?

Design decision: want

quadratic in x and in y.

Design decision: want

x$ y symmetry.

d00

d10

d20

d10

d11

d21

d20

d21

d22

Curve shape d00 + d10(x + y) +

d11xy + d20(x2 + y2) +

d21xy(x + y) + d22x2y2 = 0.

Suppose that d22 = 0:

d00

d10

d20

d10

d11

d21

d20

d21

�

Genus 1) (1; 1) is an

interior point) d21 6= 0.

Homogenize:

d00Z3 + d10(X + Y)Z2 +

d11XY Z + d20(X2 + Y 2)Z +

d21XY (X + Y) = 0.

Points at 1 are (X : Y : 0)

with d21XY (X + Y) = 0: i.e.,

(1 : 0 : 0), (0 : 1 : 0), (1 : �1 : 0).

Study (1 : 0 : 0) by setting

y = Y=X, z = Z=X
in homogeneous curve equation:

d00z3 + d10(1 + y)z2 +

d11yz + d20(1 + y2)z +

d21y(1 + y) = 0.

Nonzero coefficient of y
so (1 : 0 : 0) is nonsingular.

Addition law cannot be complete

(unless k is tiny).

So we require d22 6= 0.

Points at 1 are (X : Y : 0)

with d22X2Y 2 = 0: i.e.,

(1 : 0 : 0), (0 : 1 : 0).

Study (1 : 0 : 0) again:

d00z4 + d10(1 + y)z3 +

d11yz2 + d20(1 + y2)z2 +

d21y(1 + y)z + d22y2 = 0.

Coefficients of 1; y; z are 0

so (1 : 0 : 0) is singular.

Put y = uz, divide by z2

to blow up singularity:

d00z2 + d10(1 + uz)z +

d11uz + d20(1 + u2z2) +

d21u(1 + uz) + d22u2 = 0.

Substitute z = 0 to find

points above singularity:

d20 + d21u+ d22u2 = 0.

We require the quadratic

d20 + d21u+ d22u2

to be irreducible in k.
Special case: complete Edwards,

1� du2 irreducible in k.

In particular d20 6= 0:

d00

d10

d20

d10

d11

d21

d20

d21

d22

Design decision: Explore

a deviation from Edwards.

Require d00 = 0, d10 6= 0.

�

d10

d20

d10

d11

d21

d20

d21

d22

?

?

?

?

?

?

?

?

Now (0; 0) is on curve.

Design decision:

(0; 0) is neutral element.

Then �(x; y) = (y; x).

By scaling x; y
and scaling curve equation

can limit d10; d11; d20; d21; d22

to three degrees of freedom.

Can choose other neutral

elements, as in Edwards.

Warning: bad choice can produce

surprisingly expensive negation.

B.–L.–Rezaeian Farashahi,

CHES 2008:

complete addition law for

“binary Edwards curves”

d1(x+ y) + d2(x2 + y2) =

(x + x2)(y + y2).

Covers all ordinary elliptic curves

over F2n for n � 3.

Also surprisingly fast!

B.–L.–Rezaeian Farashahi,

CHES 2008:

complete addition law for

“binary Edwards curves”

d1(x+ y) + d2(x2 + y2) =

(x + x2)(y + y2).

Covers all ordinary elliptic curves

over F2n for n � 3.

Also surprisingly fast!

B.–L., posted April 2009:

complete addition law for

another specialization

covering all the NIST curves

over non-binary fields.

Consider, e.g., the curve

x2 + y2 = x + y + txy + dx2y2

with d = �1 and

t =
78751018041117252545420999954767176464538545060814630202841395651175859201799

over Fp where p = 2256 � 2224 +

2192 + 296 � 1.

Note: d is non-square in Fp.
Birationally equivalent to

standard “NIST P-256” curve

v2 = u3 � 3u+ a6 where

a6 =
41058363725152142129326129780047268409114441015993725554835256314039467401291.

An addition law for

x2 + y2 = x + y + txy + dx2y2,

complete if d is not a square:

x3 =

x1 + x2 + (t� 2)x1x2 +

(x1 � y1)(x2 � y2) +

dx2
1(x2y1 + x2y2 � y1y2)

1� 2dx1x2y2 �
dx2

1(x2 + y2 + (t� 2)x2y2)

;

y3 =

y1 + y2 + (t� 2)y1y2 +

(y1 � x1)(y2 � x2) +

dy2
1(y2x1 + y2x2 � x1x2)

1� 2dy1y2x2 �
dy2

1(y2 + x2 + (t� 2)y2x2)

.

Note on computing addition laws:

An easy Magma script uses

Riemann–Roch to find addition

law given a curve shape.

Are those laws nice? No!

Find lower-degree laws by

Monagan–Pearce algorithm,

ISSAC 2006; or by evaluation at

random points on random curves.

Are those laws complete? No!

But always seems easy to

find complete addition laws

among low-degree laws where

denominator constant term 6= 0.

Batch binary Edwards

(2009 Bernstein)

Can multiply 251-bit polynomials

over F2 using a straight-line

sequence of 33200 bit operations

(ANDs and XORs).

Much better than schoolbook

125501 bit operations.

Most of the improvement

is standard Karatsuba,

but also have some new

multiplication speedups.

Put d = t57 + t54 + t44 + 1,

k = F2[t]=(t251 + t7 + t4 + t2 +1).

Can compute n; P 7! nP
on the binary Edwards curve

d(x+x2+y+y2) = (x+x2)(y+y2)

over k using a straight-line

sequence of 45076017 bit

operations.

This curve meets the usual

paranoid security criteria.

Operation count benefits

from small number of mults

and from completeness.

Handle 128 inputs in parallel

using 128-bit vector operations:

“bitsliced ECC.”

Bottleneck: at most three

operations per Core 2 cycle,

so > 117385 cycles

per scalar multiplication.

Current prototype code

actually uses 346317 cycles.

Right now I’m working on a new

instruction scheduler. Also expect

smaller bit-operation counts for

Koblitz curves, genus 2, etc.

