
Edwards coordinates

for elliptic curves,

part 2

D. J. Bernstein

University of Illinois at Chicago

(Joint work with Tanja Lange)



Elliptic-curve signatures

Standardize a prime p = 2255
�19.

Not too small; want hard ECDL!

Close to 2��� for fast arithmetic.

Standardize a “safe” elliptic curve

E over F
p

: x2 + y

2 = 1 + dx

2
y

2

where d = 1� 1=121666.

#E(F
p

) = 8q where q is prime.

2(p+ 1)�#E(F
p

) = 4 � prime.

(2005 Bernstein “Curve25519:

new Diffie-Hellman speed records”

as y2 = x

3 + 486662x2 + x)

Standardize B 2 E(F
p

), order q.

Standardize a “hash function” H.



Signer has 32-byte secret key

n 2

�

0; 1; : : : ; 2256
� 1

	

.

Everyone knows signer’s 32-byte

public key: compressed nB.

To sign a message m:

generate a secret s;

compute R = sB;

compute t = H(R;m)s+n mod q;

transmit (m; compressed R; t).

To verify (m; compressed R; t):

verify tB = H(R;m)R + nB.

(first similar idea: 1985 ElGamal;

many generalizations, variations;

these choices: 2006 van Duin)



Bottleneck: Several types of

elliptic-curve scalar multiplication.

Generating key:

given 256-bit integer n,

fixed B 2 E(F
p

), compute nB.

Generating signature: Same.

Verifying signature:

given 256-bit t, 256-bit h,

fixed B, variable R,

compute tB � hR.

Similar bottleneck for ECDH:

given 256-bit n, variable R,

compute nR.



Optimizing scalar multiplication

Crypto 1985, Miller, “Use of

elliptic curves in cryptography”:

Using division-polynomial

recursions can compute nP given

P “in 26 log2 n multiplications”;

but can do better!

“It appears to be best to

represent the points on the curve

in the following form: Each

point is represented by the triple

(x; y; z) which corresponds to the

point (x=z2
; y=z

3).”



1986 Chudnovsky/Chudnovsky,

“Sequences of numbers

generated by addition

in formal groups

and new primality

and factorization tests”:

“The crucial problem becomes

the choice of the model

of an algebraic group variety,

where computations mod p

are the least time consuming.”



For “traditional” (X=Z2
; Y=Z

3):

Chudnovsky/Chudnovsky

state explicit formulas using

8M for DBL if a4 = �3;

16M for ADD.

“We suggest to write

addition formulas involving

(X; Y; Z; Z2
; Z

3).”

9M DBL if a4 = �3; 14M ADD.

Also operation counts for

projective coordinates (X : Y : Z)

representing (X=Z; Y=Z);

Hessian curves; Jacobi quartics;

Jacobi intersections.



Asiacrypt 1998,

Cohen/Miyaji/Ono, “Efficient

elliptic curve exponentiation

using mixed coordinates”:

1. Faster X; Y; Z; Z2
; Z

3 formulas

than Chudnovsky/Chudnovsky!

Compute Z2
; Z

3 only

for points that will be added.

2. A new coordinate system;

speedups in some cases.

3. A new inversion strategy.

4. The first serious analysis of

parameter choices.



“Sliding windows” (1939 Brauer,

improved by 1973 Thurber):

popular method to compute nP

from P using very few additions,

subtractions, doublings.

Precompute 2P; 3P; 5P; 7P .

If n is even, recursively compute

(n=2)P and then double.

If n is odd, recursively compute

(n� 1)P or (n� 3)P or (n� 5)P

or (n � 7)P , whichever involves

the largest power of 2, and then

add �P or �3P or �5P or �7P .



Why not 2P; 3P; 5P; : : : ; 15P?

Or 2P; 3P; 5P; : : : ; 31P?

For 2P; 3P; 5P; : : : ; (2w � 1)P :

� 2w�1 adds in precomputation;

on average � 256=(w + 2)

adds in main computation.

Cohen/Miyaji/Ono introduce

an option to speed up the adds:

compute 2P , convert to affine,

compute 3P; 4P , convert,

compute 5P; 7P; 8P , convert,

etc.



Cohen/Miyaji/Ono

analyze #adds carefully;

account for different

types of additions;

analyze several different

coordinate systems; and

identify optimal choices of w,

depending on I=M,

for 160 bits, 192 bits, 224 bits.

Example of results for 160 bits,

assuming S=M = 0:8:

Cohen/Miyaji/Ono recommend

one method using “1610:2M”

and one using “4I + 1488:4M.”



Subsequent improvements:

1. Faster addition/doubling

formulas for old coordinates.

Many sources; for survey

see Explicit-Formulas Database.

2. Fast new coordinates:

e.g. Edwards curves,

extended Jacobi quartics,

inverted Edwards coordinates.

3. “Fractional windows” and

other addition-chain tweaks:

e.g. 2P; 3P; 5P; 7P; 9P; 11P; 13P .

4. More inversion strategies.



Asiacrypt 2007, Bernstein/Lange,

“Faster addition and doubling

on elliptic curves”:

fast Edwards computations;

comparison to other coordinates

for scalar multiplication.

Comparison unjustifiably

assumed 2P; 3P; 5P; : : : ; 15P ;

ignored possibility of inversions.

New, 2007 Bernstein/Lange,

“Analysis and optimization

of elliptic-curve single-scalar

multiplication”: Much more

comprehensive comparison.



Example of new results

for 160-bit scalars:

1I + 1495:8M

for Jacobian coordinates;

1I + 1434:1M

for Jacobian with a4 = �3;

1287:8M

for inverted Edwards.

Triplings? Double-base chains?

Indocrypt 2007,

Bernstein/Birkner/Lange/Peters:

triplings help Jacobian

(at least for large I=M)

but don’t help Edwards.



Many-scalar multiplication

Batch verification of many

t

i

B � h

i

R

i

= S

i

: check
P

i

v

i

t

i

B �

P

i

v

i

h

i

R

i

�

P

i

v

i

S

i

= 0 for random 128-bit v
i

.

(Naccache et al., Eurocrypt 1994;

Bellare et al., Eurocrypt 1998)

Also encounter many scalars

in computing nB as

n0B + n12
16
B + � � �

using precomputed 216
B etc.



Use subtractive multi-scalar

multiplication algorithm:

if n1 � n2 � � � � then

n1P1 + n2P2 + n3P3 + � � � =

(n1 � qn2)P1 + n2(qP1 + P2) +

n3P3 + � � � where q = bn1=n2.

(credited to Bos and Coster by

de Rooij, Eurocrypt 1994;

see also tweaks by Wei Dai, 2007)

Addition speed is critical.

Inverted Edwards coordinates:

9M + 1S, speed record.



Elliptic-curve factorization

Bernstein/Birkner/Lange/Peters,

in progress: Edwards ECM.

First-stage ECM analysis:

similar to ECC analysis.

Can use larger scalars,

increasing the advantage

of Edwards over Montgomery.

Second stage: more complicated.

Also some improvements

in curve selection.



Elliptic-curve primality proving

Is n prime? Maybe.

Want computation

of kP in E(Z=n)

to prove that kP = 0 in E(Z=p)

for every prime divisor p of n;

use this to prove that n is prime.

Proper definition of E(Z=n)

achieves this, but also requires

many invertibility tests,

each costing at least 1M

and extra implementation effort.



For simplicity and speed,

current ECPP software

omits various tests.

Bernstein question to Morain:

“Do the resulting computations

actually prove primality?”



For simplicity and speed,

current ECPP software

omits various tests.

Bernstein question to Morain:

“Do the resulting computations

actually prove primality?”

Morain answer to Bernstein:

“Feel free to look for a

non-prime counterexample.”

Disclaimer: There is no evidence

that this conversation took place.



Often ECPP uses curves

that can be transformed to

Montgomery, Edwards, etc.

(Chance ! 1 as n!1?)

With detailed case analysis

can eliminate tests for zero

from a Montgomery-style ECPP.

(2006 Bernstein)

Bernstein/Lange, with

Jonas Lindstrøm Jensen, in

progress: Aiming for simpler,

faster ECPP using Edwards.


