Edwards coordinates for elliptic curves, part 2

D. J. Bernstein
University of Illinois at Chicago

(Joint work with Tanja Lange)
Elliptic-curve signatures

Standardize a prime $p = 2^{255} - 19$. Not too small; want hard ECDL! Close to 2^{256} for fast arithmetic.

Standardize a “safe” elliptic curve E over \mathbb{F}_p: $x^2 + y^2 = 1 + dx^2y^2$ where $d = 1 - 1/121666$.

$\#E(\mathbb{F}_p) = 8q$ where q is prime.

$2(p + 1) - \#E(\mathbb{F}_p) = 4 \cdot$ prime.

(2005 Bernstein “Curve25519: new Diffie-Hellman speed records” as $y^2 = x^3 + 486662x^2 + x$)

Standardize $B \in E(\mathbb{F}_p)$, order q.

Standardize a “hash function” H.

Signer has 32-byte secret key $n \in \{0, 1, \ldots, 2^{256} - 1\}$.

Everyone knows signer’s 32-byte public key: compressed nB.

To sign a message m:

- generate a secret s;
- compute $R = sB$;
- compute $t = H(R, m)s + n \mod q$;
- transmit $(m, \text{compressed } R, t)$.

To verify $(m, \text{compressed } R, t)$:

- verify $tB = H(R, m)R + nB$.

(first similar idea: 1985 ElGamal; many generalizations, variations; these choices: 2006 van Duin)
Bottleneck: Several types of elliptic-curve scalar multiplication.

Generating key:
given 256-bit integer n,
fixed $B \in E(\mathbb{F}_p)$, compute nB.

Generating signature: Same.

Verifying signature:
given 256-bit t, 256-bit h,
fixed B, variable R,
compute $tB - hR$.

Similar bottleneck for ECDH:
given 256-bit n, variable R,
compute nR.
Optimizing scalar multiplication

Crypto 1985, Miller, “Use of elliptic curves in cryptography”:

Using division-polynomial recursions can compute nP given P “in $26 \log_2 n$ multiplications”; but can do better!

“It appears to be best to represent the points on the curve in the following form: Each point is represented by the triple (x, y, z) which corresponds to the point $(x/z^2, y/z^3)$.”
1986 Chudnovsky/Chudnovsky, “Sequences of numbers generated by addition in formal groups and new primality and factorization tests”: “The crucial problem becomes the choice of the model of an algebraic group variety, where computations mod \(p \) are the least time consuming.”
For “traditional” \((X/Z^2, Y/Z^3)\):
Chudnovsky/Chudnovsky state explicit formulas using
\(8\text{M}\) for DBL if \(a_4 = -3\);
\(16\text{M}\) for ADD.

“We suggest to write
addition formulas involving
\((X, Y, Z, Z^2, Z^3)\)”
\(9\text{M}\) DBL if \(a_4 = -3\); \(14\text{M}\) ADD.

Also operation counts for
projective coordinates \((X : Y : Z)\)
representing \((X/Z, Y/Z)\);
Hessian curves; Jacobi quartics;
Jacobi intersections.
Asiacrypt 1998,
Cohen/Miyaji/Ono, “Efficient elliptic curve exponentiation using mixed coordinates”:

1. Faster X, Y, Z, Z^2, Z^3 formulas than Chudnovsky/Chudnovsky! Compute Z^2, Z^3 only for points that will be added.

2. A new coordinate system; speedups in some cases.

4. The first serious analysis of parameter choices.
“Sliding windows” (1939 Brauer, improved by 1973 Thurber): popular method to compute nP from P using very few additions, subtractions, doublings.

Precompute $2P, 3P, 5P, 7P$.

If n is even, recursively compute $(n/2)P$ and then double.

If n is odd, recursively compute $(n \pm 1)P$ or $(n \pm 3)P$ or $(n \pm 5)P$ or $(n \pm 7)P$, whichever involves the largest power of 2, and then add $\mp P$ or $\mp 3P$ or $\mp 5P$ or $\mp 7P$.
Why not $2P, 3P, 5P, \ldots, 15P$?
Or $2P, 3P, 5P, \ldots, 31P$?

For $2P, 3P, 5P, \ldots, (2^w - 1)P$:
$\approx 2^{w-1}$ adds in precomputation;
on average $\approx 256/(w + 2)$
adds in main computation.

Cohen/Miyaji/Ono introduce an option to speed up the adds:
compute $2P$, convert to affine,
compute $3P, 4P$, convert,
compute $5P, 7P, 8P$, convert, etc.
Cohen/Miyaji/Ono analyze adds carefully; account for different types of additions; analyze several different coordinate systems; and identify optimal choices of ω, depending on I/M, for 160 bits, 192 bits, 224 bits.

Example of results for 160 bits, assuming $S/M = 0.8$: Cohen/Miyaji/Ono recommend one method using “1610.2M” and one using “$4I + 1488.4M$.”
Subsequent improvements:

1. Faster addition/doubling formulas for old coordinates. Many sources; for survey see Explicit-Formulas Database.

2. Fast new coordinates: e.g. Edwards curves, extended Jacobi quartics, inverted Edwards coordinates.

Asiacrypt 2007, Bernstein/Lange, “Faster addition and doubling on elliptic curves”: fast Edwards computations; comparison to other coordinates for scalar multiplication.

Comparison unjustifiably assumed $2P, 3P, 5P, \ldots, 15P$; ignored possibility of inversions.

“This paper is dedicated to Henri Cohen on the occasion of his sixtieth birthday.”

Example of new results for 160-bit scalars:

\[11 + 1495.8M \]

for Jacobian coordinates;

\[11 + 1434.1M \]

for Jacobian with \(a_4 = -3 \);

\[1287.8M \]

for inverted Edwards.
Could also use
“Montgomery coordinates.”
No fast additions, but
fast differential additions
\[P - Q, P, Q \mapsto P + Q. \]

(1986 Chudnovsky/Chudnovsky; independently 1987 Montgomery with faster formulas)

\[P \mapsto nP \text{ using } 8.2M \text{ per bit.} \]
Conventional wisdom:
Faster than Jacobian;
therefore the fastest method.
Our prediction: Edwards will be faster than Montgomery for cryptographic applications.

Larger advantage with larger scalars.

Much larger advantage with more scalars: $mP + nQ$.

Need to account carefully for differences between simple multiplication counts and real software speeds.

In progress: implementation.
Double-base chains

Are triplings useful for scalar multiplication?

Can write nP as sum of very few points $c_i 2^{a_i} 3^{b_i} P$
with $c_i = \pm 1$.
But need many doublings, triplings to compute those points.

Asiacrypt 2005,
Dimitrov/Imbert/Mishra: Require $a_0 \geq a_1 \geq \cdots$ and $b_0 \geq b_1 \geq \cdots$.
Only a_0 doublings, b_0 triplings.
But need more points.
Indocrypt 2006, Doche/Imbert: Use precomputation to expand range of c_i’s. Fewer points.

Indocrypt 2007, Bernstein/Birkner/Lange/Peters: Analysis of double-base single-scalar multiplication with various doubling/tripling ratios, various coordinate systems, various addition formulas (including new tripling formulas for Edwards curves), etc.
Basic conclusions: Triplings help Jacobian coordinates, Hessian curves, and tripling-oriented Doche/Icart/Kohel.

But the best resulting speeds are still slower than pure-doubling Edwards.

Analysis assumes 0 inversions. In progress: expand analysis for more inversion strategies. “Grand unified optimization.” And then more scalars...
Many-scalar multiplication

Batch verification of many
\(t_i B - h_i R_i = S_i \): check
\[\sum_i v_i t_i B - \sum_i v_i h_i R_i - \sum_i v_i S_i = 0 \]
for random 128-bit \(v_i \).
(Naccache et al., Eurocrypt 1994; Bellare et al., Eurocrypt 1998)

Also encounter many scalars
in computing \(nB \) as
\(n_0 B + n_1 2^{16} B + \cdots \)
using precomputed \(2^{16} B \) etc.
Use subtractive multi-scalar multiplication algorithm:

if $n_1 \geq n_2 \geq \cdots$ then

\[n_1 P_1 + n_2 P_2 + n_3 P_3 + \cdots = (n_1 - qn_2) P_1 + n_2(qP_1 + P_2) + n_3 P_3 + \cdots \text{ where } q = \left\lfloor \frac{n_1}{n_2} \right\rfloor. \]

(credited to Bos and Coster by de Rooij, Eurocrypt 1994; see also tweaks by Wei Dai, 2007)

Addition speed is critical.

Inverted Edwards coordinates:

$9M + 1S$, speed record.
Elliptic-curve factorization

Bernstein/Birkner/Lange/Peters, in progress: Edwards ECM.

First-stage ECM analysis: similar to ECC analysis. Can use larger scalars, increasing the advantage of Edwards over Montgomery.

Second stage: more complicated. Also some improvements in curve selection.
Elliptic-curve primality proving

Is n prime? Maybe.

Want computation of kP in $E(\mathbb{Z}/n)$

to prove that $kP = 0$ in $E(\mathbb{Z}/p)$
for every prime divisor p of n; use this to prove that n is prime.

Proper definition of $E(\mathbb{Z}/n)$ achieves this, but also requires many invertibility tests, each costing at least 1M and extra implementation effort.
For simplicity and speed, current ECPP software omits various tests.

Bernstein question to Morain: “Do the resulting computations actually prove primality?”
For simplicity and speed, current ECPP software omits various tests.

Bernstein question to Morain: “Do the resulting computations actually prove primality?”

Morain answer to Bernstein: “Feel free to look for a non-prime counterexample.”

Disclaimer: There is no evidence that this conversation took place.
Often ECPP uses curves that can be transformed to Montgomery, Edwards, etc. (Chance $\to 1$ as $n \to \infty$?)

With detailed case analysis can eliminate tests for zero from a Montgomery-style ECPP. (2006 Bernstein)

Bernstein/Lange, with Jonas Lindstrøm Jensen, in progress: Aiming for simpler, faster ECPP using Edwards.