Elliptic curves over \mathbb{R} and \mathbb{F}_q

D. J. Bernstein
University of Illinois at Chicago
Why elliptic curves?

Can quickly compute
$4^n \mod 2^{262} - 5081$
given $n \in \{0, 1, 2, \ldots, 2^{256} - 1\}$.

Similarly, can quickly compute
$4^{mn} \mod 2^{262} - 5081$
given n and $4^m \mod 2^{262} - 5081$.

“Discrete-logarithm problem”: given $4^n \mod 2^{262} - 5081$, find n.
Is this easy to solve?
Diffie-Hellman secret-sharing system using $p = 2^{262} - 5081$:

Alice’s secret key m

↓

Alice’s public key $4^m \mod p$

↘

{Alice, Bob}’s shared secret $4^{mn} \mod p$

Bob’s secret key n

↓

Bob’s public key $4^n \mod p$

↙

{Bob, Alice}’s shared secret $4^{mn} \mod p$

Can attacker find $4^{mn} \mod p$?
Bad news: DLP can be solved at surprising speed! Attacker can find m and n by “index calculus.”

To protect against this attack, replace $2^{262} - 5081$ with a much larger prime. *Much* slower arithmetic.

Alternative: Elliptic-curve cryptography. Replace $\{1, 2, \ldots, 2^{262} - 5082\}$ with a comparable-size “safe elliptic-curve group.” *Somewhat* slower arithmetic.
An elliptic curve over \mathbb{R}

Consider all pairs
of real numbers x, y
such that $y^2 - 5xy = x^3 - 7$.

The “points on the elliptic curve
$y^2 - 5xy = x^3 - 7$ over \mathbb{R}”
are those pairs and
one additional point, ∞.

i.e. The set of points is
$\{(x, y) \in \mathbb{R} \times \mathbb{R} :
\quad y^2 - 5xy = x^3 - 7\} \cup \{\infty\}$.

(\mathbb{R} is the set of real numbers.)
Graph of this set of points:

Don’t forget \(\infty \).
Visualize \(\infty \) as top of \(y \) axis.
There is a standard definition of 0, $-\,$, $+$ on this set of points.

Magical fact: The set of points is a “commutative group”; i.e., these operations 0, $-$, $+$ satisfy every identity satisfied by \mathbb{Z}.

e.g. All $P, Q, R \in \mathbb{Z}$ satisfy
\begin{equation*}
(P + Q) + R = P + (Q + R),
\end{equation*}
so all curve points P, Q, R
satisfy $(P + Q) + R = P + (Q + R)$.

(\mathbb{Z} is the set of integers.)
Visualizing the group law

\[0 = \infty; \quad -\infty = \infty. \]

Distinct curve points \(P, Q \) on a vertical line have \(-P = Q; \)
\[P + Q = 0 = \infty. \]

A curve point \(R \) with a vertical tangent line has \(-R = R; \)
\[R + R = 0 = \infty. \]
\[-P = Q, \quad -Q = P, \quad -R = R: \]
Distinct curve points P, Q, R on a line
have $P + Q = -R$;
$P + Q + R = 0 = \infty$.

Distinct curve points P, R on a line tangent at P
have $P + P = -R$;
$P + P + R = 0 = \infty$.

A non-vertical line with only one curve point P
has $P + P = -P$;
$P + P + P = 0$.
$P + Q = -R$:
\[P + P = -R: \]
Curve addition formulas

Easily find formulas for $+$ by finding formulas for lines and for curve-line intersections.

$x \neq x'$: $(x, y) + (x', y') = (x'', y'')$
where $\lambda = (y' - y)/(x' - x)$,
$x'' = \lambda^2 - 5\lambda - x - x'$,
y'' = $5x'' - (y + \lambda(x'' - x))$.

$2y \neq 5x$: $(x, y) + (x, y) = (x'', y'')$
where $\lambda = (5y + 3x^2)/(2y - 5x)$,
$x'' = \lambda^2 - 5\lambda - 2x$,
y'' = $5x'' - (y + \lambda(x'' - x))$.

$(x, y) + (x, 5x - y) = \infty$.
An elliptic curve over $\mathbb{Z}/13$

Consider the prime field

$\mathbb{Z}/13 = \{0, 1, 2, \ldots, 12\}$

with $-, +, \cdot$ defined mod 13.

The “set of points on the elliptic curve $y^2 - 5xy = x^3 - 7$ over $\mathbb{Z}/13$” is

$\{(x, y) \in \mathbb{Z}/13 \times \mathbb{Z}/13 : y^2 - 5xy = x^3 - 7\} \cup \{\infty\}.$
Graph of this set of points:

As before, don’t forget ∞.
The set of curve points is a commutative group with standard definition of $0, -, +$.

Can visualize $0, -, +$ as before. Replace lines over \mathbb{R} by lines over $\mathbb{Z}/13$.

Warning: tangent is defined by derivatives; hard to visualize.

Can define $0, -, +$ using same formulas as before.
Example of line over $\mathbb{Z}/13$:

Formula for this line: $y = 7x + 9$.
\[P + Q = -R: \]
An elliptic curve over \mathbb{F}_{16}

Consider the non-prime field
\[(\mathbb{Z}/2)[t]/(t^4 - t - 1) = \{0t^3 + 0t^2 + 0t^1 + 0t^0, 0t^3 + 0t^2 + 0t^1 + 1t^0, 0t^3 + 0t^2 + 1t^1 + 0t^0, 0t^3 + 0t^2 + 1t^1 + 1t^0, 0t^3 + 1t^2 + 0t^1 + 0t^0, \ldots, 1t^3 + 1t^2 + 1t^1 + 1t^0\}\]
of size $2^4 = 16$.

Graph of the “set of points on the elliptic curve $y^2 - 5xy = x^3 - 7$ over $(\mathbb{Z}/2)[t]/(t^4 - t - 1)$”:
Line $y = tx + 1$:
$P + Q = -R$:
More elliptic curves

Can use any field \(k \).

Can use any nonsingular curve
\[
y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6.
\]

"Nonsingular": no \((x, y) \in k \times k\) simultaneously satisfies
\[
y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6 \text{ and } 2y + a_1 x + a_3 = 0 \text{ and } a_1 y = 3x^2 + 2a_2 x + a_4.
\]

Easy to check nonsingularity.
Almost all curves are nonsingular when \(k \) is large.
e.g. $y^2 = x^3 - 30x$:
\{(x, y) \in k \times k : \\
y^2 + a_1xy + a_3y = \\
x^3 + a_2x^2 + a_4x + a_6\} \cup \{\infty\}
is a commutative group with standard definition of \(0, - , +\). Points on line add to \(0\) with appropriate multiplicity.

Group is usually called “\(E(k)\)” where \(E\) is “the elliptic curve \\
y^2 + a_1xy + a_3y = \\
x^3 + a_2x^2 + a_4x + a_6.”

Fairly easy to write down explicit formulas for \(0, - , +\) as before.
If $\# k$ is finite
then $\# E(k)$ is finite.

Each x produces 0, 1, or 2 choices of y with $(x, y) \in E(k)$.
So $1 \leq \# E(k) \leq 2\# k + 1$;
i.e., $|\# E(k) - \# k - 1| \leq \# k$.

Hasse’s theorem:
$|\# E(k) - \# k - 1| \leq 2\sqrt{\# k}$.

For example, if $k = \mathbb{Z}/1000003$,
then $\# E(k) \in [998004, 1002004]$.
Using explicit formulas can quickly compute \(n \)th multiples in \(E(k) \) given \(n \in \{0, 1, 2, \ldots, 2^{256} - 1\} \) and given \(E, k \) with \(\#k \approx 2^{256} \).

(How quickly? See Peter Birkner’s talk.)

“Elliptic-curve discrete-log problem” (ECDLP): given points \(P \) and \(nP \), find \(n \).

Can find curves where ECDLP seems extremely difficult: \(\approx 2^{128} \) operations.
See “Handbook of elliptic and hyperelliptic curve cryptography” for much more information.

Two examples of elliptic curves useful for cryptography:

“NIST P-256”: $E(\mathbb{Z}/p)$ where p is the prime $2^{256} - 2^{224} + 2^{192} + 2^{96} - 1$ and E is the elliptic curve $y^2 = x^3 - 3x + (a$ particular constant$).$

“Curve25519”: $E(\mathbb{Z}/p)$ where p is the prime $2^{255} - 19$ and E is the elliptic curve $y^2 = x^3 + 486662x^2 + x$.