On the design of When we design
message-authentication codes hash functions, stream ciphers,

. and other secret-key primitives,
D. J. Bernstein y P

University of lllinois at Chicago should we use

integer multiplication?

AES uses 32,32 — 32 xor;
32 — 8 byte extraction;
and 8 — 32 inversion box.

IDEA uses 16,16 — 16 xor;
16,16 — 16 addition: and
16,16 — 16 multiplication.

lesign of
-authentication codes

rnstein
ty of lllinois at Chicago

When we design

hash functions, stream ciphers,
and other secret-key primitives,

should we use
integer multiplication?

AES uses 32,32 — 32 xor;
32 — 8 byte extraction;
and 8 — 32 inversion box.

IDEA uses 16,16 — 16 xor:
16,16 — 16 addition: and
16,16 — 16 multiplication.

Rabbit
32,32 —
32,32 —
32,32 —

RC6 use
32,32 —
32,32 —
32,32 —

Salsa20
32,32 —
32,32 —

ation codes

is at Chicago

When we design

hash functions, stream ciphers,
and other secret-key primitives,

should we use
integer multiplication?

AES uses 32,32 — 32 xor;
32 — 8 byte extraction;
and 8 — 32 inversion box.

IDEA uses 16,16 — 16 xor;
16,16 — 16 addition: and
16,16 — 16 multiplication.

Rabbit uses 32 —
32,32 — 32 addit
32,32 — 32 xor; a
32,32 - 32,32 m

RC6 uses 32,8 —
32,32 — 32 additi
32,32 — 32 xor; a
32,32 — 32 multi

Salsa20 uses 32 —
32,32 — 32 additi
32,32 — 32 xor.

g0

When we design

hash functions, stream ciphers,
and other secret-key primitives,

should we use
integer multiplication?

AES uses 32,32 — 32 xor;
32 — 8 byte extraction;
and 8 — 32 inversion box.

IDEA uses 16,16 — 16 xor:
16,16 — 16 addition: and
16,16 — 16 multiplication.

Rabbit uses 32 — 32 rotatic
32,32 — 32 addition;
32,32 — 32 xor; and
32,32 — 32,32 multiplicatic

RC6 uses 32,8 — 32 rotatio
32,32 — 32 addition;

32,32 — 32 xor; and

32,32 — 32 multiplication.

Salsa20 uses 32 — 32 rotati
32,32 — 32 addition: and
32,32 — 32 xor.

When we design

hash functions, stream ciphers,
and other secret-key primitives,

should we use
integer multiplication?

AES uses 32,32 — 32 xor;
32 — 8 byte extraction;
and 8 — 32 inversion box.

IDEA uses 16,16 — 16 xor;
16,16 — 16 addition: and
16,16 — 16 multiplication.

Rabbit uses 32 — 32 rotation:
32,32 — 32 addition;
32,32 — 32 xor; and
32,32 — 32,32 multiplication.

RC6 uses 32,8 — 32 rotation;
32,32 — 32 addition;

32,32 — 32 xor; and

32,32 — 32 multiplication.

Salsa20 uses 32 — 32 rotation:
32,32 — 32 addition; and
32,32 — 32 xor.

e design

ctions, stream ciphers,
r secret-key primitives,

/e use
nultiplication?

s 32,32 — 32 xor;
byte extraction:;
- 32 Inversion box.

es 16,16 — 16 xor:;
» 16 addition: and
» 16 multiplication.

Rabbit uses 32 — 32 rotation:
32,32 — 32 addition;
32,32 — 32 xor; and
32,32 — 32,32 multiplication.

RC6 uses 32,8 — 32 rotation;
32,32 — 32 addition;

32,32 — 32 xor; and

32,32 — 32 multiplication.

Salsa20 uses 32 — 32 rotation:

32,32 — 32 addition: and
32,32 — 32 xor.

“Multipl
> 10x ¢
as additi

Counter.
“Multipl
IS SUrpri
Has mar

so CPL
big mult

Typical

new mul

eam ciphers,
ey primitives,

ion?

» 32 Xxor:;
ction;
lon box.

— 16 xor;
on:; and
plication.

Rabbit uses 32 — 32 rotation:
32,32 — 32 addition;
32,32 — 32 xor; and
32,32 — 32,32 multiplication.

RC6 uses 32,8 — 32 rotation;
32,32 — 32 addition;

32,32 — 32 xor; and

32,32 — 32 multiplication.

Salsa20 uses 32 — 32 rotation:

32,32 — 32 addition: and
32,32 — 32 xor.

“Multiplication is
> 10x as many b
as addition.

Counterargument:
“Multiplication

s surprisingly fast
Has many applicat
so CPU designers

big multiplication
Typical CPUs can
new multiplication

rS,
/€S,

Rabbit uses 32 — 32 rotation:
32,32 — 32 addition;
32,32 — 32 xor; and
32,32 — 32,32 multiplication.

RC6 uses 32,8 — 32 rotation;
32,32 — 32 addition;

32,32 — 32 xor: and

32,32 — 32 multiplication.

Salsa20 uses 32 — 32 rotation:

32,32 — 32 addition: and
32,32 — 32 xor.

“Multiplication is slow!”
> 10X as many bit operatic
as addition.

Counterargument:
“Multiplication

is surprisingly fast!”

Has many applications,
so CPU designers include

big multiplication circuits.
Typical CPUs can start a
new multiplication every cyc

Rabbit uses 32 — 32 rotation:
32,32 — 32 addition;
32,32 — 32 xor; and
32,32 — 32, 32 multiplication.

RC6 uses 32,8 — 32 rotation;
32,32 — 32 addition;

32,32 — 32 xor: and

32,32 — 32 multiplication.

Salsa20 uses 32 — 32 rotation:

32,32 — 32 addition: and
32,32 — 32 xor.

“Multiplication is slow!”
> 10X as many bit operations
as addition.

Counterargument:
“Multiplication

s surprisingly fast!”

Has many applications,
so CPU designers include

big multiplication circuits.
Typical CPUs can start a
new multiplication every cycle.

Ises 32 — 32 rotation;
» 32 addition;
» 32 xor; and
» 32, 32 multiplication.

s 32,8 — 32 rotation;
» 32 addition;

» 32 xor: and
» 32 multiplication.

uses 32 — 32 rotation;
» 32 addition: and
> 32 XOr.

“Multiplication is slow!”

> 10X

as many bit operations

as addition.

Counterargument:

“Multiplication

is surprisingly fast!”

Has many applications,

so CPU designers include

big mu

tiplication circuits.

Typical CPUs can start a

new multiplication every cycle.

“Multipl
scramble
as thoro
several s

“No, 1t ¢
Look at
Need m:
to achie

What if

that mu

the secu

32 rotation:
on;
nd
ultiplication.

32 rotation;
on;

nd
plication.

> 32 rotation:
on:; and

“Multiplication is slow!”
> 10X as many bit operations
as addition.

Counterargument:
“Multiplication

s surprisingly fast!”

Has many applications,
so CPU designers include

big multiplication circuits.
Typical CPUs can start a
new multiplication every cycle.

Multiplication

scrambles its outp

as thoroughly as

several simple ope

“No, 1t doesn't!
| ook at these scat

Need many multig

to achieve confide

What if we can pr

t
t

nat multiplicatior

ne security we ne

on;

“Multiplication is slow!”
> 10x as many bit operations
as addition.

Counterargument:
“Multiplication

is surprisingly fast!”

Has many applications,
so CPU designers include

big multiplication circuits.
Typical CPUs can start a

new multiplication every cycle.

Multiplication

scrambles i1ts output

as thoroughly as

several simple operations!”

“No, 1t doesn't!
Look at these scary attacks.

Need many multiplications

to achieve confidence.”

What if we can prove

t
t

nat multiplication provides

ne security we need?

“Multiplication is slow!”
> 10X as many bit operations
as addition.

Counterargument:
“Multiplication

s surprisingly fast!”

Has many applications,
so CPU designers include

big multiplication circuits.
Typical CPUs can start a
new multiplication every cycle.

Multiplication

scrambles i1ts output

as thoroughly as

several simple operations!”

“No, 1t doesn't!
Look at these scary attacks.

Need many multiplications

to achieve confidence.”

What if we can prove

t
t

nat multiplication provides

ne security we need?

ication is slow!”
1S many bit operations
on.

argument:

ication

singly fast!”

1y applications,
designers include
Iplication circuits.
CPUs can start a
tiplication every cycle.

Multiplication

scrambles i1ts output

as thoroughly as

several simple operations!”

“No, 1t doesn't!

Look at these scary attacks.

Need many multiplications

to achieve confidence.”

What if we can prove

t
t

nat multiplication provides

ne security we need?

An auth

Let's use
to authe

Standarc

Sender r
to gener
uniform
r €40,]
s1 € {0,
sy € {0,

$100 € {

slow!”
t operations

”
1oNs,

include
circuits.
start a
“every cycle.

Multiplication

scrambles i1ts output

as thoroughly as

several simple operations!”

“No, 1t doesn't!

Look at these scary attacks.

Need many multiplications

to achieve confidence.”

What if we can prove

t
t

nat multiplication provides

ne security we need?

An authentication

Let's use multiplic
to authenticate m

Standardize a prin

Sender rolls 10-sid
to generate Iindepe
uniform random st
re€{0,1,...,999
S1 € {0,1,...,999
s> €40,1,...,99¢

s100 € {0,1,...,9

le.

Multiplication

scrambles i1ts output

as thoroughly as

several simple operations!”

“No, 1t doesn't!

Look at these scary attacks.

Need many multiplications

to achieve confidence.”

What if we can prove

t
t

nat multiplication provides

ne security we need?

An authentication system

Let's use multiplication
to authenticate messages.

Standardize a prime p» = 10(

Sender rolls 10-sided die
to generate independent
uniform random secrets
r€{0,1,...,999999},

s1 €40,1,...,999999},
so> €40,1,...,999999},

s100 € {0,1,...,999999}.

Multiplication

scrambles i1ts output

as thoroughly as

several simple operations!”

“No, 1t doesn't!

Look at these scary attacks.

Need many multiplications

to achieve confidence.”

What if we can prove

t
t

nat multiplication provides

ne security we need?

An authentication system

Let's use multiplication
to authenticate messages.

Standardize a prime » = 1000003.

Sender rolls 10-sided die
to generate independent
uniform random secrets
r€{0,1,...,999999},

s1 €40,1,...,999999},
so> €40,1,...,999999},

s100 € {0,1,...,999999}.

ication

s Its output

ughly as

imple operations!”

Joesn't!

these scary attacks.

any multiplications
ve confidence.”

we can prove
ltiplication provides
rity we need?

An authentication system

Let's use multiplication
to authenticate messages.

Standardize a prime » = 1000003.

Sender rolls 10-sided die
to generate independent

uniform random secrets
re{0,1,..., 9999991},
s1 €40,1,..., 9999991},
s €40,1,..., 9999991},

s100 € {0,1,...,999999}.

Sender 1
and tells
secrets 7

Later: S
100 mes
each hay
my|l], 7
with m,

Sender t
my|l], 7
together
(man[1]r

+ Snp
and the

ut

rations!”

y attacks.

lications

nce.’

ove

| provides
ed?

An authentication system

Let's use multiplication
to authenticate messages.

Standardize a prime » = 1000003.

Sender rolls 10-sided die
to generate independent

uniform random secrets
re{0,1,..., 9999991},
s1€40,1,..., 9999991},
s €40,1,..., 9999991},

s100 € {0,1,...,999999}.

Sender meets rece
and tells receiver 1t
secrets 7, 81, So, ..

Later: Sender war
100 messages m1,
each having 5 con
my|1l], mn|2], my,
with my[1] € {0,]

Sender transmits
my|l], mp[2], my
together with an ¢
(mn[l]lr + -+

+ s, mod 100C
and the message r

An authentication system

Let's use multiplication
to authenticate messages.

Standardize a prime » = 1000003.

Sender rolls 10-sided die
to generate independent

uniform random secrets
re{0,1,..., 9999991},
s1 €40,1,..., 9999991},
s €40,1,..., 9999991},

s100 € {0,1,...,999999}.

Sender meets receiver in pri
and tells receiver the same
secrets r, 81,892, ..., 5$100-

Later: Sender wants to senc
100 messages m1,.. ., mM100
each having 5 components

mqy[1], my[2], mp[3], my, [4]
with mpl2] € {0,1, ..., 999¢

Sender transmits 30-digit

my|1], mn[2], mn[3], mn 4]

together with an authentic:

(mp[l]r + - - + my[5]r° m
+ s, mod 1000000

and the message number n.

An authentication system

Let's use multiplication
to authenticate messages.

Standardize a prime » = 1000003.

Sender rolls 10-sided die
to generate independent
uniform random secrets
re{0,1,..., 9999991},

s1 €40,1,..., 9999991},
s €40,1,..., 9999991},

s100 € {0,1,...,999999}.

Sender meets receiver in private
and tells receiver the same
secrets r, 81,82, ..., 5$100-

Later: Sender wants to send

100 messages m1q, ..., mM100,

each having 5 components

my[1], myn (2], mn[3], mn|4], mn 5]
with mp|2] € {0, 1, ..., 999999} .

Sender transmits 30-digit

mp[1], myn[2], mn|3], mn|4], mn|5]

together with an authenticator

(mp[l]r + - - + mp[5]7> mod p)
+ s, mod 1000000

and the message number n.

entication system

> multiplication
nticate messages.

lize a prime » = 1000003.

olls 10-sided die
ate independent
random secrets

,...,999999},
1,...,999999},
1,...,999999},
0,1,...,9999991.

Sender meets receiver in private
and tells receiver the same
secrets r, 81,892, ..., 5$100-

Later: Sender wants to send

100 messages m1,.. ., mM100,

each having 5 components

mny[1], mn[2], my[3], mn[4], map 5]
with mpl2] € {0,1, ..., 999999}.

Sender transmits 30-digit

my|l], mn|2], mn[3], mnl4], mn|5]

together with an authenticator

(mp[l]r + - - + mp[5]r> mod)
+ s, mod 1000000

and the message number n.

e.g. 1 =
mi1o = (

Sender ¢
(67 + 77
T S1¢
(6 - 3141
mod
+ 26!
053311 -
2186609.

Sender t
authenti

10000006 00

system

ation
essages.

1e p = 1000003.

ed die
ndent

acrets
)99},

999},
999},

099991,

Sender meets receiver in private
and tells receiver the same
secrets r, 81,82, ..., 5$100-

Later: Sender wants to send

100 messages m1q, ..., mM100,

each having 5 components

mnp[1], mn[2], my[3], mp[4], my 5]
with mp|2] € {0, 1, ..., 999999} .

Sender transmits 30-digit

mn[1], mn[2], mn[3], mn[4], mn[5]

together with an authenticator

(mp[l]r + - - + mp[5]7> mod p)
+ s, mod 1000000

and the message number n.

e.g. r = 314159, «
m1o = 000006 000007 OC

Sender computes
(67 + 77° mod p)
+ 5190 mod 100
(6-314159+7 -3
mod 1000003)
+ 265358 mod
953311 + 265358
2186609.

Sender transmits
authenticated mes

10 000006 000007 000000 000

)0003.

Sender meets receiver in private
and tells receiver the same
secrets r, 81,892, ..., 5$100-

Later: Sender wants to send

100 messages m1,.. ., mM100,

each having 5 components

mny[1], mn[2], my[3], mn[4], map 5]
with mpl2] € {0,1, ..., 999999}.

Sender transmits 30-digit

mn|1l], mn[2], mn (3], mn[4], mp[5]

together with an authenticator

(mp[l]r + - - - + my[5]r> mod p)
+ s, mod 1000000

and the message number n.

e.g. r = 314159, s19 = 265:
m1o = 000006 000007 000000 000000 0OC

Sender computes authentica
(67 + 772 mod p)
+ s190 mod 1000000 =
(6 - 314159 + 7 - 3141597
mod 1000003)
+ 265358 mod 1000000 -
053311 4+ 265358 mod 1000
2186609.

Sender transmits
authenticated message

10000006 000007 000000 000000 000000 2186

Sender meets receiver in private
and tells receiver the same
secrets r, 81,892, ..., 5$100-

Later: Sender wants to send

100 messages m1q, ..., mM100,

each having 5 components

mn[1], mn[2], mn[3], mn[4], mn[5]
with mp|2] € {0, 1, ..., 999999} .

Sender transmits 30-digit

mn[1], mn[2], mn[3], mn[4], mn[5]

together with an authenticator

(mp[l]r + - - + my[5]7° mod p)
+ s, mod 1000000

and the message number n.

e.g. r = 314159, s19 = 265358,
m1o = 000006 000007 000000 000000 000000:

Sender computes authenticator
(67 + 77° mod p)

+ s190 mod 1000000 =
(6 - 314159 + 7 - 3141597

mod 1000003)

+ 265358 mod 1000000 =
053311 + 265358 mod 1000000 =
2186609.

Sender transmits
authenticated message

10000006 000007 000000 000000 000000 218669.

neets recelver In private
- recelver the same

/ing b components
nn[Q], mn [3], mn[4]1 mn [5]
lz] € {0,1,..., 999999}.

ransmits 30-digit

nn|2], mn|3], mn 4], my[5]
“with an authenticator

+ -+ mnp[5]r° mod p)
mod 1000000

message number 7.

e.g. r = 314159, s19 = 265353,
m1o = 000006 000007 000000 000000 000000:

Sender computes authenticator
(67 + 772 mod p)

+ s190 mod 1000000 =
(6 - 314159 + 7 - 3141597

mod 1000003)

+ 265358 mod 1000000 =
053311 + 265358 mod 1000000 =
2186609.

Sender transmits
authenticated message

10000006 000007 000000 000000 000000 218669.

Speed a

Notatior

To comy
multiply
add my,
add my,
add my,

add mo,
Reduce

Slightly
compute

(mn(r)

Iver In private
he same

ts to send

...,ml()(),
\ponents

[3], mn[4], mn 5]
...... 099999}

30-digit

3], mn[4], mn 5]
wthenticator

1 [5]r> mod p)
000

\umber n.

e.g. r = 314159, s19 = 265358,
m1o = 000006 000007 000000 000000 000000:

Sender computes authenticator
(67 + 77° mod p)

+ s190 mod 1000000 =
(6 - 314159 + 7 - 3141597

mod 1000003)

+ 265358 mod 1000000 =
053311 + 265358 mod 1000000 =
2186609.

Sender transmits
authenticated message

10000006 000007 000000 000000 000000 218669,

Speed analysis

Notation: my(z)

To compute mp(7
multiply mn[5] b

add mqy,|4|, multif

add mq|3|, multig

add mq|2[, multig

BESNERED

add mn[1], multig
Reduce mod p aft

Slightly more time
compute authentic

(mn(7) mod p) +

/ate

, My 5]
)99}

, Mn|5]
ator

od p)

e.g. r = 314159, s19 = 265353,
m1o = 000006 000007 000000 000000 000000:

Sender computes authenticator
(67 + 772 mod p)

+ s190 mod 1000000 =
(6 - 314159 + 7 - 3141597

mod 1000003)

+ 265358 mod 1000000 =
053311 + 265358 mod 1000000 =
2186609.

Sender transmits
authenticated message

10000006 000007 000000 000000 000000 218669.

Speed analysis

Notation: mn(a:) = Z ’mn[‘

To compute my(7) mod p:
multiply my[5] by r,

add mqy |4|, multiply by 7,

add mqy (3|, multiply by 7,

N W

add mqy|2|, multiply by r,

add my[1], multiply by r.
Reduce mod p after each m

Slightly more time to
compute authenticator ay, =
(mp(r) mod p) + s, mod 1

e.g. r = 314159, s19 = 265358,
m1o = 000006 000007 000000 000000 000000:

Sender computes authenticator
(67 + 77° mod p)

+ s190 mod 1000000 =
(6 - 314159 + 7 - 3141597

mod 1000003)

+ 265358 mod 1000000 =
053311 + 265358 mod 1000000 =
2186609.

Sender transmits
authenticated message

10000006 000007 000000 000000 000000 218669,

Speed analysis

Notation: mp(z) = mplilz’.

To compute mnp(7) mod p:
multiply my[5] by r,

add mqy 4|, multiply by 7,

add my (3|, multiply by 7,

add my (2|, multiply by 7,

BESNERED

add mp[1], multiply by 7.
Reduce mod p after each mult.

Slightly more time to
compute authenticator a, =

(my(r) mod p) + s, mod 1000000.

314159, s190 = 265358,
00006 000007 000000 000000 000GOO:

omputes authenticator

2 mod p)

“mod 1000000 =

59 + 7 - 3141597
1000003)

358 mod 1000000 =

+ 265358 mod 1000000 =

ransmits

cated message
007 000000 000000 000000 218669.

Speed analysis

Notation: mp(z) = mnplilzt.
To compute my(7) mod p:
multiply my[5] by r,

add my,[4], multiply by r,

add mn[3], multiply by 7,

add my,[2], multiply by r,

add my[1], multiply by r.
Reduce mod p after each mult.

Slightly more time to
compute authenticator a, =

(my(r) mod p) + s, mod 1000000.

Reducin;
e.g., 24(
240881 -
240881 (
— 72264
— 62355

Easily ac
{0,1,...
by addir
(Beware

Speedur
extra p'
subsequ

10 = 2065358,
0000 000000 000000

yuthenticator

000 =
141592

1000000 =
mod 1000000 =

sage
000 000000 218669.

Speed analysis

Notation: mp(z) = mplilz’.

To compute mnp(7) mod p:
multiply my[5] by r,

add mq 4|, multiply by 7,

add my (3|, multiply by 7,

add my (2|, multiply by 7,

BESNERED

add mn[1], multiply by 7.
Reduce mod p after each mult.

Slightly more time to
compute authenticator a, =

(my(r) mod p) + s, mod 1000000.

Reducing mod 10(
e.g., 24083109909
240881 - 1000000 -
240881(—3) 4 99(
— 722643 4 99091
—623552.

Easily adjust to ra
{0,1,..., p—1}

by adding/subtrac
(Beware timing at

Speedup: Delay ti
extra p's won't da
subsequent field o

58,
)000:

tor

000 =

09.

Speed analysis

Notation: mp(z) = mnplilzt.

To compute my(r) mod p:

multiply my[5] by r,

dC
dC
dC

dC

C
C
C

C

N W

S mu
S mu

, mu
1],

mu

tip
tip

tip
tip

y
y
y
y

oy T,
oy T,
oy T,

oy T

Reduce mod p after each mult.

Slightly more time to

compute authenticator a, =

(my(r) mod p) + s, mod 1000000.

Reducing mod 1000003 is e:
e.g., 240881099091 =
240881 - 1000000 + 99091 =
240881(—3) 4+ 99091 =

— 722643 4 99091 =
—623552.

Easily adjust to range
{0,1,..., p—1}

by adding/subtracting a few
(Beware timing attacks!)

Speedup: Delay the adjustn
extra p's won't damage
subsequent field operations.

Speed analysis

Notation: mp(z) = mplilz’.

To compute mnp(7) mod p:

multiply my[5] by 7,

add my,
add my,

add my,

N W

add mn[1],

- mu
- mu

- mu

mu

tip
tip
tip
tip

y
y
y
y

oy T,
oy T,
oy T,

oy T

Reduce mod p after each mult.

Slightly more time to

compute authenticator a, =

(my(r) mod p) + s, mod 1000000.

Reducing mod 1000003 is easy:
e.g., 240831099091 =

240881 - 1000000 + 99091 =
240881(—3) 4+ 99091 =

— 722643 4 99091 =

—623552.

Easily adjust to range

{0,1,..., p—1}

by adding/subtracting a few p's.
(Beware timing attacks!)

Speedup: Delay the adjustment;
extra p's won't damage
subsequent field operations.

nalysis

: ma(z) = maplilzt

ute My (7) mod p:
my|5] by r,

4], multiply by 7,
3], multiply by 7,

2], multiply by 7,

1], multiply by 7.
mod p after each mult.

more time to
» authenticator a,, =

mod p) + sp mod 1000000.

Reducing mod 1000003 is easy:
e.g., 240881099091 =

240881 - 1000000 + 99091 =
240881(—3) 4+ 99091 =

— 722643 4 99091 =

—623552.

Easily adjust to range
{0,1,..., p—1}

by adding/subtracting a few p's.

(Beware timing attacks!)

Speedup: Delay the adjustment;

extra p's won't damage
subsequent field operations.

Main wc
For eacl
have to

of the 6
Into an .

Scaled u
“Poly13
For eact
have to
of a 128
Into an .
~ b cycl
dependit

— S mylilzt

) mod p:
ly by 7,

ly by 7,

< < < 3

ly by 7,

ly by 7.
er each mult.

e
ator a, =

sn mod 1000000.

Reducing mod 1000003 1s easy:
e.g., 240831099091 =

240881 - 1000000 + 99091 =
240881(—3) 4+ 99091 =

— 722643 4 99091 =

—623552.

Easily adjust to range
{0,1,..., p—1}

by adding/subtracting a few p's.

(Beware timing attacks!)

Speedup: Delay the adjustment;

extra p's won't damage
subsequent field operations.

Main work 1s mult

For each

o-digit mr

have to do one mi

of the 6-digit secr

Into an accumulat

Scaled up for seric
"Poly1305" uses 1

For each

have to @
of a 128-

128-bit r
O ohe mi

It secret

Into an accumulat

~ b cycles per me

depending on the

ult.

000000.

Reducing mod 1000003 is easy:
e.g., 240881099091 =

240881 - 1000000 + 99091 =
240881(—3) 4+ 99091 =

— 722643 4 99091 =

—623552.

Easily adjust to range

{0,1,..., p—1}

by adding/subtracting a few p's.
(Beware timing attacks!)

Speedup: Delay the adjustment;
extra p's won't damage
subsequent field operations.

Main work is multiplication.
For each 6-digit message ch
have to do one multiplicatio
of the 6-digit secret r

into an accumulator mod p.

Scaled up for serious securit
“Poly1305" uses p = 2130 —
For each 128-bit message ct
have to do one multiplicatio
of a 128-bit secret r

into an accumulator mod 2!
~ b cycles per message byte
depending on the CPU.

Reducing mod 1000003 is easy:
e.g., 240831099091 =

240881 - 1000000 + 99091 =
240881(—3) 4+ 99091 =

— 722643 4 99091 =

—623552.

Easily adjust to range

{0,1,..., p—1}

by adding/subtracting a few p's.
(Beware timing attacks!)

Speedup: Delay the adjustment;
extra p's won't damage
subsequent field operations.

Main work i1s multiplication.

For each 6-digit message chunk,
have to do one multiplication
of the 6-digit secret r

into an accumulator mod p.

Scaled up for serious security:
“Poly1305" uses p = 2130 — 5.
For each 128-bit message chunk,
have to do one multiplication

of a 128-bit secret r
into an accumulator mod 213V — 5
~ b cycles per message byte,
depending on the CPU.

o mod 1000003 is easy:
)8861099091 =

1000000 + 99091 =
—3) + 99091 =
3 4+ 99091 =
)

ljust to range

,p—1}

g /subtracting a few p's.
timing attacks!)

. Delay the adjustment;
> won't damage
2nt field operations.

Main work is multiplication.

For each 6-digit message chunk,
have to do one multiplication
of the 6-digit secret r

into an accumulator mod p.

Scaled up for serious security:
“Poly1305" uses p = 2130 — 5.
For each 128-bit message chunk,
have to do one multiplication

of a 128-bit secret r

into an accumulator mod 2130 — 5.

~ b cycles per message byte,
depending on the CPU.

Security

Attacker
Find n’,
m' #m
(m'(r) r

Here m/

Obvious
Choose .

Choose
Success

Can rep:
Each for

1/10000

)0003 1s easy:
1 =

+ 99091 =
)91 =

nge

ting a few p's.
tacks!)

1e adjustment;
mage
perations.

Main work is multiplication.

For each 6-digit message chunk,
have to do one multiplication
of the 6-digit secret r

into an accumulator mod p.

Scaled up for serious security:
“Poly1305" uses p = 2130 — 5
For each 128-bit message chunk,
have to do one multiplication

of a 128-bit secret r

into an accumulator mod 2130 —5.

~ b cycles per message byte,
depending on the CPU.

Security analysis

Attacker’'s goal:

Find n', m’, a’ suc
m' # m,: but a’:
(m/(r) mod p)+s
Here m'(z) = >

Obvious attack:
Choose any m' #

Choose uniform ra
Success chance 1/

Can repeat attack
Each forgery has ¢

1/1000000 of beir

ASY:

'p's.

1ent;

Main work is multiplication.

For each 6-digit message chunk,
have to do one multiplication
of the 6-digit secret r

into an accumulator mod p.

Scaled up for serious security:
“Poly1305" uses p = 2130 — 5.
For each 128-bit message chunk,
have to do one multiplication

of a 128-bit secret r

into an accumulator mod 2130 — 5.

~ b cycles per message byte,
depending on the CPU.

Security analysis

Attacker’s goal;

Find n', m/, a’ such that
m' #m, but o’ =

(m'(r) mod p)+s,, mod 10
Here m/(z) = 5, m'[i]z®.

Obvious attack:
Choose any m' # m1.

Choose uniform random a'.
Success chance 1/1000000.

Can repeat attack.
Each forgery has chance

1/1000000 of being accepte

Main work is multiplication.

For each 6-digit message chunk,
have to do one multiplication
of the 6-digit secret r

into an accumulator mod p.

Scaled up for serious security:
“Poly1305" uses p = 2130 — 5
For each 128-bit message chunk,
have to do one multiplication

of a 128-bit secret r

into an accumulator mod 2130 — 5.

~ b cycles per message byte,
depending on the CPU.

Security analysis

Attacker’s goal:

Find n', m/, a’ such that
m' #m, but o’ =
(m'(r) mod p)+s,,; mod 1000000.
Here m/(z) = 5, m'[1]z*.

Obvious attack:
Choose any m' # m1.

Choose uniform random a'.
Success chance 1/1000000.

Can repeat attack.
Each forgery has chance

1/1000000 of being accepted.

rk 1s multiplication.
 06-digit message chunk,
do one multiplication
-digit secret r
accumulator mod p.

p for serious security:
05" uses p = 213V —_ 5,
 128-bit message chunk,
do one multiplication
-bit secret r

yccumulator mod 2130 — 5.

es per message byte,
1g on the CPU.

Security analysis

Attacker’s goal;
Find n/, m/, a’ such that
m' #m, but o’ =

(m'(r) mod p)+s,,; mod 1000000.

Here m/(z) = 5, m'[i]z®.

Obvious attack:
Choose any m' # m1.

Choose uniform random a'.
Success chance 1/1000000.

Can repeat attack.
Each forgery has chance

1/1000000 of being accepted.

More su
Choose
the poly
has 5 di
T € {0,
modulo

e.g. mi
m' = (1
m'(z) —
which h:
0, 29901

Success

iplication.
essage chunk,
iltiplication

>t r

or mod .

us security:

y =2130 _ 5
nessage chunk,
iltiplication

T

or mod 2130 _ 5,

ssage byte,
CPU.

Security analysis

Attacker’s goal:
Find n/, m', a’ such that
m' #m, but o’ =

(m'(r) mod p)+s,,; mod 1000000.

Here m/(z) = 5, m'[1]z*.

Obvious attack:
Choose any m' # m1.

Choose uniform random a'.
Success chance 1/1000000.

Can repeat attack.
Each forgery has chance

1/1000000 of being accepted.

More subtle attacl
Choose m' # mj

the polynomial m/
has 5 distinct root

modulo p. Choose

e.g. m1 = (100, 0,
m' = (125,1,0,0,
m'(z) — mi(z) =
which has five roo
0,299012, 334447,

Success chance 5/

unk,

Security analysis

Attacker’'s goal;

Find n', m/, a’ such that

m' #m, but o’ =

(m'(r) mod p)+s,, mod 1000000.
Here m/(z) = 5, m'[i]z®.

Obvious attack:
Choose any m' # m1.

Choose uniform random a'.
Success chance 1/1000000.

Can repeat attack.
Each forgery has chance

1/1000000 of being accepted.

More subtle attack:

Choose m' # m1 so that
the polynomial m'(z) — mq
has 5 distinct roots

z € {0,1,...,999999)
modulo p. Choose o' = a.

e.g. m1 = (100,0,0,0,0),
m' = (125,1,0,0,1):

m'(z) — mi(z) = z° + z°
which has five roots mod p:
0,299012, 334447,631403, 7

Success chance 5/1000000.

Security analysis

Attacker’'s goal:

Find n', m/, a’ such that

m' #m, but o’ =

(m'(r) mod p)+s,, mod 1000000.
Here m/(z) = 5, m'[1]z*.

Obvious attack:
Choose any m' # m1.

Choose uniform random a'.
Success chance 1/1000000.

Can repeat attack.
Each forgery has chance

1/1000000 of being accepted.

More subtle attack:

Choose m' # m1 so that

the polynomial m'(z) — m1(z)
has 5 distinct roots

z € {0,1,...,999999)

modulo p. Choose o' = a.

e.g. mp = (100,0,0,0,0),

m' = (125,1,0,0,1):

m!'(z) — m1(z) = z° + 2 + 25z
which has five roots mod p:
0,299012, 334447,631403, 735144.

Success chance 5/1000000.

‘analysis

s goal:

m' a' such that

n! but a' =

nod p)+s,,; mod 1000000.

(z) = >, m'[]*
attack:
any m’ # my.

uniform random a'.

chance 1/1000000.

2at attack.
gery has chance
00 of being accepted.

More subtle attack:

Choose m' # m1 so that

the polynomial m'(z) — m1(z)
has 5 distinct roots

z € {0,1,...,999999)

modulo ». Choose o' = a.

e.g. mp = (100,0,0,0,0),

m' = (125,1,0,0,1):

m'(z) — mi(z) = > + z° + 25z
which has five roots mod p:

0,299012, 334447, 631403, 735144.

Success chance 5/1000000.

Actually
can be ¢

Example
€ {1000
then a f
m'(z) =
also suct
SUCCESS
Reason:
m'(z) —
Can hav
of (m'(a
(m/(z) -
(m/(z) -

h that

_ mod 1000000.
m![1)z".

m1.
ndom a’.
1000000.

hance
g accepted.

More subtle attack:

Choose m' # m1 so that

the polynomial m/(z) — m1(z)
has 5 distinct roots

z € {0,1,...,999999)

modulo p. Choose o' = a.

e.g. mi1 = (100,0,0,0,0),

m' = (125,1,0,0,1):

m!'(z) — m1(z) = z° + 2 + 25z
which has five roots mod p:

0,299012, 334447, 631403, 735144.

Success chance 5/1000000.

Actually, success ¢
can be above 5/1(

Example: If m1(3
€ {1000000, 1000t
then a forgery (1,
m'(z) = mi(z) +
also succeeds for 2
success chance 6/
Reason: 334885 is

m'(z) — mi(z) +

Can have as many
of (m'(z) — mi(z
(m'(z) — mi(z) A
(m'(z) — mi(z) -

00000.

More subtle attack:

Choose m' # m1 so that

the polynomial m/(z) — m1(z)
has 5 distinct roots

z € {0,1,...,999999)

modulo p. Choose o' = a.

e.g. mi1 = (100,0,0,0,0),

m' = (125,1,0,0,1):

m'(z) — mi(z) = > + z° + 25z
which has five roots mod p:

0,299012, 334447, 631403, 735144.

Success chance 5/1000000.

Actually, success chance
can be above 5/1000000.

Example: If m1(334885) mc
€ {1000000, 1000001, 1000C
then a forgery (1, m', a1) wi
m'(z) = mi(z) + z° + z° -
also succeeds for r = 33488
success chance 6/1000000.

Reason: 334885 is a root of
m'(z) — m1(z) + 1000000.

Can have as many as 15 roc
of (m'(z) — mi(z)) -

(m'(z) — m1(z) + 1000000
(m'(z) — m1(z) — 1000000

More subtle attack:

Choose m' # m1 so that

the polynomial m/(z) — m1(z)
has 5 distinct roots

z € {0,1,...,999999)

modulo p. Choose o' = a.

e.g. mp = (100,0,0,0,0),

m' = (125,1,0,0,1):

m!'(z) — m1(z) = z° + 2 + 25z
which has five roots mod p:

0,299012, 334447, 631403, 735144.

Success chance 5/1000000.

Actually, success chance
can be above 5/1000000.

Example: If m1(334885) mod p
€ {1000000, 1000001, 1000002}
then a forgery (1, m’, a1) with
m/(z) = mi(z) + z°> + z° + 25z
also succeeds for r = 33488b;
success chance 6/1000000.
Reason: 334885 is a root of
m'(z) — m1(z) + 1000000.

Can have as many as 15 roots
of (m'(z) — mi(z)) -

(m'(z) — m1(z) + 1000000) -
(m'(z) — m1(z) — 1000000).

btle attack:

m' # mq so that
nomial m/(z) — m1(z)
stinct roots

. ...,999999}
p. Choose o' = a.

= (100,0,0,0,0),
25,1,0,0,1):

mi(z) = z° + z° + 25z
s five roots mod p:

2,334447,631403, r135144.

chance 5/1000000.

Actually, success chance
can be above 5/1000000.

Example: If m1(334885) mod p
€ {1000000, 1000001, 1000002}
then a forgery (1, m/, a1) with
m/(z) = mi(z) + 2> + z° + 25z
also succeeds for r = 334885;
success chance 6/1000000.
Reason: 334885 is a root of
m'(z) — m1(z) + 1000000.

Can have as many as 15 roots
of (m'(z) — mi(z)) -

(m'(z) — m1(z) + 1000000) -
(m'(z) — m1(z) — 1000000).

Do bett

No. Eas
of (n',m
has char
of being

Underlyi
of (m'(a
(m'(z) -
(m'(z) -

Warning
the over
(mn[1] -

+ Sn
solve m/’

<
so that

(z) — mi(z)
S

999}

o' =a.

0,0,0),
1):

z° + 2 + 25z
ts mod p:

631403, 735144.

1000000.

Actually, success chance
can be above 5/1000000.

Example: If m1(334885) mod p
€ {1000000, 1000001, 1000002}
then a forgery (1, m’, a1) with
m!(z) = m1(z) + z°> + z° + 25z
also succeeds for r = 33488b;
success chance 6/1000000.
Reason: 334885 is a root of
m'(z) — m1(z) + 1000000.

Can have as many as 15 roots
of (m'(z) — mi(z)) -

(m'(z) — m1(z) + 1000000) -
(m'(z) — m1(z) — 1000000).

Do better by varyi

No. Easy to prove
of (n',m', a') witl
has chance < 15/
of being accepted

Underlying fact: <
of (m'(z) — mi(z
(m'(z) —mi(z) -

(m'(z) — m1i(z) -

Warning: very eas
the oversimplified
(mall] + -+ m

+ 8, mod 1000
solve m'(z) — mq

- 2bzx

35144,

Actually, success chance
can be above 5/1000000.

Example: If m1(334885) mod p
€ {1000000, 1000001, 1000002}
then a forgery (1, m/, a1) with
m/(z) = mi(z) + 2> + z° + 25z
also succeeds for r = 334885;
success chance 6/1000000.
Reason: 334885 is a root of
m'(z) — m1(z) + 1000000.

Can have as many as 15 roots
of (m'(z) — mi(z)) -

(m'(z) — m1(z) + 1000000) -
(m'(z) — m1(z) — 1000000).

Do better by varying a'?

No. Easy to prove: Every cl
of (n',m' a') with m' £#m
has chance < 15/1000000

of being accepted by receive

Underlying fact: < 15 roots

of (m'(z) —mi(z) —a’' +a
(m/(z) —mi(z) —a' +a1+
(m'(z) — mi(z) —a' + a1 -

Warning: very easy to break
the oversimplified authentic:
(mp[l] + - - - + my[5]7* mo
+ s, mod 1000000:
solve m'(z) — mi(z) = a’ -

Actually, success chance
can be above 5/1000000.

Example: If m1(334885) mod p
€ {1000000, 1000001, 1000002}
then a forgery (1, m/, a1) with
m!(z) = mi(z) + z°> + z° + 25z
also succeeds for r = 334885;
success chance 6/1000000.
Reason: 334885 is a root of
m'(z) — m1(z) + 1000000.

Can have as many as 15 roots
of (m'(z) — mi(z)) -

(m'(z) — m1(z) + 1000000) -
(m'(z) — m1(z) — 1000000).

Do better by varying a'?

No. Easy to prove: Every choice
of (n',m',a') with m' # m,,
has chance < 15/1000000

of being accepted by receiver.

Underlying fact: < 15 roots

of (m'(z) — mi(z) —a' + a7) -
(m/(z) —m1(z) —a' + a1 +10°)
(m'(z) — m1(z) — a’' + a1 — 10°).

Warning: very easy to break

the oversimplified authenticator

(mp[l] + - - - + mp[5]r* mod p)
+ s, mod 1000000:

solve m'(z) — mi(z) = a' — a1.

success chance
bove 5/1000000.

. If m1(334885) mod p
000, 1000001, 1000002}
orgery (1, m/, aq) with
-mi(z) + z° + z° + 25z
ceeds for r = 334885;
chance 6/1000000.
334885 is a root of
m1(z) -+ 1000000.

e as many as 15 roots
) —mi(z)) -

- m1(z) + 1000000) -
- m1(z) — 1000000).

Do better by varying a'?

No. Easy to prove: Every choice
of (n',m',a’) with m' #£ m.,
has chance < 15/1000000

of being accepted by receiver.

Underlying fact: < 15 roots

of (m'(z) — mi(z) —a' +aq) -

(m'(z) —mi(z) —a' + a1 +10°) -
(m'(z) — m1(z) — o’ + a1 — 10°).

Warning: very easy to break

the oversimplified authenticator

(mp[l] + - + mp[5]r* mod)
+ s, mod 1000000:

solve m'(z) — m1(z) = a' — a1.

Scaled u

Poly130!
with 22
Adds s,

Assumin
Each for

<8|[L/
Probabil

D ftorget
with pro
>1-8

e.g. D04
Prlall re

hance
)00000.

34885) mod p
)01, 1000002}
m’, a1) with
z° + 22 + 25z
» = 33488Db;
1000000.

, a root of

1000000.

~as 15 roots
)
—1000000)-
-1000000)

Do better by varying a'?

No. Easy to prove: Every choice
of (n',m',a') with m' # m,,
has chance < 15/1000000

of being accepted by receiver.

Underlying fact: < 15 roots

of (m'(z) — mi(z) —a' + a7) -

(m/(z) —mi(z) —a’ +a1 +10°)
(m'(z) — m1(z) — o’ + a1 — 10°).

Warning: very easy to break

the oversimplified authenticator

(mn[l] + - - + mp[5]r* mod p)
+ s, mod 1000000:

solve m'(z) — mi(z) = a' — a1.

Scaled up for seric

Poly1305 uses 12¢
with 22 bits cleare
Adds s,, mod 21

Assuming < L-byt
Each forgery succe
< 8|L/16]| choice
Probability < 8 [L

D forgeries are all
with probability
>1—-8D|L/16]

e.g. b4 forgeries,
Prlall rejected] >

)tS

Do better by varying a'?

No. Easy to prove: Every choice
of (n',m',a’) with m' #£ m.,
has chance < 15/1000000

of being accepted by receiver.

Underlying fact: < 15 roots

of (m'(z) — mi(z) —a' +aq) -

(m'(z) —mi(z) —a' + a1 +10°) -
(m'(z) — m1(z) — o’ + a1 — 10°).

Warning: very easy to break

the oversimplified authenticator

(mp[l] + - + mp[5]r* mod)
+ s, mod 1000000:

solve m'(z) — mi(z) = a' — a1.

Scaled up for serious securit

Poly1305 uses 128-bit 7's,
with 22 bits cleared for spee
Adds s, mod 2128,

Assuming < L-byte message
Each forgery succeeds for

< 8|L/16] choices of r.
Probability < 8 [L/16] /21

D forgeries are all rejected
with probability
>1-8DJ[L/16] /2100

e.g. 2°4 forgeries, L = 1536:
Prlall rejected] > 0.9999999

Do better by varying a'?

No. Easy to prove: Every choice
of (n',m',a') with m' # m,,
has chance < 15/1000000

of being accepted by receiver.

Underlying fact: < 15 roots

of (m'(z) — mi(z) —a' + a7) -

(m'(z) —mi(z) — a’ + a1 +10°) -
(m'(z) — m1(z) — a’' + a1 — 10°).

Warning: very easy to break

the oversimplified authenticator

(mn[l] + - - + mp[5]r* mod p)
+ s, mod 1000000:

solve m'(z) — mi(z) = a' — a1.

Scaled up for serious security:

Poly1305 uses 128-bit r's,
with 22 bits cleared for speed.
Adds s, mod 2123,

Assuming < L-byte messages:

Each forgery succeeds for
< 8|L/16] choices of r.
Probability < 8 [L/16] /219

D forgeries are all rejected
with probability
>1-8DJ[L/16] /2100,

e.g. 2°4 forgeries, L = 1536:
Prlall rejected] > 0.9999999998.

r by varying a'?

y to prove: Every choice
1/, a’) with m' # m
1ice < 15/1000000
accepted by recelver.

ng fact: < 15 roots
) —mi(z) —a' +a1)-

-m(z) —a’ + a1 +10°)-
- mi(z) —a' + a; — 10°).

. very easy to break
simplified authenticator
-+ mp[5]r* mod p)
mod 1000000:

(z) —mi(z) =a' —a1.

Scaled up for serious security:

Poly1305 uses 128-bit r's,
with 22 bits cleared for speed.
Adds s, mod 2128,

Assuming < L-byte messages:
Each forgery succeeds for

< 8|L/16] choices of r.
Probability < 8 [L/16] /219

D forgeries are all rejected
with probability
>1-8DJ[L/16] /2100,

e.g. 2%4 forgeries, L = 1536:

Prlall rejected] > 0.9999999998.

Authent
for varia
if differe
different

Split str
maybe v
append

VIEW as

in {1, 2,
Multiply
add nex
etc., las

mod 213

ng a'?

. Every choice
1 m/ 7& My,
1000000

by recelver.

C 15 roots
)—a +a1)-

a’' +a;+10°)-
o' + a1 — 10°).

y to break
authenticator
n[5]'r4 mod p)
000:

(z) =a' —a1.

Scaled up for serious security:

Poly1305 uses 128-bit r's,
with 22 bits cleared for speed.
Adds s, mod 2123,

Assuming < L-byte messages:

Each forgery succeeds for
< 8|L/16] choices of r.
Probability < 8 [L/16] /219

D forgeries are all rejected
with probability
>1-8DJ[L/16] /2100,

e.g. 2°4 forgeries, L = 1536:

Prlall rejected] > 0.9999999998.

Authenticator Is s
for variable-length
if different messag
different polynomi

Split string into 1¢
maybe with smalle
append 1 to each

view as little-endiz
in {1,2,3,...,212
Multiply first chur
add next chunk, n

etc., last chunk, n
mod 2130 — 5 adc

1oice

Scaled up for serious security:

Poly1305 uses 128-bit r's,
with 22 bits cleared for speed.
Adds s, mod 2128,

Assuming < L-byte messages:

Each forgery succeeds for
< 8|L/16] choices of r.
Probability < 8 [L/16] /219

D forgeries are all rejected
with probability
>1-8DJ[L/16] /2100

e.g. 2%4 forgeries, L = 1536:

Prlall rejected] > 0.9999999998.

Authenticator is

still secure

for variable-length messages

if different messages are

different polynomials mod p

Split string into
maybe with sma
append 1 to eac

16-byte chu
ler final cht
n chunk;

view as little-endian integers
in {1,2,3,...,2199},
Multiply first chunk by r,

add next chunk,

etc., last chunk,

multiply by

multiply by

mod 213% — 5 add s, mod

Scaled up for serious security:

Poly1305 uses 128-bit r's,

with 22 bits cleared for speed.

Adds s,, mod 2128,

Assuming < L-byte messages:

Each forgery succeeds for
< 8|L/16] choices of r.
Probability < 8 [L/16] /219

D forgeries are all rejected
with probability
>1—-8DJ[L/16] /2100

e.g. 2°4 forgeries, L = 1536:

Prlall rejected] > 0.9999999998.

Authenticator is still secure
for variable-length messages,
if different messages are
different polynomials mod ».

Split string into 16-byte chunks,
maybe with smaller final chunk;
append 1 to each chunk;

view as little-endian integers
in {1,2,3,...,2199},

Multiply first chunk by r,

add next chunk, multiply by r,

etc., last chunk, multiply by 7,
mod 2130 — 5, add s,, mod 2123

p for serious security:

Hh uses 128-bit 7's,

bits cleared for speed.

mod 2128

g < L-byte messages:

gery succeeds for
16| choices of r.

ity < 8[L/16] /2100,

les are all rejected
bability
D[L/16] /2100,

forgeries, L = 1536:

jected] > 0.9999999998.

Authenticator is still secure

for variable-length messages,

It different

MESSAZES are

different polynomials mod p.

Split string into 16-byte chunks,

maybe with smaller final chunk;

append 1 to each chunk;

view as little-endian integers

N {1 2.3,

2t

Multiply first chunk by r,

add next c
etc., last ¢

mod 213% — 5 add s,, mod 2128

nunk, multiply by 7,

nunk, multiply by 7,

Reducin;

Like the
this autt
has a se

One-tim
L sharec
to encry

Authent
16 share

to authe

Each ne
new sha
used onl
How to

us security:

-bit r's,
d for speed.

D
)

€ messages:
seds for
fS4Df?ﬂ

/16] /2106,

rejected
/2106_

[= 1536:

0.9999999998.

Authenticator is still secure
for variable-length messages,
if different messages are
different polynomials mod ».

Split string into 16-byte chunks,

maybe with smaller final chunk;
append 1 to each chunk;

view as little-endian integers
in {1,2,3,...,2199}

Multiply flrst chunk by r,

add next chunk, multiply by r,

etc., last chunk, multiply by 7,

mod 213% — 5 add s,, mod 2128

Reducing the key

Like the one-time
this authenticatior
has a security gua

One-time pad nee
[shared secret by

to encrypt L mess

Authentication sy
16 shared secret b
to authenticate L

Each new message
new shared secret
used only once.

How to handle ma

S.

998.

Authenticator is still secure
for variable-length messages,
if different messages are
different polynomials mod p.

Split string into 16-byte chunks,
maybe with smaller final chunk;
append 1 to each chunk;

view as little-endian integers
in {1,2,3,...,2199}

Multiply flrst chunk by 7,

add next chunk, multiply by 7,

etc., last chunk, multiply by 7,

mod 213% — 5 add s,, mod 2128

Reducing the key length

Like the one-time pad,
this authentication system
has a security guarantee.

One-time pad needs
L shared secret bytes

to encrypt L message bytes.

Authentication system need:
16 shared secret bytes
to authenticate L message k

Each new message needs
new shared secret bytes,
used only once.

How to handle many messa;s

Authenticator is still secure
for variable-length messages,
if different messages are
different polynomials mod ».

Split string into 16-byte chunks,

maybe with smaller final chunk;
append 1 to each chunk;

view as little-endian integers
in {1,2,3,...,2199}

Multiply flrst chunk by r,

add next chunk, multiply by r,

etc., last chunk, multiply by 7,

mod 213% — 5 add s,, mod 2128

Reducing the key length

Like the one-time pad,
this authentication system
has a security guarantee.

One-time pad needs
[shared secret bytes

to encrypt L message bytes.

Authentication system needs
16 shared secret bytes
to authenticate L message bytes.

Each new message needs
new shared secret bytes,
used only once.

How to handle many messages?

icator iIs

still secure

ble-length messages,

Nt messages are

polynomials mod p.

ng Into
/ith sma
1 to eac

16-byte chunks,
ler final chunk;
n chunk;

little-end

lan Integers

3,...,219%,
first chunk by r,

= chunk,

- chunk,

O — 5, add s, mod 2145,

multiply by 7,

multiply by 7,

Reducing the key length

Like the

one-time pad,

this authentication system

has a security guarantee.

One-time pad needs

[shared

secret bytes

to encry

ot L message bytes.

Authentication system needs

16 shared secret bytes

to authenticate L message bytes.

Each new message needs

new shared secret bytes,

used only once.

How to handle many messages?

Authent
encrypte

Can repl
with stre

Typical :
AES in ¢
Sender,
where k
compute

Security
SInCe Sy,
but can
attack o
implies ¢

1ll secure

messages,

es are

als mod p.

)-byte chunks,

r final chunk;

chunk;

N Integers

9}u

k by 7,

1U

1U

| s,, mod

Tl
ti

D

D

y
y

DYy T,

Dy T,

Reducing the key length

2128

Like the one-time pad,
this authentication system
has a security guarantee.

One-time pad needs
[shared secret bytes

to encrypt L message bytes.

Authentication system needs
16 shared secret bytes

to authenticate L message bytes.

Each new message needs

new shared secret bytes,

used only once.

How to handle many messages?

Authenticator i1s n
encrypted with on

Can replace one-ti
with stream-ciphel

Typical stream cip
AES in counter m
Sender, receiver skt
where £k iIs 16-byte
compute s, = AE

Security proof bre
since s,,'Ss are dep
but can still prove
attack on authent
implies attack on

nks,

Ink:

Reducing the key length

Like the

one-time pad,

this authentication system

has a security guarantee.

One-time pad needs

[shared

secret bytes

to encry

ot L message bytes.

Authentication system needs

16 shared secret bytes

to authenticate L message bytes.

Each new message needs

new shared secret bytes,

used only once.

How to handle many messages?

Authenticator is my () moc
encrypted with one-time pac

Can replace one-time pad
with stream-cipher output.

Typical stream cipher:
AES in counter mode.
Sender, receiver share (7, k)
where k is 16-byte AES key;

compute s, = AES,(n).

Security proof breaks down

since Sy, s are dependent,
but can still prove that
attack on authenticator
implies attack on AES.

Reducing the key length Authenticator is my(7) mod p

Like the one-time pad, encrypted with one-time pad s,.

this authentication system Can replace one-time pad
has a security guarantee. with stream-cipher output.
One-time pad needs Typical stream cipher:

[shared secret bytes AES in counter mode.

to encrypt L message bytes. Sender, receiver share (r, k)

where k is 16-byte AES key:;
compute s, = AES,(n).

Authentication system needs
16 shared secret bytes

to authenticate L message bytes. Security proof breaks down
Each new message needs since s, 's are dependent,
new shared secret bytes, but can still prove that
used only once. attack on authenticator

How to handle many messages? implies attack on AES.

o the key length

one-time pad,
1entication system
curity guarantee.

e pad needs
secret bytes

ot L message bytes.

ication system needs
d secret bytes

nticate L message bytes.

W message needs

red secret bytes,

y once.

handle many messages?

Authenticator is my(r) mod p

encrypted with one-time pad sy,.

Can replace one-time pad
with stream-cipher output.

Typical stream cipher:
AES in counter mode.
Sender, receiver share (7, k)

where k is 16-byte AES key:;
compute s, = AES,(n).

Security proof breaks down

since Sy, 'S are dependent,
but can still prove that
attack on authenticator
implies attack on AES.

unsigned 1in
mpz_class r
for (j = O;
rbar += (
mpz_class h
mpz_class p
while (mlen
mpz_class
for (j =
c += ((
c += ((mp
m += j; m
h = ((h +
¥
unsigned ch
aes (aeskn,k
for (j = 0;
h += ((mp
for (j = O;
mpz_class
h >>= 8;
out[j] =
¥

length

pad,
1 system
rantee.

ds
tes

age bytes.

tem needs
ytes

message bytes.

» needs
bytes,

ny messages?’

Authenticator is my(r) mod p

encrypted with one-time pad sj,.

Can replace one-time pad
with stream-cipher output.

Typical stream cipher:
AES in counter mode.
Sender, receiver share (r, k)
where k is 16-byte AES key;

compute s, = AES,(n).

Security proof breaks down
since Sy, s are dependent,
but can still prove that
attack on authenticator
implies attack on AES.

unsigned int j;
mpz_class rbar = O;
for (j = 0;j < 16;++j)
rbar += ((mpz_class) r
mpz_class h = O;
mpz_class p = (((mpz_cla
while (mlen > 0) {
mpz_class ¢ = O;
for (j = 0;(j < 16) &&
c += ((mpz_class) ml[
c += ((mpz_class) 1) <
m += j; mlen —-= j;
h = ((h + ¢c) * rbar) %
t
unsigned char aeskn[16];
aes (aeskn,k,n);
for (j = 0;j < 16;++j)
h += ((mpz_class) aesk
for (j = 0;j < 16;++j) {
mpz_class ¢ = h ¥ 256;
h >>= 8;
out[j] = c.get_uiQ);
+

v ool

\V |

ytes.

res’

Authenticator is my () moc

encrypted with one-time pac

Can replace one-time pad
with stream-cipher output.

Typical stream cipher:
AES in counter mode.
Sender, receiver share (7, k)
where k is 16-byte AES key;

compute s, = AES,(n).

Security proof breaks down

since Sy, s are dependent,
but can still prove that
attack on authenticator
implies attack on AES.

p

Sy,.

unsigned int j;
mpz_class rbar = O;
for (j = 0;j < 16;++j)
rbar += ((mpz_class) r[j]) << (8 *
mpz_class h = O;
mpz_class p = (((mpz_class) 1) << 130
while (mlen > 0) {
mpz_class ¢ = O;
for (j = 0;(j < 16) && (j < mlen);+
c += ((mpz_class) m[jl) << (8 * j
c += ((mpz_class) 1) << (8 * j);
m += j; mlen —-= j;
h = ((h + ¢) * rbar) % p;
+
unsigned char aeskn[16];
aes(aeskn,k,n);
for (j = 0;j < 16;++j)
h += ((mpz_class) aeskn[j]) << (8 x
for (j = 0;j < 16;++j) {
mpz_class ¢ = h % 256;
h >>= 8;
out[j] = c.get_uiQ);
+

Authenticator is my(r) mod p

encrypted with one-time pad sj,.

Can replace one-time pad
with stream-cipher output.

Typical stream cipher:
AES in counter mode.
Sender, receiver share (r, k)

where k is 16-byte AES key;
compute s, = AES,(n).

Security proof breaks down
since sy, s are dependent,
but can still prove that
attack on authenticator
implies attack on AES.

unsigned int j;

mpz_class rbar = O;

for (j = 0;j < 16;++j)

rbar += ((mpz_class) r[j]) << (8 *x j);

mpz_class h
mpz_class p

=O;
= (((mpz_class) 1) << 130) - 5;

while (mlen > 0) {

mpz_class ¢ = 0;

for (j = 0;(j < 16) && (j < mlen);++j)
c += ((mpz_class) m[j]) << (8 * j);

c += ((mpz_class) 1) << (8 * j);

m += j; mlen -= j;

h = ((h + ¢c) * rbar) % p;

+

unsigned char aeskn[16];

aes (aeskn,k,n);

for (j = 0;j < 16;++j)

h += ((mpz_class) aeskn[j]) << (8 * j);
for (j = 0;j < 16;++j) {

mpz_class ¢ = h % 256;

h >>= 8;

+

out[j]

c.get_ui();

icator is mp(r) mod p

d with one-time pad s,,.

ace one-time pad
2am-cipher output.

stream cipher:
“ounter mode.
receiver share (r, k)

is 16-byte AES key;
3.571 ::3/&IESSA;(7Z).

proof breaks down

's are dependent,
still prove that

n authenticator
yttack on AES.

unsigned int j;
mpz_class rbar = O;
for (j = 0;j < 16;++j)
rbar += ((mpz_class) r[j]) << (8 * j);
mpz_class h = O;
mpz_class p = (((mpz_class) 1) << 130) - 5;
while (mlen > 0) {
mpz_class ¢ = 0;
for (j = 0;(j < 16) && (j < mlen);++j)
c += ((mpz_class) m[j]) << (8 * j);
c += ((mpz_class) 1) << (8 * j);
m += j; mlen -= j;
h = ((h + ¢c) * rbar) % p;
by
unsigned char aeskn[16];
aes (aeskn,k,n);
for (j = 0;j < 16;++j)
h += ((mpz_class) aeskn[j]) << (8 * j);
for (j = 0;j < 16;++j) {
mpz_class ¢ = h % 256;
h >>= 8;
out[j] = c.get_uiQ);
¥

Another
Fr(n) =
Somewh

"Hasn't
Distinct
with ML
(2004 W
Still not
n — MI
We kno\

Many ot
are unbr

1n(7) mod p

e-time pad sy,.

me pad
~ output.

her:
ode.
are (r, k)
 AES key;

Si(n).

1ks down
andent,
that

jcator
AES.

unsigned int j;
mpz_class rbar = O;
for (j = 0;j < 16;++j)
rbar += ((mpz_class) r[j]) << (8 * j);
mpz_class h = 0;
mpz_class p = (((mpz_class) 1) << 130) - 5;
while (mlen > 0) {
mpz_class ¢ = 0;
for (j = 0;(j < 16) && (j < mlen);++j)
c += ((mpz_class) m[j]) << (8 * j);
c += ((mpz_class) 1) << (8 * j);
m += j; mlen -= j;
h = ((h + ¢c) * rbar) % p;
+
unsigned char aeskn[16];
aes (aeskn,k,n);
for (j = 0;j < 16;++j)
h += ((mpz_class) aeskn[j]l) << (8 * j);
for (j = 0;j < 16;++3j) {
mpz_class ¢ = h % 256;
h >>= 8;
out[j] = c.get_uiQ);
+

Another stream ci
/:;;(71) — h/|[)ES(A3,?
Somewhat slower

“Hasn't MD5 bee
Distinct (k,n), (k'
with MD5(k, n) =
(2004 Wang)

Still not obvious h
n — MD5(k,n) f
We know AES col

Many other strean
are unbroken, fast

unsigned int j;
mpz_class rbar = O;
for (j = 0;j < 16;++j)
rbar += ((mpz_class) r[j]) << (8 * j);
mpz_class h = O;

mpz_class p = (((mpz_class) 1) << 130) - 5;

while (mlen > 0) {
mpz_class ¢ = 0;
for (j = 0;(j < 16) && (j < mlen);++j)
c += ((mpz_class) m[j]) << (8 * j);
c += ((mpz_class) 1) << (8 * j);
m += j; mlen -= j;
h = ((h + ¢c) * rbar) % p;
by
unsigned char aeskn[16];
aes(aeskn,k,n);
for (j = 0;j < 16;++j)
h += ((mpz_class) aeskn[j]) << (8 * j);
for (j = 0;j < 16;++3j) {
mpz_class ¢ = h % 256;
h >>= 8;
out[j] = c.get_uiQ);
¥

Another stream cipher:
Fi.(n) = MD5(k,n).
Somewhat slower than AES.

“Hasn't MD5 been broken?
Distinct (k,n), (k',n') are k
with MD5(k, n) = MD5(&’,
(2004 Wang)

Still not obvious how to pre
n — MDb5(k, n) for secret k
We know AES collisions too

Many other stream ciphers
are unbroken, faster than Al

unsigned int j;
mpz_class rbar = O;
for (j = 0;j < 16;++j)
rbar += ((mpz_class) r[j]) << (8 * j);
mpz_class h = O;

mpz_class p = (((mpz_class) 1) << 130) - 5;

while (mlen > 0) {
mpz_class ¢ = 0;
for (j = 0;(j < 16) && (j < mlen);++j)
c += ((mpz_class) m[j]) << (8 * j);
c += ((mpz_class) 1) << (8 * j);
m += j; mlen -= j;
h = ((h + c) * rbar) % p;
+
unsigned char aeskn[16];
aes(aeskn,k,n);
for (j = 0;j < 16;++j)
h += ((mpz_class) aeskn[jl) << (8 * j);
for (j = 0;j < 16;++j) {
mpz_class ¢ = h % 256;
h >>= 8;
out[j] = c.get_uiQ);
+

Another stream cipher:
Fi.(n) = MD5(k,n).
Somewhat slower than AES.

"Hasn't MD5 been broken?”
Distinct (k,n), (k',n') are known
with MD5(k,n) = MD5(&', n').
(2004 Wang)

Still not obvious how to predict
n — MDb5(k, n) for secret k.

We know AES collisions too!

Many other stream ciphers
are unbroken, faster than AES.

t J;

bar = 0;

j < 16;++7)

(mpz_class) r[j]) << (8 * j);
= 0;

= (Z(mpz_class) 1) << 130) - 5;

> 0) {

c = 0;
0;(j < 16) && (j < mlen);++j)
mpz_class) m[j]) << (8 * j);
z_class) 1) << (8 * j);
len -= j;
~¢c) *x rbar) % p;

ar aeskn[16];
,n);
j < 16;++j)
z_class) aeskn[j]) << (8 * j);
j < 16;++j) A
c = h 9 256;

c.get_ui();

Another stream cipher:
Fi.(n) = MD5(k,n).
Somewhat slower than AES.

"Hasn't MDb been broken?”
Distinct (k,n), (k',n') are known
with MD5(k,n) = MD5(&', n').
(2004 Wang)

Still not obvious how to predict
n — MDb5(k, n) for secret k.

We know AES collisions too!

Many other stream ciphers
are unbroken, faster than AES.

Alternat

Use - - - ¢
instead «
No! Des
might al
even if /

Use AES
No! Brc
using <
But ok 1

Use Sals
Seems t

[§1) << (8 * j);

ss) 1) << 130) - 5;

(j < mlen);++j)
j1) << (8 * j);
< (8 * j);

P>

n[jl) << (8 * j);

Another stream cipher:
Fi.(n) = MD5(k,n).
Somewhat slower than AES.

"Hasn't MD5 been broken?”
Distinct (k,n), (k',n') are known
with MD5(k,n) = MD5(&', n').
(2004 Wang)

Still not obvious how to predict
n — MDb5(k, n) for secret k.

We know AES collisions too!

Many other stream ciphers
are unbroken, faster than AES.

Alternatives to +

Use - - - @ AES,(n
instead of --- + A
No! Destroys secL

might allow succe:

even if AES is sec

L

se AES(---), or

No! Broken by kn
using < 204 Juthe

But ok for small #

Use Salsa20(k, n,
Seems to be mass

Another stream cipher:
Fi.(n) = MD5(k,n).
Somewhat slower than AES.

"Hasn't MDb been broken?”
Distinct (k,n), (k',n') are known
with MD5(k,n) = MD5(&', n').
(2004 Wang)

Still not obvious how to predict
n — MDb5(k, n) for secret k.

We know AES collisions too!

Many other stream ciphers
are unbroken, faster than AES.

Alternatives to +

Use - - - @ AES,(n)

instead of --- 4+ AES,(n)?
No! Destroys security analy:
might allow successful forge
even if AES is secure.

Use AES,(---), omitting n?
No! Broken by known attac

using < 204 Juthenticators.

But ok for small # message

Use Salsa20(k,n,---)?
Seems to be massive overkil

Another stream cipher:
Fi.(n) = MD5(k,n).
Somewhat slower than AES.

"Hasn't MD5 been broken?”
Distinct (k,n), (k',n') are known
with MD5(k,n) = MD5(&', n').
(2004 Wang)

Still not obvious how to predict
n — MDb5(k, n) for secret k.

We know AES collisions too!

Many other stream ciphers
are unbroken, faster than AES.

Alternatives to +

Use - -- @ AES,(n)

instead of - - + AES,(n)?

No! Destroys security analysis;
might allow successtul forgeries
even if AES is secure.

Use AES,(---), omitting n?
No! Broken by known attacks

using < 204 Juthenticators.

But ok for small # messages.

Use Salsa20(k,n,---)?
Seems to be massive overkill.

stream cipher:
- MD5(k,n).
at slower than AES.

MD5 been broken?”
(k,mn), (k',n") are known
)5(k, n) = MD5(k', n').
lang)

obvious how to predict

)5(k, n) for secret k.
v AES collisions too!

her stream ciphers
oken, faster than AES.

Alternatives to +

Use - -- @ AES,(n)

instead of - -- + AES,(n)?

No! Destroys security analysis;
might allow successtul forgeries
even if AES is secure.

Use AES,(---), omitting n?
No! Broken by known attacks

using < 204 Juthenticators.

But ok for small # messages.

Use Salsa20(k,n,---)?
Seems to be massive overkill.

Alternat

Notatior
(m(r) m

For all d
Pr[Poly:
Poly

“Small ¢

For all ¢
and all]
Pr[Poly:

Poly:

IS very s
“Small «

pher:

1).
than AES.

1 broken?”

,n') are known
- MD5(k', n').

ow to predict
r secret k.
lisions too!

n ciphers
er than AES.

Alternatives to +

Use - -- @ AES,(n)
instead of - - + AES,(n)?
No! Destroys security analysis;

might allow successtul forgeries

even If AES is secure.

Use AES,(---),

But ok for smal

omitting n’?

No! Broken by known attacks
using < 204 Jut

nenticators.

messages.

Use Salsa20(k,n,---)?
Seems to be massive overkill.

Alternatives to Po

Notation: Polyl3(
(m(r) mod 2130 —

For all distinct me
Pr[Poly1305,(m)

Poly1305,.(m')
“Small collision pr

For all distinct me
and all 16-byte se
Pr[Poly1305,.(m)
Poly1305,.(m')
Is very small.
“Small differential

nown
n').

dict

Alternatives to +

Use - -- @ AES,(n)

instead of - -- + AES,(n)?

No! Destroys security analysis;
might allow successtul forgeries
even if AES is secure.

Use AES,(---), omitting n?
No! Broken by known attacks

using < 204 Juthenticators.

But ok for small # messages.

Use Salsa20(k,n,---)?
Seems to be massive overkill.

Alternatives to Poly1305

Notation: Poly1305,.(m) =
(m(r) mod 2130 — 5) mod 2

For all distinct messages m,

Pr|Po
Po
“Sma

For al
and a
Pr|Po

Po

y1305,(m) =
y1305,.(m')] is very si

| collision probabilities

distinct messages m,
| 16-byte sequences A
y1305,.(m) =
y1305,.(m') + A mod

Is very small.
“Small differential probabilit

Alternatives to +

Use - -- @ AES,(n)

instead of - - + AES,(n)?

No! Destroys security analysis;
might allow successtul forgeries
even if AES is secure.

Use AES,(---), omitting n?
No! Broken by known attacks

using < 204 Juthenticators.

But ok for small # messages.

Use Salsa20(k,n,---)?
Seems to be massive overkill.

Alternatives to Poly1305

Notation: Poly1305,.(m) =
(m(r) mod 2130 — 5) mod 2123,

For all distinct messages m, m':

Pr|Po
Po
“Sma

y1305,(m) =
y1305,.(m')] is very small.

| collision probabilities.”

For all distinct messages m, m'

and a
Pr|Po
Po

| 16-byte sequences A:
y1305,.(m) =
y1305,.(m') + A mod 2129]

Is very small.

“Small differential probabilities.”

Ives to +

D AES,(n)

of -+ - 4 AESk(n)?
troys security analysis;
low successful forgeries
\ES is secure.

. (- - +), omitting n?
ken by known attacks
204 authenticators.

or small # messages.

a20(k,n,---)7?
o be massive overkill.

Alternatives to Poly1305

Notation: Poly1305,.(m) =
(m(r) mod 2130 — 5) mod 213,

For all distinct messages m, m':
Pr|Poly1305,.(m) =
Poly1305,.(m')] is very small.

“Small collision probabilities.”

For all distinct messages m, m'
and all 16-byte sequences A:
Pr|Poly1305,(m) =

Poly1305,.(m') + A mod 21%3]
Is very small.

“Small differential probabilities.”

Easy to
that sat

Embed |
polynom

Use m +
r 1S a ra

Small di
means t
iIs divisib
when m
(Additio
mod 217

)

ESk(n)?

rity analysis;
ssful forgeries

Ure.

nitting n?
own attacks
nticators.
£ messages.

)7

ive overkill.

Alternatives to Poly1305

Notation: Poly1305,.(m) =
(m(r) mod 2130 — 5) mod 2123,

For all distinct messages m, m':
Pr|Poly1305,.(m) =
Poly1305,.(m')] is very small.

“Small collision probabilities.”

For all distinct messages m, m'
and all 16-byte sequences A:
Pr|Poly1305,(m) =

Poly1305,.(m') + A mod 21%8]
Is very small.

“Small differential probabilities.”

Easy to build othe
that satisfy these

Embed messages
polynomial ring Z

Use m — m mod
r 1S a random prin

Small differential |
means that m — 7
is divisible by very
when m # m'.

(Addition of A is
mod 2128; be care

Alternatives to Poly1305

Notation: Poly1305,.(m) =
(m(r) mod 2130 — 5) mod 218,

For all distinct messages m, m':

Pr|Po
Po
“Sma

For al
and a
Pr|Po

Po

y1305,(m) =
y1305,.(m')] is very small.

| collision probabilities.”

distinct messages m, m'

| 16-byte sequences A:
y1305,.(m) =

y1305,.(m') + A mod 21%9]

Is very small.

“Small differential probabilities.”

Easy to build other function

that satisfy these properties.

Embed messages and

outpu

polynomial ring Z|z1, x5, z3

Usem — m mod r w

NEre

r 1S a random prime ideal.

Small differential probability

means that m — m' —

A

is divisible by very few r's

when m # m/'.

(Addition of A is
mod 2128 pe careful.)

Alternatives to Poly1305

Notation: Poly1305,.(m) =
(m(r) mod 2130 — 5) mod 2123,

For all distinct messages m, m':
Pr|Poly1305,.(m) =
Poly1305,.(m’)] is very small.

“Small collision probabilities.”

For all distinct messages m, m'
and all 16-byte sequences A:
Pr[Poly1305,.(m) =

Poly1305,.(m') + A mod 21%8]
Is very small.

“Small differential probabilities.”

Easy to build other functions
that satisfy these properties.

Embed messages and outputs into
polynomial ring Z|z1, 2, 3, .. .].

Use m — m mod r where

r 1s a random prime Iideal.

Small differential probability
means that m —m/ — A

s divisible by very few r's
when m # m'.

(Addition of A is
mod 2128 pe careful.)

Ilves to Poly1305

1: Poly1305,.(m) =
10d 2130 — 5) mod 21%%.

istinct messages m, m':
305,(m) =

305,.(m')] is very small.
ollision probabilities.”

istinct messages m, m/
6-byte sequences A:
305,(m) =

305,.(m') + A mod 21%9]
mall.

lifferential probabilities.”

Easy to build other functions

that satisfy these properties.

Embed messages and outputs into

polynomial ring Z|z1, 2, 3, .. .].

Usem — m mod r w

NEre

r 1S a random prime ideal.

Small differential probability

means that m — m' —

A

is divisible by very few r's

when m # m/'.

(Addition of A is
mod 2128 pe careful.)

Example

View me
specifica
Outputs

Reduce
random

between
(Probler

Low diff
it m #£1
SO M —

by very

ly1305

5,.(m) =
'5) mod 2128,

ssages m, m':

| is very small.
obabilities.”

ssages m, m'
juences A:

+ A mod 2128]

probabilities.”

Easy to build other functions
that satisfy these properties.

Embed messages and outputs into
polynomial ring Z|z1, 2, 3, .. .].

Use m — m mod r where

r 1s a random prime Iideal.

Small differential probability
means that m —m/ — A

s divisible by very few r's
when m # m'.

(Addition of A is
mod 2128 pe careful.)

Example: (1981 K

View messages m
specifically multipl
Outputs: {O, 1,..

Reduce m modulc
random prime nun
between 2120 and
(Problem: generat

Low differential pr
if m £ m' then m
som—m' — Ais
by very few prime

1238

mall.

2128]

1€es.

Easy to build other fu

nctions

that satisfy these properties.

Embed messages and
polynomial ring Z[z1,

Usem — m mod r w

outputs Into
T2, T3, ...].

NEre

r 1S a random prime ideal.

Small differential prob
means that m — m' —

ability
A

is divisible by very few r's

when m # m/'.

(Addition of A is
mod 2128 pe careful.)

Example: (1981 Karp Rabin

View messages m as integer
specifically multiples of 2128
Outputs: {O, 1,... 2128 1

Reduce m modulo a uniforn
random prime number 7

2120 2128

between and

(Problem: generating r is sl

Low differential probability:
if m #m' thenm —m' — ¢
som —m' — A is divisible
by very few prime numbers.

Easy to build other functions

that satisfy these properties.

Embed messages and

outputs Into

polynomial ring Z|z1, 2, 3, .. .].

Usem — m mod r w

NEre

r 1s a random prime Iideal.

Small differential prob
means that m — m' —

ability
A

s divisible by very few r's

when m # m'.

(Addition of A is
mod 2128 pe careful.)

Example: (1981 Karp Rabin)

View messages m as Integers,
specifically multiples of 2128,
Outputs: {O, 1,... 228 _ 1}.

Reduce m modulo a uniform
random prime number 7

2120 2128

between and

(Problem: generating r is slow.)

Low differential probability:
ifm #£m' thenm —m' — A #0
som —m' — A is divisible
by very few prime numbers.

build other functions
sty these properties.

nmessages and outputs into
ial ring Z|z1, 22, 23, .. .].

S m mod r where

ndom prime ideal.

fferential probability
hat m —m/ — A

le by very few r's
+m'

n of Ais

8. be careful.)

Example: (1981 Karp Rabin)

View messages m as integers,
specifically multiples of 2128

Outputs: {O, 1,... 228 _ 1}.

Reduce m modulo a uniform
random prime number 7

2120 2128

between and

(Problem: generating r is slow.)

Low differential probability:
ifm#£m'thenm —m' — A #£0
som —m' — A is divisible
by very few prime numbers.

Variant

View me
m1ogT

with eac

Outputs
with eac

Reduce
T 1S a ur
degree-1
(Probler
typical (
for polyr

r functions
properties.

and outputs Into
T1,%2,23,...].

T wnere

ne ideal.

robability
n' — A
few r's

ful.)

Example: (1981 Karp Rabin)

View messages m as Integers,
specifically multiples of 2128

Outputs: {O, 1,... 228 _ 1}.

Reduce m modulo a uniform
random prime number 7

2120 2128

between and

(Problem: generating r is slow.)

Low differential probability:
ifm #£m' thenm —m' — A #0
som —m' — A is divisible
by very few prime numbers.

Variant that work:

View messages m

12 ,
m12821%° + Mg
with each m; in {

Outputs: og+ 017
with each o; in {0

Reduce m modulc
r 1S a uniform ran
degree-128 polyno
(Problem: divisior
typical CPU has n
for polynomial mu

ts Into

Example: (1981 Karp Rabin)

View messages m as integers,
specifically multiples of 2128

Outputs: {O, 1,... 228 _ 1}.

Reduce m modulo a uniform
random prime number 7
between 2120 and 2128

(Problem: generating r is slow.)

Low differential probability:
ifm#£m'thenm —m' — A #0
som —m' — A is divisible
by very few prime numbers.

Variant that works with &:

View messages m as polyno
m128z'%° + miggzt® + - -

with each m; in {0, 1}.

Outputs: og+o1x+ -+ 01
with each o; in {0, 1}.

Reduce m modulo 2, 7 wher
r is a uniform random irredt
degree-128 polynomial over
(Problem: division by 7 is sl
typical CPU has no big circt
for polynomial multiplicatior

Example: (1981 Karp Rabin)

View messages m as Integers,

specifically multiples of 2128,
Outputs: {O, 1,... 228 _ 1}.

Reduce m modulo a uniform
random prime number 7
between 2120 and 2128

(Problem: generating r is slow.)

Low differential probability:
ifm #£m' thenm —m' — A #0
som —m' — A is divisible
by very few prime numbers.

Variant that works with &@:

View messages m as polynomials
m128$128 + m129$129 4.,

with each m; in {0, 1}.

Outputs: o9+ 01z + - - - + 019722/

with each o; in {0, 1}.

Reduce m modulo 2, 7 where

7 I1s a uniform random irreducible
degree-128 polynomial over Z/2.
(Problem: division by r is slow;
typical CPU has no big circuit
for polynomial multiplication.)

: (1981 Karp Rabin)

ssages m as Integers,
lly multiples of 2128

- {0,1,...,21% — 1},

m modulo a uniform
prime number r
2120 and 2128_

n: generating r is slow.)

erential probability:
n' thenm —m' — A #£0
m' — A is divisible

few prime numbers.

Variant that works with &:

View messages m as polynomials
m12833128 + m129$129 4.,

with each m; in {0, 1}.

Outputs: o9+ 01z + - - - + 019722/

with each o; in {0, 1}.

Reduce m modulo 2, 7 where

7 Is a uniform random irreducible
degree-128 polynomial over Z/2.
(Problem: division by 7 is slow;
typical CPU has no big circuit
for polynomial multiplication.)

Example
MacWill

Choose

View me
polys m
mi,ma,
Outputs

Reduce
p,T1 — 1
to m171
(Probler

arp Rabin)

as Integers,
es of 2128,
218 11

a2 uniform
nber r
2128

ing 7 is slow.)

obability:
,—m' — A#0
divisible

numbers.

Variant that works with &@:

View messages m as polynomials
m128$128 + m129$129 4.,

with each m; in {0, 1}.

Outputs: o9+ 01z + - - - + 019722/

with each o; in {0, 1}.

Reduce m modulo 2, 7 where

7 Is a uniform random irreducible
degree-128 polynomial over Z/2.
(Problem: division by r is slow;
typical CPU has no big circuit
for polynomial multiplication.)

Example: (1974 C
MacWilliams Sloai

Choose prime nun
View messages m
polys m1z1 + m»o:
mi, Mo, M3 € {0,
Outputs: {0,...,;

Reduce m modulc
P, T] —T1,T2 — T3
to mi1r1 + moro -
(Problem: long m

ow.)

\ £ 0

Variant that works with &:

View messages m as polynomials
m12833128 + m129$129 4.,

with each m; in {0, 1}.

Outputs: o9+ 01z + - - - + 019722/

with each o; in {0, 1}.

Reduce m modulo 2, 7 where

7 Is a uniform random irreducible
degree-128 polynomial over Z/2.
(Problem: division by 7 is slow;
typical CPU has no big circuit
for polynomial multiplication.)

Example: (1974 Gilbert
MacWilliams Sloane)

Choose prime number p & 2
View messages m as linear

polys miz1 + mozr + m3z
mi, Mo, M3 € {0,...,p— 1
Outputs: {0,...,p—1}.

Reduce m modulo

P, 1 —7T1,Z2 — 72,23 — T3
to mir1 + mory + m3rs m
(Problem: long m needs lor

Variant that works with &@:

View messages m as polynomials
m128$128 + m129$129 4.,

with each m; in {0, 1}.

Outputs: og+ 01z + - - - + 019722/

with each o; in {0, 1}.

Reduce m modulo 2, 7 where

7 I1s a uniform random irreducible
degree-128 polynomial over Z/2.
(Problem: division by r is slow;
typical CPU has no big circuit
for polynomial multiplication.)

Example: (1974 Gilbert
MacWilliams Sloane)

Choose prime number p s 2128
View messages m as linear

polys mi1z1 + moxo + m3x3 with
mi, Mo, M3 € {0,...,p— 1}.
Outputs: {0,...,p—1}.

Reduce m modulo

p,T] —T1,T2 —T2,T3 — T3

to mir1 + moro + m3r3 mod p.
(Problem: long m needs long r.)

that works with @:

ssages m as polynomials
3 1+ m129$129 4.,
h m; in {0, 1}.

. 00 +01T+ - -+0127$127

h o; in {0, 1}.

m modulo 2, 7 where
liform random irreducible
28 polynomial over Z/2.
n: division by 7 Is slow;
_PU has no big circuit
1omial multiplication.)

Example: (1974 Gilbert
MacWilliams Sloane)

Choose prime number p =5 2128,
View messages m as linear

polys m1z1 + moxo + m3x3 with
mi,mo,m3 € {0,...,p—1}.
Outputs: {0,...,p—1}.

Reduce m modulo

pP,1 — 71,22 — 72,23 — T3

to miri + moro + m3r3 mod p.
(Problem: long m needs long r.)

Example
Indepenc

Indepenc

Johanss:

Choose

View me
mi1T + 1
mi,my,
Outputs

Reduce
where r
element
compute

> with @:

as polynomials
129 1
0,1}.

4ot o1y zl?T

1

2, r where
dom irreducible
mial over Z/2.
by 7 is slow;
o big circuit
ltiplication.)

Example: (1974 Gilbert
MacWilliams Sloane)

Choose prime number p s 2128
View messages m as linear

polys m1z1 + moxo + m3x3 with
mi, Mo, M3 € {0,...,p— 1}.
Outputs: {0,...,p—1}.

Reduce m modulo

p,T1 —T1,T2 —T2,T3 — T3

to mir1 + moro + m3r3 mod p.
(Problem: long m needs long r.)

Example: (1993 d
Independently 199

Independently 199
Johansson Kabati:

Choose prime nun
View messages m
mi1T + m2$2 -+ m
m1i, mo, ... € {0,
Outputs: {0,1,...

Reduce m modulc
where 7 is a unifol
element of {0, 1, .
compute mi1r +m

mials

Example: (1974 Gilbert
MacWilliams Sloane)

Choose prime number p =5 2128,
View messages m as linear

polys m1z1 + mozo + m3x3 with
mi,mo,m3 € {0,...,p—1}.
Outputs: {0,...,p—1}.

Reduce m modulo

pP,T1 — 71,22 — 72,23 — T3

to miri + moro + m3r3 mod p.
(Problem: long m needs long r.)

Example: (1993 den Boer;
independently 1994 Taylor;

independently 1994 Bierbral
Johansson Kabatianskii Sme

Choose prime number p & 2
View messages m as polyno
mi1T + m2$2 -+ m3:c3 -+ -

Reduce m modulo p,z — 7

where 7 is a uniform randon
element of {0,1,...,p— 1}
compute m17‘+m27'2+- o

Example: (1974 Gilbert
MacWilliams Sloane)

Choose prime number p s 2128
View messages m as linear

polys m1z1 + moZTo + m3x3 with
mi, Mo, M3 € {0,...,p— 1}.
Outputs: {0,...,p — 1}.

Reduce m modulo

p,T] —T1,T2 —T2,T3 — T3

to mir1 + moro + m3r3 mod p.
(Problem: long m needs long r.)

Example: (1993 den Boer;
independently 1994 Taylor;

independently 1994 Bierbrauer
Johansson Kabatianskii Smeets)

Choose prime number p s 2128

View messages m as polynomials

mi1T + m2$2 + m3::c3 + -+ - with

Reduce m modulo p,z — 7
where 7 is a uniform random
element of {0,1,...,p— 1}, i.e,
compute mir +mor?+--- mod p.

: (1974 Gilbert
iams Sloane)

prime number p & 2128

ssages m as linear

11 + moxo + m3x3 with
m3 €40,...,p—1}.
: {0,...,p—1}.

m modulo

"1, L2 —T2,T3 — T3

+ moro + Mm3r3 mod p.
n: long m needs long 7.)

Example: (1993 den Boer;
independently 1994 Taylor;

independently 1994 Bierbrauer
Johansson Kabatianskii Smeets)

Choose prime number p =5 2128,
View messages m as polynomials

mi1T + m2$2 + m3:c3 + - - - with

Reduce m modulo p,z — 7
where 7 is a uniform random
element of {0,1,...,p— 1}, i.e,

compute m1r +mor?+--- mod p.

“hash12
p = 2127

between
to achie

(2000 K
"Poly13
p = 213C
fully dev

“CWC"
(2003 K

1lbert
ne)

\ber p ~s 2128
as linear

Lo + m3x3 with

...,p— 1}
p — 1}

)

, T3 — T3

- ma3r3 mod p.
“needs long r.)

Example: (1993 den Boer;
independently 1994 Taylor;

independently 1994 Bierbrauer
Johansson Kabatianskii Smeets)

Choose prime number p s 2128
View messages m as polynomials

mi1T + m2$2 + m3::c3 + -+ - with

Reduce m modulo p,z — 7

where 7 is a uniform random
element of {0,1, ..., p—1}; e,
compute mir +mor?+--- mod p.

“hash127": 32-bit
p=212"_1. (19

"PolyR": 64-bit m
D = 204 _ 50: re-e
between p and 2%

to achieve reasona
(2000 Krovetz Ro,

"Poly1305": 128-|
p=2830_5 (20
fully developed in

"CWC": 96-bit m
(2003 Kohno Vieg

123

3 with

od p.
g 7T.)

Example: (1993 den Boer;
independently 1994 Taylor;

independently 1994 Bierbrauer
Johansson Kabatianskii Smeets)

Choose prime number p a5 2128

View messages m as polynomials

mi1T + m2$2 + m3:c3 + - - - with

Reduce m modulo p,z — 7

where 7 is a uniform random
element of {0,1, ..., p—1}; e,
compute mir +mor?+--- mod p.

“hash127": 32-bit m;'s,
p = 2127 — 1. (1999 Bernst:

"PolyR": 64-bit m;'s,
p = 294 — 59: re-encode m;

264 _ 1 run

between p and
to achieve reasonable securr

(2000 Krovetz Rogaway)

“Poly1305": 128-bit m;'s,
p =210 _ 5 (2002 Bernst:
fully developed in 2004-200.

“CWC": 96-bit m;'s, p = 2
(2003 Kohno Viega Whiting

Example: (1993 den Boer;
independently 1994 Taylor;

independently 1994 Bierbrauer
Johansson Kabatianskii Smeets)

Choose prime number p s 2128

View messages m as polynomials

mi1T + m2$2 + m3::c3 + -+ - with

Reduce m modulo p,z — 7
where 7 is a uniform random
element of {0,1, ..., p—1}; e,

compute mir +mor?+--- mod p.

*hash127": 32-bit m;'’s,
p = 2127 — 1. (1999 Bernstein)

"PolyR": 64-bit m;’s,
p = 25% _ 50: re-encode m;'s

264 _ 1- run twice

between p and
to achieve reasonable security.

(2000 Krovetz Rogaway)

"Poly1305": 128-bit m;’s,
p = 2130 _ 5. (2002 Bernstein,
fully developed in 2004—-2005)

“CWC": 96-bit m;'s, p = 2127 —1.
(2003 Kohno Viega Whiting)

: (1993 den Boer;
lently 1994 Taylor;
lently 1994 Bierbrauer
on Kabatianskii Smeets)

prime number p & 2128

ssages m as polynomials

noz? + m3:c3 + - -+ with

m modulo p,z — 7
IS a uniform random

of {0,1,..., p—1}; e,

M7 +mor?+- - mod D.

“hash127": 32-bit m;'s,
p =212 _1 (1999 Bernstein)

"PolyR": 64-bit m;'s,
p = 20% _ 50: re-encode m;’s

264 _ 1 run twice

between p and
to achieve reasonable security.

(2000 Krovetz Rogaway)

"Poly1305": 128-bit m;’s,
p = 2130 _ 5. (2002 Bernstein,
fully developed in 2004—-2005)

“CWC": 96-bit m;'s, p = 2127 —1.

(2003 Kohno Viega Whiting)

There ar
build fur
proven
different

Example
(“CBC”
Conjectt
AES, (A
has sma
True if /

(Much s

en Boer:

4 Taylor;

4 Bierbrauer
inskii Smeets)

\ber p ~s 2128

as polynomials

,3:133 + - -+ with

1,..., p—1}.
p—1}.

D, L — T

‘m random

,p—1} e,

27%+--- mod p.

*hash127": 32-bit m;'’s,
p = 2127 — 1. (1999 Bernstein)

"PolyR": 64-bit m;'s,
p = 25% _ 50: re-encode m;'s

264 _ 1- run twice

between p and
to achieve reasonable security.

(2000 Krovetz Rogaway)

"Poly1305": 128-bit m;’s,
p = 2130 _ 5. (2002 Bernstein,
fully developed in 2004—-2005)

“CWC": 96-bit m;'s, p = 2127 —1.

(2003 Kohno Viega Whiting)

There are other w
build functions wif
proven or conjectL
differential probab

Example:

(“CBC": “cipher I
Conjecturally m1,
AES,(AES,(AES,
has small different
True if AES is sec

(Much slower thar

ler
ets)
128

mials

with

"].e.,

nod p.

“hash127": 32-bit m;'s,
p =212 _1 (1999 Bernstein)

"PolyR": 64-bit m;'s,
p = 25% _ 50: re-encode m;’s

264 _ 1 run twice

between p and
to achieve reasonable security.

(2000 Krovetz Rogaway)

"Poly1305": 128-bit m;’s,
p = 2130 _ 5. (2002 Bernstein,
fully developed in 2004—-2005)

“CWC": 96-bit m;'s, p = 2127 —1.

(2003 Kohno Viega Whiting)

There are other ways to
build functions with small
proven or conjectured
differential probabilities.

Example:

(“CBC": “cipher block chait
Conjecturally m1, mo, m3 —
AES,(AES,(AES,(m1)®m;
has small differential probab
True if AES is secure.

(Much slower than Poly130-

*hash127": 32-bit m;'’s,
p = 2127 — 1. (1999 Bernstein)

"PolyR": 64-bit m;'s,
p = 25% _ 50: re-encode m;'s

264

between p and — 1: run twice

to achieve reasonable security.
(2000 Krovetz Rogaway)

"Poly1305": 128-bit m;’s,
p = 2130 _ 5. (2002 Bernstein,
fully developed in 2004—-2005)

“CWC": 96-bit m;'s, p = 2127 —1.

(2003 Kohno Viega Whiting)

There are other ways to
build functions with small
proven or conjectured
differential probabilities.

Example:

(“CBC": “cipher block chaining™)
Conjecturally m1, mo, m3 —
AES,(AES,(AES,(m1)®m>)®m3)
has small differential probabilities.
True if AES is secure.

(Much slower than Poly1305.)

(" 32-bit m; s,
— 1. (1999 Bernstein)

. 04-bit m;'s,
— 59; re-encode m;'s

264 _ 1 run twice

» and
ve reasonable security.

rovetz Rogaway)

05" 128-bit m;'s,
' — 5. (2002 Bernstein,
eloped in 2004—-2005)

06-bit m;'s, p = 2127 —1.

ohno Viega Whiting)

There are other ways to
build functions with small
proven or conjectured
differential probabilities.

Example:

(“CBC": “cipher block chaining™)
Conjecturally m1, mo, m3 —
AES,(AES,(AES,(m1)®m>)dm3)
has small differential probabilities.
True if AES is secure.

(Much slower than Poly1305.)

Example
Conjectt
AES,(1,
AES,(2,
AES, (3,
has sma

(Even sl

Example
IS conjec
small co

(Faster 1
but not
and “sm

L mz-'s,
09 Bernstein)

’,Z"S,

ncode m;'s

L— 1: run twice
ble security.
gaway)

oIt m;'s,
02 Bernstein,
2004—-2005)

s, p=21%"_1

a Whiting)

There are other ways to
build functions with small
proven or conjectured
differential probabilities.

Example:

(“CBC": “cipher block chaining™)
Conjecturally m1, mo, m3 —
AES,(AES,(AES,(m1)®m>)®m3)
has small differential probabilities.
True if AES is secure.

(Much slower than Poly1305.)

Example: (1970 Z
Conjecturally m,
AES,(1,m1) &
AES,(2,m>) &
AES,(3, m3)

has small different

(Even slower.)

Example: m — M
Is conjectured to |
small collision prol

(Faster than AES,

but not as fast as
and “‘small” 1s dek

S
twice
LY.

N,
)
27 _4

There are other ways to
build functions with small
proven or conjectured
differential probabilities.

Example:

(“CBC": “cipher block chaining™)
Conjecturally m1, mo, m3 —
AES,(AES,(AES,(m1)®m>)dm3)
has small differential probabilities.
True if AES is secure.

(Much slower than Poly1305.)

Example: (1970 Zobrist, ad:
Conjecturally m1, mo, m3 —
AES,(1,m1) &

AES, (2, m>) &

AES,(3, m3)

has small differential probab

(Even slower.)

Example: m — MD5(r, m)
Is conjectured to have
small collision probabilities.

(Faster than AES,
but not as fast as Poly1305,
and “small” is debatable.)

There are other ways to
build functions with small
proven or conjectured
differential probabilities.

Example:

(“CBC": “cipher block chaining™)
Conjecturally m1, mo, m3 —
AES,(AES,(AES,(m1)®m>)®m3)
has small differential probabilities.
True if AES is secure.

(Much slower than Poly1305.)

Example: (1970 Zobrist, adapted)
Conjecturally m1, mo, m3 —
AES,(1,m1) &

AES,(2,m>) &

AES,(3, m3)

has small differential probabilities.

(Even slower.)

Example: m — MD5(r, m)
Is conjectured to have
small collision probabilities.

(Faster than AES,
but not as fast as Poly1305,
and “small” is debatable.)

e other ways to
\ctions with small
r conjectured

lal probabilities.

-~ “cipher block chaining”)
irally m1, mo, m3 —
ES,(AES,(m1)®mo)®m3)
Il differential probabilities.
\ES is secure.

lower than Poly1305.)

Example: (1970 Zobrist, adapted)
Conjecturally m1, mo, m3 —
AES,(1,m1) &

AES, (2, m>) &

AES,(3, m3)

has small differential probabilities.

(Even slower.)

Example: m — MD5(r, m)
Is conjectured to have
small collision probabilities.

(Faster than AES,
but not as fast as Poly1305,
and “small” is debatable.)

How to

1. Choo
h(m) +
or f(h(r
or f(n,

2. Choo
where tf

(+-diffel
or collisi

e.g., Pol

3. Choo
that see

from uni

ays to
h small
red
lities.

lock chaining”)
mo, m3 —
(ml)EBmQ)EB‘mg)
1al probabilities.

LUreE.

' Poly1305.)

Example: (1970 Zobrist, adapted)
Conjecturally m1, mo, m3 —
AES,(1,m1) &

AES,(2,m>) &

AES,(3, m3)

has small differential probabilities.

(Even slower.)

Example: m — MD5(r, m)
Is conjectured to have
small collision probabilities.

(Faster than AES,
but not as fast as Poly1305,
and “small” is debatable.)

How to build your

1. Choose a comk
h(m) + f(n) or A
or f(h(m))—wors
or f(n, h(m))—b

2. Choose a randc
where the appropr
(+-differential or

or collision or colli
e.g., Poly1305...

3. Choose a randc
that seems indistir
from uniform: e.g

ilities.

)

Example: (1970 Zobrist, adapted)
Conjecturally m1, mo, m3 —
AES,(1,m1) &

AES, (2, m>) &

AES,(3, m3)

has small differential probabilities.

(Even slower.)

Example: m — MD5(r, m)
Is conjectured to have
small collision probabilities.

(Faster than AES,
but not as fast as Poly1305,
and “small” is debatable.)

How to build your own MAC(

1. Choose a combination m
h(m) + f(n) or hA(m) & f(
or f(h(m))—worse security
or f(n, h(m))—bigger f in|

2. Choose a random functia
where the appropriate proba
(+-differential or @-differen
or collision or collision) is sn

e.g., Poly1305...

3. Choose a random functio
that seems indistinguishable
from uniform: e.g., AES,.

Example: (1970 Zobrist, adapted)
Conjecturally m1, mo, m3 —
AES,(1,m1) &

AES,(2,m>) &

AES,(3, m3)

has small differential probabilities.

(Even slower.)

Example: m — MD5(r, m)
Is conjectured to have
small collision probabilities.

(Faster than AES,
but not as fast as Poly1305,
and “small” is debatable.)

How to build your own MAC

1. Choose a combination method:
h(m) + f(n) or h(m) & f(n)
or f(h(m))—worse security—
or f(n, h(m))—bigger f input.

2. Choose a random function A
where the appropriate probability
(+-differential or @-differential
or collision or collision) is small:

e.g., Poly1305...

3. Choose a random function f
that seems indistinguishable
from uniform: e.g., AES,.

. (1970 Zobrist, adapted)
irally m1, mo, m3 —

Il differential probabilities.

ower.)

. m — MD5(r, m)
tured to have
llision probabilities.

han AES,
as fast as Poly1305,
all” is debatable.)

How to build your own MAC

1. Choose a combination method:

h(m) + f(n) or h(m) & f(n)
or f(h(m))—worse security—
or f(n, h(m))—bigger f input.

2. Choose a random function A
where the appropriate probability
(+-differential or @-differential
or collision or collision) is small:

e.g., Poly1305.,..

3. Choose a random function f
that seems indistinguishable
from uniform: e.g., AES,.

4. Optic
Generat:
e.g., k=
or k=N

many m

5. Choo
for your

6. Puti
7. Publi

obrist, adapted)
mo, m3 —

1al probabilities.

D5(r, m)
1ave
vabilities.

Poly1305,
atable.)

How to build your own MAC

1. Choose a combination method:

h(m) + f(n) or h(m) @ f(n)
or f(h(m))—worse security—
or f(n, h(m))—bigger f input.

2. Choose a random function A
where the appropriate probability
(+-differential or @-differential
or collision or collision) is small:

e.g., Poly1305...

3. Choose a random function f
that seems indistinguishable
from uniform: e.g., AES,.

4. Optional comp
Generate k, r fron
e.g., k = AES(0)
or k = MD5(s), r
many more possib

5. Choose a Goog
for your MAC.

6. Put it all toget

7. Publish!

pted)

lities.

How to build your own MAC

1. Choose a combination method:

h(m) + f(n) or h(m) & f(n)
or f(h(m))—worse security—
or f(n, h(m))—bigger f input.

2. Choose a random function A
where the appropriate probability
(+-differential or @-differential
or collision or collision) is small:

e.g., Poly1305...

3. Choose a random function f
that seems indistinguishable
from uniform: e.g., AES,.

4. Optional complication:
Generate k, r from a shorter
e.g., k = AES4(0), r = AES
or k = MD5(s), r = MD5(s
many more possibilities.

5. Choose a Googleable nan
for your MAC.

6. Put it all together.

7. Publish!

How to build your own MAC

1. Choose a combination method:

h(m) + f(n) or h(m) @ f(n)
or f(h(m))—worse security—
or f(n, h(m))—bigger f input.

2. Choose a random function A
where the appropriate probability
(+-differential or @-differential

or collision or collision) is small:
e.g., Poly1305...

3. Choose a random function f
that seems indistinguishable
from uniform: e.g., AES,.

4. Optional complication:

Generate k, r from a shorter key;
e.g., k = AES;(0), » = AES;(1);
or k = MD5(s), r = MD5(s & 1);
many more possibilities.

5. Choose a Googleable name
for your MAC.

6. Put it all together.

7. Publish!

build your own MAC

se a combination method:

f(n) or h(m) & f(n)

n))—worse security—
h(m))—Dbigger f input.

se a random function h
e appropriate probability
rential or @-differential
on or collision) is small:

y1305...

se a random function f
ms Indistinguishable
form: e.g., AES,.

4. Optional complication:
Generate k, r from a shorter key;

or k = MD5(S), r —= MD5(3 D]-)1

many more possibilities.

5. Choose a Googleable name
for your MAC.

6. Put it all together.

7. Publish!

Example
1. Coml
2. Low
AES,
Unpr:
Optic
Nam:e
EMA
AES,
7. (200(

S oA W

own MAC

ination method:

(m) & f(n)

e security—
gger f input.

m function h
late probability
P-differential
sion) is small:

m function f

1guishable
, AES,.

4. Optional complication:

Generate £, r from a shorter key;

or k = MD5(S), T — MD5(S)]-)1

many more possibilities.

5. Choose a Googleable name
for your MAC.

6. Put it all together.

7. Publish!

Example:

1
2

S O RW

Combination:

o

Low collision p
AES,(AES,(m
Unpredictable:

. Optional comp

Name: “EMAC
EMAC ,(m1,9
AES, (AES, (Al

. (2000 Petrank

bility
1al
rall:

4. Optional complication:
Generate k, r from a shorter key;

or k = MD5(S), r —= MD5(3 D]-)1

many more possibilities.

5. Choose a Googleable name
for your MAC.

6. Put it all together.

7. Publish!

Example:

1
2

S oA W

. Combination: f(h(m)).
. Low collision probability:
AEST(AEST(ml) D mz).
Unpredictable: AES,.
Optional complication: N
Name: “EMAC."

EMACy ,(m1, m2) =
AES;(AES,(AES,(m1)&
(2000 Petrank Rackoff)

4. Optional complication:
Generate &, r from a shorter key;

or k = MD5(S), T — MD5(S)]-)1

many more possibilities.

5. Choose a Googleable name
for your MAC.

6. Put it all together.

7. Publish!

Example:

1
2

o G AW

. Combination: f(h(m)).

. Low collision probability:
AEST(AEST(ml) D mz).
Unpredictable: AES,.

. Optional complication: No.
Name: “EMAC.”

EMACy, ,(m1, m2) =
AES;(AES,(AES,(m1)®m>)).
. (2000 Petrank Rackoff)

nal complication:
2 k, r from a shorter key;

- AES;(0), 7 = AES,(1):

AD5(s), r = MD5(s @ 1);

ore possibilities.

se a Googleable name
MAC.

t all together.

sh!

Example:

1. Combination: f(h(m)).

2. Low collision probability:
AEST(AEST(ml) D mz).
Unpredictable: AES,.
Optional complication: No.
Name: “EMAC.”
EMAC, - (m1, m2) =

S oA W

AES,. (AES,(AES,(m1)®m>)).

7. (2000 Petrank Rackoff)

Example
MD5(k,

"HMAC
plus the

(1996 B
claiming
treatmet

Stronget
Stronget
MD5(k,
Wow, |’y
new MA

Ication:
1 a shorter key:;

= MD5(s & 1);

lities.

leable name

her.

Example:

1. Combination: f(h(m)).

2. Low collision probability:
AEST(AEST(ml) D mz).
Unpredictable: AES,.

. Optional complication: No.
Name: “EMAC.”

EMAC, (1, m2) =

S O RW

AES,. (AES,(AES,(m1)®m>)).

7. (2000 Petrank Rackoff)

Example: “NMAC
MD5(&, MD5(r, m

"HMAC-MD5" is
plus the optional «

(1996 Bellare Can
claiming “the first

treatment of the s

Stronger: MD5(k,
Stronger and faste
MD5(k, n, Poly13(
Wow, |'ve just inv
new MACs! Time

NE

Example:

1. Combination: f(h(m)).

2. Low collision probability:
AEST(AEST(ml) D mz).
Unpredictable: AES,.
Optional complication: No.
Name: “EMAC.”

EMAC, ,(m1, mo) =

S oA W

AES,. (AES,(AES,(m1)®m>)).

7. (2000 Petrank Rackoff)

Example: "NMAC-MD5" is
MD5(k, MD5(r, m)).

"HMAC-MD5" is NMAC-M
plus the optional complicati

(1996 Bellare Canetti Krawc
claiming “the first rigorous
treatment of the subject”)

Stronger: MD5(k, n, MD5(7
Stronger and faster:
MD5(k, n, Poly1305,.(m)).
Wow, |'ve just invented two
new MACs! Time to publist

Example:

1.
2.

o oA W

Combination: f(h(m)).
Low collision probability:

. Unpredictable: AES,.
. Optional complication: No.

Name: “"EMAC.”
EMACy, ,(m1, ms) =

. (2000 Petrank Rackoff)

Example: "NMAC-MD5" is
MD5(k, MD5(r, m)).

"HMAC-MD5" is NMAC-MD5
plus the optional complication.

(1996 Bellare Canetti Krawczyk,
claiming “the first rigorous

treatment of the subject”)

Stronger: MD5(k, n, MD5(r, m)).
Stronger and faster:

MD5(k, n, Poly1305,.(m)).
Wow, |'ve just invented two
new MACs! Time to publish!

dination: f(h(m)).
collision probability:
.(AEST(ml) D mz).
edictable: AES,.

ynal complication: No.
;. "EMAC.”
Cir(mi,mp) =

(AES,(AES;(m1)®m2)).

) Petrank Rackoff)

Example: "NMAC-MD5" is
MD5(k, MD5(r, m)).

"HMAC-MD5" is NMAC-MD5
plus the optional complication.

(1996 Bellare Canetti Krawczyk,

claiming “the first rigorous
treatment of the subject”)

Stronger: MD5(k, n, MD5(r, m)).

Stronger and faster:

MD5(k, n, Poly1305,.(m)).
Wow, |'ve just invented two
new MACs! Time to publish!

State-of

Cycles p
authenti

Att

Pentiun

Pentiul
SPARC(

PPC

bytes/

UMAC 1

Similar:

f(h(m)).

-obability:
1) ® my).
AES,.

ication: No.

Rackoff)

Example: "NMAC-MD5" is
MD5(k, MD5(r, m)).

"HMAC-MD5"

is NMAC-MD5

plus the optional complication.

(1996 Bellare Canetti Krawczyk,

claiming “the -

Irst rigorous

treatment of t

Stronger: MD5(k, n, MD5(r, m)).

ne subject”)

Stronger and faster:
MD5(k, n, Poly1305,.(m)).

Wow, I've just
new MAGCs! T

invented two
iIme to publish!

State-of-the-art M

Cycles per byte to
authenticate 1024

Poly
1305
-AES

Athlon
Pentium M
Pentium 4
SPARC 111

PPC G4

3.75
4.50
5.33
5.47
8.27

bytes /key

32

UMAC really likes
Similar: VMAC lil

lo.

Example: "NMAC-MD5" is
MD5(k, MD5(r, m)).

"HMAC-MD5" is NMAC-MD5
plus the optional complication.

(1996 Bellare Canetti Krawczyk,

claiming “the first rigorous
treatment of the subject”)

Stronger: MD5(k, n, MD5(r, m)).

Stronger and faster:

MD5(k, n, Poly1305,.(m)).
Wow, |'ve just invented two
new MACs! Time to publish!

State-of-the-art MACs

Cycles per byte to
authenticate 1024-byte pack

Poly| UMAC
1305 -128
-AES

Athlon| 3.75 (.38
Pentium M| 4.50 3.48
Pentium 4| 5.33 3.12
SPARC IIl| 5.47| 51.06
PPC G4| 8.27| 21.72

bytes/key|[32 |1600

UMAC really likes the P4.
Similar: VMAC likes Athlon

Example: "NMAC-MD5" is State-of-the-art MACs
MD5(k, MD5(r, m)).

Cycles per byte to

"HMAC-MD5" is NMAC-MD5 authenticate 1024-byte packet:
plus the optional complication. Poly| UMAC
(1996 Bellare Canetti Krawczyk, flgg -128
claiming “the first rigorous Athion _3 -E =33
treatment of the subject”) Pentium M 4:50 8:48
Stronger: MD5(k, n, MD5(r, m)). Pentium 4 5.33 3.12

SPARC IIl| 5.47| 51.06

Stronger and faster: oPC G4l 897 2179

Wow, |'ve just invented two
new MACs! Time to publish! UMAC really likes the P4,

Similar: VMAC likes Athlon 64.

: "NMAC-MD5" is
MD5(r, m)).

-MD5" is NMAC-MD5
optional complication.

ellare Canetti Krawczyk,
“the first rigorous
1t of the subject”)

. MD5(k, n, MD5(r, m)).

~and faster:

n, Poly1305..(m)).
/e just invented two
Cs! Time to publish!

State-of-the-art MACs

Cycles per byte to

authenticate 1024-byte packet:

Poly| UMAC
1305 -128

-AES
Athlon| 3.75 7.38
Pentium M| 4.50 8.48
Pentium 4| 5.33 3.12
SPARC Il 5.47| 51.06
PPC G4| 8.27| 21.72

bytes /key |32 |1600

UMAC really likes the P4.

Similar: VMAC likes Athlon 64.

Some in

1. Imple
Poly130!
split Intc
convenle
UMAC
and suff

2. Key :
Poly130!
of simul
and rem

keys are
UMAC 1

-MDb" s
).

NMAC-MD5
omplication.

etti Krawczyk,
rigorous
ubject”)

n, MD5(r, m)).

\r
)5,.(m)).
ented two
to publish!

State-of-the-art MACs

Cycles per byte to

authenticate 1024-byte packet:

Poly| UMAC
1305 -128

-AES
Athlon| 3.75 7.38
Pentium M| 4.50 8.48
Pentium 4| 5.33 3.12
SPARC [Il| 5.47| 51.06
PPC G4| 8.27| 21.72

bytes /key |32 {1600

UMAC really likes the P4,

Similar: VMAC likes Athlon 64.

Some important s

1. Implementor fle
Poly1305 uses 128
split into whatevel
convenient for the
UMAC uses P4-si:

and suffers on oth

2. Key agility.

Poly1305 can fit t
of simultaneous ke
and remains fast e

keys are out of ca
UMAC needs big ¢

D5

on.

zyk,

State-of-the-art MACs

Cycles per byte to

authenticate 1024-byte packet:

Poly| UMAC
1305 -128

-AES
Athlon| 3.75 7.38
Pentium M| 4.50 8.48
Pentium 4| 5.33 3.12
SPARC Il 5.47| 51.06
PPC G4| 8.27| 21.72

bytes /key |32 |1600

UMAC really likes the P4,

Similar: VMAC likes Athlon 64.

Some important speed issue

1. Implementor flexibility.
Poly1305 uses 128-bit intege
split into whatever sizes are
convenient for the CPU.
UMAC uses P4-size integers
and suffers on other CPUs.

2. Key agility.

Poly1305 can fit thousands
of simultaneous keys into ca
and remains fast even when

keys are out of cache.
UMAC needs big expanded

State-of-the-art MACs

Cycles per byte to
authenticate 1024-byte packet:

Poly| UMAC
1305 -128
-AES

Athlon| 3.75 (.38
Pentium M| 4.50 3.48
Pentium 4| 5.33 3.12
SPARC IIl| 5.47| 51.06
PPC G4| 8.27| 21.72

bytes /key |32 {1600

UMAC really likes the P4,
Similar: VMAC likes Athlon 64.

Some important speed issues:

1. Implementor flexibility.
Poly1305 uses 128-bit integers,
split into whatever sizes are
convenient for the CPU.
UMAC uses P4-size integers
and suffers on other CPUs.

2. Key agility.

Poly1305 can fit thousands

of simultaneous keys into cache,
and remains fast even when
keys are out of cache.

UMAC needs big expanded keys.

the-art MACs

er byte to

cate 1024-byte packet:
Poly| UMAC
1305 -128
-AES

lon| 3.75| 7.38

y M| 4.50 3.48

m 4| 5.33 3.12

1| 5.47] 51.06

G4| 8.27| 21.72

key|[32 |1600

eally likes the P4.

VMAC likes Athlon 64.

Some important speed issues:

1. Implementor flexibility.
Poly1305 uses 128-bit integers,
split into whatever sizes are
convenient for the CPU.
UMAC uses P4-size integers
and suffers on other CPUs.

2. Key agility.
Poly1305 can fit thousands

of simultaneous keys into cache,

and remains fast even when
keys are out of cache.

UMAC needs big expanded keys.

3. Num

den Boe
(m1r +

Each ch

Gilbert-I
mir1 +

Each ch

Winogra
(mq + 7
Each ch

ACs

-byte packet:

UMAC
-128

(.33
8.48
3.12
51.06
21.72

1600

the P4.

es Athlon 64.

Some important speed issues:

1. Implementor flexibility.
Poly1305 uses 128-bit integers,
split into whatever sizes are
convenient for the CPU.
UMAC uses P4-size integers
and suffers on other CPUs.

2. Key agility.
Poly1305 can fit thousands

of simultaneous keys into cache,

and remains fast even when
keys are out of cache.

UMAC needs big expanded keys.

3. Number of mul

den Boer et al.: P
(mir + mo)r + -

Each ¢
Gilbert

nunk: mult

-MacWilliar

mir1 + Mm27o + -

Each ¢

nunk: mult

Winograd; UMAC

(m1 +
Each ¢

r1)(mo +1
hunk: 0.5 r

et:

04.

Some important speed issues:

1. Implementor flexibility.
Poly1305 uses 128-bit integers,
split into whatever sizes are
convenient for the CPU.
UMAC uses P4-size integers
and suffers on other CPUs.

2. Key agility.

Poly1305 can fit thousands

of simultaneous keys into cache,
and remains fast even when
keys are out of cache.

UMAC needs big expanded keys.

3. Number of multiplication

den Boer et al.; Poly1305:
(mir + mo)r + - - -.

Each ¢
Gilbert

nunk: mult, add.

-MacWilliams-Sloane:

mir1 + Mmo27To + - -.

Each ¢

nunk: mult, add.

Winograd; UMAC; VMAC.:

(m1 +
Each ¢

Tl)(mg —+ ?"2) -+ -
hunk: 0.5 mults, 1.5

Some important speed issues: 3. Number of multiplications.

1. Implementor flexibility. den Boer et al.; Poly1305:
Poly1305 uses 128-bit integers, (mir + mo)r + - --.
split into whatever sizes are Each chunk: mult, add.

convenient for the CPU.
UMAC uses P4-size integers
and suffers on other CPUs.

Gilbert-MacWilliams-Sloane:
miT1 + MaTo + - -.
Each chunk: mult, add.

2. Key agility.
Poly1305 can fit thousands
of simultaneous keys into cache,

Winograd; UMAC; VMAC.:

(m1+71)(mo+72)+---.

| Each chunk: 0.5 mults, 1.5 adds.
and remains fast even when

keys are out of cache.
UMAC needs big expanded keys.

portant speed Issues:

mentor flexibility.

h uses 128-bit Integers,
> whatever sizes are
nt for the CPU.

1ses P4-size integers
ers on other CPUs.

gility.

5 can fit thousands
taneous keys into cache,
ains fast even when

out of cache.

1eeds big expanded keys.

3. Number of multiplications.

den Boer et al.; Poly1305:
(mir + mo)r + - - -.

Each chunk: mult, add.

Gilbert-MacWilliams-Sloane:
miri + moro + - - -

Each chunk: mult, add.

Winograd; UMAC; VMAC.:

(m1+7r1)(mo+12)+---.
Each chunk: 0.5 mults, 1.5 adds.

Does sir
0.5 mult

Yes!

Another

(((m1 +

(m3 +

times 7.

"MACI(

need ISSUES:

x1bility.

-bit Integers,
- Slzes are
CPU.

e Integers
er CPUs.

housands

ys Into cache,

ven when

“he.

xpanded keys.

3. Number of multiplications.

den Boer et al.; Poly1305:
(mir + mo)r + - - -.
Each chunk: mult, add.

Gilbert-MacWilliams-Sloane:
miT1 + MaTo + - - -.
Each chunk: mult, add.

Winograd; UMAC; VMAC.:

(m1+71)(mo+72)+---.
Each chunk: 0.5 mults, 1.5 adds.

Does small key r
0.5 mults per mes

Yes!

Another old trick
(((m1 +7)(m2 +
(m3 +1))(ma 4
((ms +7)(me
(m7 +1)))(ms -
times a final nonz

times 7.

"MAC1071,” com

2rS,

che,

keys.

3. Number of multiplications.

den Boer et al.; Poly1305:

(mir + mo)r + - - -.

Each chunk: mult, add.

Gilbert-MacWilliams-Sloane:

mir1 + Mmo27To + - -.

Each chunk: mult, add.

Winograd; UMAC; VMAC.:

(m1+7r1)(mo+12)+---.
Each chunk: 0.5 mults, 1.5 adds.

Does small key r allow
0.5 mults per message chun

Yes!

Another old trick of Winogr
(((m1 +7)(ma +7%) +
(m3 +7))(ma +71%) +
((ms +7)(me + 7°)
(m7 +7)))(mg +7°) + -
times a final nonzero m,

times 7.

"MAC1071,” coming soon.

3. Number of multiplications.

den Boer et al.; Poly1305:
(mir + mo)r + - - -.
Each chunk: mult, add.

Gilbert-MacWilliams-Sloane:
miT1 + MaTo + - - -.
Each chunk: mult, add.

Winograd; UMAC; VMAC.:

(m1+71)(mo+72) +---.
Each chunk: 0.5 mults, 1.5 adds.

Does small key r allow
0.5 mults per message chunk?

Yes!

Another old trick of Winograd:
(((m1 +7)(ma +7%) +
(m3 +7))(ma +1%) +
((ms +7)(me + 7°)
(m7 +7)))(mg +7°) + -
times a final nonzero m,,

times 7.

"MAC1071,” coming soon.

