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e.g., 240881099091 =

240881 - 1000000 + 99091 =
240881(—3) 4+ 99091 =

— 722643 4 99091 =

—623552.

Easily adjust to range

{0,1,..., p—1}

by adding/subtracting a few p's.
(Beware timing attacks!)

Speedup: Delay the adjustment;
extra p's won't damage
subsequent field operations.

Main work is multiplication.
For each 6-digit message ch
have to do one multiplicatio
of the 6-digit secret r

into an accumulator mod p.

Scaled up for serious securit
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For each 128-bit message ct
have to do one multiplicatio
of a 128-bit secret r

into an accumulator mod 2!
~ b cycles per message byte
depending on the CPU.



Reducing mod 1000003 is easy:
e.g., 240831099091 =

240881 - 1000000 + 99091 =
240881(—3) 4+ 99091 =

— 722643 4 99091 =

—623552.

Easily adjust to range

{0,1,..., p—1}

by adding/subtracting a few p's.
(Beware timing attacks!)

Speedup: Delay the adjustment;
extra p's won't damage
subsequent field operations.

Main work i1s multiplication.

For each 6-digit message chunk,
have to do one multiplication
of the 6-digit secret r

into an accumulator mod p.

Scaled up for serious security:
“Poly1305" uses p = 2130 — 5.
For each 128-bit message chunk,
have to do one multiplication

of a 128-bit secret r
into an accumulator mod 213V — 5
~ b cycles per message byte,
depending on the CPU.
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Main work is multiplication.

For each 6-digit message chunk,
have to do one multiplication
of the 6-digit secret r

into an accumulator mod p.

Scaled up for serious security:
“Poly1305" uses p = 2130 — 5.
For each 128-bit message chunk,
have to do one multiplication

of a 128-bit secret r

into an accumulator mod 2130 — 5.

~ b cycles per message byte,
depending on the CPU.

Security analysis

Attacker’s goal;

Find n', m/, a’ such that
m' #m, but o’ =

(m'(r) mod p)+s,, mod 10
Here m/(z) = 5, m'[i]z®.

Obvious attack:
Choose any m' # m1.

Choose uniform random a'.
Success chance 1/1000000.

Can repeat attack.
Each forgery has chance

1/1000000 of being accepte



Main work is multiplication.

For each 6-digit message chunk,
have to do one multiplication
of the 6-digit secret r

into an accumulator mod p.

Scaled up for serious security:
“Poly1305" uses p = 2130 — 5
For each 128-bit message chunk,
have to do one multiplication

of a 128-bit secret r

into an accumulator mod 2130 — 5.

~ b cycles per message byte,
depending on the CPU.

Security analysis

Attacker’s goal:

Find n', m/, a’ such that
m' #m, but o’ =
(m'(r) mod p)+s,,; mod 1000000.
Here m/(z) = 5, m'[1]z*.

Obvious attack:
Choose any m' # m1.

Choose uniform random a'.
Success chance 1/1000000.

Can repeat attack.
Each forgery has chance

1/1000000 of being accepted.
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Security analysis

Attacker’'s goal;

Find n', m/, a’ such that

m' #m, but o’ =

(m'(r) mod p)+s,, mod 1000000.
Here m/(z) = 5, m'[i]z®.

Obvious attack:
Choose any m' # m1.

Choose uniform random a'.
Success chance 1/1000000.

Can repeat attack.
Each forgery has chance

1/1000000 of being accepted.

More subtle attack:

Choose m' # m1 so that
the polynomial m'(z) — mq
has 5 distinct roots

z € {0,1,...,999999)
modulo p. Choose o' = a.

e.g. m1 = (100,0,0,0,0),
m' = (125,1,0,0,1):

m'(z) — mi(z) = z° + z°
which has five roots mod p:
0,299012, 334447,631403, 7

Success chance 5/1000000.



Security analysis

Attacker’'s goal:

Find n', m/, a’ such that

m' #m, but o’ =

(m'(r) mod p)+s,, mod 1000000.
Here m/(z) = 5, m'[1]z*.

Obvious attack:
Choose any m' # m1.

Choose uniform random a'.
Success chance 1/1000000.

Can repeat attack.
Each forgery has chance

1/1000000 of being accepted.

More subtle attack:

Choose m' # m1 so that

the polynomial m'(z) — m1(z)
has 5 distinct roots

z € {0,1,...,999999)

modulo p. Choose o' = a.

e.g. mp = (100,0,0,0,0),

m' = (125,1,0,0,1):

m!'(z) — m1(z) = z° + 2 + 25z
which has five roots mod p:
0,299012, 334447,631403, 735144.

Success chance 5/1000000.
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More subtle attack:
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has 5 distinct roots

z € {0,1,...,999999)

modulo p. Choose o' = a.

e.g. mi1 = (100,0,0,0,0),
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m!'(z) — m1(z) = z° + 2 + 25z
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More subtle attack:

Choose m' # m1 so that

the polynomial m/(z) — m1(z)
has 5 distinct roots

z € {0,1,...,999999)

modulo p. Choose o' = a.

e.g. mi1 = (100,0,0,0,0),

m' = (125,1,0,0,1):

m'(z) — mi(z) = > + z° + 25z
which has five roots mod p:

0,299012, 334447, 631403, 735144.

Success chance 5/1000000.

Actually, success chance
can be above 5/1000000.
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(m'(z) — m1(z) — 1000000



More subtle attack:

Choose m' # m1 so that

the polynomial m/(z) — m1(z)
has 5 distinct roots

z € {0,1,...,999999)

modulo p. Choose o' = a.

e.g. mp = (100,0,0,0,0),

m' = (125,1,0,0,1):

m!'(z) — m1(z) = z° + 2 + 25z
which has five roots mod p:

0,299012, 334447, 631403, 735144.
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can be above 5/1000000.
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then a forgery (1, m’, a1) with
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also succeeds for r = 33488b;
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Reason: 334885 is a root of
m'(z) — m1(z) + 1000000.

Can have as many as 15 roots
of (m'(z) — mi(z)) -

(m'(z) — m1(z) + 1000000) -
(m'(z) — m1(z) — 1000000).
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then a forgery (1, m/, a1) with
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success chance 6/1000000.
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Actually, success chance
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Example: If m1(334885) mod p
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m!(z) = mi(z) + z°> + z° + 25z
also succeeds for r = 334885;
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Can have as many as 15 roots
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Do better by varying a'?

No. Easy to prove: Every choice
of (n',m',a') with m' # m,,
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Underlying fact: < 15 roots
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Warning: very easy to break
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(mp[l] + - - - + mp[5]r* mod p)
+ s, mod 1000000:

solve m'(z) — mi(z) = a' — a1.
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Do better by varying a'?

No. Easy to prove: Every choice
of (n',m',a’) with m' #£ m.,
has chance < 15/1000000

of being accepted by receiver.

Underlying fact: < 15 roots

of (m'(z) — mi(z) —a' +aq) -

(m'(z) —mi(z) —a' + a1 +10°) -
(m'(z) — m1(z) — o’ + a1 — 10°).

Warning: very easy to break

the oversimplified authenticator

(mp[l] + - + mp[5]r* mod )
+ s, mod 1000000:

solve m'(z) — mi(z) = a' — a1.
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Poly1305 uses 128-bit 7's,
with 22 bits cleared for spee
Adds s, mod 2128,
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Each forgery succeeds for
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with probability
>1-8DJ[L/16] /2100
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Do better by varying a'?

No. Easy to prove: Every choice
of (n',m',a') with m' # m,,
has chance < 15/1000000

of being accepted by receiver.

Underlying fact: < 15 roots

of (m'(z) — mi(z) —a' + a7) -

(m'(z) —mi(z) — a’ + a1 +10°) -
(m'(z) — m1(z) — a’' + a1 — 10°).

Warning: very easy to break

the oversimplified authenticator

(mn[l] + - - + mp[5]r* mod p)
+ s, mod 1000000:

solve m'(z) — mi(z) = a' — a1.

Scaled up for serious security:

Poly1305 uses 128-bit r's,
with 22 bits cleared for speed.
Adds s, mod 2123,

Assuming < L-byte messages:

Each forgery succeeds for
< 8|L/16] choices of r.
Probability < 8 [L/16] /219

D forgeries are all rejected
with probability
>1-8DJ[L/16] /2100,

e.g. 2°4 forgeries, L = 1536:
Prlall rejected] > 0.9999999998.
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Scaled up for serious security:

Poly1305 uses 128-bit r's,
with 22 bits cleared for speed.
Adds s, mod 2128,

Assuming < L-byte messages:

Each forgery succeeds for
< 8|L/16] choices of r.
Probability < 8 [L/16] /219
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with probability
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e.g. 2%4 forgeries, L = 1536:

Prlall rejected] > 0.9999999998.
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Scaled up for serious security:

Poly1305 uses 128-bit r's,

with 22 bits cleared for speed.

Adds s,, mod 2128,

Assuming < L-byte messages:

Each forgery succeeds for
< 8|L/16] choices of r.
Probability < 8 [L/16] /219
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e.g. 2°4 forgeries, L = 1536:

Prlall rejected] > 0.9999999998.
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for variable-length messages,
if different messages are
different polynomials mod ».

Split string into 16-byte chunks,
maybe with smaller final chunk;
append 1 to each chunk;

view as little-endian integers
in {1,2,3,...,2199},

Multiply first chunk by r,

add next chunk, multiply by r,

etc., last chunk, multiply by 7,
mod 2130 — 5, add s,, mod 2123
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Can replace one-time pad
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Typical stream cipher:
AES in counter mode.
Sender, receiver share (r, k)

where k is 16-byte AES key;
compute s, = AES,(n).

Security proof breaks down
since sy, s are dependent,
but can still prove that
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implies attack on AES.
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m += j; mlen -= j;

h = ((h + ¢c) * rbar) % p;

+

unsigned char aeskn[16];

aes (aeskn,k,n);

for (j = 0;j < 16;++j)

h += ((mpz_class) aeskn[j]) << (8 * j);
for (j = 0;j < 16;++j) {
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"Hasn't MD5 been broken?”
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with MD5(k,n) = MD5(&', n').
(2004 Wang)

Still not obvious how to predict
n — MDb5(k, n) for secret k.

We know AES collisions too!

Many other stream ciphers
are unbroken, faster than AES.

Alternatives to +

Use - -- @ AES,(n)

instead of - - + AES,(n)?

No! Destroys security analysis;
might allow successtul forgeries
even if AES is secure.

Use AES,(---), omitting n?
No! Broken by known attacks

using < 204 Juthenticators.

But ok for small # messages.

Use Salsa20(k,n,---)?
Seems to be massive overkill.



stream cipher:
- MD5(k,n).
at slower than AES.

MD5 been broken?”
(k,mn), (k',n") are known
)5(k, n) = MD5(k', n').
lang)

obvious how to predict

)5(k, n) for secret k.
v AES collisions too!

her stream ciphers
oken, faster than AES.

Alternatives to +

Use - -- @ AES,(n)

instead of - -- + AES,(n)?

No! Destroys security analysis;
might allow successtul forgeries
even if AES is secure.

Use AES,(---), omitting n?
No! Broken by known attacks

using < 204 Juthenticators.

But ok for small # messages.

Use Salsa20(k,n,---)?
Seems to be massive overkill.

Alternat

Notatior
(m(r) m

For all d
Pr[Poly:
Poly

“Small ¢

For all ¢
and all ]
Pr[Poly:

Poly:

IS very s
“Small «



pher:

1).
than AES.

1 broken?”

,n') are known
- MD5(k', n').

ow to predict
r secret k.
lisions too!

n ciphers
er than AES.

Alternatives to +

Use - -- @ AES,(n)
instead of - - + AES,(n)?
No! Destroys security analysis;

might allow successtul forgeries

even If AES is secure.

Use AES,(---),

But ok for smal

omitting n’?

No! Broken by known attacks
using < 204 Jut

nenticators.

# messages.

Use Salsa20(k,n,---)?
Seems to be massive overkill.

Alternatives to Po

Notation: Polyl3(
(m(r) mod 2130 —

For all distinct me
Pr[Poly1305,(m)

Poly1305,.(m')
“Small collision pr

For all distinct me
and all 16-byte se
Pr[Poly1305,.(m)
Poly1305,.(m')
Is very small.
“Small differential




nown
n').

dict

Alternatives to +

Use - -- @ AES,(n)

instead of - -- + AES,(n)?

No! Destroys security analysis;
might allow successtul forgeries
even if AES is secure.

Use AES,(---), omitting n?
No! Broken by known attacks

using < 204 Juthenticators.

But ok for small # messages.

Use Salsa20(k,n,---)?
Seems to be massive overkill.

Alternatives to Poly1305

Notation: Poly1305,.(m) =
(m(r) mod 2130 — 5) mod 2

For all distinct messages m,

Pr|Po
Po
“Sma

For al
and a
Pr|Po

Po

y1305,(m) =
y1305,.(m')] is very si

| collision probabilities

distinct messages m,
| 16-byte sequences A
y1305,.(m) =
y1305,.(m') + A mod

Is very small.
“Small differential probabilit



Alternatives to +

Use - -- @ AES,(n)

instead of - - + AES,(n)?
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and “small” is debatable.)
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Some important speed issues:

1. Implementor flexibility.
Poly1305 uses 128-bit integers,
split into whatever sizes are
convenient for the CPU.
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and suffers on other CPUs.
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1. Implementor flexibility. den Boer et al.; Poly1305:
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UMAC needs big expanded keys.
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