Efficient arithmetic
on elliptic curves

D. J. Bernstein
University of lllinois at Chicago

Classic question about the
Ditfie-Hellman system:

How quickly can we compute
nth powers mod p?

Assume that someone gives you p;
e.g. p=2%2_5081.

This talk asks

the analogous question

for elliptic-curve Diffie-Hellman:
How quickly can we compute
nth multiples in an
elliptic-curve group?

“Elliptic-curve

scalar multiplication.”

Assume that someone gives you
a field and an elliptic curve.

e.g. NIST P-224: the elliptic curve
y° = 3 — 3z + ag over Z/p.
Here p = 2224 — 2% 4 1

and ag = 18958286285566608
00040866354449392
6415504638096386793
21075787234672564.

e.g. NIST P-256.
e.g. Curve25519.

Your task: Given (z,vy) on curve,
and given integer n > 0,
compute nth multiple of (z, y)
in the elliptic-curve group.

Warning: Answer is not (nz, ny)
unless you're extremely lucky.

Elliptic-curve point addition

Is not vector addition;

(z,y) + (z',v') is almost never
(z+2' y+9).

Can emphasize this by changing
notation: +, @, [n], etc. But
this talk uses simplified notation.

Multiples via additions

Typical recursive formulas:

2P = P+P. 3P =2P+P.

AP =2P+2P. 5P =3P+2P.
6P =3P+3P. TP =5P+2P.
2nP = 7TP+(n—7)P if 4<n<8.
(2n+1)P = 2nP+P if 4<n<8.
(4n+1)P = 4nP+P if 4<n<8.
(4n+3)P = 4nP+3P if 4<n<8.
2nP = nP+nP if 8 < n.

(8n+1)P =8nP+P if 4 < n.

(8n+3)P = 8nP+3P if 4 <n.
(8n+5)P = 8nP+5P if 4 < n.
(8n+7)P =8nP+7P if 4 < n.

This "addition chain”
(“length-3 sliding windows")
uses ~ lgn doublings and

~ 0.2blg n more additions

to compute nP for average n.

e.g. ~ 320 additions for
average n € {O, 1,...,2%0 _ 1}.

Some easy improvements from
fast negation on elliptic curves:
(16n — 7)P = 16mP — 7P, etc.
Also use “endomorphisms’ for
“Koblitz curves,” “GLV curves.”

More complicated methods
replace 0.25 by ~ 1/Iglgn.

Explicit doubling formulas

On curve y? = 23 — 3z + ag:

2(z,y) = (2", y") where
A = (322 — 3)/2y,

' = N\ — 2z,

y' =AMz —2") —v.

[subs etc., 2 squarings,

1 more mult, 1 division.

How do we divide efficiently
in a finite field?

f/g = fgP~2 in prime field Z/p.
Can compute gP—2 with
~ |lg p squarings and

~ (lgp)/lglgp more mults.

e.g. p=2%%4_2% 4 1.
223 squarings, 11 more mults.

More generally, f/g = fg9=2
in any field of size q.

There are faster division methods
(e.g. “Euclid”—Dbeware timing
attacks!); smaller “I/M ratio.”

Special methods for some fields.

Speedup: delay divisions

Division costs many mults
even with fastest division methods.

Save time by delaying divisions.

Naive division-delay method:
Store field elements as fractions
until end of computation.
Divide once before output.

Mult fractions with 2 field mults.
Divide fractions with 2 field mults.
Add fractions with 3 field mults.

Speedup: unify denominators

For elliptic-curve doubling,
have denominator 2y

in A = (3z2 — 3)/2v;
denominator (2y)?

in '/ = M\ — 2z
denominator (2y)3

iny’ =Mz —2z") -y

Subsequent computations will
perform separate computations
on the denomlnators (2v)*, (2y)°
of 2", y"

Save time by manipulating
denominators together.

“Jacobian coordinates”:
Store (z,y, z) to represent
elliptic-curve point (z/2°,y/23).

2(z/2%,y/23) = (2", y") where
A= (3(z/2%)° - 3)/2(y/2°)
— a/2yz with a = 3z° — 32%;
' = X% —2(z/z?%)
= (a® — 8zy°)/(2yz)*;
y' = M(z/2%) —2") - (y/2°)
= (12zy°a — o’ — 8y*) /(2yz)>.

2(z/2% y/2°) = (z2/25,y2/23)
where 2o = 2yz,

a = 3z? — 324,

o = a’ — 8zy?,

Yo = a(dzy® — o) — 8y*.

Easily compute with 6 squarings,
3 more mults: z2, 22, 2%, 42, y*
yz, zy°, a’, a(---).

Also some subs, doublings, etc.

Use fast field arithmetic:
e.g., can delay carries and
reductions in computing y».

Speedup: difference of squares

Can compute 3z2 — 3z% as
3(z — 2°)(z + 2°).

Replace 3 squarings by 1 mult,
1 squaring. Revised total:

4 squarings, 4 more mults.

Note:
322 — 3z% came from 3z?% — 3,
derivative of 3 — 3z + as.

Wouldn't have same speedup
for, e.g., 3 — 5z + ag.

Speedup: f2, 92, 2fq

After computing 2 and g?
can compute 2fg

as (f +9)° — f—g°

In particular:
After computing y2 and 22

can compute 2yz

as (y+ z2)% —y? — 22

Replace 1 mult with 1 squaring.
Revised total: 5 squarings,
3 more mults.

Explicit addition formulas

Similar speedups in formulas
for adding distinct points.

5 squarings, 11 more mults.

Again some opportunities
to delay carries, etc.

Speedup: cache results

In adding (z1/27,y1/23)
to (mg/zg,yg/zg),
compute many intermediates,

including z%,z%.

Often add same point again
to a different point;

can reuse z%, zf.

“Chudnovsky coordinates.”

Speedup: delay fewer divisions?

Faster divisions sometimes justify
delaying fewer divisions.

e.g. Do we really need
fractions for P,3P, 5P, 7P7

Can convert P,3P,5P, 7P

out of Jacobian coordinates
with one division, several mults.
Then save mults In every
addition of P,3P,5P, 7TP.
“Mixed coordinates.”

Sometimes worthwhile,
depending on division speed.

Montgomery coordinates

On elliptic curves with
“Montgomery form”

y2 — 3 + a2:c2 + T,

preferably with small (a> — 2)/4:

n(zi,...) = (Tn/2zn,...) where

21 =1; zo,, = (a:,%n — z,,zn)z;
Z2m:4$mzm($$n—|—a2$mzm‘|—272n);
Zom+1=HTmTm+1—ZmZm+1)";

B 2
2om+1=4TmZm+1—ZmTm1) T1.

Can also figure out v,
or use cryptographic protocols
that ignore .

Assuming (ap — 2)/4 small,
main operations are

4 squarings, 5 more mults
for each bit of n.

Compare to Jacobian coordinates:
each bit of n has
b squarings, 3 more mults,
and on occasion

b more squarings, 11 more mults.

Montgomery form is better
if n is not gigantic.

