Elliptic curves

D. J. Bernstein
University of Illinois at Chicago
Why elliptic-curve cryptography?

Can quickly compute
\[4^n \mod 2^{262} - 5081 \]
given \(n \in \{0, 1, 2, \ldots, 2^{256} - 1\} \).

Similarly, can quickly compute
\[4^{mn} \mod 2^{262} - 5081 \]
given \(n \)
and \(4^m \mod 2^{262} - 5081 \).

“Discrete-logarithm problem”: given \(4^n \mod 2^{262} - 5081 \), find \(n \). Is this easy to solve?
Diffie-Hellman secret-sharing system using $p = 2^{262} - 5081$:

Alice’s secret key m

Alice’s public key $4^m \mod p$

$\{\text{Alice, Bob}\}$’s shared secret $4^{mn} \mod p$

Bob’s secret key n

Bob’s public key $4^n \mod p$

$\{\text{Bob, Alice}\}$’s shared secret $4^{mn} \mod p$

Can attacker find $4^{mn} \mod p$?
Bad news: DLP can be solved at surprising speed! Attacker can find m and n by index calculus.

To protect against this attack, replace $2^{262} - 5081$ with a much larger prime. *Much* slower arithmetic.

Alternative: Elliptic-curve cryptography. Replace $\{1, 2, \ldots, 2^{262} - 5082\}$ with a comparable-size “safe elliptic-curve group.” *Somewhat* slower arithmetic.
An elliptic curve over \mathbb{R}

Consider all pairs of real numbers x, y such that $y^2 - 5xy = x^3 - 7$.

The “points on the elliptic curve $y^2 - 5xy = x^3 - 7$ over \mathbb{R}” are those pairs and one additional point, ∞.

i.e. The set of points is

$$\{(x, y) \in \mathbb{R} \times \mathbb{R} : y^2 - 5xy = x^3 - 7\} \cup \{\infty\}.$$

(\mathbb{R} is the set of real numbers.)
Graph of this set of points:

Don’t forget ∞.
Visualize ∞ as top of y axis.
There is a standard definition of $0, -, +$ on this set of points.

Magical fact: The set of points is a “commutative group”; i.e., these operations $0, -, +$ satisfy every identity satisfied by \mathbb{Z}.

e.g. All $P, Q, R \in \mathbb{Z}$ satisfy $(P + Q) + R = P + (Q + R)$, so all curve points P, Q, R satisfy $(P + Q) + R = P + (Q + R)$.

(\mathbb{Z} is the set of integers.)
Visualizing the group law

\[0 = \infty; \ -\infty = \infty. \]

Distinct curve points \(P, Q \) on a vertical line have \(-P = Q;\)
\[P + Q = 0 = \infty. \]

A curve point \(R \) with a vertical tangent line has \(-R = R;\)
\[R + R = 0 = \infty. \]
Here $-P = Q$, $-Q = P$, $-R = R$:
Distinct curve points \(P, Q, R \) on a line have \(P + Q = -R; \)
\(P + Q + R = 0 = \infty. \)

Distinct curve points \(P, R \) on a line tangent at \(P \) have \(P + P = -R; \)
\(P + P + R = 0 = \infty. \)

A non-vertical line with only one curve point \(P \) has \(P + P = -P; \)
\(P + P + P = 0. \)
Here $P + Q = -R$:

![Diagram showing vector operations]
Here $P + P = -R$:
Curve addition formulas

Easily find formulas for \(+ \) by finding formulas for lines and for curve-line intersections.

\[x \neq x': \quad (x, y) + (x', y') = (x'', y'')\]

where \(\lambda = (y' - y)/(x' - x) \),

\[x'' = \lambda^2 - 5\lambda - x - x', \]

\[y'' = 5x'' - (y + \lambda(x'' - x)).\]

\[2y \neq 5x: \quad (x, y) + (x, y) = (x'', y'')\]

where \(\lambda = (5y + 3x^2)/(2y - 5x) \),

\[x'' = \lambda^2 - 5\lambda - 2x, \]

\[y'' = 5x'' - (y + \lambda(x'' - x)).\]

\[(x, y) + (x, 5x - y) = \infty.\]
An elliptic curve over $\mathbb{Z}/13$

Consider the prime field $\mathbb{Z}/13 = \{0, 1, 2, \ldots, 12\}$ with $-, +, \cdot$ defined mod 13.

The “set of points on the elliptic curve $y^2 - 5xy = x^3 - 7$ over $\mathbb{Z}/13$” is

$$\{ (x, y) \in \mathbb{Z}/13 \times \mathbb{Z}/13 : y^2 - 5xy = x^3 - 7 \} \cup \{\infty\}.$$
Graph of this set of points:

As before, don’t forget ∞.
The set of curve points is a commutative group with standard definition of $0, -, +$. Can visualize $0, -, +$ as before. Replace lines over \mathbb{R} by lines over $\mathbb{Z}/13$.

Warning: tangent is defined by derivatives; hard to visualize.

Can define $0, -, +$ using same formulas as before.
Example of line over $\mathbb{Z}/13$:

Formula for this line: $y = 7x + 9$.
\[P + Q = -R: \]
An elliptic curve over \mathbb{F}_{16}

Consider the non-prime field $(\mathbb{Z}/2)[t]/(t^4 - t - 1) = \{
\begin{align*}
0t^3 + 0t^2 + 0t^1 + 0t^0, \\
0t^3 + 0t^2 + 0t^1 + 1t^0, \\
0t^3 + 0t^2 + 1t^1 + 0t^0, \\
0t^3 + 0t^2 + 1t^1 + 1t^0, \\
0t^3 + 1t^2 + 0t^1 + 0t^0, \\
\vdots \\
1t^3 + 1t^2 + 1t^1 + 1t^0
\end{align*}
\}

of size $2^4 = 16$.
Graph of the “set of points on the elliptic curve $y^2 - 5xy = x^3 - 7$ over $(\mathbb{Z}/2)[t]/(t^4 - t - 1)$”:
Line $y = tx + 1$:
$P + Q = -R:$
More elliptic curves

Can use any field \(k \).

Can use any nonsingular curve
\[
y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6.
\]

“Nonsingular”: no \((x, y) \in k \times k\) simultaneously satisfies
\[
y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6\]
and \(2y + a_1 x + a_3 = 0\)
and \(a_1 y = 3x^2 + 2a_2 x + a_4\).

Easy to check nonsingularity.
Almost all curves are nonsingular when \(k \) is large.
\{(x, y) \in k \times k : \\
y^2 + a_1 xy + a_3 y = \\
x^3 + a_2 x^2 + a_4 x + a_6 \}\cup \\{\infty\}
is a commutative group with standard definition of 0, −, +. Points on line add to 0 with appropriate multiplicity.

Group is usually called “E(k)” where E is “the elliptic curve \\
y^2 + a_1 xy + a_3 y = \\
x^3 + a_2 x^2 + a_4 x + a_6.”

Fairly easy to write down explicit formulas for 0, −, + as before.
Using explicit formulas can quickly compute \(n \)th multiples in \(E(k) \) given \(n \in \{0, 1, 2, \ldots, 2^{256} - 1\} \) and \(\#k \approx 2^{256} \).

(How quickly? We’ll study this later.)

“Elliptic-curve discrete-logarithm problem” (ECDLP): given points \(P \) and \(nP \), find \(n \).

Easy to find curves where ECDLP seems extremely difficult: \(\approx 2^{128} \) operations.
See “Handbook of elliptic and hyperelliptic curve cryptography” for much more information.

Two examples of elliptic curves useful for cryptography:

“NIST P-256”: \(E(\mathbb{Z}/p) \) where \(p \) is the prime \(2^{256} - 2^{224} + 2^{192} + 2^{96} - 1 \) and \(E \) is the elliptic curve \(y^2 = x^3 - 3x + (a \text{ particular constant}) \).

“Curve25519”: \(E(\mathbb{Z}/p) \) where \(p \) is the prime \(2^{255} - 19 \) and \(E \) is the elliptic curve \(y^2 = x^3 + 486662x^2 + x \).