The Salsa20 stream cipher
D. J. Bernstein

Thanks to:

University of lllinois at Chicago
NSF CCR-9983950

Alfred P. Sloan Foundation

Salsa20: additive stream cipher,
expanding key and nonce
into long stream of bytes

to add to plaintext.

Key k: 16 or 32 bytes.
Same speed either way,

simplifying hardware.

Nonce n: 8 bytes.
Can send 2%% messages
under one key.

Stream Salsa204(n):
270 bytes for each message.

M cipher

is at Chicago
0

undation

Salsa20: additive stream cipher,
expanding key and nonce
into long stream of bytes

to add to plaintext.

Key k: 16 or 32 bytes.
Same speed either way,

simplifying hardware.

Nonce n: 8 bytes.
Can send 2%% messages
under one key.

Stream Salsa204(n):
270 bytes for each message.

For authentication
combine Salsa20 v

http://cr.yp.t«

Given message m
Send (n, ¢, Polyl3
(s, c) = Salsa20y(:

Very fast; short se
provably secure if
better than encryg

Easily adapt to “A
l.e., allow unencry

Salsa20: additive stream cipher, For authentication,
expanding key and nonce combine Salsa20 with Poly1305,

into long stream of bytes http://cr.yp.to/mac.html.

to add to plaintext. . .
Given message m with nonce n:

Key k: 16 or 32 bytes. Send (n, ¢, Poly1305..(c, s)) where
Same speed either way, (s, c) = Salsa20,(n) & (0, m).
simplifying hardware.

Very fast; short secret key (k, 7);

Nonce n: 8 bytes. provably secure if Salsa20 is secure;
Can send 2%% messages better than encrypt-then-MAC.
under one key. Easily adapt to "AEAD,”

Stream Salsa20.(n): i.e., allow unencrypted header.

270 bytes for each message.

stream cipher,

| nonce
f bytes
C.

ytes.
way,
re.

5ages

1):

message.

For authentication,

combine Salsa20 with Poly1305,
http://cr.yp.to/mac.html.

Given message m with nonce n:
Send (n, ¢, Poly1305..(c, s)) where
(s,c) = Salsa20,(n) & (0, m).

Very fast; short secret key (k, 7);

provably secure if Salsa20 is secure;

better than encrypt-then-MAC.

Easily adapt to "AEAD,”
I.e., allow unencrypted header.

L et’'s watch how S

generates block of
from key (1,2, 3,.
nonce (255, 227, 1

Notation: Il mean:
Little-endian every

Key:
A A A
(1 |

Nonce:
{0 LA T

For authentication,
combine Salsa20 with Poly1305,

http://cr.yp.to/mac.html.

Given message m with nonce n:
Send (n, ¢, Poly1305..(c, s)) where
(s,c) = Salsa20,(n) & (0, m).

Very fast; short secret key (k, 7);

provably secure if Salsa20 is secure;

better than encrypt-then-MAC.

Easily adapt to "AEAD,”
I.e., allow unencrypted header.

Let's watch how Salsa20

generates block of 64 bytes
from key (1,2,3,...,16),
nonce (255,227,11,84,2,0,0,0).

Notation: Il means 1 + 2 + 16.
Little-endian everywhere.

Key:
A A (A
{1 | i

Nonce:
{1 I L

vith Poly1305,
y/mac .html.

with nonce n:
05,.(c, s)) where

n) @ (0, m).
cret key (k,7);

Salsa20 is secure:

t-then-MAC.

\EAD,"
pted header.

Let's watch how Salsa20

generates block of 64 bytes
from key (1,2,3,...,16),

nonce (255,227,11,84,2,0,0,0).

Notation: Il means 1 4 2 + 16.
Little-endian everywhere.

Key:
A A (A
(T 1 | i

Nonce:
{1 I

Build 4 x 4 array

1 0 T
T N

[l

W 0 M 1

|

Diagonal entries a
1 0 00 (00 i 0 S 1 1

Ot

ner entries are |}

W 0 M WL

]
il

W] ;D|<

LI | . ke

Let's watch how Salsa20 Build 4 x 4 array of 4-byte words:
generates block of 64 bytes

from key (1,2,3,...,16),

I 00 N R A

WL WETETEE e e
nonce (255,227,11,84,2,0,0,0). TR L
Notation: Il means 1 + 2 + 16. U HE S 0 € (A 1 A G | {1 WA 1

Little-endian everywhere. . .
Diagonal entries are constants:

Key: 1 0 0 LR I
0 A A
L M M M

Other entries are key [N
L T WML, nonce
Nonce: (I . block counter
A A 1 . key again.

alsa20 Build 4 x 4 array of 4-byte words: Modify one word 1
64 bytes

T T N LU
-, 16) DR R DN B .
1,84,2,0,0,0). M L NI 1
142416 T 0 O T T I T T T
where. Diagonal entries are constants: The modification |

I W W W add two underline
i rotate left by 7 bit

Other entries are key L1

Xor into next word

W T NN nonce
I - block counter x[9] "= (x[1]+x
I, [I . key again.

Will do long series
simple modificatio

Build 4 x 4 array of 4-byte words: Modify one word using two others:

W T e TR 80U T A W
| (S {0 R | (SR TR R

THETHN 1T IVMERRRTT RN
1 1M T 10 11 1 1 M T 10 A 01
Diagonal entries are constants: The modification is very simple:
I 0 00 10 {00 LR add two underlined words;

Other entries are key [N rotate left by 7 bits;

Xor into next word down.

W T NN nonce
I - block counter x[9] °= (x[1]+x[5]) << 7
[I . key again.

Will do long series of these
simple modifications, as in TEA.

ot 4-byte words:

1 M
L
1 11 I A
L0 a1 Y

Fe constants:

I 10 O

ey LT
B |I: nonce
ock counter

y again.

Modify one word using two others:

0 0 R A
| M0 S OO0 B L R
INMEERNEE AEREEAN PR
W0 0 L A 1)

The modification is very simple:

add two underlined words:
rotate left by 7 bits;
xor into next word down.

x[9] "= (x[1]+x[5B]) << 7

Will do long series of these
simple modifications, as in TEA.

Modify other colul

1 T 1 T
I L R |
IVREEANIT AR
1 0 R [1

Columns wrap aro
from bottom to tc

x[4] ~= (x[12]+:
x[14] = (x[6]+:
x[3] °= (x[11]+

Total: 4 modificat

Modify one word using two others:

00 0 R A
| M0 S O 0 0L R
INREEANEE AEREEAN PR
W0 0 0 A 11

The modification is very simple:

add two underlined words:
rotate left by 7 bits;
xor into next word down.

x[9] "= (x[1]+x[5B]) << 7

Will do long series of these
simple modifications, as in TEA.

Modity other columns:

WEWRET 1T e

[WANCAN RETETTn W ¢ \
IR REICERN O

K Y 1 I MY

Columns wrap around

from bottom to top.

x[4] “= (x[12]+x[0]) <k 7

x[14] ~= (x[6]+x[10]) <<<'7

x[3] "= (x[11]+x[15]) <<'7

Total: 4 modifications.

1sing two others:

1 M
L
U 1 O A W
L0 a1 Y

s very simple:
1 words;
S;

down.

[5]) << 7

of these
ns, as in T EA.

Modity other columns:

WENRET 1T e
[WANAN RETETTn W ¢ \
ACKCAMCRMON |1 011
K Y T 1 I MY
Columns wrap around

from bottom to top.

x[4] “= (x[12]+x[0]) <k 7
x[14] ~= (x[6]+x[10]) <<<'7
x[3] "= (x[11]+x[15]) <<'7

Total: 4 modifications.

Modify each colun

I'n

L1l

RN 1

1

I

U 1
|11
11 1N

W

| |
i

LR LI

This time rotate b

+!

+:

x[8] “= (x[0]+x
x[13] “= (x[5.
x[2] "= (x[10.
x[7] 7= (x[15_

+:

Total: 8 modificat

Modity other columns:

RN DT e
[N BT W ¢ \
RO |1 01
K Y 1 I MY
Columns wrap around

from bottom to top.

x[4] “= (x[12]+x[0]) <k 7
x[14] ~= (x[6]+x[10]) <<<'7
x[3] "= (x[11]+x[15]) <<'7

Total: 4 modifications.

Modify each column again:

10 1 A
IR BTN

RN 1

1111

1010
|1

1H WEAN
Wi
11 TN

[N

A TR

| |
TN RN i [

This time rotate by 9 bits.

X

x[13] ~= (x[5]
x[2] "= (x[10.
x[7] = (x[15._

8] ~= (x[0]+x[4]) <<< 9

9]) <<k 9
14]) <<< 9

3]) <<< 9

Total: 8 modifications.

nns:

T AR
Wi |
AL D WA W
[lCWI (R U
und

D.

x[0]) << 7
x[10]) <<< 7
x[15]) <<< 7
1ons.

Modify each column again:

LR T WA WA
|WIRVARIE RETETD W feren
IRNETT IWRENAN RRECATe e

| |
0 0 S L (T WA

This time rotate by 9 bits.

8] "= (x[0]+x[4]) << 9

13] "= (x[6]+x[9]) << 9
2] "= (x[10]+x[14]) <<< 9
7] = (x[15]1+x[3]) <<< 9

T T e

Total: 8 modifications.

Modify each colun

HERCRET I 1
|NIRAR RETEr
IWRNITT IWREEA i
HIARIENN DRERRED hw

This time rotate b

12] 7= (x[4]+:
1] "= (x[9]+x
6] "= (x[14]+
11] ~= (x[3]+

oI T < e

Total: 12 modifice

Modify each column again:

10 1 A
IR BT

0

1NN

1111

EEIEN AN

{0 LN
11 TN

I

i

| |
TN RN i T

This time rotate by 9 bits.

X

x[13] "= (x[b]+x
x[2] = (x[10]+x
x[7] "= (x[15]+x

Total: 8 modifications.

8] "= (x[0]+x[4]) <<< 9
9]) <<k 9
14]) <<k 9
3]) <<k 9

Modify each column again:

IERCRET IWERN EECITan WA
|WIRARI NETET MR nen
IWRNITT IWRRRAET RCATCATA Iy
HIARIEERN DRENR AN (N

This time rotate by 13 bits.

x[12] "= (x[4]+x[8]) <<k 13
x[1] "= (x[9]+x[13]) << 13
x[6] ~= (x[14]+x[2]) <<< 13
x[11] "= (x[3]+x[7]) <<< 13

Total: 12 modifications.

1N again:

M RUATRIN
L LA
00 10 g VKD

[0 IR TR

y 9 bits.

[4]) <<< 9
x[9]) <<< 9
x[14]) <<< 9
x[3]) <<< 9

10NS.

Modify each column again:

HERRET TWAUERN IEECITan WA
|WIRVARI NETET MW neran
IWRNITT IWWRRA RCATCATA Iy
HIARIEETN DRERR AN (N

This time rotate by 13 bits.

12] = (x[4]+x[8]) <<< 13
(1] 7= (x[9]+x[13]) <<< 13
6] ~= (x[14]+x[2]) <<< 13
11] = (x[3]+x[7]) <<< 13

oI T e

Total: 12 modifications.

Modify each colun

LTI N

LI 00 E T

[ARAR 10
IWRNRT 1

plmimn i

i nn

HELINDT T
RULRRIT NI

This time rotate b

x[0] = (x[8]+x
x[5] "= (x[13]+
x[10] ~= (x[2]+
x[15] "= (x[7]+

Total: 16 modifice

Modify each column again:

HERCRET TWAUERN EECITan WA
|WIRARI NETET N fen
IWHNITT IWWEEA RATCATA Iy
NIARIEREN VAVERR N m e e

This time rotate by 13 bits.

12] = (x[4]+x[8]) <<< 13
(1] 7= (x[9]+x[13]) <<< 13
6] "= (x[14]+x[2]) <<« 13
11] = (x[3]+x[7]) <<< 13

oI T e

Total: 12 modifications.

Modify each column again:

ETANI WAUARN R A

[ARAR 10
IWRNRT 1

LAminn 1

i 'm
RURRRIN Nl

L (00 T G 0

AT [T
LML

= 5

This time rotate by 18 bits.

x[0] "= (x[8]+x[12]) <<< 18
x[56] "= (x[13]+x[1]) <<< 18
x[10] ~= (x[2]+x[6]) <<< 18
x[15] ~= (x[7]+x[11]) <<< 18

Total: 16 modifications.

1N again:

L1011

WU

HiiN
[T
Il

y 13

x [8]
[13]
x [2]
x L7

L THATTH
|
| L[J 1

bits.

) << 13
) << 13
) <<< 13
) <<< 13

tions.

Modify each column again:

(L (]
|| [l

1

i 0]

NRTEN [EECI AR

i

i '
RURRRIN Nl

L (00 T e 0

M
il |

1l [T

= 5

11l L

This time rotate by 18 bits.

oI T e

0_
5

10_
15

1

1.
6

(x[8]+x[12]) <<< 18
(13]+x [
2.
7.

) << 18
) <<< 18
1]) <<< 18

Total: 16 modifications.

Modify rows by 7,

TN TE
AR AN Wi
L0
HHRETHIN T T

Now every word
has been modified

Total: 32 modifice

That's 2 rounds o

Modify each column again:

1

A

THNIN W

TRTEN IEECI AR

L [l

1 n

i

i '
RURRRIN Nl

L (00 T Gl 0

M
Ll |

1l [T

= 5

11l L

This time rotate by 18 bits.

oI T e

10_
15

0] "=
5] =

7

8]+x[12]
13]+x[
2]

1.
6

1

) << 18
) << 18
) <<< 18
1]) <<< 18

Total: 16 modifications.

Modify rows by 7,9, 13, 18:

TN TEA e i
AT A AR e
AR TN A v
WHRECHON T TE iy i

Now every word
has been modified twice.

Total: 32 modifications.

That's 2 rounds of Salsa20.

1N again:

{100 (1 LI

_ LI O BT

AT [T
LU

= 5

y 18 bits.

[12]
x [1]
X [6]
x[11]) <<< 18

) << 18
) << 18
) <<< 18

tions.

Modify rows by 7,9, 13, 18:

TN TEA e i
AN AR WA e
AT TN A
WHRECHO DT TEy iy i

Now every word
has been modified twice.

Total: 32 modifications.

That's 2 rounds of Salsa20.

Repeat column mc

[T M
LIETHERD [T
TN W
TN TR T

Now every word
has been modified

Total: 48 modifice

That's 3 rounds of

Modify rows by 7,9, 13, 18:

TR TEA e i
AT AN WA e
AT TN A N
WL T TEy iy Ui

Now every word
has been modified twice.

Total: 32 modifications.

That's 2 rounds of Salsa20.

Repeat column modifications:

[T M v veer
00 1L L
TN W Urmeen s
TN T WETEAT TR A

Now every word
has been modified 3 times.

Total: 48 modifications.

That's 3 rounds of Salsa20.

9,13, 13:

[WININ TR
HUIET 1T
(W] [N
[[l |]

twice.

'tions.

- Salsa20.

Repeat column modifications:

[T M v veere
00 1L UL
TN W Urmeen s
TN WETEAT TR ETE A

Now every word
has been modified 3 times.

Total: 48 modifications.

That's 3 rounds of Salsa20.

Repeat row modifi

pnm

AT
|]

||
|
i

1

LBl

i i

WA A

1l
111 1
LIl {

Now every word

has been modified

Total: 64 modifice

That's 4 rounds o

Repeat column modifications:

[T M v veere
00 1L L
TN W Urmeen s
LTI T TR EEA

Now every word
has been modified 3 times.

Total: 48 modifications.

That's 3 rounds of Salsa20.

Repeat row modifications:

Iy Wy

NIRRT e
00 PR AT
[ARTIETE PEREET I I

L]

AN

ILLETRETIN TR P el

Now every word
has been modified 4 times.

Total: 64 modifications.

That's 4 rounds of Salsa20.

difications:

{000
LLEEL N
LU LU LU
TR LTTANN

3 times.

'tions.

- Salsa20.

Repeat row modifications:

NIRRT e
LN WO R e
U0 T L
IEEETTIN TR TR i

Now every word
has been modified 4 times.

Total: 64 modifications.

That's 4 rounds of Salsa20.

Continue for 20 ro
columns, rows, col
columns, rows, co
columns, rows, co
columns, rows, co

columns, rows, Cco

First block of Sals
final array plus ori

x[0]+z[0O], ..., X

For subsequent blc

with block countel

Parallelizable. Ver

Repeat row modifications:

NIRRT e
LN WO R e
AR ARE I I N
IEEETRETIN TR AR i

Now every word
has been modified 4 times.

Total: 64 modifications.

That's 4 rounds of Salsa20.

Continue for 20 rounds total:

columns, rows, columns, rows,
columns, rows, columns, rows,
columns, rows, columns, rows,

columns, rows, columns, rows,

columns, rows, columns, rows.

First block of Salsa20 output is

final array plus original array:
x[0]+=z[0],..., x[15]+z[15].

For subsequent blocks: Repeat

with block counter 1, 2, etc.

Parallelizable. Very small state.

cations:

i L0 T
WEHT T
{000 | 01 11
{10 0L G W

4 times.

'tions.

- Salsa20.

Continue for 20 rounds total:

columns, rows, columns, rows,

columns, rows, columns, rows,

columns, rows, columns, rows,

columns, rows, columns, rows,

columns, rows, columns, rows.

First

block of Salsa20 output is

final array plus original array:
x[0]+=z[0],..., x[15]+z[15].

For subsequent blocks: Repeat

with
Paral

olock counter 1, 2, etc.

elizable. Very small state.

Change in starting

Let's watch how t
affects subsequent

Changes shown he

Continue for 20 rounds total:

columns, rows, columns, rows,

columns, rows, columns, rows,

columns, rows, columns, rows,

columns, rows, columns, rows,

columns, rows, columns, rows.

First block of Salsa20 output is

final array plus original array:
x[0]+=z[0],..., x[15]+z[15].

For su

with
Paral

D

osequent blocks: Repeat

ock counter 1, 2, etc.

elizable. Very small state.

Change in starting array for block 1:

Let's watch how this change
affects subsequent rounds.

Changes shown here by xor.

unds total:
uMmns, rows,
umns, rows,
umns, rows,
umns, rows,

UMnNS, rows.

a20 output Is
oinal array:
[15]+z[15].

cks: Repeat
-1, 2, etc.
y small state.

Change in starting array for block 1:

|
I

Let's watch how this change
affects subsequent rounds.

Changes shown here by xor.

Change after one |

MM i \
| !
\
\

VTN

Difference has pro
to two other entrie
in the same colum
Depends on a few

but still highly pre

Change in starting array for block 1:

|
I

Let's watch how this change

affects subsequent rounds.

Changes shown here by xor.

Change after one round:

VTN

Difference has propagated
to two other entries
in the same column.
Depends on a few carries,
but still highly predictable.

-array for block 1:

his change
rounds.

re by xor.

Change after one round:

VTN

Difference has propagated
to two other entries
In the same column.

Depends on a few carries,

but still highly predictable.

Change after two

1| 00 AR M |

| I
VTN i

Difference has pro
across columns.

Change after one round:

VTN

Difference has propagated
to two other entries
In the same column.

Depends on a few carries,

but still highly predictable.

Change after two rounds:

1| 0 AN |

| I
VTN i

L 0 M {0 ||
NI

B R

T e

Difference has propagated

across columns.

round:

pagated
S
n.

carries,

dictable.

Change after two rounds:

11 000 I AT A) M {1 ||

Difference has propagated
across columns.

VTN I T e

Change after three

| U EEE
i e ne
I e
NNIRY T

Every word has be

A substantial fract
are now active.

Change after two rounds: Change after three rounds:

| O AT AL 10] 1 {1 WANTHNEN R DR Y
| I AN U neranmn wypid
| I W I e Unen nem
L R Y {1 | NINCTRN W T e
Difference has propagated Every word has been affected.

across columns. . . .
A substantial fraction of bits

are now active.

rounds:

L L |

Change after three rounds:

| UEEE AVt ML
i VT nernn e
TN Uiy e
LU OO MO0 L 1| O 11 1 NG |

Every word has been affected.

A substantial fraction of bits

are now active.

Change after four

NI DTN NI
IR N
IR TN
TN I o

Hundreds of active
In every subsequer
Total > 4000 acti
Interacting with c:
In a random-lookir

Change after three rounds:

| UEEE T ML
i VT nerwn e
NN Dy e
LU OO MO L 1| O 11 1R |

Every word has been affected.

A substantial fraction of bits

are now active.

Change after four rounds:

I[NNI TN U

RN T N
INRRRIT TNRET Tnrnn

LN T

il

IR U VR riwe

Hundreds of active bits

in every subsequent round.
Total > 4000 active bits
interacting with carries

in a random-looking way.

Ll |

» rounds:

I A
LA AN
NIl Rin

UM 1111

en affected.

1on of bits

Change after four rounds:

INUTIE NN U e
RN T (T e
INRRRT TNRET e e
INRENY U VR cisenern

Hundreds of active bits

in every subsequent round.
Total > 4000 active bits
interacting with carries

in a random-looking way.

Surprise: Salsa20

My current public-
26.75 Athlon cycle
37.5 Pentium Il ¢
48 Pentium 4 {12
33.75 Pentium M
24 .5 PowerPC 741
33 PowerPC RS64
40.5 UltraSPARC
41 UltraSPARC 1l

Change after four rounds:

INUTIR NN U e
TR T [T e
IR TNRET e e
INRENY A VR cisenern

Hundreds of active bits

in every subsequent round.
Total > 4000 active bits
interacting with carries

in a random-looking way.

Surprise: Salsa20 is fast!

My current public-domain software:
26.75 Athlon cycles/round.
37.5 Pentium Il cycles/round.
48 Pentium 4 f12 cycles/round.

33.75 Pentium M cycles/round.
24.5 PowerPC 7410 cycles/round.
33 PowerPC RS64 IV cycles/round.
40.5 UltraSPARC Il cycles/round.
41 UltraSPARC I1I cycles/round.

rounds:

1)

> bits

11N
L

11N

i |
IMETHENE

ELTHI
i

't round.

/e bits

\rries

g way.

Surprise: Salsa20 is fast!

My current public-domain software:

26.75 Athlon cycles/round.
37.5 Pentium Il cycles/round.
48 Pentium 4 f12 cycles/round.

33.75 Pentium M cycles/round.
24.5 PowerPC 7410 cycles/round.

33 PowerPC RS64 IV cycles/round.

40.5 UltraSPARC Il cycles/round.
41 UltraSPARC I1I cycles/round.

Multiply by 20 for
divide by 64 for cy

... but rounds are

| still need to opti
for block counting
combine with Poly

do comprehensive

But it's clear that
will be at least as
sometimes much f
depending on the

Surprise: Salsa20 is fast!

My current public-domain software:

26.75 Athlon cycles/round.
37.5 Pentium Il cycles/round.
48 Pentium 4 f12 cycles/round.

33.75 Pentium M cycles/round.
24.5 PowerPC 7410 cycles/round.

33 PowerPC RS64 IV cycles/round.

40.5 UltraSPARC Il cycles/round.
41 UltraSPARC I1I cycles/round.

Multip
divide

y by 20 for 20 rounds,

oy 64 for cycles/byte

... but rounds aren't everything.

| still need to optimize code

for block counting, xor, etc.;
combine with Poly1305;
do comprehensive benchmarks.

But it’s clear that Salsa20

will be

at least as fast as AES,

sometimes much faster,
depending on the CPU.

Is fast!

.domain software:

s /round.
ycles/round.
cycles/round.

cycles/round.
0 cycles/round.

1V cycles/round.

Il cycles/round.
' cycles/round.

Multip
divide

... but rounds aren't everything.

y by 20 for 20 rounds,

oy 64 for cycles/byte

| still need to optimize code

for block counting, xor, etc.;
combine with Poly1305;
do comprehensive benchmarks.

But it’s clear that Salsa20

will be

at least as fast as AES,

sometimes much faster,
depending on the CPU.

Here AES has 16-|

slower with 32-byt
Salsa20 has no su

AES becomes ever
key Is not pre-exp:
Salsa20 has no pre

AES has serious ti
see http://cr.yy
/papers.html#c:
for successful AES
Constant-time AE
Salsa20 has no tin

Multiply by 20 for 20 rounds,
divide by 64 for cycles/byte

... but rounds aren't everything.

| still need to optimize code
for block counting, xor, etc.;
combine with Poly1305;

do comprehensive benchmarks.

But it's clear that Salsa20

will be at least as fast as AES,
sometimes much faster,
depending on the CPU.

Here AES has 16-byte key;
slower with 32-byte key.

Salsa20 has no such slowdown.

AES becomes even s

key Is not pre-expanc

ower If
ed.

Salsa20 has no precomputation.

AES has serious timing leaks:

see http://cr.yp.to

/papers.html#cachetiming

for successful AES key extraction.

Constant-time AES is very slow.

Salsa20 has no timing leaks.

20 rounds,
cles/byte

n't everything.

mize code

. Xor, etc.:
1305;
benchmarks.

Salsa20
fast as AES,
aster,

CPU.

Here AES has 16-byte key;
slower with 32-byte key.

Salsa20 has no such slowdown.

AES becomes even s

ower If

key Is not pre-expanc

€d.

Salsa20 has no precomputation.

AES has serious timing leaks:

see http://cr.yp.to

/papers.html#cachetiming

for successful AES key extraction.

Constant-time AES is very slow.

Salsa20 has no timing leaks.

| offer $1000 prize
the public Salsa20

that | consider mo
Awarded at the en

Send URLs of you

snuffle@box.cr.

Here AES has 16-byte key;
slower with 32-byte key.
Salsa20 has no such slowdown.

AES becomes even slower if

key Is not pre-expanded.

Salsa20 has no precomputation.

AES has serious timing leaks:
see http://cr.yp.to
/papers.html#cachetiming

for successful AES key extraction.

Constant-time AES is very slow.
Salsa20 has no timing leaks.

| offer $1000 prize for

the public Salsa20 cryptanalysis
that | consider most interesting.
Awarded at the end of 2005.

Send URLs of your papers to
snuffle@box.cr.yp.to.

