
The Salsa20 stream cipher

D. J. Bernstein

Thanks to:

University of Illinois at Chicago

NSF CCR–9983950

Alfred P. Sloan Foundation

Salsa20: additive stream cipher,

expanding key and nonce

into long stream of bytes

to add to plaintext.

Key : 16 or 32 bytes.

Same speed either way,

simplifying hardware.

Nonce � : 8 bytes.

Can send 264 messages

under one key.

Stream Salsa20 � (�):

270 bytes for each message.

The Salsa20 stream cipher

D. J. Bernstein

Thanks to:

University of Illinois at Chicago

NSF CCR–9983950

Alfred P. Sloan Foundation

Salsa20: additive stream cipher,

expanding key and nonce

into long stream of bytes

to add to plaintext.

Key : 16 or 32 bytes.

Same speed either way,

simplifying hardware.

Nonce � : 8 bytes.

Can send 264 messages

under one key.

Stream Salsa20 � (�):

270 bytes for each message.

For authentication,

combine Salsa20 with Poly1305,

http://cr.yp.to/mac.html.

Given message with nonce � :

Send (� ��� � Poly1305 � (� ���)) where

(� ���) = Salsa20 � (�) (0 �).

Very fast; short secret key (���);

provably secure if Salsa20 is secure;

better than encrypt-then-MAC.

Easily adapt to “AEAD,”

i.e., allow unencrypted header.

Salsa20: additive stream cipher,

expanding key and nonce

into long stream of bytes

to add to plaintext.

Key : 16 or 32 bytes.

Same speed either way,

simplifying hardware.

Nonce � : 8 bytes.

Can send 264 messages

under one key.

Stream Salsa20 � (�):

270 bytes for each message.

For authentication,

combine Salsa20 with Poly1305,

http://cr.yp.to/mac.html.

Given message with nonce � :

Send (� ��� � Poly1305 � (� ���)) where

(� ���) = Salsa20 � (�) (0 �).

Very fast; short secret key (���);

provably secure if Salsa20 is secure;

better than encrypt-then-MAC.

Easily adapt to “AEAD,”

i.e., allow unencrypted header.

Salsa20: additive stream cipher,

expanding key and nonce

into long stream of bytes

to add to plaintext.

Key : 16 or 32 bytes.

Same speed either way,

simplifying hardware.

Nonce � : 8 bytes.

Can send 264 messages

under one key.

Stream Salsa20 � (�):

270 bytes for each message.

For authentication,

combine Salsa20 with Poly1305,

http://cr.yp.to/mac.html.

Given message with nonce � :

Send (� ��� � Poly1305 � (� ���)) where

(� ���) = Salsa20 � (�) (0 �).

Very fast; short secret key (���);

provably secure if Salsa20 is secure;

better than encrypt-then-MAC.

Easily adapt to “AEAD,”

i.e., allow unencrypted header.

Let’s watch how Salsa20

generates block of 64 bytes

from key (1 � 2 � 3 � � � � � 16),

nonce (255 � 227 � 11 � 84 � 2 � 0 � 0 � 0).

Notation: means 1 + 2 + 16.

Little-endian everywhere.

Key:

.

Nonce:

.

For authentication,

combine Salsa20 with Poly1305,

http://cr.yp.to/mac.html.

Given message with nonce � :

Send (� ��� � Poly1305 � (� ���)) where

(� ���) = Salsa20 � (�) (0 �).

Very fast; short secret key (���);

provably secure if Salsa20 is secure;

better than encrypt-then-MAC.

Easily adapt to “AEAD,”

i.e., allow unencrypted header.

Let’s watch how Salsa20

generates block of 64 bytes

from key (1 � 2 � 3 � � � � � 16),

nonce (255 � 227 � 11 � 84 � 2 � 0 � 0 � 0).

Notation: means 1 + 2 + 16.

Little-endian everywhere.

Key:

.

Nonce:

.

For authentication,

combine Salsa20 with Poly1305,

http://cr.yp.to/mac.html.

Given message with nonce � :

Send (� ��� � Poly1305 � (� ���)) where

(� ���) = Salsa20 � (�) (0 �).

Very fast; short secret key (���);

provably secure if Salsa20 is secure;

better than encrypt-then-MAC.

Easily adapt to “AEAD,”

i.e., allow unencrypted header.

Let’s watch how Salsa20

generates block of 64 bytes

from key (1 � 2 � 3 � � � � � 16),

nonce (255 � 227 � 11 � 84 � 2 � 0 � 0 � 0).

Notation: means 1 + 2 + 16.

Little-endian everywhere.

Key:

.

Nonce:

.

Build 4 � 4 array of 4-byte words:

Diagonal entries are constants:

Other entries are key

; nonce

; block counter

; key again.

Let’s watch how Salsa20

generates block of 64 bytes

from key (1 � 2 � 3 � � � � � 16),

nonce (255 � 227 � 11 � 84 � 2 � 0 � 0 � 0).

Notation: means 1 + 2 + 16.

Little-endian everywhere.

Key:

.

Nonce:

.

Build 4 � 4 array of 4-byte words:

Diagonal entries are constants:

Other entries are key

; nonce

; block counter

; key again.

Let’s watch how Salsa20

generates block of 64 bytes

from key (1 � 2 � 3 � � � � � 16),

nonce (255 � 227 � 11 � 84 � 2 � 0 � 0 � 0).

Notation: means 1 + 2 + 16.

Little-endian everywhere.

Key:

.

Nonce:

.

Build 4 � 4 array of 4-byte words:

Diagonal entries are constants:

Other entries are key

; nonce

; block counter

; key again.

Modify one word using two others:

The modification is very simple:

add two underlined words;

rotate left by 7 bits;

xor into next word down.

x[9] ^= (x[1]+x[5]) <<< 7

Will do long series of these

simple modifications, as in TEA.

Build 4 � 4 array of 4-byte words:

Diagonal entries are constants:

Other entries are key

; nonce

; block counter

; key again.

Modify one word using two others:

The modification is very simple:

add two underlined words;

rotate left by 7 bits;

xor into next word down.

x[9] ^= (x[1]+x[5]) <<< 7

Will do long series of these

simple modifications, as in TEA.

Build 4 � 4 array of 4-byte words:

Diagonal entries are constants:

Other entries are key

; nonce

; block counter

; key again.

Modify one word using two others:

The modification is very simple:

add two underlined words;

rotate left by 7 bits;

xor into next word down.

x[9] ^= (x[1]+x[5]) <<< 7

Will do long series of these

simple modifications, as in TEA.

Modify other columns:

Columns wrap around

from bottom to top.

x[4] ^= (x[12]+x[0]) <<< 7

x[14] ^= (x[6]+x[10]) <<< 7

x[3] ^= (x[11]+x[15]) <<< 7

Total: 4 modifications.

Modify one word using two others:

The modification is very simple:

add two underlined words;

rotate left by 7 bits;

xor into next word down.

x[9] ^= (x[1]+x[5]) <<< 7

Will do long series of these

simple modifications, as in TEA.

Modify other columns:

Columns wrap around

from bottom to top.

x[4] ^= (x[12]+x[0]) <<< 7

x[14] ^= (x[6]+x[10]) <<< 7

x[3] ^= (x[11]+x[15]) <<< 7

Total: 4 modifications.

Modify one word using two others:

The modification is very simple:

add two underlined words;

rotate left by 7 bits;

xor into next word down.

x[9] ^= (x[1]+x[5]) <<< 7

Will do long series of these

simple modifications, as in TEA.

Modify other columns:

Columns wrap around

from bottom to top.

x[4] ^= (x[12]+x[0]) <<< 7

x[14] ^= (x[6]+x[10]) <<< 7

x[3] ^= (x[11]+x[15]) <<< 7

Total: 4 modifications.

Modify each column again:

This time rotate by 9 bits.

x[8] ^= (x[0]+x[4]) <<< 9

x[13] ^= (x[5]+x[9]) <<< 9

x[2] ^= (x[10]+x[14]) <<< 9

x[7] ^= (x[15]+x[3]) <<< 9

Total: 8 modifications.

Modify other columns:

Columns wrap around

from bottom to top.

x[4] ^= (x[12]+x[0]) <<< 7

x[14] ^= (x[6]+x[10]) <<< 7

x[3] ^= (x[11]+x[15]) <<< 7

Total: 4 modifications.

Modify each column again:

This time rotate by 9 bits.

x[8] ^= (x[0]+x[4]) <<< 9

x[13] ^= (x[5]+x[9]) <<< 9

x[2] ^= (x[10]+x[14]) <<< 9

x[7] ^= (x[15]+x[3]) <<< 9

Total: 8 modifications.

Modify other columns:

Columns wrap around

from bottom to top.

x[4] ^= (x[12]+x[0]) <<< 7

x[14] ^= (x[6]+x[10]) <<< 7

x[3] ^= (x[11]+x[15]) <<< 7

Total: 4 modifications.

Modify each column again:

This time rotate by 9 bits.

x[8] ^= (x[0]+x[4]) <<< 9

x[13] ^= (x[5]+x[9]) <<< 9

x[2] ^= (x[10]+x[14]) <<< 9

x[7] ^= (x[15]+x[3]) <<< 9

Total: 8 modifications.

Modify each column again:

This time rotate by 13 bits.

x[12] ^= (x[4]+x[8]) <<< 13

x[1] ^= (x[9]+x[13]) <<< 13

x[6] ^= (x[14]+x[2]) <<< 13

x[11] ^= (x[3]+x[7]) <<< 13

Total: 12 modifications.

Modify each column again:

This time rotate by 9 bits.

x[8] ^= (x[0]+x[4]) <<< 9

x[13] ^= (x[5]+x[9]) <<< 9

x[2] ^= (x[10]+x[14]) <<< 9

x[7] ^= (x[15]+x[3]) <<< 9

Total: 8 modifications.

Modify each column again:

This time rotate by 13 bits.

x[12] ^= (x[4]+x[8]) <<< 13

x[1] ^= (x[9]+x[13]) <<< 13

x[6] ^= (x[14]+x[2]) <<< 13

x[11] ^= (x[3]+x[7]) <<< 13

Total: 12 modifications.

Modify each column again:

This time rotate by 9 bits.

x[8] ^= (x[0]+x[4]) <<< 9

x[13] ^= (x[5]+x[9]) <<< 9

x[2] ^= (x[10]+x[14]) <<< 9

x[7] ^= (x[15]+x[3]) <<< 9

Total: 8 modifications.

Modify each column again:

This time rotate by 13 bits.

x[12] ^= (x[4]+x[8]) <<< 13

x[1] ^= (x[9]+x[13]) <<< 13

x[6] ^= (x[14]+x[2]) <<< 13

x[11] ^= (x[3]+x[7]) <<< 13

Total: 12 modifications.

Modify each column again:

This time rotate by 18 bits.

x[0] ^= (x[8]+x[12]) <<< 18

x[5] ^= (x[13]+x[1]) <<< 18

x[10] ^= (x[2]+x[6]) <<< 18

x[15] ^= (x[7]+x[11]) <<< 18

Total: 16 modifications.

Modify each column again:

This time rotate by 13 bits.

x[12] ^= (x[4]+x[8]) <<< 13

x[1] ^= (x[9]+x[13]) <<< 13

x[6] ^= (x[14]+x[2]) <<< 13

x[11] ^= (x[3]+x[7]) <<< 13

Total: 12 modifications.

Modify each column again:

This time rotate by 18 bits.

x[0] ^= (x[8]+x[12]) <<< 18

x[5] ^= (x[13]+x[1]) <<< 18

x[10] ^= (x[2]+x[6]) <<< 18

x[15] ^= (x[7]+x[11]) <<< 18

Total: 16 modifications.

Modify each column again:

This time rotate by 13 bits.

x[12] ^= (x[4]+x[8]) <<< 13

x[1] ^= (x[9]+x[13]) <<< 13

x[6] ^= (x[14]+x[2]) <<< 13

x[11] ^= (x[3]+x[7]) <<< 13

Total: 12 modifications.

Modify each column again:

This time rotate by 18 bits.

x[0] ^= (x[8]+x[12]) <<< 18

x[5] ^= (x[13]+x[1]) <<< 18

x[10] ^= (x[2]+x[6]) <<< 18

x[15] ^= (x[7]+x[11]) <<< 18

Total: 16 modifications.

Modify rows by 7 � 9 � 13 � 18:

Now every word

has been modified twice.

Total: 32 modifications.

That’s 2 rounds of Salsa20.

Modify each column again:

This time rotate by 18 bits.

x[0] ^= (x[8]+x[12]) <<< 18

x[5] ^= (x[13]+x[1]) <<< 18

x[10] ^= (x[2]+x[6]) <<< 18

x[15] ^= (x[7]+x[11]) <<< 18

Total: 16 modifications.

Modify rows by 7 � 9 � 13 � 18:

Now every word

has been modified twice.

Total: 32 modifications.

That’s 2 rounds of Salsa20.

Modify each column again:

This time rotate by 18 bits.

x[0] ^= (x[8]+x[12]) <<< 18

x[5] ^= (x[13]+x[1]) <<< 18

x[10] ^= (x[2]+x[6]) <<< 18

x[15] ^= (x[7]+x[11]) <<< 18

Total: 16 modifications.

Modify rows by 7 � 9 � 13 � 18:

Now every word

has been modified twice.

Total: 32 modifications.

That’s 2 rounds of Salsa20.

Repeat column modifications:

Now every word

has been modified 3 times.

Total: 48 modifications.

That’s 3 rounds of Salsa20.

Modify rows by 7 � 9 � 13 � 18:

Now every word

has been modified twice.

Total: 32 modifications.

That’s 2 rounds of Salsa20.

Repeat column modifications:

Now every word

has been modified 3 times.

Total: 48 modifications.

That’s 3 rounds of Salsa20.

Modify rows by 7 � 9 � 13 � 18:

Now every word

has been modified twice.

Total: 32 modifications.

That’s 2 rounds of Salsa20.

Repeat column modifications:

Now every word

has been modified 3 times.

Total: 48 modifications.

That’s 3 rounds of Salsa20.

Repeat row modifications:

Now every word

has been modified 4 times.

Total: 64 modifications.

That’s 4 rounds of Salsa20.

Repeat column modifications:

Now every word

has been modified 3 times.

Total: 48 modifications.

That’s 3 rounds of Salsa20.

Repeat row modifications:

Now every word

has been modified 4 times.

Total: 64 modifications.

That’s 4 rounds of Salsa20.

Repeat column modifications:

Now every word

has been modified 3 times.

Total: 48 modifications.

That’s 3 rounds of Salsa20.

Repeat row modifications:

Now every word

has been modified 4 times.

Total: 64 modifications.

That’s 4 rounds of Salsa20.

Continue for 20 rounds total:

columns, rows, columns, rows,

columns, rows, columns, rows,

columns, rows, columns, rows,

columns, rows, columns, rows,

columns, rows, columns, rows.

First block of Salsa20 output is

final array plus original array:

x[0]+z[0] � � � � � x[15]+z[15].

For subsequent blocks: Repeat

with block counter 1, 2, etc.

Parallelizable. Very small state.

Repeat row modifications:

Now every word

has been modified 4 times.

Total: 64 modifications.

That’s 4 rounds of Salsa20.

Continue for 20 rounds total:

columns, rows, columns, rows,

columns, rows, columns, rows,

columns, rows, columns, rows,

columns, rows, columns, rows,

columns, rows, columns, rows.

First block of Salsa20 output is

final array plus original array:

x[0]+z[0] � � � � � x[15]+z[15].

For subsequent blocks: Repeat

with block counter 1, 2, etc.

Parallelizable. Very small state.

Repeat row modifications:

Now every word

has been modified 4 times.

Total: 64 modifications.

That’s 4 rounds of Salsa20.

Continue for 20 rounds total:

columns, rows, columns, rows,

columns, rows, columns, rows,

columns, rows, columns, rows,

columns, rows, columns, rows,

columns, rows, columns, rows.

First block of Salsa20 output is

final array plus original array:

x[0]+z[0] � � � � � x[15]+z[15].

For subsequent blocks: Repeat

with block counter 1, 2, etc.

Parallelizable. Very small state.

Change in starting array for block 1:

Let’s watch how this change

affects subsequent rounds.

Changes shown here by xor.

Continue for 20 rounds total:

columns, rows, columns, rows,

columns, rows, columns, rows,

columns, rows, columns, rows,

columns, rows, columns, rows,

columns, rows, columns, rows.

First block of Salsa20 output is

final array plus original array:

x[0]+z[0] � � � � � x[15]+z[15].

For subsequent blocks: Repeat

with block counter 1, 2, etc.

Parallelizable. Very small state.

Change in starting array for block 1:

Let’s watch how this change

affects subsequent rounds.

Changes shown here by xor.

Continue for 20 rounds total:

columns, rows, columns, rows,

columns, rows, columns, rows,

columns, rows, columns, rows,

columns, rows, columns, rows,

columns, rows, columns, rows.

First block of Salsa20 output is

final array plus original array:

x[0]+z[0] � � � � � x[15]+z[15].

For subsequent blocks: Repeat

with block counter 1, 2, etc.

Parallelizable. Very small state.

Change in starting array for block 1:

Let’s watch how this change

affects subsequent rounds.

Changes shown here by xor.

Change after one round:

Difference has propagated

to two other entries

in the same column.

Depends on a few carries,

but still highly predictable.

Change in starting array for block 1:

Let’s watch how this change

affects subsequent rounds.

Changes shown here by xor.

Change after one round:

Difference has propagated

to two other entries

in the same column.

Depends on a few carries,

but still highly predictable.

Change in starting array for block 1:

Let’s watch how this change

affects subsequent rounds.

Changes shown here by xor.

Change after one round:

Difference has propagated

to two other entries

in the same column.

Depends on a few carries,

but still highly predictable.

Change after two rounds:

Difference has propagated

across columns.

Change after one round:

Difference has propagated

to two other entries

in the same column.

Depends on a few carries,

but still highly predictable.

Change after two rounds:

Difference has propagated

across columns.

Change after one round:

Difference has propagated

to two other entries

in the same column.

Depends on a few carries,

but still highly predictable.

Change after two rounds:

Difference has propagated

across columns.

Change after three rounds:

Every word has been affected.

A substantial fraction of bits

are now active.

Change after two rounds:

Difference has propagated

across columns.

Change after three rounds:

Every word has been affected.

A substantial fraction of bits

are now active.

Change after two rounds:

Difference has propagated

across columns.

Change after three rounds:

Every word has been affected.

A substantial fraction of bits

are now active.

Change after four rounds:

Hundreds of active bits

in every subsequent round.

Total 4000 active bits

interacting with carries

in a random-looking way.

Change after three rounds:

Every word has been affected.

A substantial fraction of bits

are now active.

Change after four rounds:

Hundreds of active bits

in every subsequent round.

Total 4000 active bits

interacting with carries

in a random-looking way.

Change after three rounds:

Every word has been affected.

A substantial fraction of bits

are now active.

Change after four rounds:

Hundreds of active bits

in every subsequent round.

Total 4000 active bits

interacting with carries

in a random-looking way.

Surprise: Salsa20 is fast!

My current public-domain software:

26 � 75 Athlon cycles/round.

37 � 5 Pentium III cycles/round.

48 Pentium 4 f12 cycles/round.

33 � 75 Pentium M cycles/round.

24 � 5 PowerPC 7410 cycles/round.

33 PowerPC RS64 IV cycles/round.

40 � 5 UltraSPARC II cycles/round.

41 UltraSPARC III cycles/round.

Change after four rounds:

Hundreds of active bits

in every subsequent round.

Total 4000 active bits

interacting with carries

in a random-looking way.

Surprise: Salsa20 is fast!

My current public-domain software:

26 � 75 Athlon cycles/round.

37 � 5 Pentium III cycles/round.

48 Pentium 4 f12 cycles/round.

33 � 75 Pentium M cycles/round.

24 � 5 PowerPC 7410 cycles/round.

33 PowerPC RS64 IV cycles/round.

40 � 5 UltraSPARC II cycles/round.

41 UltraSPARC III cycles/round.

Change after four rounds:

Hundreds of active bits

in every subsequent round.

Total 4000 active bits

interacting with carries

in a random-looking way.

Surprise: Salsa20 is fast!

My current public-domain software:

26 � 75 Athlon cycles/round.

37 � 5 Pentium III cycles/round.

48 Pentium 4 f12 cycles/round.

33 � 75 Pentium M cycles/round.

24 � 5 PowerPC 7410 cycles/round.

33 PowerPC RS64 IV cycles/round.

40 � 5 UltraSPARC II cycles/round.

41 UltraSPARC III cycles/round.

Multiply by 20 for 20 rounds,

divide by 64 for cycles/byte
� � � but rounds aren’t everything.

I still need to optimize code

for block counting, xor, etc.;

combine with Poly1305;

do comprehensive benchmarks.

But it’s clear that Salsa20

will be at least as fast as AES,

sometimes much faster,

depending on the CPU.

Surprise: Salsa20 is fast!

My current public-domain software:

26 � 75 Athlon cycles/round.

37 � 5 Pentium III cycles/round.

48 Pentium 4 f12 cycles/round.

33 � 75 Pentium M cycles/round.

24 � 5 PowerPC 7410 cycles/round.

33 PowerPC RS64 IV cycles/round.

40 � 5 UltraSPARC II cycles/round.

41 UltraSPARC III cycles/round.

Multiply by 20 for 20 rounds,

divide by 64 for cycles/byte
� � � but rounds aren’t everything.

I still need to optimize code

for block counting, xor, etc.;

combine with Poly1305;

do comprehensive benchmarks.

But it’s clear that Salsa20

will be at least as fast as AES,

sometimes much faster,

depending on the CPU.

Surprise: Salsa20 is fast!

My current public-domain software:

26 � 75 Athlon cycles/round.

37 � 5 Pentium III cycles/round.

48 Pentium 4 f12 cycles/round.

33 � 75 Pentium M cycles/round.

24 � 5 PowerPC 7410 cycles/round.

33 PowerPC RS64 IV cycles/round.

40 � 5 UltraSPARC II cycles/round.

41 UltraSPARC III cycles/round.

Multiply by 20 for 20 rounds,

divide by 64 for cycles/byte
� � � but rounds aren’t everything.

I still need to optimize code

for block counting, xor, etc.;

combine with Poly1305;

do comprehensive benchmarks.

But it’s clear that Salsa20

will be at least as fast as AES,

sometimes much faster,

depending on the CPU.

Here AES has 16-byte key;

slower with 32-byte key.

Salsa20 has no such slowdown.

AES becomes even slower if

key is not pre-expanded.

Salsa20 has no precomputation.

AES has serious timing leaks:

see http://cr.yp.to

/papers.html#cachetiming

for successful AES key extraction.

Constant-time AES is very slow.

Salsa20 has no timing leaks.

Multiply by 20 for 20 rounds,

divide by 64 for cycles/byte
� � � but rounds aren’t everything.

I still need to optimize code

for block counting, xor, etc.;

combine with Poly1305;

do comprehensive benchmarks.

But it’s clear that Salsa20

will be at least as fast as AES,

sometimes much faster,

depending on the CPU.

Here AES has 16-byte key;

slower with 32-byte key.

Salsa20 has no such slowdown.

AES becomes even slower if

key is not pre-expanded.

Salsa20 has no precomputation.

AES has serious timing leaks:

see http://cr.yp.to

/papers.html#cachetiming

for successful AES key extraction.

Constant-time AES is very slow.

Salsa20 has no timing leaks.

Multiply by 20 for 20 rounds,

divide by 64 for cycles/byte
� � � but rounds aren’t everything.

I still need to optimize code

for block counting, xor, etc.;

combine with Poly1305;

do comprehensive benchmarks.

But it’s clear that Salsa20

will be at least as fast as AES,

sometimes much faster,

depending on the CPU.

Here AES has 16-byte key;

slower with 32-byte key.

Salsa20 has no such slowdown.

AES becomes even slower if

key is not pre-expanded.

Salsa20 has no precomputation.

AES has serious timing leaks:

see http://cr.yp.to

/papers.html#cachetiming

for successful AES key extraction.

Constant-time AES is very slow.

Salsa20 has no timing leaks.

I offer $1000 prize for

the public Salsa20 cryptanalysis

that I consider most interesting.

Awarded at the end of 2005.

Send URLs of your papers to

snuffle@box.cr.yp.to.

Here AES has 16-byte key;

slower with 32-byte key.

Salsa20 has no such slowdown.

AES becomes even slower if

key is not pre-expanded.

Salsa20 has no precomputation.

AES has serious timing leaks:

see http://cr.yp.to

/papers.html#cachetiming

for successful AES key extraction.

Constant-time AES is very slow.

Salsa20 has no timing leaks.

I offer $1000 prize for

the public Salsa20 cryptanalysis

that I consider most interesting.

Awarded at the end of 2005.

Send URLs of your papers to

snuffle@box.cr.yp.to.

