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Salsa20: additive stream cipher,
expanding key and nonce
into long stream of bytes

to add to plaintext.

Key k: 16 or 32 bytes.
Same speed either way,

simplifying hardware.

Nonce n: 8 bytes.
Can send 2%% messages
under one key.

Stream Salsa204(n):
270 bytes for each message.
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Salsa20: additive stream cipher, For authentication,
expanding key and nonce combine Salsa20 with Poly1305,

into long stream of bytes http://cr.yp.to/mac.html.

to add to plaintext. . .
Given message m with nonce n:

Key k: 16 or 32 bytes. Send (n, ¢, Poly1305..(c, s)) where
Same speed either way, (s, c) = Salsa20,(n) & (0, m).
simplifying hardware.

Very fast; short secret key (k, 7);

Nonce n: 8 bytes. provably secure if Salsa20 is secure;
Can send 2%% messages better than encrypt-then-MAC.
under one key. Easily adapt to "AEAD,”

Stream Salsa20.(n): i.e., allow unencrypted header.

270 bytes for each message.
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For authentication,

combine Salsa20 with Poly1305,
http://cr.yp.to/mac.html.

Given message m with nonce n:
Send (n, ¢, Poly1305..(c, s)) where
(s,c) = Salsa20,(n) & (0, m).

Very fast; short secret key (k, 7);

provably secure if Salsa20 is secure;

better than encrypt-then-MAC.

Easily adapt to "AEAD,”
I.e., allow unencrypted header.
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For authentication,
combine Salsa20 with Poly1305,

http://cr.yp.to/mac.html.

Given message m with nonce n:
Send (n, ¢, Poly1305..(c, s)) where
(s,c) = Salsa20,(n) & (0, m).

Very fast; short secret key (k, 7);

provably secure if Salsa20 is secure;

better than encrypt-then-MAC.

Easily adapt to "AEAD,”
I.e., allow unencrypted header.

Let's watch how Salsa20

generates block of 64 bytes
from key (1,2,3,...,16),
nonce (255,227,11,84,2,0,0,0).

Notation: Il means 1 + 2 + 16.
Little-endian everywhere.

Key:
A A (A
{1 | i

Nonce:
{1 I L
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Let's watch how Salsa20 Build 4 x 4 array of 4-byte words:
generates block of 64 bytes

from key (1,2,3,...,16),

I 00 N R A

WL WETETEE e e
nonce (255,227,11,84,2,0,0,0). TR L
Notation: Il means 1 + 2 + 16. U HE S 0 € (A 1 A G | {1 WA 1

Little-endian everywhere. . .
Diagonal entries are constants:

Key: 1 0 0 LR I
0 A A
L M M M

Other entries are key [N
L T WML, nonce
Nonce: (I . block counter
A A 1 . key again.
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Build 4 x 4 array of 4-byte words: Modify one word using two others:

W T e TR 80U T A W
| (S {0 R | (SR TR R

THETHN 1T IVMERRRTT RN
1 1M T 10 11 1 1 M T 10 A 01
Diagonal entries are constants: The modification is very simple:
I 0 00 10 {00 LR add two underlined words;

Other entries are key [N rotate left by 7 bits;

Xor into next word down.

W T NN nonce
I - block counter x[9] °= (x[1]+x[5]) << 7
[ I . key again.

Will do long series of these
simple modifications, as in TEA.
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Modify one word using two others:

0 0 R A
| M0 S OO0 B L R
INMEERNEE AEREEAN PR
W0 0 L A 1)

The modification is very simple:

add two underlined words:
rotate left by 7 bits;
xor into next word down.

x[9] "= (x[1]+x[5B]) << 7

Will do long series of these
simple modifications, as in TEA.
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Modify one word using two others:

00 0 R A
| M0 S O 0 0L R
INREEANEE AEREEAN PR
W0 0 0 A 11

The modification is very simple:

add two underlined words:
rotate left by 7 bits;
xor into next word down.

x[9] "= (x[1]+x[5B]) << 7

Will do long series of these
simple modifications, as in TEA.

Modity other columns:
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Columns wrap around

from bottom to top.

x[4] “= (x[12]+x[0]) <k 7

x[14] ~= (x[6]+x[10]) <<<'7

x[3] "= (x[11]+x[15]) <<'7

Total: 4 modifications.
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x[4] “= (x[12]+x[0]) <k 7
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Modity other columns:

RN DT e
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Columns wrap around

from bottom to top.

x[4] “= (x[12]+x[0]) <k 7
x[14] ~= (x[6]+x[10]) <<<'7
x[3] "= (x[11]+x[15]) <<'7

Total: 4 modifications.

Modify each column again:
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This time rotate by 9 bits.

X

x[13] ~= (x[5]
x[2] "= (x[10.
x[7] = (x[15._

8] ~= (x[0]+x[4]) <<< 9

9]) <<k 9
14]) <<< 9

3]) <<< 9

Total: 8 modifications.
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Modify each column again:
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This time rotate by 9 bits.

8] "= (x[0]+x[4]) << 9

13] "= (x[6]+x[9]) << 9
2] "= (x[10]+x[14]) <<< 9
7] = (x[15]1+x[3]) <<< 9

T T e

Total: 8 modifications.
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Modify each column again:
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This time rotate by 9 bits.

X

x[13] "= (x[b]+x
x[2] = (x[10]+x
x[7] "= (x[15]+x

Total: 8 modifications.

8] "= (x[0]+x[4]) <<< 9
9]) <<k 9
14]) <<k 9
3]) <<k 9

Modify each column again:
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This time rotate by 13 bits.

x[12] "= (x[4]+x[8]) <<k 13
x[1] "= (x[9]+x[13]) << 13
x[6] ~= (x[14]+x[2]) <<< 13
x[11] "= (x[3]+x[7]) <<< 13

Total: 12 modifications.
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Modify each column again:
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This time rotate by 13 bits.

12] = (x[4]+x[8]) <<< 13
(1] 7= (x[9]+x[13]) <<< 13
6] ~= (x[14]+x[2]) <<< 13
11] = (x[3]+x[7]) <<< 13

oI T e

Total: 12 modifications.

Modify each colun
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Modify each column again:
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This time rotate by 13 bits.

12] = (x[4]+x[8]) <<< 13
(1] 7= (x[9]+x[13]) <<< 13
6] "= (x[14]+x[2]) <<« 13
11] = (x[3]+x[7]) <<< 13

oI T e

Total: 12 modifications.

Modify each column again:
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This time rotate by 18 bits.

x[0] "= (x[8]+x[12]) <<< 18
x[56] "= (x[13]+x[1]) <<< 18
x[10] ~= (x[2]+x[6]) <<< 18
x[15] ~= (x[7]+x[11]) <<< 18

Total: 16 modifications.
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Total: 16 modifications.

Modify rows by 7,9, 13, 18:
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Now every word
has been modified twice.

Total: 32 modifications.

That's 2 rounds of Salsa20.
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Modify rows by 7,9, 13, 18:
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Now every word
has been modified twice.

Total: 32 modifications.

That's 2 rounds of Salsa20.
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Modify rows by 7,9, 13, 18:

TR TEA e i
AT AN WA e
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Now every word
has been modified twice.

Total: 32 modifications.

That's 2 rounds of Salsa20.

Repeat column modifications:

[T M v veer
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Now every word
has been modified 3 times.

Total: 48 modifications.

That's 3 rounds of Salsa20.
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Repeat column modifications:

[T M v veere
00 1L L
TN W Urmeen s
LTI T TR EEA

Now every word
has been modified 3 times.

Total: 48 modifications.

That's 3 rounds of Salsa20.

Repeat row modifications:
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Now every word
has been modified 4 times.

Total: 64 modifications.

That's 4 rounds of Salsa20.
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Repeat row modifications:

NIRRT e
LN WO R e
AR ARE I I N
IEEETRETIN TR AR i

Now every word
has been modified 4 times.

Total: 64 modifications.

That's 4 rounds of Salsa20.

Continue for 20 rounds total:

columns, rows, columns, rows,
columns, rows, columns, rows,
columns, rows, columns, rows,

columns, rows, columns, rows,

columns, rows, columns, rows.

First block of Salsa20 output is

final array plus original array:
x[0]+=z[0],..., x[15]+z[15].

For subsequent blocks: Repeat

with block counter 1, 2, etc.

Parallelizable. Very small state.
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Continue for 20 rounds total:

columns, rows, columns, rows,

columns, rows, columns, rows,

columns, rows, columns, rows,

columns, rows, columns, rows,

columns, rows, columns, rows.

First block of Salsa20 output is

final array plus original array:
x[0]+=z[0],..., x[15]+z[15].

For su
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D
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elizable. Very small state.

Change in starting array for block 1:

Let's watch how this change
affects subsequent rounds.

Changes shown here by xor.
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Change in starting array for block 1:

|
I

Let's watch how this change

affects subsequent rounds.

Changes shown here by xor.

Change after one round:

VTN

Difference has propagated
to two other entries
in the same column.
Depends on a few carries,
but still highly predictable.
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Depends on a few carries,

but still highly predictable.

Change after two

1| 00 AR M |

| I
VTN i

Difference has pro
across columns.



Change after one round:

VTN

Difference has propagated
to two other entries
In the same column.

Depends on a few carries,

but still highly predictable.

Change after two rounds:
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Difference has propagated

across columns.
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Change after two rounds: Change after three rounds:
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Difference has propagated Every word has been affected.

across columns. . . .
A substantial fraction of bits

are now active.
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Change after three rounds:

| UEEE T ML
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LU OO MO L 1| O 11 1R |

Every word has been affected.

A substantial fraction of bits

are now active.

Change after four rounds:

I[NNI TN U

RN T N
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LN T

il
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Hundreds of active bits

in every subsequent round.
Total > 4000 active bits
interacting with carries

in a random-looking way.
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Hundreds of active bits
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Total > 4000 active bits
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in a random-looking way.

Surprise: Salsa20
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Change after four rounds:

INUTIR NN U e
TR T [T e
IR TNRET e e
INRENY A VR cisenern

Hundreds of active bits

in every subsequent round.
Total > 4000 active bits
interacting with carries

in a random-looking way.

Surprise: Salsa20 is fast!

My current public-domain software:
26.75 Athlon cycles/round.
37.5 Pentium Il cycles/round.
48 Pentium 4 f12 cycles/round.

33.75 Pentium M cycles/round.
24.5 PowerPC 7410 cycles/round.
33 PowerPC RS64 IV cycles/round.
40.5 UltraSPARC Il cycles/round.
41 UltraSPARC I1I cycles/round.
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Surprise: Salsa20 is fast!

My current public-domain software:

26.75 Athlon cycles/round.
37.5 Pentium Il cycles/round.
48 Pentium 4 f12 cycles/round.

33.75 Pentium M cycles/round.
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Surprise: Salsa20 is fast!

My current public-domain software:

26.75 Athlon cycles/round.
37.5 Pentium Il cycles/round.
48 Pentium 4 f12 cycles/round.

33.75 Pentium M cycles/round.
24.5 PowerPC 7410 cycles/round.

33 PowerPC RS64 IV cycles/round.

40.5 UltraSPARC Il cycles/round.
41 UltraSPARC I1I cycles/round.

Multip
divide

y by 20 for 20 rounds,

oy 64 for cycles/byte

... but rounds aren't everything.

| still need to optimize code

for block counting, xor, etc.;
combine with Poly1305;
do comprehensive benchmarks.

But it’s clear that Salsa20

will be

at least as fast as AES,

sometimes much faster,
depending on the CPU.
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Multiply by 20 for 20 rounds,
divide by 64 for cycles/byte

... but rounds aren't everything.

| still need to optimize code
for block counting, xor, etc.;
combine with Poly1305;

do comprehensive benchmarks.

But it's clear that Salsa20

will be at least as fast as AES,
sometimes much faster,
depending on the CPU.

Here AES has 16-byte key;
slower with 32-byte key.

Salsa20 has no such slowdown.

AES becomes even s

key Is not pre-expanc

ower If
ed.

Salsa20 has no precomputation.

AES has serious timing leaks:

see http://cr.yp.to

/papers.html#cachetiming

for successful AES key extraction.

Constant-time AES is very slow.

Salsa20 has no timing leaks.



20 rounds,
cles/byte

n't everything.

mize code

. Xor, etc.:
1305;
benchmarks.

Salsa20
fast as AES,
aster,

CPU.

Here AES has 16-byte key;
slower with 32-byte key.

Salsa20 has no such slowdown.

AES becomes even s

ower If

key Is not pre-expanc

€d.

Salsa20 has no precomputation.

AES has serious timing leaks:

see http://cr.yp.to

/papers.html#cachetiming

for successful AES key extraction.

Constant-time AES is very slow.

Salsa20 has no timing leaks.

| offer $1000 prize
the public Salsa20

that | consider mo
Awarded at the en

Send URLs of you

snuffle@box.cr.



Here AES has 16-byte key;
slower with 32-byte key.
Salsa20 has no such slowdown.

AES becomes even slower if

key Is not pre-expanded.

Salsa20 has no precomputation.

AES has serious timing leaks:
see http://cr.yp.to
/papers.html#cachetiming

for successful AES key extraction.

Constant-time AES is very slow.
Salsa20 has no timing leaks.

| offer $1000 prize for

the public Salsa20 cryptanalysis
that | consider most interesting.
Awarded at the end of 2005.

Send URLs of your papers to
snuffle@box.cr.yp.to.



