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Define p = 22°° — 19: prime.

Define A = 358990. Detfine
Curve : Z —{0,1,..., p— 1,00} by
n — ¢ coordinate of nth multiple
of (2,...) on the elliptic curve

y? = 23 + Az? +  over Fp.

Main topic of this talk: Compute
U, Curve(V) — Curve(UV)

in very few CPU cycles.

In particular, use floating point
for fast arithmetic mod p.
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Define p = 22°° — 19: prime.

Define A = 358990. Detfine

Curve: Z — {0,1,...,p— 1,00} by
n — ¢ coordinate of nth multiple
of (2,...) on the elliptic curve

y? = 23 + Az? +  over Fp.

Main topic of this talk: Compute
U, Curve(V) — Curve(UV)

in very few CPU cycles.

In particular, use floating point
for fast arithmetic mod p.

Why cryptographers care

Each user has secret key U,
public key Curve(U).

Users with secret keys U, V
exchange Curve(U), Curve(V)
through an authenticated channel;
compute Curve(UV); hash it;

use hash as shared secret to
encrypt and authenticate messages.

Curve speed is important
when number of messages is small.
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Why cryptographers care

Eac
pub

n user has secret key U,

ic key Curve(U).

Users with secret keys U, V
exchange Curve(U), Curve(V)
through an authenticated channel;
compute Curve(UV); hash it;

USE

encrypt and authenticate messages.

hash as shared secret to

Curve speed is important

when number of messages is small.

Analogous system using 2Y mod p:
1976 Dithie Hellman.

Using elliptic curves
to avoid index-calculus attacks:

1986 Miller, 1987 Koblitz.

Using 23 + Az? + z for speed:
1987 Montgomery (for ECM).

High precision from fp sums:
1968 Veltkamp, 1971 Dekker.
Speedups: 1999-2005 Bernstein.
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Analogous system using 2Y mod p:

1976 Diffie Hellman.

Using elliptic curves
to avoid index-calculus attacks:

1986 Miller, 1987 Koblitz.

Using 23 + Az? + z for speed:
1987 Montgomery (for ECM).

High precision from fp sums:
1968 Veltkamp, 1971 Dekker.
Speedups: 1999-2005 Bernstein.

Understanding CPU design

Computers are designed for

music, movies, Photoshop, Doom 3,
etc. Heavy use of fp arithmetic,
l.e., approximate real arithmetic.

Example: Athlon, every cycle,

does one add and one multiply
of high-precision fp numbers.

Programmer paying attention
to these CPU features
can use them for cryptography.
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Understanding CPU design

Computers are designed for

music, movies, Photoshop, Doom 3,
etc. Heavy use of fp arithmetic,
l.e., approximate real arithmetic.

Example: Athlon, every cycle,

does one add and one multiply
of high-precision fp numbers.

Programmer paying attention
to these CPU features
can use them for cryptography.
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Understanding CPU design A 53-bit fp number
is a real number 2¢f

with e, f € Z and |f| < 2°3.

Computers are designed for
music, movies, Photoshop, Doom 3,
etc. Heavy use of fp arithmetic, Round each real number z to

I.e., approximate real arithmetic. closest 53-bit fp number, fps3 2.

Round halves to even.
Example: Athlon, every cycle,

does one add and one multiply Examples:
of high-precision fp numbers. fps3(8675309) = 8675309;
fpes (2127 4 8675309) = 2147;

Programmer paying attention
© Payie fpes (2127 — 8675309) = 2127

to these CPU features
can use them for cryptography.
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closest 53-bit fp number, fps3 2.

Round halves to even.

Examples:
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A 53-bit fp number
is a real number 2¢f
with e, f € Z and |f| < 2°3.

Round eac
closest 53-
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ver, fps3 2.

Round halves to even.

Examples:

fpe3(8675309) = 8675309;
fpes (2127 4 8675309) = 2147;
fpes (2127 — 8675309) = 2127

Typical CPU: UltraSPARC IIlI.

Every cycle, UltraSPARC Il can do
one fp multiplication

r, 8 — fpsa(7s)

and one fp addition

r, s — fps3(r + s),

subject to limits on e.

“4-cycle tp-operation latency”:
Results available after 4 cycles.

Can substitute subtraction
for addition. I'll count
subtractions as additions.
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Every cycle, UltraSPARC Il can do
one fp multiplication

r, 8 — fpsa(7s)

and one fp addition
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subject to limits on e.

“4-cycle tfp-operation latency”:
Results available after 4 cycles.

Can substitute subtraction
for addition. I'll count
subtractions as additions.

Some variation an

PowerPC RS64 |V
or one multiplicati
“fused” 7, s, t—f
Results available a

Athlon: fpg, inste
one multiplication
Results available a

I'll focus on Ultra
Not the most imp
but I1t's a good wa



Typical CPU: UltraSPARC IIlI.

Every cycle, UltraSPARC Il can do
one fp multiplication

r, 8 — fpsa(7s)

and one fp addition

r, s — fps3(r + s),

subject to limits on e.

“4-cycle tp-operation latency”:
Results available after 4 cycles.

Can substitute subtraction
for addition. I'll count
subtractions as additions.

Some variation among CPUs.

PowerPC RS64 IV: One addition
or one multiplication or one
“fused” r,s,t — fpg3(rs +t).
Results available after 4 cycles.

Athlon: fpg, Instead of fps3;
one multiplication and one addition.
Results available after 4 cycles.

I'll focus on UltraSPARC IIlI.
Not the most important CPU,
but I1t's a good warmup.
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Some variation among CPUs.

PowerPC RS64 IV: One addition
or one multiplication or one

“fused” r,s,t — fps3(rs +t).
Results available after 4 cycles.

Athlon: fpg, instead of fps3;

one multiplication and one addition.

Results available after 4 cycles.

I'll focus on UltraSPARC IIlI.
Not the most important CPU,
but I1t's a good warmup.

Exact dot product

It a, b {—220, ..
then ab i1s a b3-bit
so ab = fps3(ab).

If a,b,c,d € {—2°
then ab, cd, ab + c
53-bit fp numbers
ab = fpsz(ab), cd
ab + cd = fps3(ab

UltraSPARC 1l co
a, b c d— ab -+ c
two fp mults, one



Some variation among CPUs.

PowerPC RS64 IV: One addition
or one multiplication or one

“fused” r,s,t — fps3(rs +t).
Results available after 4 cycles.

Athlon: fpgs instead of fpss;

one multiplication and one addition.

Results available after 4 cycles.

I'll focus on UltraSPARC IIlI.
Not the most important CPU,
but 1t's a good warmup.

Exact dot products

fa,be{-2%...,0,1,...,2%}
then ab is a 53-bit fp number
so ab = fps3(ab).

If a,b,c,d € {-2%,...,2%0}
then ab, cd, ab + cd are
53-bit fp numbers so

ab = fps3(ab), cd = fps3(cd),
ab + cd = fps3(ab + cd).

UltraSPARC [l computes
a,b,c, d— ab-+ cd with
two fp mults, one fp add.
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Exact dot products

fa,be{-2%...,0,1,...,2%9}

then ab is a 53-bit fp n
so ab = fps3(ab).

fa,bc,de {-2%, . ..

then ab, cd, ab + cd are

53-bit fp numbers so

umber

ab = fps3(ab), cd = fps3(cd),
ab + cd = fps3(ab + cd).

UltraSPARC Il computes

a, b c d— ab-+ cd wit

N

two fp mults, one fp ac

d.

Bit extraction

Define a; = 3 - 2%

top; 7 = fps3(fpsa
bottom; r = fpe3("

If r is a b3-bit fp |
and |r| < 2¢21 tr
top; 7 € 2'Z;

lbottom; 7| < 2¢~
r = top; T + bottc



Exact dot products

fa,be{-2%...,0,1,...,2%}

then ab is a 53-bit fp n
so ab = fps3(ab).

fa,bc,de {29, ..

then ab, cd, ab + cd are

53-bit fp numbers so

umber

ab = fps3(ab), cd = fps3(cd),
ab + cd = fps3(ab + cd).

UltraSPARC Il computes

a, b c d— ab-+ cd wit

N

two fp mults, one fp ac

d.

Bit extraction

Define a; = 3 - 2¢21

top; 7 = fps3(fps3(r + ;) — ),
bottom; r = fpss(7 — top; 7).

If r is a 53-bit fp number
and |r| < 2*7°1 then
top; 7 € 2'Z;

lbottom; r| < 2v—1. and
r = top; r 4+ bottom; 7.
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Bit extraction

Define a; = 3 - 2¢21

top; 7 = fps3(fps3(r + a;) — ),
bottom; r = fpss(r — top; 7).

If r is a 53-bit fp number
and |r| < 2*7°1 then
top; 1 € 2'Z;

lbottom; 7| < 2'71; and
r = top; 7 + bottom; r.

Big integers as fp_

Every integer mod
can be written as

UQ) T U2 T U43 T+
Ugs + U107 T U128
U170 + U192 + U]
where u; /2" € {—

Indices 2 are |255:
for 7 €4{0,1,...,]1

Representation s |
it's not the input/
Uniqueness would



Bit extraction

Define a; = 3 - 2¢°1

top; 7 = fps3(fps3(r + ;) — ),
bottom; r = fpss(7 — top; 7).

If r is a 53-bit fp number
and |r| < 2*7°1 then
top; 7 € 2'Z;

lbottom; 7| < 2*~1: and
r = top; r 4+ bottom; 7.

Big integers as fp sums

Every integer mod 22°° — 19
can be written as a sum
UQ + U2 + U433 + Upg +
Ugs + U107 + U128 + U149 +

U170 + U192 + U213 + U234
where u; /2 € {—222, L 222}.

Indices 2 are [2557/12]
for 7 €{0,1,...,11}.

Representation Is not unique;
it's not the input/output format.
Uniqueness would cost cycles!
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Big integers as fp sums

Every integer mod 22°° — 19
can be written as a sum
UQ + U2 + U433 + Upg +
Ugs + U107 + U128 1+ UL49 T

U170 + U192 + U213 + U234
where u; /2 € {—222, L 222}.

Indices 2 are [2557/12]
for 7 €{0,1,...,11}.

Representation Is not unique;

it's not the input/output format.

Uniqueness would cost cycles!

Assume u = ) u;
and similarly v =
UV = Wy + woy +
where wg = ugvp,

W22 = UQU22 T U2

W43 = UQU43 + U2
etc.

Each w; i1s a b3-bi
Given u;'s and v;’
can compute w;'s
144 fp mults, 121



Big integers as fp sums

Every integer mod 22°° — 19
can be written as a sum
UQ + U2 + U433 + Upg +
Ugs + U107 + U128 1+ UL49 T

U170 + U192 + U213 + U234
where u; /2 € {—222, L 222}.

Indices 2 are [2557/12]
for 7 €{0,1,...,11}.

Representation Is not unique;

it's not the input/output format.

Uniqueness would cost cycles!

Assume u = > wu; as above,
and similarly v =) w;. Then
UV = W + W2 + -+ - + W468
where wg = ugvp,

W22 = UQU22 + U220,

W43 = UQU43 1+ U22U22 + U437,

etc.

Each w; is a 53-bit fp number.
Given u;'s and v;'s,

can compute w;'s using

144 fp mults, 121 fp adds.
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Assume u = > wu; as above,

and similarly v =) w;. Then
UV = Wy + W2 + -+ - + W468
where wg = ugvp,

- U220,

W2 = UQV22
W43 = UQV43
etc.

- U22U22 + U437,

Each w; is a 53-bit fp number.

Given u;'s and v;'s,

can compute w;'s using

144 fp mults,

121 fp adds.

Furthermore, mod
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where rg = wg + .
Too = Wy + 19 - 2

Each r; is a b3-bit
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Assume u = > wu; as above,
and similarly v =) w;. Then
UV = Wy + W2 + -+ - + W468
where wg = ugvp,

W = UQU + U2,

W43 = UQU43 T U22VU22 T+ U437,

etc.

Each w; is a 53-bit fp number.
Given u;'s and v;'s,

can compute w;'s using

144 fp mults, 121 fp adds.

Furthermore, modulo 2255 19,
UV =70+ 722+ -+ T34
where g = wg + 19 - 27222 woss,
Too = Wooy + 19 - 27229577, etc.

Each r; is a 53-bit fp number.
Example: rg Is an integer;
rg| < 381 - 2%

Computing r;'s from w;'s takes
11 fp mults, 11 fp adds.

Structure: (Z[t] N Z[22%%/12¢])
/(22t12 — 19) — Z /(22> — 19).
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Furthermore, modulo 2%2° — 19,
UV =70+ 722+ -+ 79234
where g = wg + 19 - 27222 woss,
Too = Wooy + 19 - 27229577, etc.

Each r; is a 53-bit fp number.
Example: rg Is an integer;
rg| < 381 - 2%

Computing r;'s from w;'s takes
11 fp mults, 11 fp adds.

Structure: (Z[t] N Z[22%%/12¢])
/(22t12 — 19) — Z /(22> — 19).
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Furthermore, modulo 2255 19,
UV =70+ 722+ -+ 79234
where g = wg + 19 - 27222 woss,
Too = Wooy + 19 - 272229577, etc.

Each r; is a 53-bit fp number.
Example: rg Is an integer;
rg| < 381 - 2%

Computing 7;'s from w;'s takes
11 fp mults, 11 fp adds.

Structure: (Z[t] N Z[22%%/12¢])
/(22t12 — 19) — Z /(22> — 19).

Carries

“Carry from rg to roo":
replace rg and 799 by
bottomos rg and 7o + topyy 7.

This takes 4 fp adds,
and guarantees |rg| < 221,

Series of 13 carries puts all r;'s

in range for subsequent products:

from 7192 to 7913 tO 7934 to Woss;
then from rg to 790 to 723 to . ..

to 7192 1O 7913.
This takes 52 fp adds.
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and guarantees |rg| < 221,
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Carries

“Carry from rg to roo":
replace rg and 799 by
bottomys rg and 7o + topys 7.

This takes 4 fp adds,
and guarantees |rg| < 221,

Series of 13 carries puts all r;'s

in range for subsequent products:

from 7192 to 7913 tO 7934 to Woss;
then from rg to 790 to 743 to . ..

to 7192 1O 7913.
This takes 52 fp adds.

Total 155 mults, 184 adds
to multiply modulo 2%2° — 19
in this representation.

> 184 UltraSPARC Ill cycles.

— 184 cycles? Two obstacles:
fp-operation latency;

“load /store” latency imposed by
limited number of “registers.”

Schedule instructions carefully
to bring cycles down to ~ 134.
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in this representation.
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Total 155 mults, 184 adds
to multiply modulo 2%°° — 19
in this representation.

> 184 UltraSPARC |11 cycles.

— 184 cycles? Two obstacles:
fp-operation latency;

“load /store” latency imposed by
limited number of “registers.”

Schedule instructions carefully
to bring cycles down to ~ 134.

Have developed ghasm,
new programming language
for high-speed computations.

Includes range verification,
gulded register allocation, et al.

Lets me write desired code

with much less human time than
traditional asm, C compiler, etc.
Have also used for fast AES,
fast Poly1305, fast Salsa20, etc.;
see, e.g., http://cr.yp.to
/mac/poly1305_athlon.s.
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Have developed ghasm,

new programming language

for high-speed computations.

Includes range verification,

gulded register allocation, et al.
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with much less human time than
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Have developed ghasm,
new programming language
for high-speed computations.

Includes range verification,
gulded register allocation, et al.

Lets me write desired code

with much less human time than
traditional asm, C compiler, etc.
Have also used for fast AES,
fast Poly1305, fast Salsa20, etc.;
see, e.g., http://cr.yp.to
/mac/poly1305_athlon.s.

Speedup: Squarings

Often know in advance that © = v.

UQUG4 T U22U43 T U43U22 T UR4AUQ
is more efficiently computed as
2(upues + u22U43).

Even better: First compute
2Uqg, 2U22, ..., 2U234

and then compute
(2ug)ues + (2uro)uasz etc.

130 fp adds instead of 184.
Makes carry time even more visible.
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Speedup: Squarings

Often know in advance that ©u = v.

UQUG4 T U22U43 T U43U22 T U4AUQ
is more efficiently computed as
2(upues + u22U43).

Even better: First compute

., 2U234
and then compute

(2ug)ues + (2uoro)uqsz etc.

2uqg, 2uoo, . .

130 fp adds instead of 184.

Makes carry time even more visible.
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Say Ap = ug + uo
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Speedup: Squarings

Often know in advance that ©u = v.

UQUG4 T U22U43 T U43U22 T UR4UQ
is more efficiently computed as
2(upues + u22U43).

Even better: First compute

and then compute
(2ug)ues + (2uoro)uasz etc.

130 fp adds instead of 184.

Makes carry time even more visible.

Speedup: Karatsuba's method

Say Ag = ug + upat + - - - + uggrt>,
Al = uipg + w149t + - - + up3at’,
Bo=wvy+ -, Bt =viog + .

Original, 184 adds: Product is
Ao By + (Ao B1 —I—AlBo)t6—|-AlBlt12.

Karatsuba, 182 adds:
((Ag+A1)(Bo+B1)—AgBy—A1 B1)t°
+ AgBg + A1 Bltlz.

Improved Karatsuba, 177 adds:
(Ao + A1)(Bo Bl)t6
+ (AgBgy — A151t6)(1 — t6).
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Speedup: Karatsuba's method

Say Ag = ug + upat + - - - + uygrt>,
A1 = u1g + U149t + - - - + up3at®,

Original, 184 adds: Product is
Ao By + (Ao B1 —I—AlBo)t6—|-AlBlt12.

Karatsuba, 182 adds:
((Ag+A1)(Bo+B1)—AgBy—A1 B1)t°
+ AgBg + A1 Bltlz.

Improved Karatsuba, 177 adds:
(Ao + A1)(Bo Bl)t6
+ (AgBgy — A151t6)(1 — t6).

The Curve functio

Overall strategy tc
U, Curve(V) — Cu
using arithmetic n

For various integel
find z,,, 25, such tl
Curve(nV) =z, /
i.e., zn, Curve(nV)

e.g. 1 = Curve(V
assuming Curve(V
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Speedup: Karatsuba's method

Say Ag = ug + upat + - - - + uygrt>,
A1 = u1og + U149t + - - - + up3at®,

Original, 184 adds: Product is
Ao By + (Ao B1 —I—AlBo)t6—|-AlBlt12.

Karatsuba, 182 adds:

((Ag+A1)(Bo+B1)—AgBy—A1 B1)t°

+ AgBg + A Bltlz.

Improved Karatsuba, 177 adds:
(Ao + A1)(Bo Bl)t6
+ (AgBgy — A151t6)(1 — t6).

The Curve function

Overall strategy to compute
U, Curve(V') — Curve(UV),
using arithmetic mod p = 222° — 19:

For various integers n,
find z,,, z,, such that

(mod p),
i.e., zp Curve(nV) =z, (mod p).

Curve(nV) =z, /2,

e.g. 1 = Curve(V), z1 =1,
assuming Curve(V') # oo.

Can easily restrict U, Curve(V)
to ensure that oo never appears.



ba's method

ot + -+ + ug7t?,
o+ upzgt®,
= viog + -

- Product is
1 Bo)t6 + Ay Bltlz.

ds:

)—AgBo—A1 B1)t°
>

a, 177 adds:
1)t
6)(1 — t6).

The Curve function

Overall strategy to compute
U, Curve(V) — Curve(UV),

using arithmetic mod p = 222° — 19:

For various integers n,

find z,,, z,, such that

Curve(nV) =z, /2, (mod p),
i.e., zp Curve(nV) =z, (mod p).

e.g. 1 = Curve(V), z1 =1,
assuming Curve(V') # oo.

Can easily restrict U, Curve(V)
to ensure that oo never appears.

We'll see how to c
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The Curve function

Overall strategy to compute
U, Curve(V) — Curve(UV),

using arithmetic mod p = 222> — 19:

For various integers n,

find z,,, z,, such that

Curve(nV) =z, /2, (mod p),
i.e., zp Curve(nV) =z, (mod p).

e.g. 1 = Curve(V), z1 =1,
assuming Curve(V') # oo.

Can easily restrict U, Curve(V)
to ensure that oo never appears.

We'll see how to compute
Tm, Zm > T2m, Z22m,; and

Tm,Zm, Tm+1, fm+1, CUFVe(V)

= Tom1-1, Z2m+1-

Combine to compute
Tmi,2m) Tm+1, Lm+1, b, CU"Ve(V)

—= Tn, Zn, Tn+1, Rn+1
where m = |n /2|, b = n mod 2.

Conditional branches and
input-dependent load addresses
can leak 6 via timing.

Replace with arithmetic:

e€.g., (]. — b)CCm -+ (b).’.Cm_|_1.



n

) compute

rve(UV),

od p = 222> —19:

SN,
1at

zn  (mod p),
=z, (mod p).
) z1 =1,

) # 0.

U, Curve(V)

never appears.

We'll see how to compute
Tm, Zm > T2m, Z22m,; and
Im,2m, Tm+1, Lm+1, CUFVe(V)

= Tom1-1, Z2m+1-

Combine to compute
Tm, Zm, Tm41, Zm+1, 0, CU"Ve(V)

—= Tn, Zn, Tn+1, Rn+1
where m = |n /2|, b = n mod 2.

Conditional branches and
input-dependent load addresses
can leak 6 via timing.

Replace with arithmetic:

e€.g., (]. — b)CCm -+ (b).’.Cm_|_1.

Eventually reach 7

Divide iy by zy n
to obtain Curve(U

Simple division me

_ p—2
T, /2y =Tz

Euclid-type divisio

are faster but have
input-dependent ti

Finally convert fro
floating-point repr
to byte-string outy



We'll see how to compute
Tm, Zm > T2m, Z2m,; and
Im,2m, Tm+1, Lm+1, CUFVe(V)

—=> To2m+1,22m-+1-

Combine to compute
Tm, Zm, Tm41, Zm+1, 0, CU"Ve(V)

—= Tn, Zn, Tn+1, Rn+1
where m = |n /2], b = n mod 2.

Conditional branches and
input-dependent load addresses
can leak 6 via timing.

Replace with arithmetic:

e.g., (1 —06)zm + (6)zm+1.

Eventually reach n = U.

Divide z by z;y modulo p
to obtain Curve(UV).

Simple division method: Fermat!

_ p—2
T, /2y =Tz

Euclid-type division methods

are faster but have
input-dependent timings.

Finally convert from
floating-point representation
to byte-string output format.



ompute
m; and

1, Curve(V)

ite
+1, b, CUI’VG(V)

n—+1
b= mn mod 2.

1es and
yad addresses

ng.
metic:

(6)Tp 1.

Eventually reach n = U.

Divide z by z;y modulo p
to obtain Curve(UV).

Simple division method: Fermat!

_ p—2
T, /2y =Tz

Euclid-type division methods

are faster but have
input-dependent timings.

Finally convert from
floating-point representation
to byte-string output format.

From n to 2n

In Z /p:
o = (T3, — 23)°

2
Zop = dxnzn(xTs -

Compute as follow
(mn — Zn)2; (Ccn -+
Ln — (mn — zn)2
drxpzn = (Tn + 24
(A—2)zpzy = 89
ZIn —

420 20 ((Tn, + 27



Eventually reach n = U.

Divide z;; by z;y modulo p
to obtain Curve(UV).

Simple division method: Fermat!

_ p—2
T, /2y =Tz

Euclid-type division methods

are faster but have
input-dependent timings.

Finally convert from
floating-point representation
to byte-string output format.

From n to 2n

In Z /p:
Zon = (T3, — 23)°,

2oy = 4:cnzn(:c% + AT 2 + z,,%)

Compute as follows:

(Tn — Zn)z; (zn + Zn)z;

L2n = (mn — zn)z(xn + Zn)z;
Axpzy = (xn + zn)2 — (xn — Zn)2;
(A—2)xpzy = 89747 - dxpznp;

ZIn —

42020 (T, + 21)° + (A— 2)zZnzy).



, = U.

nodulo p
V).

thod: Fermat!

n methods

>
mings.
m

esentation
yut format.

From n to 2n

In Z /p:
L2n = (33721 — 3727,)21
2oy = 4:cnzn(:c% + AT 2 + z,,%)

Compute as follows:

(Tn — Zn)z; (zn + Zn)z;

L2n = (mn — zn)z(xn + Zn)z;
4znzn = (Tn + 21)° — (Tn — 2n)°;
(A—2)xpzy = 89747 - dxp2znp;

Zon —

42020 (T, + 21)° + (A — 2)Znzy).

Fromn,n+1 to.

Ton+1 = HTnTn
ZIn+1 =
ATpzpil — ZnTy

Compute as follow
(mn — Zn)(mn——l T
(mn + zn)(mn——l —
2(TnTpi1 — Znzn
2(Tnzni1 — 2nTy
Toni1 = (2(TnTn
(2(zn2znpi1 — 2nT,
Zopa1 = () Cun




From n to 2n

In Z /p:

L2n = (5’3721 — 3727,)21
2oy = 4:cnzn(:c% + AT 2y + z,,%)

Compute as follows:

(Tn — Zn)z; (zn + Zn)z;

L2n = (mn — zn)z(xn + Zn)z;
Axpzy — (xn + zn)2 — (xn — Zn)2;
(A—2)xpzy = 89747 - dxp2zp;

Zon —

4202 ((Trn + 2n)° + (A — 2)Tn2y).

Fromn,n+1to2n +1

LoIn+1 — 4($n$n—|—1 — znzn—l—l)z,
ZIn+1 —
MNTpzpil — Zny 1)2 Curve(V).

Compute as follows:
(Tn — z2n)(Tnt+1 + 2n+1);

(:Bn + zn)($n——1 — zn——l);
2(TnTnt1 — ZnZnt1) = Sum;

2(Tpzpi1 — 2nTpr1) = difference;
Zont1 = (2(TnTni1 — Zn2Zn+1))*
(2(znzn+1 — znmn—l—l))z;
2on+1 = (- - ) Curve(V).



- Az 2y + z,,%)

‘ Zn)2;
(xn = zn)z;

L)2 — (xn — Zn)2;

4+ (A= 2)zpzy).

Fromn,n+1to2n +1

2
LoIn+1 — 4($n$n+1 — ann+1) :

2In+1 —

MTpzpil — Zny

Compute as follows:

(Tn, — 2 ) (T

(T, + 29 )(Tp-

2(TnTpi1 — Znzn-
2(Tp2zpi1 — ZnTn_

_ L 2.
Zon+1 = (2(ZnZn+1 — Zn2n+1))";

1)?

Curve(V).

-1 ‘|‘zn——1);
1 — Zp41);
1) = sum;

1) = difference;

(2($nzn—|—1 — Znicn—l—l))z;
2on+1 = (- ) Curve(V).

Total time

Slightly over 1600
(520 from carries)
for each bit of U.

Total for 256-bit (

~ 413000 fp ac

~ 50000 fp adc

ds:
s f

Aiming for 50000C
Still have to finish

Should end up eve
my NIST P-224 sc
despite 14% more



Fromn,n+1to2n +1

2
LoIn+1 — 4($n$n+1 — ann+1) :

2In+1 —

MNTpzpil — Zpy

Compute as follows:

(Tn, — 2 ) (T

1+ Zg-

_]_ - Zn_

(T, + 29 ) (T

2(TnTpi1 — Znzn
2(Tp2zpi1 — ZnTn_

— (2 _ 2.
Ton+1 = (2TnTni1 — Znzn+1))*;

1)?

Curve(V).

1);

1);

1) = sum;
1) = difference;

(2($nzn—|—1 — Znicn—l—l))z;
2on+1 = (---) Curve(V).

Total time

Slightly over 1600 fp adds
(520 from carries)
for each bit of U.

Total for 256-bit U:

~ 413000 fp ac

~ 50000 fp adc

ds; plus
s for final division.

Aiming for 500000 cycles.
Still have to finish software.

Should end up even faster than
my NIST P-224 software,

despite 14% more bits!



