High-speed
elliptic-curve cryptography

D. J. Bernstein

Thanks to:

University of lllinois at Chicago
NSF CCR-9983950

Alfred P. Sloan Foundation

Define p = 22°° — 19: prime.

Define A = 358990. Detfine
Curve : Z —{0,1,..., p— 1,00} by
n — ¢ coordinate of nth multiple
of (2,...) on the elliptic curve

y? = 23 + Az? + over Fp.

Main topic of this talk: Compute
U, Curve(V) — Curve(UV)

in very few CPU cycles.

In particular, use floating point
for fast arithmetic mod p.

ography

is at Chicago
0
undation

Define p = 22°° — 19: prime.

Define A = 358990. Define

Curve: Z — {0,1,...,p— 1,00} by
n — ¢ coordinate of nth multiple
of (2,...) on the elliptic curve

y? = 23 + Az? + over Fp.

Main topic of this talk: Compute
U, Curve(V) — Curve(UV)

in very few CPU cycles.

In particular, use floating point
for fast arithmetic mod p.

Why cryptographe

Each user has secr

public key Curve(!

Users with secret |
exchange Curve(U
through an auther
compute Curve(U!
use hash as sharec
encrypt and authe

Curve speed is imj
when number of n

Define p = 22°° — 19: prime.

Define A = 358990. Detfine

Curve: Z — {0,1,...,p— 1,00} by
n — ¢ coordinate of nth multiple
of (2,...) on the elliptic curve

y? = 23 + Az? + over Fp.

Main topic of this talk: Compute
U, Curve(V) — Curve(UV)

in very few CPU cycles.

In particular, use floating point
for fast arithmetic mod p.

Why cryptographers care

Each user has secret key U,
public key Curve(U).

Users with secret keys U, V
exchange Curve(U), Curve(V)
through an authenticated channel;
compute Curve(UV); hash it;

use hash as shared secret to
encrypt and authenticate messages.

Curve speed is important
when number of messages is small.

19; prime.
). Define
..,p— 1,00} by

of nth multiple
lliptic curve
r over Fy.

talk: Compute
rve(UV)

ycles.

loating point
mod p.

Why cryptographers care

Each user has secret key U,
public key Curve(U).

Users with secret keys U, V
exchange Curve(U), Curve(V)
through an authenticated channel;
compute Curve(UV); hash it;

use hash as shared secret to

encrypt and authenticate messages.

Curve speed is important
when number of messages is small.

Analogous system
1976 Diffie Hellmz

Using elliptic curve
to avoid index-calc
1986 Miller, 1987

Using z3 + Az? +
1987 Montgomery
High precision fror

1968 Veltkamp, 1¢
Speedups: 1999-2

Why cryptographers care

Eac
pub

n user has secret key U,

ic key Curve(U).

Users with secret keys U, V
exchange Curve(U), Curve(V)
through an authenticated channel;
compute Curve(UV); hash it;

USE

encrypt and authenticate messages.

hash as shared secret to

Curve speed is important

when number of messages is small.

Analogous system using 2Y mod p:
1976 Dithie Hellman.

Using elliptic curves
to avoid index-calculus attacks:

1986 Miller, 1987 Koblitz.

Using 23 + Az? + z for speed:
1987 Montgomery (for ECM).

High precision from fp sums:
1968 Veltkamp, 1971 Dekker.
Speedups: 1999-2005 Bernstein.

rs care

et key U,
/).

eys U,V

), Curve(V)
ticated channel;
/); hash it;

| secret to

nticate messages.

bortant
1essages Is small.

Analogous system using 2Y mod p:

1976 Diffie Hellman.

Using elliptic curves
to avoid index-calculus attacks:

1986 Miller, 1987 Koblitz.

Using 23 + Az? + z for speed:
1987 Montgomery (for ECM).

High precision from fp sums:
1968 Veltkamp, 1971 Dekker.
Speedups: 1999-2005 Bernstein.

Understanding CP

Computers are des

music, movies, Ph

etc. Heavy use of

l.e., approximate r

Example: At

nlon,

does one add

and

of high-precision f

Programmer

payin

to these CPU feat
can use them for ¢

Analogous system using 2Y mod p:

1976 Diffie Hellman.

Using elliptic curves
to avoid index-calculus attacks:

1986 Miller, 1987 Koblitz.

Using 23 + Az? + z for speed:
1987 Montgomery (for ECM).

High precision from fp sums:
1968 Veltkamp, 1971 Dekker.
Speedups: 1999-2005 Bernstein.

Understanding CPU design

Computers are designed for

music, movies, Photoshop, Doom 3,
etc. Heavy use of fp arithmetic,
l.e., approximate real arithmetic.

Example: Athlon, every cycle,

does one add and one multiply
of high-precision fp numbers.

Programmer paying attention
to these CPU features
can use them for cryptography.

using 2Y mod p:

1N.

°S
~ulus attacks:
Koblitz.

x for speed:
(for ECM).

n fp sums:
)71 Dekker.

005 Bernstein.

Understanding CPU design

Computers are designed for

music, movies, Photoshop, Doom 3,
etc. Heavy use of fp arithmetic,
l.e., approximate real arithmetic.

Example: Athlon, every cycle,

does one add and one multiply
of high-precision fp numbers.

Programmer paying attention
to these CPU features
can use them for cryptography.

A 53-bit fp numk
Is a real number 2
with e, f € Z and

Round each real n

closest 53-bit fp n
Round halves to e

Examples:

fps3(8675309) = &
fps3 (2127 + 86753
fpeg (2127 — 86753

Understanding CPU design A 53-bit fp number
is a real number 2¢f

with e, f € Z and |f| < 2°3.

Computers are designed for
music, movies, Photoshop, Doom 3,
etc. Heavy use of fp arithmetic, Round each real number z to

I.e., approximate real arithmetic. closest 53-bit fp number, fps3 2.

Round halves to even.
Example: Athlon, every cycle,

does one add and one multiply Examples:
of high-precision fp numbers. fps3(8675309) = 8675309;
fpes (2127 4 8675309) = 2147;

Programmer paying attention
© Payie fpes (2127 — 8675309) = 2127

to these CPU features
can use them for cryptography.

U design

igned for
otoshop, Doom 3,
fp arithmetic,

eal arithmetic.

every cycle,
one multiply
0 numbers.

g attention

ures
ryptography.

A 53-bit fp number
is a real number 2¢f
with e, f € Z and |f| < 2°3.

Round each real number z to

closest 53-bit fp number, fps3 2.

Round halves to even.

Examples:

fpe3(8675309) = 8675309;
fpes (2127 4 8675309) = 2147;
fpes (2127 — 8675309) = 2127

Typical CPU: Ultr.

Every cycle, Ultra
one fp multiplicati
r, 8 — fpsa(7s)

and one fp additio
r, s — fps3(7 + s)
subject to limits o

“4-cycle tp-operat
Results available a

Can substitute suk
for addition. I'll cc
subtractions as ad

A 53-bit fp number
is a real number 2¢f
with e, f € Z and |f| < 2°3.

Round eac
closest 53-

N real num

oit fp num

per z to

ver, fps3 2.

Round halves to even.

Examples:

fpe3(8675309) = 8675309;
fpes (2127 4 8675309) = 2147;
fpes (2127 — 8675309) = 2127

Typical CPU: UltraSPARC IIlI.

Every cycle, UltraSPARC Il can do
one fp multiplication

r, 8 — fpsa(7s)

and one fp addition

r, s — fps3(r + s),

subject to limits on e.

“4-cycle tp-operation latency”:
Results available after 4 cycles.

Can substitute subtraction
for addition. I'll count
subtractions as additions.

er

°f

f| <23
umber z to
umber, fpe3 2.
ven.

675309;

09) = 2147,
09) = 2127,

Typical CPU: UltraSPARC IIlI.

Every cycle, UltraSPARC Il can do
one fp multiplication

r, 8 — fpsa(7s)

and one fp addition

r, s — fps3(r + s),

subject to limits on e.

“4-cycle tfp-operation latency”:
Results available after 4 cycles.

Can substitute subtraction
for addition. I'll count
subtractions as additions.

Some variation an

PowerPC RS64 |V
or one multiplicati
“fused” 7, s, t—f
Results available a

Athlon: fpg, inste
one multiplication
Results available a

I'll focus on Ultra
Not the most imp
but I1t's a good wa

Typical CPU: UltraSPARC IIlI.

Every cycle, UltraSPARC Il can do
one fp multiplication

r, 8 — fpsa(7s)

and one fp addition

r, s — fps3(r + s),

subject to limits on e.

“4-cycle tp-operation latency”:
Results available after 4 cycles.

Can substitute subtraction
for addition. I'll count
subtractions as additions.

Some variation among CPUs.

PowerPC RS64 IV: One addition
or one multiplication or one
“fused” r,s,t — fpg3(rs +t).
Results available after 4 cycles.

Athlon: fpg, Instead of fps3;
one multiplication and one addition.
Results available after 4 cycles.

I'll focus on UltraSPARC IIlI.
Not the most important CPU,
but I1t's a good warmup.

A SPARC 1II.

SPARC 11l can do
on

n e.

on latency":
fter 4 cycles.

ytraction
yunt
ditions.

Some variation among CPUs.

PowerPC RS64 IV: One addition
or one multiplication or one

“fused” r,s,t — fps3(rs +t).
Results available after 4 cycles.

Athlon: fpg, instead of fps3;

one multiplication and one addition.

Results available after 4 cycles.

I'll focus on UltraSPARC IIlI.
Not the most important CPU,
but I1t's a good warmup.

Exact dot product

It a, b {—220, ..
then ab i1s a b3-bit
so ab = fps3(ab).

If a,b,c,d € {—2°
then ab, cd, ab + c
53-bit fp numbers
ab = fpsz(ab), cd
ab + cd = fps3(ab

UltraSPARC 1l co
a, b c d— ab -+ c
two fp mults, one

Some variation among CPUs.

PowerPC RS64 IV: One addition
or one multiplication or one

“fused” r,s,t — fps3(rs +t).
Results available after 4 cycles.

Athlon: fpgs instead of fpss;

one multiplication and one addition.

Results available after 4 cycles.

I'll focus on UltraSPARC IIlI.
Not the most important CPU,
but 1t's a good warmup.

Exact dot products

fa,be{-2%...,0,1,...,2%}
then ab is a 53-bit fp number
so ab = fps3(ab).

If a,b,c,d € {-2%,...,2%0}
then ab, cd, ab + cd are
53-bit fp numbers so

ab = fps3(ab), cd = fps3(cd),
ab + cd = fps3(ab + cd).

UltraSPARC [l computes
a,b,c, d— ab-+ cd with
two fp mults, one fp add.

ong CPUs.

- One addition
on or one

p53(T'S -+ t)
fter 4 cycles.

ad of fpss;

and one addition.

fter 4 cycles.

yPARC III.
ortant CPU,

rmup.

Exact dot products

fa,be{-2%...,0,1,...,2%9}

then ab is a 53-bit fp n
so ab = fps3(ab).

fa,bc,de {-2%, . ..

then ab, cd, ab + cd are

53-bit fp numbers so

umber

ab = fps3(ab), cd = fps3(cd),
ab + cd = fps3(ab + cd).

UltraSPARC Il computes

a, b c d— ab-+ cd wit

N

two fp mults, one fp ac

d.

Bit extraction

Define a; = 3 - 2%

top; 7 = fps3(fpsa
bottom; r = fpe3("

If r is a b3-bit fp |
and |r| < 2¢21 tr
top; 7 € 2'Z;

lbottom; 7| < 2¢~
r = top; T + bottc

Exact dot products

fa,be{-2%...,0,1,...,2%}

then ab is a 53-bit fp n
so ab = fps3(ab).

fa,bc,de {29, ..

then ab, cd, ab + cd are

53-bit fp numbers so

umber

ab = fps3(ab), cd = fps3(cd),
ab + cd = fps3(ab + cd).

UltraSPARC Il computes

a, b c d— ab-+ cd wit

N

two fp mults, one fp ac

d.

Bit extraction

Define a; = 3 - 2¢21

top; 7 = fps3(fps3(r + ;) —),
bottom; r = fpss(7 — top; 7).

If r is a 53-bit fp number
and |r| < 2*7°1 then
top; 7 € 2'Z;

lbottom; r| < 2v—1. and
r = top; r 4+ bottom; 7.

>

,0,1,...,2%0%
- fp number

mputes
1 with

fp add.

Bit extraction

Define a; = 3 - 2¢21

top; 7 = fps3(fps3(r + a;) —),
bottom; r = fpss(r — top; 7).

If r is a 53-bit fp number
and |r| < 2*7°1 then
top; 1 € 2'Z;

lbottom; 7| < 2'71; and
r = top; 7 + bottom; r.

Big integers as fp_

Every integer mod
can be written as

UQ) T U2 T U43 T+
Ugs + U107 T U128
U170 + U192 + U]
where u; /2" € {—

Indices 2 are |255:
for 7 €4{0,1,...,]1

Representation s |
it's not the input/
Uniqueness would

Bit extraction

Define a; = 3 - 2¢°1

top; 7 = fps3(fps3(r + ;) —),
bottom; r = fpss(7 — top; 7).

If r is a 53-bit fp number
and |r| < 2*7°1 then
top; 7 € 2'Z;

lbottom; 7| < 2*~1: and
r = top; r 4+ bottom; 7.

Big integers as fp sums

Every integer mod 22°° — 19
can be written as a sum
UQ + U2 + U433 + Upg +
Ugs + U107 + U128 + U149 +

U170 + U192 + U213 + U234
where u; /2 € {—222, L 222}.

Indices 2 are [2557/12]
for 7 €{0,1,...,11}.

Representation Is not unique;
it's not the input/output format.
Uniqueness would cost cycles!

151
r+a;) —a;),

r — top; T).

Ttumber

€n

- and
m,; 7.

Big integers as fp sums

Every integer mod 22°° — 19
can be written as a sum
UQ + U2 + U433 + Upg +
Ugs + U107 + U128 1+ UL49 T

U170 + U192 + U213 + U234
where u; /2 € {—222, L 222}.

Indices 2 are [2557/12]
for 7 €{0,1,...,11}.

Representation Is not unique;

it's not the input/output format.

Uniqueness would cost cycles!

Assume u =) u;
and similarly v =
UV = Wy + woy +
where wg = ugvp,

W22 = UQU22 T U2

W43 = UQU43 + U2
etc.

Each w; i1s a b3-bi
Given u;'s and v;’
can compute w;'s
144 fp mults, 121

Big integers as fp sums

Every integer mod 22°° — 19
can be written as a sum
UQ + U2 + U433 + Upg +
Ugs + U107 + U128 1+ UL49 T

U170 + U192 + U213 + U234
where u; /2 € {—222, L 222}.

Indices 2 are [2557/12]
for 7 €{0,1,...,11}.

Representation Is not unique;

it's not the input/output format.

Uniqueness would cost cycles!

Assume u = > wu; as above,
and similarly v =) w;. Then
UV = W + W2 + -+ - + W468
where wg = ugvp,

W22 = UQU22 + U220,

W43 = UQU43 1+ U22U22 + U437,

etc.

Each w; is a 53-bit fp number.
Given u;'s and v;'s,

can compute w;'s using

144 fp mults, 121 fp adds.

1ot unique;

output format.

cost cycles!

Assume u = > wu; as above,

and similarly v =) w;. Then
UV = Wy + W2 + -+ - + W468
where wg = ugvp,

- U220,

W2 = UQV22
W43 = UQV43
etc.

- U22U22 + U437,

Each w; is a 53-bit fp number.

Given u;'s and v;'s,

can compute w;'s using

144 fp mults,

121 fp adds.

Furthermore, mod
UV =70 + 722 -
where rg = wg + .
Too = Wy + 19 - 2

Each r; is a b3-bit
Example: rg I1s an
1| < 381 - 2%

Computing 7;'s fr
11 fp mults, 11 fp

Structure: (Z[t] N
/(2%°°t12 — 19) —

Assume u = > wu; as above,
and similarly v =) w;. Then
UV = Wy + W2 + -+ - + W468
where wg = ugvp,

W = UQU + U2,

W43 = UQU43 T U22VU22 T+ U437,

etc.

Each w; is a 53-bit fp number.
Given u;'s and v;'s,

can compute w;'s using

144 fp mults, 121 fp adds.

Furthermore, modulo 2255 19,
UV =70+ 722+ -+ T34
where g = wg + 19 - 27222 woss,
Too = Wooy + 19 - 27229577, etc.

Each r; is a 53-bit fp number.
Example: rg Is an integer;
rg| < 381 - 2%

Computing r;'s from w;'s takes
11 fp mults, 11 fp adds.

Structure: (Z[t] N Z[22%%/12¢])
/(22t12 — 19) — Z /(22> — 19).

as above,

> V;. Then

-+ waeg

270,
2U22 + U437V,

t fp number.
S,

using

fp adds.

Furthermore, modulo 2%2° — 19,
UV =70+ 722+ -+ 79234
where g = wg + 19 - 27222 woss,
Too = Wooy + 19 - 27229577, etc.

Each r; is a 53-bit fp number.
Example: rg Is an integer;
rg| < 381 - 2%

Computing r;'s from w;'s takes
11 fp mults, 11 fp adds.

Structure: (Z[t] N Z[22%%/12¢])
/(22t12 — 19) — Z /(22> — 19).

Carries

“Carry from rg to
replace rg and 799
bottomos g and 7
This takes 4 fp ad

and guarantees |7

Series of 13 carrie:
in range for subsec
from 7192 to 7913

then from rqg to 7-

to 7192 1O 7913.
This takes 52 fp a

Furthermore, modulo 2255 19,
UV =70+ 722+ -+ 79234
where g = wg + 19 - 27222 woss,
Too = Wooy + 19 - 272229577, etc.

Each r; is a 53-bit fp number.
Example: rg Is an integer;
rg| < 381 - 2%

Computing 7;'s from w;'s takes
11 fp mults, 11 fp adds.

Structure: (Z[t] N Z[22%%/12¢])
/(22t12 — 19) — Z /(22> — 19).

Carries

“Carry from rg to roo":
replace rg and 799 by
bottomos rg and 7o + topyy 7.

This takes 4 fp adds,
and guarantees |rg| < 221,

Series of 13 carries puts all r;'s

in range for subsequent products:

from 7192 to 7913 tO 7934 to Woss;
then from rg to 790 to 723 to . ..

to 7192 1O 7913.
This takes 52 fp adds.

ulo 2290 — 19,

T T234

1O - 2_255’(1/255,

3_255’11!277, etc.

- fp number.
Integer;

m w; s takes
adds.

7[2255/12t])
- Z/(2%°° —19).

Carries

“Carry from rg to roo":
replace rg and 799 by
bottomos rg and 7o + topy, 7.

This takes 4 fp adds,
and guarantees |rg| < 221,

Series of 13 carries puts all r;'s

in range for subsequent products:

from 7192 to 7913 tO 7934 to Woss;
then from rg to 790 to 743 to . ..

to 7192 1O 7913.
This takes 52 fp adds.

Total 155 mults, 1
to multiply modul
in this representat

> 184 UltraSPAR!

— 184 cycles? Tw
fp-operation laten
“load /store” laten
limited number of

Schedule instructic
to bring cycles doy

Carries

“Carry from rg to roo":
replace rg and 799 by
bottomys rg and 7o + topys 7.

This takes 4 fp adds,
and guarantees |rg| < 221,

Series of 13 carries puts all r;'s

in range for subsequent products:

from 7192 to 7913 tO 7934 to Woss;
then from rg to 790 to 743 to . ..

to 7192 1O 7913.
This takes 52 fp adds.

Total 155 mults, 184 adds
to multiply modulo 2%2° — 19
in this representation.

> 184 UltraSPARC Ill cycles.

— 184 cycles? Two obstacles:
fp-operation latency;

“load /store” latency imposed by
limited number of “registers.”

Schedule instructions carefully
to bring cycles down to ~ 134.

) §221_

s puts all r;'s
juent products:
to 7234 10 Woss;
2 tO 743 tO ...

dds.

Total 155 mults, 184 adds
to multiply modulo 2%°° — 19
in this representation.

> 184 UltraSPARC |11 cycles.

— 184 cycles? Two obstacles:
fp-operation latency;

“load /store” latency imposed by
limited number of “registers.”

Schedule instructions carefully
to bring cycles down to ~ 134.

Have developed gl

new programming

for high-speed con

Includes range ver

guided register all

L ets me write desi

with much less hu

traditional asm, C

Have a
fast Po

so used for
y1305, fas

see, e.g., http://
/mac/poly1305_:

Total 155 mults, 184 adds
to multiply modulo 2%°° — 19
in this representation.

> 184 UltraSPARC |11 cycles.

— 184 cycles? Two obstacles:
fp-operation latency;

“load /store” latency imposed by
limited number of “registers.”

Schedule instructions carefully
to bring cycles down to ~ 134.

Have developed ghasm,
new programming language
for high-speed computations.

Includes range verification,
gulded register allocation, et al.

Lets me write desired code

with much less human time than
traditional asm, C compiler, etc.
Have also used for fast AES,
fast Poly1305, fast Salsa20, etc.;
see, e.g., http://cr.yp.to
/mac/poly1305_athlon.s.

84 adds
5 2295 _ 19

on.
_ I cycles.

o obstacles:
Y

cy imposed by
“registers.”

ons carefully
vn to ~ 184.

Have developed ghasm,

new programming language

for high-speed computations.

Includes range verification,

gulded register allocation, et al.

| ets me write desired code

with much less human time than

traditional asm, C compiler, etc.

Have a
fast Po

so used for fast AES,

y1305, fast Salsa20, etc.;

see, e.g., http://cr.yp.to
/mac/poly1305_athlon.s.

Speedup: Squaring

Often know in adv

UQUGL T U22UA3 T
is more efficiently
2(uoues + uU22U43

Even better: First
2Ug, 2U22, . .., 2Us
and then compute
(2ug)ues + (2uon

130 fp adds instea
Makes carry time

Have developed ghasm,
new programming language
for high-speed computations.

Includes range verification,
gulded register allocation, et al.

Lets me write desired code

with much less human time than
traditional asm, C compiler, etc.
Have also used for fast AES,
fast Poly1305, fast Salsa20, etc.;
see, e.g., http://cr.yp.to
/mac/poly1305_athlon.s.

Speedup: Squarings

Often know in advance that © = v.

UQUG4 T U22U43 T U43U22 T UR4AUQ
is more efficiently computed as
2(upues + u22U43).

Even better: First compute
2Uqg, 2U22, ..., 2U234

and then compute
(2ug)ues + (2uro)uasz etc.

130 fp adds instead of 184.
Makes carry time even more visible.

1asm,
language
1putations.

fication,
ycation, et al.

red code

man time than
compiler, etc.
fast AES,

- Salsa20, etc.;
Cr.yp.to
ithlon.s.

Speedup: Squarings

Often know in advance that ©u = v.

UQUG4 T U22U43 T U43U22 T U4AUQ
is more efficiently computed as
2(upues + u22U43).

Even better: First compute

., 2U234
and then compute

(2ug)ues + (2uoro)uqsz etc.

2uqg, 2uoo, . .

130 fp adds instead of 184.

Makes carry time even more visible.

Speedup: Karatsu

Say Ap = ug + uo
Al = U128 + U149

Original, 184 adds
AoBo+ (AgB1+ A

Karatsuba, 182 ad

((Ao+A1)(Bo+Bi
+ AgBg + A1 Bltl

Improved Karatsul

(Ao

A1)(Bo

E

+ (ApBg — A1B1t

Speedup: Squarings

Often know in advance that ©u = v.

UQUG4 T U22U43 T U43U22 T UR4UQ
is more efficiently computed as
2(upues + u22U43).

Even better: First compute

and then compute
(2ug)ues + (2uoro)uasz etc.

130 fp adds instead of 184.

Makes carry time even more visible.

Speedup: Karatsuba's method

Say Ag = ug + upat + - - - + uggrt>,
Al = uipg + w149t + - - + up3at’,
Bo=wvy+ -, Bt =viog + .

Original, 184 adds: Product is
Ao By + (Ao B1 —I—AlBo)t6—|-AlBlt12.

Karatsuba, 182 adds:
((Ag+A1)(Bo+B1)—AgBy—A1 B1)t°
+ AgBg + A1 Bltlz.

Improved Karatsuba, 177 adds:
(Ao + A1)(Bo Bl)t6
+ (AgBgy — A151t6)(1 — t6).

IS

= Tl

ance that u = v.

UQ3U2D T ULUQ
computed as

).
compute

34

)u43 etc.

d of 184.

asven more visible.

Speedup: Karatsuba's method

Say Ag = ug + upat + - - - + uygrt>,
A1 = u1g + U149t + - - - + up3at®,

Original, 184 adds: Product is
Ao By + (Ao B1 —I—AlBo)t6—|-AlBlt12.

Karatsuba, 182 adds:
((Ag+A1)(Bo+B1)—AgBy—A1 B1)t°
+ AgBg + A1 Bltlz.

Improved Karatsuba, 177 adds:
(Ao + A1)(Bo Bl)t6
+ (AgBgy — A151t6)(1 — t6).

The Curve functio

Overall strategy tc
U, Curve(V) — Cu
using arithmetic n

For various integel
find z,,, 25, such tl
Curve(nV) =z, /
i.e., zn, Curve(nV)

e.g. 1 = Curve(V
assuming Curve(V

Can easily restrict
to ensure that oo

Speedup: Karatsuba's method

Say Ag = ug + upat + - - - + uygrt>,
A1 = u1og + U149t + - - - + up3at®,

Original, 184 adds: Product is
Ao By + (Ao B1 —I—AlBo)t6—|-AlBlt12.

Karatsuba, 182 adds:

((Ag+A1)(Bo+B1)—AgBy—A1 B1)t°

+ AgBg + A Bltlz.

Improved Karatsuba, 177 adds:
(Ao + A1)(Bo Bl)t6
+ (AgBgy — A151t6)(1 — t6).

The Curve function

Overall strategy to compute
U, Curve(V') — Curve(UV),
using arithmetic mod p = 222° — 19:

For various integers n,
find z,,, z,, such that

(mod p),
i.e., zp Curve(nV) =z, (mod p).

Curve(nV) =z, /2,

e.g. 1 = Curve(V), z1 =1,
assuming Curve(V') # oo.

Can easily restrict U, Curve(V)
to ensure that oo never appears.

ba's method

ot + -+ + ug7t?,
o+ upzgt®,
= viog + -

- Product is
1 Bo)t6 + Ay Bltlz.

ds:

)—AgBo—A1 B1)t°
>

a, 177 adds:
1)t
6)(1 — t6).

The Curve function

Overall strategy to compute
U, Curve(V) — Curve(UV),

using arithmetic mod p = 222° — 19:

For various integers n,

find z,,, z,, such that

Curve(nV) =z, /2, (mod p),
i.e., zp Curve(nV) =z, (mod p).

e.g. 1 = Curve(V), z1 =1,
assuming Curve(V') # oo.

Can easily restrict U, Curve(V)
to ensure that oo never appears.

We'll see how to c
xmwzm H $2m1z2

Tm,Zm,»Tm+1:2m

= Tom1-1, Z2m+1-

Combine to compt
Tm,Zm) Tm+1,2m
— :c’nr zn: :L"n—l—L Z
where m = |n /2

Conditional branct
input-dependent Ic
can leak 6 via timi
Replace with arith

e.g., (1—0)zy +

The Curve function

Overall strategy to compute
U, Curve(V) — Curve(UV),

using arithmetic mod p = 222> — 19:

For various integers n,

find z,,, z,, such that

Curve(nV) =z, /2, (mod p),
i.e., zp Curve(nV) =z, (mod p).

e.g. 1 = Curve(V), z1 =1,
assuming Curve(V') # oo.

Can easily restrict U, Curve(V)
to ensure that oo never appears.

We'll see how to compute
Tm, Zm > T2m, Z22m,; and

Tm,Zm, Tm+1, fm+1, CUFVe(V)

= Tom1-1, Z2m+1-

Combine to compute
Tmi,2m) Tm+1, Lm+1, b, CU"Ve(V)

—= Tn, Zn, Tn+1, Rn+1
where m = |n /2|, b = n mod 2.

Conditional branches and
input-dependent load addresses
can leak 6 via timing.

Replace with arithmetic:

e€.g., (]. — b)CCm -+ (b).’.Cm_|_1.

n

) compute

rve(UV),

od p = 222> —19:

SN,
1at

zn (mod p),
=z, (mod p).
) z1 =1,

) # 0.

U, Curve(V)

never appears.

We'll see how to compute
Tm, Zm > T2m, Z22m,; and
Im,2m, Tm+1, Lm+1, CUFVe(V)

= Tom1-1, Z2m+1-

Combine to compute
Tm, Zm, Tm41, Zm+1, 0, CU"Ve(V)

—= Tn, Zn, Tn+1, Rn+1
where m = |n /2|, b = n mod 2.

Conditional branches and
input-dependent load addresses
can leak 6 via timing.

Replace with arithmetic:

e€.g., (]. — b)CCm -+ (b).’.Cm_|_1.

Eventually reach 7

Divide iy by zy n
to obtain Curve(U

Simple division me

_ p—2
T, /2y =Tz

Euclid-type divisio

are faster but have
input-dependent ti

Finally convert fro
floating-point repr
to byte-string outy

We'll see how to compute
Tm, Zm > T2m, Z2m,; and
Im,2m, Tm+1, Lm+1, CUFVe(V)

—=> To2m+1,22m-+1-

Combine to compute
Tm, Zm, Tm41, Zm+1, 0, CU"Ve(V)

—= Tn, Zn, Tn+1, Rn+1
where m = |n /2], b = n mod 2.

Conditional branches and
input-dependent load addresses
can leak 6 via timing.

Replace with arithmetic:

e.g., (1 —06)zm + (6)zm+1.

Eventually reach n = U.

Divide z by z;y modulo p
to obtain Curve(UV).

Simple division method: Fermat!

_ p—2
T, /2y =Tz

Euclid-type division methods

are faster but have
input-dependent timings.

Finally convert from
floating-point representation
to byte-string output format.

ompute
m; and

1, Curve(V)

ite
+1, b, CUI’VG(V)

n—+1
b= mn mod 2.

1es and
yad addresses

ng.
metic:

(6)Tp 1.

Eventually reach n = U.

Divide z by z;y modulo p
to obtain Curve(UV).

Simple division method: Fermat!

_ p—2
T, /2y =Tz

Euclid-type division methods

are faster but have
input-dependent timings.

Finally convert from
floating-point representation
to byte-string output format.

From n to 2n

In Z /p:
o = (T3, — 23)°

2
Zop = dxnzn(xTs -

Compute as follow
(mn — Zn)2; (Ccn -+
Ln — (mn — zn)2
drxpzn = (Tn + 24
(A—2)zpzy = 89
ZIn —

420 20 ((Tn, + 27

Eventually reach n = U.

Divide z;; by z;y modulo p
to obtain Curve(UV).

Simple division method: Fermat!

_ p—2
T, /2y =Tz

Euclid-type division methods

are faster but have
input-dependent timings.

Finally convert from
floating-point representation
to byte-string output format.

From n to 2n

In Z /p:
Zon = (T3, — 23)°,

2oy = 4:cnzn(:c% + AT 2 + z,,%)

Compute as follows:

(Tn — Zn)z; (zn + Zn)z;

L2n = (mn — zn)z(xn + Zn)z;
Axpzy = (xn + zn)2 — (xn — Zn)2;
(A—2)xpzy = 89747 - dxpznp;

ZIn —

42020 (T, + 21)° + (A— 2)zZnzy).

, = U.

nodulo p
V).

thod: Fermat!

n methods

>
mings.
m

esentation
yut format.

From n to 2n

In Z /p:
L2n = (33721 — 3727,)21
2oy = 4:cnzn(:c% + AT 2 + z,,%)

Compute as follows:

(Tn — Zn)z; (zn + Zn)z;

L2n = (mn — zn)z(xn + Zn)z;
4znzn = (Tn + 21)° — (Tn — 2n)°;
(A—2)xpzy = 89747 - dxp2znp;

Zon —

42020 (T, + 21)° + (A — 2)Znzy).

Fromn,n+1 to.

Ton+1 = HTnTn
ZIn+1 =
ATpzpil — ZnTy

Compute as follow
(mn — Zn)(mn——l T
(mn + zn)(mn——l —
2(TnTpi1 — Znzn
2(Tnzni1 — 2nTy
Toni1 = (2(TnTn
(2(zn2znpi1 — 2nT,
Zopa1 = () Cun

From n to 2n

In Z /p:

L2n = (5’3721 — 3727,)21
2oy = 4:cnzn(:c% + AT 2y + z,,%)

Compute as follows:

(Tn — Zn)z; (zn + Zn)z;

L2n = (mn — zn)z(xn + Zn)z;
Axpzy — (xn + zn)2 — (xn — Zn)2;
(A—2)xpzy = 89747 - dxp2zp;

Zon —

4202 ((Trn + 2n)° + (A — 2)Tn2y).

Fromn,n+1to2n +1

LoIn+1 — 4(nn—|—1 — znzn—l—l)z,
ZIn+1 —
MNTpzpil — Zny 1)2 Curve(V).

Compute as follows:
(Tn — z2n)(Tnt+1 + 2n+1);

(:Bn + zn)($n——1 — zn——l);
2(TnTnt1 — ZnZnt1) = Sum;

2(Tpzpi1 — 2nTpr1) = difference;
Zont1 = (2(TnTni1 — Zn2Zn+1))*
(2(znzn+1 — znmn—l—l))z;
2on+1 = (- -) Curve(V).

- Az 2y + z,,%)

‘ Zn)2;
(xn = zn)z;

L)2 — (xn — Zn)2;

4+ (A= 2)zpzy).

Fromn,n+1to2n +1

2
LoIn+1 — 4(nn+1 — ann+1) :

2In+1 —

MTpzpil — Zny

Compute as follows:

(Tn, — 2) (T

(T, + 29)(Tp-

2(TnTpi1 — Znzn-
2(Tp2zpi1 — ZnTn_

_ L 2.
Zon+1 = (2(ZnZn+1 — Zn2n+1))";

1)?

Curve(V).

-1 ‘|‘zn——1);
1 — Zp41);
1) = sum;

1) = difference;

(2($nzn—|—1 — Znicn—l—l))z;
2on+1 = (-) Curve(V).

Total time

Slightly over 1600
(520 from carries)
for each bit of U.

Total for 256-bit (

~ 413000 fp ac

~ 50000 fp adc

ds:
s f

Aiming for 50000C
Still have to finish

Should end up eve
my NIST P-224 sc
despite 14% more

Fromn,n+1to2n +1

2
LoIn+1 — 4(nn+1 — ann+1) :

2In+1 —

MNTpzpil — Zpy

Compute as follows:

(Tn, — 2) (T

1+ Zg-

] - Zn_

(T, + 29) (T

2(TnTpi1 — Znzn
2(Tp2zpi1 — ZnTn_

— (2 _ 2.
Ton+1 = (2TnTni1 — Znzn+1))*;

1)?

Curve(V).

1);

1);

1) = sum;
1) = difference;

(2($nzn—|—1 — Znicn—l—l))z;
2on+1 = (---) Curve(V).

Total time

Slightly over 1600 fp adds
(520 from carries)
for each bit of U.

Total for 256-bit U:

~ 413000 fp ac

~ 50000 fp adc

ds; plus
s for final division.

Aiming for 500000 cycles.
Still have to finish software.

Should end up even faster than
my NIST P-224 software,

despite 14% more bits!

