Three algorithms

related to the number-field sieve
D. J. Bernsteln

Thanks to:

University of lllinois at Chicago
NSF DMS—-0140542

Alfred P. Sloan Foundation

The number-field sieve

Goal: Find
{(z,y) € Z%: zy = 611}.

The Q sieve forms a square
as product of ¢(c + 611d)
for several pairs (c, d):
14(625) - 64(675) - 75(686)
— 44100007

gcd {611, 14 - 64 - 75 — 4410000}
— 47.

47 and 611/47 = 13 are prime,
SO {:B} — {::1, ::13, ::47, ::611}.

The Q(+/14) sieve forms a square
as product of (¢ + 25d)(c + v/14d)
for several pairs (c, d):

(—11 +3-25)(—11 4 34/14)

(34 25)(3 + V14)
= (112 — 16+/14)?.
Compute

u=(—11+4+3-25) (3 + 25),
v=112 - 16 - 25,
gcd {611, u — v} = 13.

How to find these squares?

Traditional approach:
Choose H, R with 26 -14- R3 = H.
Look at all pairs (c, d)
in [—R, R] x [0, R}

with (¢ + 25d)(c? — 14d°) # 0
and gcd{c,d} = 1.

(c + 25d)(c® — 14d?) is small:
between —H and H. Conjecturally,
good chance of being smooth.
Many smooths = square.

Find more pairs (c, d)

with |(c + 25d)(c* — 14d°)| < H
in a less balanced rectangle.
(1999 Brian Murphy)

Can do better: set of (c, d)
with |(c + 25d)(c* — 14d?)| < H
extends far beyond any inscribed

rectangle. Find ¢ range for each d.
(Bob Silverman, Scott Contini,
Arjen Lenstra)

Algorithm 1 of this talk:
estimate, much more quickly,

accurately, number of pairs (c, d).

Take any nonconstant f € Z[z],
all real roots order < (deg f)/2:

e.g., f=(z+25)(z° — 14).

Area of {(c,d) e Rx R:d >0,
d€ 7 f(c/d)| < H}
is (1/2)H2/98fQ(f) where

Qf) = [, do/(f(z)) /48T
Will explain fast Q(f) bounds.

Extremely accurate estimate:
#{(c,d) € Z x Z : gcd{c,d} =1,
4> 0, |d%8f f(c/d)| < H}

~ (3/72)HY BT Q(f).

Can verify accuracy of estimate
by finding all integer pairs (c, d),
i.e., by solving equations

dcegff(C/d) = +1,
d9%8J f(c/d) = +2, ...
dcegff(C/d) = 1+H.

Slow but convincing.

Another accurate estimate,

easier to verify:

#{(c,d) € Zx Z :gcd{c,d} =1,
d >0, |de7 f(c/d)| < H,

d not very large}

~ (3/n2)HEIdEFQ(£).

To compute
good approximation to Q(f),

and hence good approximation to
distribution of d9¢87 f(c/d):

f dz/(f)1/degf Is within
(‘2/C €g f> Dgl—2e/deg f

n+ 1 3(1 — 2e/deg f)4™
git1l—2e/deg f

of Z 2q; -
icfooa.r T 1 —2e/deg f

if f(CC) — a;e(]_ S) T R[[CC]],
-] <1/4 for:ce[_s,.s], .
ZOSan (—2/?eg f)(: -)7 — Z a; T

Handle constant factors in f.

Handle intervals [v — s, v + s].

Partition (—o00, 00):

one interval around each
real root of f; one interval
around o0, reversing f;
more intervals with e = 0.

Be careful with roundoff error.

This is not the end of the story:
can handle some f's more quickly

by arithmetic-geometric mean.

How to find good polynomials?

Many f's possible for n.
How to find f that
minimizes number-field-sieve time?

General strategy:

Enumerate many f's.

For each f, estimate time using
information about f arithmetic,

distribution of d9¢87 f(c/d),
distribution of smooth numbers.

Let's restrict attention to f(z) =
(z —m)(fsz> + faz* + - + fo).

Take m near nl/6.

Expand n in base m:
n=fsm>+ fam® +---+ fo.
Can use negative coefficients.

Have f5 & nlt/6

Typically all the f;'s

are on scale of nl/6.

(1993 Buhler Lenstra Pomerance)

To reduce f values by factor B:

Enumerate many possibilities

for m near B0-2551/6

Have fs ~ B~ 14 nl/6

fa, f3, f2, f1, fo could be

as large as B0-25p,1/6

Hope that they are smaller,

on scale of B—1-254,1/6

Conjecturally this happens

within roughly B’ trials.

Then (¢ — dm)(fsc® + - - - + fod>)

is on scale of B~1R072/6

for ¢, d on scale of R.

Can force f4 to be small.
Say n = fsm> + fam* + - + fo.

Choose integer k =~ f1/5fs.
Write n In base m + k:

n = fs(m+ k)
+ (fa—5kfs)(m + k)" +---

Now degree-4 coetficient
is on same scale as ffs.

Hope for small f3, fo, f1. fo.
Conjecturally this happens

within roughly BP° trials.

Improvement: Skew the coefficients.
(1999 Murphy, without analysis)

Enumerate many possibilities

for m near Bnl/0.

Have f5 ~ B—5nl/6

fa, f3. f2, f1., fo could be

as large as Bnl/6

Force small f4. Hope for

f3 on scale of B~ 2p1/6,
B—0.5 1/6_

fo on scale of

Conjecturally this happens

within roughly B*? trials:
(2+1)+(0.5+4+1)=45.

For ¢ on scale of BV R

and d on scale of B=9-PR

have ¢ — md on scale of BY2Rn
and fsc® + factd + - + fod?
on scale of B~1-25R5,1/6

1/6

Product B~ 1 R6n2/6.

Similar effect of B on Q(f);
can afford to compute @

for many attractive f's.

Can we do better? Yes!

Algorithm 2 of this

talk:

only about B3~ trials,

conjecturally.

Each trial is fairly expensive,

using four-dimensional

integer-relation finc

but worthwhile for

This is so fast that

Ing,
arge b.

we should start searching

(moz —m)(csz’ + caz + - -

Sayn:f5m5+f4m4+---+fo.

Choose integer k =~ f4/5f5
and integer £ ~ m/5fs.

Find all short vectors
in lattice generated by
(m/B3,0,0,10fsk? — 4f4k + f3),
(0, m/B*,0,20fskl — 4f48),
(0,0, m /B>, 10f5¢?),

(0,0,0 ,m).

Hope for j below Bl

with (10fsk?® — 4 fak + f3)
+ (20fskl — 4f44)7

+ (10f54°)5°

below m /B3 modulo m.

Write n in base m + k + 74.
Obtain degree-5 coefficient
on scale of B—5n1/6;

degree-4 coefficient
on scale of B~4n1/6;
degree-3 coetficient

on scale of B—2n1/6,

Hope for good degree 2.

How to recognize smooth numbers?

Sieve d9%87 f(c/d)
to find primes < yg;

say time S per pair (¢, d).

Keep pairs (¢, d) with small
unfactored parts of d9¢87 f(c/d).

Use second test to find primes < y;
say time T per pair (c, d).

Total time with tests balanced:
roughly RSOT1-?

where R Is smoothness ratio.
(1982 Pomerance)

How to do second test?

Elliptic-curve method conjecturally
finds primes < v in time

exp((Ig y)Y/2T°()Y per input bit.
(1987 Lenstra)

Faster batch algorithm: time

exp((3 + o(1)) loglgy) per bit.
(2000 Bernstein)

Variant: exp((2 4 o(1)) log g y)
per bit, conjecturally.
(2004 Franke Kleinjung

Morain Wirth, in ECPP context)

Slightly faster variant
(2004 Bernstein):

Compute product P of the primes.

Compute P mod 1, P mod no,

Now m; is smooth if and only if
((P mod nj)big) mod n; = 0.

Use the exp((3 + o(1)) loglgy)
algorithm to factor the smooths;

conjecturally not a bottleneck.

Let’'s focus on time-consuming step:
compute P mod ni, P mod no,

Traditionally use remainder tree
(1972 Fiduccia,
1972 Moenck Borodin):

P mod ninoning

/N

P mod nino P mod ni3ng

/Pmodn2 /Pmodn4

P mod nq P mod nj

Represent each P mod - - -
as a bit string In base 2:

bo, b1, ... represents bg + 261

Algorithm 3 of this talk:
use a different structure,

replacing almost all of the
divisions with multiplications.

Constant-factor speedup.

(speedup in function-field case,
using polynomial reversal etc.:
2003 Bostan Lecerf Schost;
structure: 2004 Bernstein)

With redundancies eliminated
(1992 Montgomery, 2004 Kramer):
new structure is 2.6 4 o(1)

times faster than remainder tree.

Scaled remainder tree:

n1n2n3n4 mod 1

VAN

Lmodl —modl

/modl /modl

—modl —modl

Represent each P/--- mod 1
as a nearby real number In base 2:

b_1,b_o, ... represents
2_1b_1 + 2_2b_2 + -

e.g. Scaled remainder tree for
P = 8675309, n1 = 10,
no = 20, n3 = 30, ng = 40:

O 14712083

0. 5450 O 4242

045 072

