
Three algorithms

related to the number-field sieve

D. J. Bernstein

Thanks to:

University of Illinois at Chicago

NSF DMS–0140542

Alfred P. Sloan Foundation



The number-field sieve

Goal: Find

( � � ) Z2 : � = 611 .

The Q sieve forms a square

as product of � ( � + 611 )

for several pairs ( � � ):

14(625) � 64(675) � 75(686)

= 44100002.

gcd 611 � 14 � 64 � 75 � 4410000

= 47.

47 and 611 47 = 13 are prime,

so � = 1 � 13 � 47 � 611 .



The Q( 14) sieve forms a square

as product of ( � + 25 )( � + 14 )

for several pairs ( � � ):

( � 11 + 3 � 25)( � 11 + 3 14)

� (3 + 25)(3 + 14)

= (112 � 16 14)2.

Compute
� = ( � 11 + 3 � 25) � (3 + 25),
� = 112 � 16 � 25,

gcd 611 ��� � � = 13.



How to find these squares?

Traditional approach:

Choose , with 26 � 14 � 3 = .

Look at all pairs ( � � )

in [ � � ] � [0 � ]

with ( � + 25 )( � 2 � 14 2) = 0

and gcd � � = 1.

( � + 25 )( � 2 � 14 2) is small:

between � and . Conjecturally,

good chance of being smooth.

Many smooths square.



Find more pairs ( � � )

with
�
� ( � + 25 )( � 2 � 14 2)

�
�

in a less balanced rectangle.

(1999 Brian Murphy)

Can do better: set of ( � � )

with
�
� ( � + 25 )( � 2 � 14 2)

�
�

extends far beyond any inscribed

rectangle. Find � range for each .

(Bob Silverman, Scott Contini,

Arjen Lenstra)

Algorithm 1 of this talk:

estimate, much more quickly,

accurately, number of pairs ( � � ).



Take any nonconstant Z[ � ],

all real roots order (deg ) 2:

e.g., = ( � + 25)( � 2 � 14).

Area of ( � � ) R � R : 0 �
� deg ( � )

�

is (1 2) 2 � deg ( ) where

( ) = ��
�

� ( ( � )2)1 � deg .

Will explain fast ( ) bounds.

Extremely accurate estimate:

# ( � � ) Z � Z : gcd � � = 1 �

0 � � deg ( � )
�

(3 � 2) 2 � deg ( ).



Can verify accuracy of estimate

by finding all integer pairs ( � � ),

i.e., by solving equations
deg ( � ) = 1,
deg ( � ) = 2, � � �

deg ( � ) = .

Slow but convincing.

Another accurate estimate,

easier to verify:

# ( � � ) Z � Z : gcd � � = 1 �

0 � � deg ( � )
� �

not very large

(3 � 2) 2 � deg ( ).



To compute

good approximation to ( ),

and hence good approximation to

distribution of deg ( � ):
�

� � � ( ( � )2)1 � deg is within
�
�
�
�

� 2 deg
� + 1

�
�
�
�

2 � 1 � 2 � � deg

3(1 � 2 � deg )4
�

of
��� 	

0 
 2 
 4 
�������

2 � � �

�
+1 � 2 � � deg

�
+ 1 � 2 � deg

if ( � ) = � � (1 + � � � ) in R[[ � ]],�
� � �

�
1 4 for � [ � � � � ],

0 � � � 2 � deg
� ( � � � )� = � � � �

.



Handle constant factors in .

Handle intervals [ � � � ��� + � ].

Partition ( � � ):

one interval around each

real root of ; one interval

around , reversing ;

more intervals with � = 0.

Be careful with roundoff error.

This is not the end of the story:

can handle some ’s more quickly

by arithmetic-geometric mean.



How to find good polynomials?

Many ’s possible for � .

How to find that

minimizes number-field-sieve time?

General strategy:

Enumerate many ’s.

For each , estimate time using

information about arithmetic,

distribution of deg ( � ),

distribution of smooth numbers.



Let’s restrict attention to ( � ) =

( � � )( 5
� 5 + 4

� 4 + � � � + 0).

Take near � 1 � 6.

Expand � in base :
� = 5

5 + 4
4 + � � � + 0.

Can use negative coefficients.

Have 5
� 1 � 6.

Typically all the � ’s
are on scale of � 1 � 6.

(1993 Buhler Lenstra Pomerance)



To reduce values by factor :

Enumerate many possibilities

for near 0 � 25 � 1 � 6.

Have 5
� 1 � 25 � 1 � 6.

4
�

3
�

2
�

1
�

0 could be

as large as 0 � 25 � 1 � 6.

Hope that they are smaller,

on scale of
� 1 � 25 � 1 � 6.

Conjecturally this happens

within roughly 7 � 5 trials.

Then ( � � )( 5 � 5 + � � � + 0
5)

is on scale of
� 1 6 � 2 � 6

for � � on scale of .



Can force 4 to be small.

Say � = 5
5 + 4

4 + � � � + 0.

Choose integer 4 5 5.

Write � in base + :
� = 5( + )5

+ ( 4 � 5 5)( + )4 + � � � .

Now degree-4 coefficient

is on same scale as 5.

Hope for small 3
�

2
�

1
�

0.

Conjecturally this happens

within roughly 6 trials.



Improvement: Skew the coefficients.

(1999 Murphy, without analysis)

Enumerate many possibilities

for near � 1 � 6.

Have 5
� 5 � 1 � 6.

4
�

3
�

2
�

1
�

0 could be

as large as � 1 � 6.

Force small 4. Hope for

3 on scale of
� 2 � 1 � 6,

2 on scale of
� 0 � 5 � 1 � 6.



Conjecturally this happens

within roughly 4 � 5 trials:

(2 + 1) + (0 � 5 + 1) = 4 � 5.

For � on scale of 0 � 75
and on scale of

� 0 � 75
have � � on scale of 0 � 25 � 1 � 6

and 5 � 5 + 4 � 4 + � � � + 0
5

on scale of
� 1 � 25 5 � 1 � 6.

Product
� 1 6 � 2 � 6.

Similar effect of on ( );

can afford to compute

for many attractive ’s.



Can we do better? Yes!

Algorithm 2 of this talk:

only about 3 � 5 trials,

conjecturally.

Each trial is fairly expensive,

using four-dimensional

integer-relation finding,

but worthwhile for large .

This is so fast that

we should start searching

( 2
� � 1)( � 5

� 5 + � 4
� 4 + � � � + � 0).



Say � = 5
5 + 4

4 + � � � + 0.

Choose integer 4 5 5

and integer 5 5.

Find all short vectors

in lattice generated by

( 3 � 0 � 0 � 10 5
2 � 4 4 + 3),

(0 � 4 � 0 � 20 5 � 4 4 ),

(0 � 0 � 5 � 10 5
2),

(0 � 0 � 0 � ).



Hope for below 1

with (10 5
2 � 4 4 + 3)

+ (20 5 � 4 4 )

+ (10 5
2) 2

below 3 modulo .

Write � in base + + .

Obtain degree-5 coefficient

on scale of
� 5 � 1 � 6;

degree-4 coefficient

on scale of
� 4 � 1 � 6;

degree-3 coefficient

on scale of
� 2 � 1 � 6.

Hope for good degree 2.



How to recognize smooth numbers?

Sieve deg ( � )

to find primes � ;
say time per pair ( � � ).

Keep pairs ( � � ) with small

unfactored parts of deg ( � ).

Use second test to find primes ;

say time per pair ( � � ).

Total time with tests balanced:

roughly � 1 � �
where is smoothness ratio.

(1982 Pomerance)



How to do second test?

Elliptic-curve method conjecturally

finds primes in time

exp((lg )1 � 2+ � (1)) per input bit.

(1987 Lenstra)

Faster batch algorithm: time

exp((3 + � (1)) log lg ) per bit.

(2000 Bernstein)

Variant: exp((2 + � (1)) log lg )

per bit, conjecturally.

(2004 Franke Kleinjung

Morain Wirth, in ECPP context)



Slightly faster variant

(2004 Bernstein):

Compute product of the primes.

Compute mod �
1

� mod �
2

�
� � � .

Now � � is smooth if and only if

(( mod � � )big) mod � � = 0.

Use the exp((3 + � (1)) log lg )

algorithm to factor the smooths;

conjecturally not a bottleneck.

Let’s focus on time-consuming step:

compute mod �
1

� mod �
2

�
� � � .



Traditionally use remainder tree

(1972 Fiduccia,

1972 Moenck Borodin):

mod �
1
�

2
�

3
�

4

��~~
~~

~~

��
@@

@@
@@

mod �
1
�

2

		��
��
��
�

��
//

//
/ mod �

3
�

4

		��
��
��
�

��
//

//
/

mod �
2 mod �

4
mod �

1 mod �
3

Represent each mod � � �
as a bit string in base 2:

0
�

1
�

� � � represents 0 + 2 1 + � � � .



Algorithm 3 of this talk:

use a different structure,

replacing almost all of the

divisions with multiplications.

Constant-factor speedup.

(speedup in function-field case,

using polynomial reversal etc.:

2003 Bostan Lecerf Schost;

structure: 2004 Bernstein)

With redundancies eliminated

(1992 Montgomery, 2004 Kramer):

new structure is 2 � 6 + � (1)

times faster than remainder tree.



Scaled remainder tree:
�

�
1
�

2
�

3
�

4
mod 1

����
��

�

��
::

::
:

�

�
1
�

2
mod 1



��
��
��
�

��
--

--

�

�
3
�

4
mod 1



��
��
��
�

��
--

--

�

�
2

mod 1
�

�
4

mod 1
�

�
1

mod 1
�

�
3

mod 1

Represent each � � � mod 1

as a nearby real number in base 2:

� 1
� � 2

�
� � � represents

2
� 1 � 1 + 2

� 2 � 2 + � � � .



e.g. Scaled remainder tree for

= 8675309, �
1 = 10,

�
2 = 20, �

3 = 30, �
4 = 40:

0 � 14712083

����
��

��
�

��
::

::
::

:

0 � 5450



��
��
��
��
�

��
--

--
--

0 � 4242



��
��
��
��
�

��
--

--
--

0 � 45 0 � 72

0 � 90 0 � 96


