Slides for AMS Columbus talk, to be given 2001.09.22.

Paper: “Faster square roots in annoying finite fields” (without the discussion of cryptographic applications).
Elliptic curve cryptography: the case of NIST P-224

D. J. Bernstein
University of Illinois at Chicago
NSF CCR–9983950
NIST P-224 is the elliptic curve
\[y^2 = x^3 - 3x + c_6 \] over \(\mathbb{Z}/p \).

Here \(c_6 = 189582862855666608 \\
00040866854449392 \\
64155046809686793 \\
21075787234672564 \)
and \(p = 2^{224} - 2^{96} + 1 \).

Multiply \((10(2^{224} - 1)/(2^8 - 1), \ldots) \) by \(n \) on the curve to get \((K_n, \ldots) \),
for \(n \in (\mathbb{Z}/\#\text{curve}(\mathbb{Z}/p))^* \).
The Diffie-Hellman system

Secret K_{ab} ← Andreas’s public key K_b

Alice’s secret a

Alice’s public key K_a → Secret K_{ab}

Andreas’s secret b
Expand shared secret K_{ab} into long string of secrets: e.g., SHA($K_{ab}, 1$), SHA($K_{ab}, 2$),

Use this string to authenticate and encrypt communications between Alice and Andreas.
nistp224 is a new program to compute K_{ab} given a, K_b.

Alice puts 28 random bytes into A, 28 newlines into $K1$.

```
  cat A K1 | nistp224 > KA
  cat A KB | nistp224 > KAB
```

Also a C-language library.
Cycle counts to multiply by a given \(x \) or given \(x, y \):

<table>
<thead>
<tr>
<th>(x)</th>
<th>(x, y)</th>
<th>Processor</th>
</tr>
</thead>
<tbody>
<tr>
<td>752549</td>
<td>651953</td>
<td>Athlon</td>
</tr>
<tr>
<td>930174</td>
<td>813405</td>
<td>PPro/PII/PIII</td>
</tr>
<tr>
<td>1095312</td>
<td>951712</td>
<td>P4</td>
</tr>
<tr>
<td>1356615</td>
<td>1188130</td>
<td>P1/PMMX</td>
</tr>
</tbody>
</table>
First step: Given x, compute a square root y of $u = x^3 - 3x + c_6$ in \mathbb{Z}/p.

Cipolla’s algorithm (1903): Try random r’s until finding that $\Delta = r^2 - 4u$ is not a square. Compute $y = ((t + r)/2)^{(p+1)/2}$ in $(\mathbb{Z}/p)[t]/(t^2 - \Delta)$.
Can compute \((p + 1)/2\) power using 222 squarings, a few more mults.

Each squaring in \((\mathbb{Z}/p)[t]/(t^2 - \Delta)\) involves 4 mults in \(\mathbb{Z}/p\):
2 squarings, 1 mult by \(\Delta\), 1 more.
Choose \(r\) to make \(\Delta\) small.

\(> 900\) mults in \(\mathbb{Z}/p\) to find \(y\).
Tonelli’s algorithm (1891):

Precompute g of order 2^{96}. For example: $g = 11^{(p-1)/2^{96}}$.

Compute $v = u^{(p-2^{96}-1)/2^{97}}$. Then $uv^2 = u^{(p-1)/2^{96}}$ is a power g^e with $e \in 2\mathbb{Z}$.

Compute e, bit by bit.

Compute $y = uv g^{-e/2}$.
Precompute $g^{-2^6 i j}$ for $0 \leq i \leq 15$, $0 \leq j \leq 63$. 1024 precomputed values.

$$g^{-e/2} = g^{-d_0} g^{-2^6 d_1} \ldots g^{-2^{90} d_{15}}$$
if $e/2 = d_0 + 2^6 d_1 + \cdots + 2^{90} d_{15}$.

(Yao 1976, Pippenger 1980)
Discrete logs, bit by bit

Say $e = e_0 + 2e_1 + 4e_2 + \cdots$.

Given g^e, and given $e \mod 2^k$, determine e_k from

$$g^{2^{95}e_k} = (g^e g^{-(e \mod 2^k)})^{2^{95}-k}.$$

Thousands of multiplications for 2^{94} power, 2^{93} power, etc.

Save whenever $e_k = 0$. (Shanks)
Discrete logs, 6 bits at a time

Say \(e = e_0 + 2^6 e_1 + \cdots + 2^{90} e_{15} \).

Given \(g^e \):

Compute \(g^{2^6 e}, g^{2^{12} e}, \ldots, g^{2^{90} e} \).

\[g^{2^{90} e_k} = g^{2^{90} - 6k} e g^{-2^{90} - 6k} e_0 \]
\[g^{-2^{90} - 6(k-1)} e_1 \cdots g^{-2^{90} - 6} e_{k-1} \]

Can sort or hash powers of \(g^{2^{90}} \).

364 mults to compute \(u \mapsto y \).
Asymptotics

Square roots in \mathbb{F}_q, after polynomial-time precomputation.
Cipolla: $(4 + o(1)) \lg q$ mults.
Tonelli: $(1 + o(1)) \lg q$ mults, if $\text{ord}_2(q - 1) \in o(\sqrt{\lg q})$.
New: $(1 + o(1)) \lg q$ mults, if $\text{ord}_2(q - 1) \in o(\sqrt[3]{\lg q \lg \lg q})$.

Also usable for Pohlig-Hellman.