Factoring into coprimes

D. J. Bernstein
University of Illinois at Chicago
Does \(91^{1952681} \cdot 119^{1513335} \cdot 221^{634643}\) equal \(1547^{1708632} \cdot 6898073^{439346}\)?

Each side has logarithm
\[
\approx 19466590.674872.
\]

Which integers \((a, b, c, d, e)\) satisfy
\[91^a \cdot 119^b \cdot 221^c = 1547^d \cdot 6898073^e?\]
91 = 7 \cdot 13; 119 = 7 \cdot 17; \\
221 = 13 \cdot 17; 1547 = 7 \cdot 13 \cdot 17; \\
6898073 = 7^4 \cdot 13^2 \cdot 17.

(a, b, c, d, e) \mapsto \\
91^a 119^b 221^c 1547^{-d} 6898073^{-e} = \\
7^{a+b-d-4e} 13^{a+c-d-2e} 17^{b+c-d-e}.

Kernel is generated by
(1, 1, 1, 2, 0) and (3, 2, 0, 1, 1).
General algorithm

Given integers e_1, \ldots, e_k and positive integers s_1, \ldots, s_k:

$s_1^{e_1} \cdots s_k^{e_k} = 1$ if and only if

$e_1 \text{ord}_q s_1 + \cdots + e_k \text{ord}_q s_k = 0$

for all primes q dividing $s_1 \cdots s_k$.

Problem: Often difficult to find q's.
Solution: Find coprime base P for $\{s_1, \ldots, s_k\}$ with $1 \not\in P$.

Coprime means $\gcd\{q, q'\} = 1$ for all $q, q' \in P$ with $q \neq q'$.

Base means each s_j is a product of powers of elements of P.

Then $s_1^{e_1} \cdots s_k^{e_k} = 1$ if and only if $e_1 \ord_q s_1 + \cdots + e_k \ord_q s_k = 0$ for all $q \in P$.
Can find coprime base by iterating \((a, b) \mapsto (a/g, g, b/g)\) where \(g = \gcd\{a, b\}\).

\[
\begin{array}{ll}
1547 & 6898073 \\
1 & 1547 & 4459 \\
1 & 17 & 91 & 49 \\
1 & 17 & 1 & 91 & 49 \\
1 & 17 & 1 & 13 & 7 & 7 \\
1 & 17 & 1 & 13 & 1 & 7 & 7 \\
1 & 17 & 1 & 13 & 1 & 1 & 7 & 1 \\
\end{array}
\]

\[
\text{cb} \{1547, 6898073\} = \{17, 13, 7\}.
\]
Can factor S into coprimes in quadratic time.

(Bach, Driscoll, Shallit 1990)

- Given a, b: compute $\text{cb}\,\{a, b\}$.
- Given a, Q, with Q coprime:
 compute $\text{cb}(\{a\} \cup Q)$.
- Given S: compute $\text{cb}\,S$.
- Given S, P: factor S using P.

An example of **factor refinement**:

Given squarefree $g \in (\mathbb{Z}/2)[x]$. Want to factor g.

One way: Find basis h_1, h_2, \ldots for $\{ h \in (\mathbb{Z}/2)[x] : (gh)’ = h^2 \}$. Then $\text{cb} \{g, h_1, h_2, \ldots\}$ contains all irreducible divisors of g.

(Niederreiter 1993)
Ideal arithmetic in number rings

Monic irreducible \(\varphi \in \mathbb{Z}[x] \).
Want to handle ideals of \(\mathbb{Z}[x]/\varphi \).

Represent ideal \(M \) as
\[
\{ \mathbb{Z}_q M : q \in P \} \text{ with } P \text{ coprime.}
\]

Compress \(\mathbb{Z}_q M \) as if \(q \) were prime.

(Bernstein)
Fast arithmetic

In time $O(n \log n \log \log n)$
can multiply n-digit numbers. (Schönhage, Strassen 1971)

Or divide n-digit numbers. (Cook; Sieveking; Kung; Brent)

In time $O(n(\log n)^2 \log \log n)$
can find gcd of n-digit numbers. (Lehmer; Knuth; Schönhage)
Need more for fast cb:

5 48828125
1 5 9765625
1 1 5 1953125
1 1 1 5 390625
1 1 1 1 5 78125
1 1 1 1 1 5 15625
1 1 1 1 1 1 5 3125
1 1 1 1 1 1 1 5 625
1 1 1 1 1 1 1 1 5 125
1 1 1 1 1 1 1 1 1 5 25
1 1 1 1 1 1 1 1 1 1 5 5
1 1 1 1 1 1 1 1 1 1 1 5 1
If $a = 5^e$ and $b = 5^f$ then
$\text{cb} \{a, b\} = \{5^{\gcd\{e,f\}}\} - \{1\}.$

$(a/g, g, b/g)$ for $g = \gcd\{a, b\}$ is
$(5^{e-f}, 5^f, 1)$ or $(1, 5^e, 5^{f-e}).$

$(e, f) \mapsto (e - f, f)$ or $(e, f - e)$
is Euclid’s original gcd algorithm. Sometimes very slow.
Better: Subtract $2^j f$ from e if e is between $2^j f$ and $2^{j+1} f$.

Can do this to exponents with fast combination of multiplication, division, gcd.

For example: $\min \{e, 64f\}$ from

$c_1 = \gcd \{a, b^2\}, \ c_2 = \gcd \{a, c_1^2\}, \ c_3 = \gcd \{a, c_2^2\}, \ c_4 = \gcd \{a, c_3^2\}, \ c_5 = \gcd \{a, c_4^2\}, \ c_6 = \gcd \{a, c_5^2\}$.
Given coprime sets P, Q, to quickly compute $\text{cb}(P \cup Q)$:

Replace Q with Q' such that

$\text{cb}(P \cup Q) = \text{cb}(P \cup Q')$;

Q' has $O(n \log n)$ digits;

and Q' has $O(\log n)$ elements.

Insert Q' one element at a time.
If $Q = \{q_{00}, q_{01}, \ldots, q_{15}\}$ then
$Q' = \{q_{00} q_{02} q_{04} q_{06} q_{08} q_{10} q_{12} q_{14},
q_{01} q_{03} q_{05} q_{07} q_{09} q_{11} q_{13} q_{15},
q_{00} q_{01} q_{04} q_{05} q_{08} q_{09} q_{12} q_{13},
q_{02} q_{03} q_{06} q_{07} q_{10} q_{11} q_{14} q_{15},
q_{00} q_{01} q_{02} q_{03} q_{08} q_{09} q_{10} q_{11},
q_{04} q_{05} q_{06} q_{07} q_{12} q_{13} q_{14} q_{15},
q_{00} q_{01} q_{02} q_{03} q_{04} q_{05} q_{06} q_{07},
q_{08} q_{09} q_{10} q_{11} q_{12} q_{13} q_{14} q_{15}\}.$
Can compute cbS given S in time $n(\log n)^{O(1)}$.

Given coprime base P for S, can factor S over P in time $n(\log n)^{O(1)}$.

Same for any freakoid free coid with fast arithmetic.

(Bernstein)
Decomposing perfect powers

Given integer $c > 1$ with $c < 2^n$. Want largest integer k such that c is a kth power.

Find integer r_k within 0.9 of $c^{1/k}$ for $1 \leq k < n$.

Can check if $(r_k)^k = c$ for each k in total time $e^{O(\sqrt{\log n \log \log n})} n$. (Bernstein)
Time $n(\log n)^{O(1)}$ using fast factorization into coprimes:

Compute $P = \text{cb} \{r_1, r_2, \ldots\}$.

c is a kth power if and only if k divides $\text{ord}_q c$ for each $q \in P$.

Largest k is $\gcd \{\text{ord}_q c : q \in P\}$.

(Lenstra, Pila)