
Distinguishing Attack on Stream Cipher Yamb

Hongjun Wu and Bart Preneel

Katholieke Universiteit Leuven, Dept. ESAT/COSIC
{wu.hongjun,bart.preneel}@esat.kuleuven.be

Abstract. Stream cipher Yamb is a submission to the ECRYPT stream
cipher project. In this paper, we point out that the keystream generated
from Yamb can be distinguished from random with about 258 outputs.
Only about 255 simple operations are needed in the attack.

1 Stream Cipher Yamb

Brief Description of Yamb [2]. The overall structure of Yamb is given in
Fig. 1. Yamb consists of three components: LFSR L of length 15 over GF (232);
nonlinear function FM with 32-bit input and 32-bit output, and a secret table
M with 256 8-bit elements is used in FM ; shift register R of length 16 over Z232 .
At each step, the LFSR L is regularly clocked, one element Y of L is passed as
input to FM , the M is updated with Y , then Y is xored with the output of FM

and the result is passed as input to R. The input and output of R are xored as
the keystream.

Fig. 1. Overall structure of Yamb [2]

2 Distinguishing Attack on Stream Cipher Yamb

We first focus on the randomness of Y ⊕ Z, where Y and Z are shown in Fig.
1, and Z = FM (Y). As given in [2], the function YM with four inputs bytes
(a, b, c, d) operate as follows:

b := b⊕M(a), M(a) := M(a) + d mod 256
c := c⊕M(d), M(d) := M(d) + b mod 256
a := a⊕M(b), M(b) := M(b) + c mod 256
d := d⊕M(c), M(c) := M(c) + a mod 256
c := c⊕M(a), M(a) := M(a) + d mod 256
b := b⊕M(d), M(d) := M(d) + c mod 256
a := a⊕M(c), M(c) := M(c) + b mod 256
d := d⊕M(b), M(b) := M(b) + a mod 256
b := b⊕M(a), M(a) := M(a) + d mod 256
c := c⊕M(d), M(d) := M(d) + b mod 256
a := a⊕M(b), M(b) := M(b) + c mod 256
d := d⊕M(c), M(c) := M(c) + a mod 256

The main feature of Yamb is that the S-box M is continuously updated during
the keystream generation.

We notice that when the input to FM is with value 0 (Y = 0), and M(0) = 0,
then Y ⊕ FM = 0. This case would happen with probability 2−32 × 2−8, where
2−32 is the probability that Y = 0, and 2−8 is the probability that M(0) = 0.
We assume that for Y 6= 0, the value of FM (Y) is randomly distributed. Based
on this observation and assumption, we estimate that the value of Y ⊕ FM is 0
with probability (1−2−32)×2−32 +2−32×2−8 ≈ 2−32 +2−40. Thus Y ⊕FM (Y)
can be distinguished from random with about 250 values with success rate 0.84
(the negative and positive false rates are 0.16).

Experiment. We performed the experiment with the reduced version of Yamb.
In this reduced version, M is with 32 20-bit elements. We generate a number of
random 20-bit Y . According to our analysis above, the value Y ⊕FM (Y) would
be 0 with probability 2−20 + 2−25. In the experiment, we generated 234 outputs
and there are 17337 cases that the values of Y ⊕ FM (Y) are 0. The experiment
result shows that Y ⊕FM (Y) = 0 with probability about 2−20 +2−24.1, the bias
is larger than the result of our theoretical analysis, i.e., the attack would be more
efficient than that is shown in theory.

We now analyze the randomness of the keystream. Denote the keystream
output at the i-th step as Si, and denote αi = Yi ⊕ Zi. We know that Si =
αi + αi−16. A non-optimized direct attack is to try all the possible values of
α−16, then compute α16i from S16i for i = 0, 1, 2, 3, In the attack, we need
to try 232 values of α−16, so the false negative rate of distinguishing Y ⊕FM (Y)
should be smaller than 2−32. If 253.8 samples are used in the experiment, the

overall success rate of the attack is 0.84 (the false positive rate is 0.16, and the
false negative rate is 0.17). Thus the attack requires the Yamb stream cipher to
generate 16× 253.8 = 257.8 32-bit outputs.

Then we give below an efficient way to implement the above attack. We ex-
press α16i in terms of Si and α−16 as follows:

α0 = S0 − α−16

α16 = S16 − α0 = S16 − S0 + α−16

α32 = S32 − α16 = S32 − S16 + S0 − α−16

α48 = S48 − α32 = S48 − S32 + S16 − S0 + α−16

· · · · · ·
α2i×16 =

∑i
j=0 S32j −

∑i
j=1 S32j−16 − α−16

α(2i+1)×16 =
∑i

j=0 S32j+16 −
∑i

j=0 S32j + α−16

Thus we can express αi as α32i = β32i − α−16, α32i+16 = β32i+16 + α−16, where
βi are computed from Si. For α32i, we generate a table U , where each element
U [k] is the number of β32i that satisfies β32i = k. Similarly, another table V is
generated for α32i+16, where each element V [k] is the number of β32i+16 that
satisfies β32i+16 = k. We then find out the maximum value of (U [k]+V [232−k])
for 0 ≤ k < 232. We regard this maximum number as the number of α16i that is
with value 0.

To distinguish a keystream with 257.8 32-bit outputs, we need 253.8 subtrac-
tions to compute all the β16i if we perform the computation in the recursive
way. We also need 253.8 additions to compute the tables U and V . Finding the
maximum value of (U [k] + V [232 − k]) requires about 232 additions and com-
parisons. Thus the attack to distinguish the keystream of Yamb requires about
254.8 simple operations (32-bit additions or subtractions).

Remarks. We predict that the amount of keystream required in the attack could
be reduced to below 257.8 if we make full use of the complete keystream (instead
of considering only the S16i).

3 Conclusion

It was shown in this paper that the keystream generated from Yamb can be dis-
tinguished from random with about 257.8 outputs and with about 254.8 simple
operations.

Babbage has discovered a weakness in the key schedule of Yamb [1]. It shows that
if the same kye is used with IVs of different lengths, then the same keystream
would be generated for some chosen IVs.

References

1. Steve Babbage. “Equivalent IVs in Yamb”. Available at http://www.ecrypt.eu.org/
stream/phorum/read.php?1,11

2. Starodubtzev Sergey A., Lebedev Anatoly N., Volchkov Alexey A., “Yamb – LAN
Crypto Submission to the ECRYPT Stream Cipher Project”. ECRYPT Stream
Cipher Project Report 2005/034. Available at http://www.ecrypt.eu.org/stream/

