
Chosen Ciphertext Attack on SSS

Joan Daemen1, Joseph Lano2 ⋆, and Bart Preneel2

1 STMicroelectronics Belgium
joan.daemen@st.com

2 Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC
{joseph.lano,bart.preneel}@esat.kuleuven.ac.be

Abstract. The stream cipher Self-Synchronizing Sober (SSS) is a can-
didate in the ECRYPT stream cipher competition. In this paper, we
describe a chosen ciphertext attack on SSS. Our implementation of the
attack recovers the entire secret state of SSS in around 10 seconds on a
2.8 GHz PC, and requires a single chosen ciphertext of less than 10 kByte.
The designers of SSS state that chosen ciphertext attacks were considered
to fall outside of the threat model. Hence the relevance of such attacks
is also discussed in this paper.

1 Introduction

In the ECRYPT Stream Cipher Project [6], 34 stream cipher primitives
have been submitted for evaluation. Of these 34 proposals, 31 are syn-
chronous, 2 are self-synchronizing, and one design, Phelix, is neither syn-
chronous nor self-synchronizing. This division reflects the fact that syn-
chronous stream ciphers have been more widely studied in the past years.

In a synchronous stream cipher, the internal state of the stream cipher
is independent of the plaintext and ciphertext. Hence the only relevant
attack model is the known plaintext attack. Also, the attacker can influ-
ence the internal state through a resynchronization attack with chosen
or known IV [3, 1]. A strong resynchronization mechanism is therefore
needed to prevent such attacks.

Another attack model applies to the self-synchronizing stream ci-
phers, where the ciphertext needs to enter the state to ensure the self-
synchronization property. This makes chosen plaintext (at encryption)
and chosen ciphertext (at decryption) attacks interesting. Because of this
property, the design and analysis of self-synchronizing stream ciphers is
much closer related to the field of block ciphers than to the field of syn-
chronous stream ciphers [4]. Note that the same applies to the design of

⋆ Research financed by a Ph.D. grant of the Institute for the Promotion of Innovation
through Science and Technology in Flanders (IWT-Vlaanderen)



2

a good resynchronization mechanism for synchronous stream ciphers, as
evidenced by several ECRYPT candidates.

In this paper, we describe such a chosen ciphertext attack on the
ECRYPT candidate Self-Synchronizing Sober (SSS) [8]. We also imple-
mented the attack in C. Our implementation recovers the secret key with a
chosen ciphertext of around 10 kByte and runs in 10 seconds on a 2.8 GHz
PC.

The designers of SSS state that chosen ciphertext attacks were con-
sidered to fall outside of the security model. However, chosen cipher-
text attacks have previously been considered when evaluating the secu-
rity of self-synchronizing stream ciphers. Self-synchronizing stream en-
cryption with DES in CFB mode was analyzed with respect to chosen
ciphertext attacks in [7]. The stream cipher KNOT [2] has been bro-
ken by differential attacks using chosen ciphertext in [5]. The other self-
synchronizing ECRYPT stream cipher candidate is MOSQUITO, the suc-
cessor of KNOT. In the paper on MOSQUITO [4], the security analysis is
mainly devoted to differential and linear attacks using chosen ciphertext.
We will give arguments for the importance of this type of attacks in this
paper.

The outline of this paper is as follows. A brief explanation on self-
synchronizing stream ciphers is given in Sect. 2 and the design of SSS is
briefly presented in Sect. 3. A chosen ciphertext attack on SSS is described
in Sect. 4, and the relevance of such an attack on self-synchronizing stream
ciphers is discussed in Sect. 5. The paper concludes in Sect. 6.

2 Self-Synchronizing Stream Ciphers

A simplified representation of a self-synchronizing stream cipher is given
in Fig. 1. In such a design, the next key stream bit zt is fully determined
by the last nm ciphertext bits and the cipher key K. This can be modelled
as the key stream symbol being computed by a keyed cipher function fc

operating on a shift register that contains the last nm ciphertexts. This
conceptual model can be implemented in various ways, with the design
of SSS described in Sect. 3 as an example.

For the first nm plaintext or ciphertext symbols, the previous nm ci-
phertexts do not exist. Hence the self-synchronizing stream cipher must
be initialized by loading nm dummy ciphertext symbols, called the ini-
tialization vector IV .



3

mt mt

ct

zt zt

-

fc

?
L

-

fc

?
L

-

K · · ·

H
H

?

�
�

�

?

· · ·

?

· · · K

�
�

?

H
H

H

?

· · ·

?

� -

Fig. 1. Self-synchronizing stream encryption.

3 Brief Description of SSS

We only describe the aspects of the design that are relevant for the anal-
ysis performed in this article. For a complete description of the design,
including the initialization and authentication mechanism, we refer to [8].

ct

-

-

-

j≫- jf
?

r16
-

-

r15
- +-r14

-r13
-

-

jf-r12
-r11

-r10
- r9

- r8
- r7

- r6
-

?

r5
- r4

- r3
- r2

- j≫- r1
-

��

r0

�

�

+
?jf
?

+
?

+

j≫

?jf
?j+
?ztj+ - pt

Fig. 2. Layout of SSS at the decryption side

A layout of SSS at the decryption side can be found in Fig. 2. In this
figure, ⊕ represents exclusive or, ⊞ represents addition and ≫ represents
a rotation by 8 positions to the right (or byteswap). The internal state
of SSS consists of a 17-word shift register r0, . . . , r16, where each word is
16 bits in size. The main building block is the key-dependent function f ,
which can be seen as a key-dependent permutation of a 16-bit word. The
function f is built as follows:

f(x) = SBox(xH) ⊕ x , (1)



4

where xH stands for the Most Significant Byte (MSB) of x and where
SBox is a key-dependent substitution box from 8 to 16 bits determined
at key setup. In the rest of the paper we will assume that this SBox is a
random unknown table of 256 16-bit words.

4 The Chosen Ciphertext Attack on SSS

From the description of SSS follows that its secret key consists of a table
of 256 values of 16 bits. The aim of our attack is to recover this secret
table.

We are going to decrypt a single ciphertext string that consists of a
succession of 263 similar patterns and obtain the corresponding plaintext
(and hence the key stream). The pattern i (i = 0, 1, 2, . . . , 263) consists
of 18 16-bit words and always has the following format:

{

ci
t = 0 for t = 0, . . . , 12, 14, . . . 18

ci
13

= bi,
(2)

where bi takes some value in each pattern, to be determined as explained
below. Note that the values that we have chosen to be 0 could take any
value for our attack to work, as long as they are constant across all pat-
terns.

When generating key stream word zi
18

, we can see from Fig. 2 that
the following words are needed3:

zi
18

= f((f(r[0] + r[16]) + r[1] + r[6] + r[13]) ≫ 8) ⊕ r[0] . (3)

It is easy to derive that these registers have the following content at
t = 18:























r[0] = f2(0) ≫ 8
r[1] = f2(0) ≫ 8
r[6] = f2(0)
r[13] = f(0) + bi

r[16] = 0 .

(4)

In other words, all these registers are constant for each pattern i except
for register r[13]. We can hence regroup all the constants inside f() of (3)
into a single (yet unknown) constant a as follows:

a = f(r[0] + r[16]) + r[1] + r[6] + f(0)
= f(f2(0) ≫ 8) + (f2(0) ≫ 8) + f2(0) + f(0) ,

(5)

3 At first sight, one may think that this should be z17, but the designers have built
a delay into their design, as can be deducted from the source code, which can be
obtained at [8].



5

and then (3) simplifies to:

zi
18 = f((a + bi) ≫ 8) ⊕ r0 . (6)

We use the notation r0 to indicate that the content of r[0] is also constant
for all patterns. a is a two-byte word and we denote its MSB byte by aH

and its LSB byte by aL. In the same way we split bi in its two bytes bi
H

and bi
L.

In a first phase, we will determine the 7 least significant bits of aH .
We will not be able to recover the most significant bit of aH , but this
is not a problem as the value of this bit is irrelevant to our analysis. To
recover these 7 bits, we need 8 patterns of the type described above with
bi
L = 0, b0

H = 0 and bi
H = 2i−1 for i = 1, 2, . . . , 7.

We now rewrite the above equation by splitting up the f function and
some words of interest to get:

zi
18 = SBox(aL) ⊕ (28 · aL + aH + 2i−1) ⊕ r0 , (7)

By XORing the above equation for each i 6= 0 with the equation for i = 0
and eliminating terms we obtain:

zi
18,L ⊕ z0

18,L = aH ⊕ (aH + 2i−1) . (8)

In these equations aH is the only unknown, and we can easily deduce its
7 least significant bits from the above equations bit by bit: A difference
in vi

18,L ⊕ v0

18,L equal to 2i−1 implies that the corresponding bit of aH is
0, otherwise it is 1.

Now that the relevant bits of aH have been recovered, we will try to
extract the entire secret SBox table in the second phase of our attack.
In short, this phase operates as follows. First we guess the value of aL

and SBox(aL) (24 bits in total). Then we reconstruct the remaining 255
entries of SBox using key stream symbols z

j
18,L obtained from decrypting

256 patterns. We then use this value to decrypt some ciphertext from
the above patterns and check whether the plaintext matches. We now
describe this reconstruction phase into more detail.

Our ciphertext contains 256 patterns that have b
j
L = j and b

j
H = 0 for

j = 0, 1, . . . , 255. We obtain the following equations, again after XORing
with the equation for j = 0:

z
j
18

⊕ z0

18
=

SBox(aL) ⊕ SBox(aL + j)⊕
(((28 · aH + aL) ⊕ (28 · aH + aL + j)) ≫ 8) .

(9)



6

Assuming a guess for aL and SBox(aL) we can deduce SBox(aL + j)
from this equation:

SBox(aL + j) =
z

j
18

⊕ z0

18
⊕ SBox(aL)⊕

(((28 · aH + aL) ⊕ (28 · aH + aL + j)) ≫ 8) .
(10)

Because j takes all 255 nonzero values we recover the entire SBox. We
then verify whether, for the current guess of aL and of SBox(aL) and the
deduced SBox, the ciphertext decrypts to the corresponding plaintext. If
it does, we have found the entire secret key.

We have implemented this attack in C. It recovers the entire secret
key in on average 10 seconds on a 2.8 GHz Pentium IV PC running gcc
under Linux. The single chosen ciphertext consists of 263 patterns of 36
bytes (note that the patterns for i = 0 and for j = 0 are the same),
or 9468 byte in total. It is possible to reduce the data complexity even
further by overlapping the patterns.

5 On the Relevance of Chosen Ciphertext Attacks

In the security claims for SSS [8], the authors state that they did not
consider chosen ciphertext attacks in their threat model. One of the secu-
rity requirements for their design is that “the result of decrypting altered
ciphertext is not made available to the attacker”. They motivate this re-
quirement as follows: “This should be a standard requirement for any self-
synchronizing stream cipher, since the attacker has complete control over
the state of the cipher.” However, it seems to be logical to us to include
chosen ciphertext attacks in the security model of a self-synchronizing
stream cipher, both from a theoretical as from a practical perspective.

From a theoretical perspective, a self-synchronizing stream cipher is
functionally equivalent to a block cipher used in CFB mode. Chosen ci-
phertext attacks do apply on this mode of operation of a block cipher,
an example is a chosen ciphertext attack on DES in CFB mode [7]. To
enable a fair comparison of primitives aiming at the same applications,
we believe that a uniform threat model should apply.

From a practical perspective, we see several scenarios where chosen
ciphertext attacks can apply, just like with block ciphers. Preventing such
an attack would require authenticating the plaintext before it is released.
This suffers from two serious problems. First, buffering and secure storage
of large amounts of texts is necessary, and this is impractical in several
environments of interest. Second, this authentication requirement is or-
thogonal to the concept of self-synchronization: we do not see the point



7

of designing self-synchronizing stream ciphers when transmission errors
are not allowed.

Another remark is that a self-synchronizing stream cipher resistant to
chosen ciphertext attacks will result in a more elegant design. No special
IV loading mechanism will be necessary as in SSS; loading a nonce into
the state will be sufficient to start encryption and decryption.

6 Conclusion

In this note, we have described an attack on the ECRYPT candidate SSS,
a self-synchronizing stream cipher. Our attack recovers the secret key of
the design with a single chosen ciphertext of less than 10 kByte in about
ten seconds on a modern PC. We believe that our attack is a practical
attack on SSS. SSS is hence insecure and should not be used.

References

1. Frederik Armknecht, Joseph Lano, and Bart Preneel. Extending the resynchro-
nization attack. In Helena Handschuh and Anwar Hasan, editors, Selected Areas
in Cryptography, SAC 2004, number 3357 in Lecture Notes in Computer Science,
pages 19–38. Springer-Verlag, 2004.

2. Joan Daemen, Rene Govaerts, and Joos Vandewalle. A practical approach to the
design of high speed self-synchronizing stream ciphers. In O. Hirota and P. Y. Kam,
editors, Singapore ICCS/ISITA ’92, pages 279–293. IEEE, 1992.

3. Joan Daemen, Rene Govaerts, and Joos Vandewalle. Resynchronization weaknesses
in synchronous stream ciphers. In T. Helleseth, editor, Advances in Cryptology
- EUROCRYPT 1993, number 765 in Lecture Notes in Computer Science, pages
159–167. Springer-Verlag, 1993.

4. Joan Daemen and Paris Kitsos. Submission to ECRYPT call for stream ciphers:
the self-synchronizing stream cipher MOSQUITO. ECRYPT Stream Cipher Project
Report 2005/018, 2005. http://www.ecrypt.eu.org/stream.

5. Antoine Joux and Frederic Muller. Loosening the KNOT. In Thomas Johansson,
editor, Fast Software Encryption, FSE 2003, number 2887 in LNCS, pages 87–99.
Springer, 2003.

6. ECRYPT Network of Excellence in Cryptology. ECRYPT stream cipher project,
2005. http://www.ecrypt.eu.org/stream/.

7. Bart Preneel, Marnix Nuttin, Vincent Rijmen, and Johan Buelens:. Cryptanalysis
of the CFB mode of the DES with a reduced number of rounds. In D.R. Stinson,
editor, Advances in Cryptology - CRYPTO 1993, number 773 in Lecture Notes in
Computer Science, pages 212–223. Springer-Verlag, 1994.

8. Gregory Rose, Philip Hawkes, Michael Paddon, and Miriam Wiggers de Vries. Prim-
itive specification for SSS. ECRYPT Stream Cipher Project Report 2005/028, 2005.
http://www.ecrypt.eu.org/stream.


