
Distinguishing Attacks
on

the Stream Cipher Py?

Gautham Sekar†, Souradyuti Paul‡, and Bart Preneel‡

†Birla Institute of Technology and Science, Pilani, India,
Dept. of Electronics and Instrumentation, Dept. of Physics.

gautham.sekar@gmail.com,
‡Katholieke Universiteit Leuven, Dept. ESAT/COSIC,

Kasteelpark Arenberg 10,
B–3001, Leuven-Heverlee, Belgium

{Souradyuti.Paul, Bart.Preneel}@esat.kuleuven.ac.be

Abstract. The stream cipher Py, which was designed by Biham and
Seberry, is a submission for ECRYPT stream cipher competition. The
cipher which is based on two large arrays (one is 256 bytes and the other
is 1040 bytes) is specifically designed for high speed software applica-
tions (Py is more than 2.5 times faster than the RC4 on Pentium III).
The paper, for the first time, detects a weakness in the mechanism of
the stream cipher Py. We find a statistical bias in the distribution of the
output-words at the 1st and the 3rd rounds of the cipher (more generally
at the rounds t and t+2 where t > 0). Using this bias, a distinguisher is
constructed that works effectively with 283.82 randomly chosen key/IV’s.
Essentially, for each of 283.82 randomly chosen key/IV’s, the attacker col-
lects only a pair of bits from the outputs at the 1st and the 3rd rounds
to establish the distinguisher. The first implication of the results is that
it nullifies the claim of the designers of the cipher, that no distinguish-
ing attacks on the cipher are possible with running time less than the
exhaustive search (note that the recommended key-length of Py is 256
bits). Secondly, the fact that the bias is found within the outputs gener-
ated in the first three rounds (i.e., a segment of 24 bytes) shows that, for
Py, the recommended stream length of 264 bytes is also not secure. These
results constitute an academic break of the cipher. We have also detected
several biases among many pairs of bits and designed distinguishers from
them (with the numbers of key/IV’s 285.82, 287.82 etc.) however, they are
less effective than the one described above.

? This work was supported in part by the Concerted Research Action (GOA) Mefisto
2000/06 and Ambiorix 2005/11 of the Flemish Government and in part by the Eu-
ropean Commission through the IST Programme under Contract IST-2002-507932
ECRYPT.

1 Introduction

The cipher Py, designed by Biham and Seberry [1], was submitted to ECRYPT
project [2] as a candidate for Profile 1 which covers software based stream ci-
phers suitable for high-speed applications. In the last couple of years a growing
enthusiasm has been noticed among the cryptographers to design fast and se-
cure stream ciphers because of weaknesses being found in many standards such
as RC4 and also due to the failure of the NESSIE project [4] to select any stream
cipher for its profile as all of them were found weak. The current stream cipher,
namely Py, is one of the attempts in this direction.

The working principle of Py is, to some extent, similar to that of RC4 as it
uses the technique of random shuffle to update the internal state. In addition to
that Py uses a new technique of rotating all array elements in every round with
a minimal of running time. The high performance (2.5 times faster than the RC4
on Pentium III) and its apparent security make this cipher very attractive for
selection to the Profile 1 of the ECRYPT project.

In this paper we detect several biased pairs of output bits of Py at rounds t
and t+2 (where t > 0). The weaknesses originate from the non-uniformity of the
distributions of carry bits in integer addition that are used in Py. Using those
biases we have constructed several distinguishers. We show that the best of them
works successfully with 283.82 randomly chosen key/IV’s. This result essentially
violates the designers’ claim that distinguishing attack on Py is impossible with
time less than the exhaustive search, thereby, breaks the cipher academically.
As the bias can be found in the outputs of 1st and 3rd rounds of Py (which
requires a segment of 24 bytes of output), the designers recommendation for the
allowable length of output stream of 264 bytes is also not safe. However, the
weaknesses of Py which are described in this paper, still cannot be implemented
in practice as it would require high running time.

2 Description of Py

Py is a synchronous stream cipher which normally uses a 32 byte key (however,
the key can be of any size from 1 byte to 256 bytes) and a 16 byte initial value or
IV (IV can also be of any size from 1 byte to 64 bytes). Py works in three phases –
a key setup algorithm, an IV setup algorithm and a round function in which two
output-words (each output-word is 4 bytes long) are generated in every round.
The internal state of Py contains two S-boxes Y , P and a variable s. Y contains
260 elements each of which is 32 bits long. The elements of Y are indexed by [-3,
-2,..., 256]. P is a permutation of the elements of {0, ..., 255}. The main feature
of the stream cipher Py is that the S-boxes are updated like ‘rolling arrays’ [1].
The technique of ‘rolling arrays’ means that, in each round of Py, (i) one or two
elements of the S-boxes are updated (line 1 and 7 of Algorithm 1) and (ii) all
the elements of them are cyclically rotated by one position toward left (line 2
and 8 of Algorithm 1). In our analysis, we have assumed that, after the key/IV
setup, Y , P and the variable s are uniformly distributed and independent. Under

2

this assumption we analyzed the round function of Py (or Pseudorandom Bit
Generation Algorithm (PRBG)) which is described in Algorithm 1. See [1] for a
detailed description of the Key/IV setup algorithms.

The inputs to Algorithm 1 are Y [−3, ..., 256], P [0, ..., 255] and s, which are
obtained after the key/IV setup. Lines 1 and 2 describe how P is updated and
rotated. In the update stage, the 0th element of P is swapped with another
element in P , which is accessed indirectly, using Y [185]. The next step involves
a cyclic rotation by one position, of the elements in P . This implies that the
entry in P [0] becomes the entry in P [255] in the next round and the entry in P [i]
becomes the entry in P [i− 1] (∀i ∈ {1, 2, ..., 255}). Lines 3 and 4 of Algorithm 1
indicate how s is updated and its elements rotated. Here, the ‘ROTL32(s, x)’
function implies a cyclic left rotation of s by x bit-positions. The output-words
(each 32-bit) are generated in lines 5 and 6. The last two lines of the algorithm
explain the update and rotation of the elements of Y . The rotation of Y is carried
in the same manner as the rotation of P .

Algorithm 1 Single Round of Py
Require: Y [−3, ..., 256], P [0, ..., 255], a 32-bit variable s
Ensure: 64-bit random output

/*Update and rotate P*/
1: swap (P [0], P [Y [185]&255]);
2: rotate (P);

/* Update s*/
3: s+ = Y [P [72]]− Y [P [239]];
4: s = ROTL32(s, ((P [116] + 18)&31));

/* Output 8 bytes (least significant byte first)*/
5: output ((ROTL32(s, 25)⊕ Y [256]) + Y [P [26]]);
6: output ((s ⊕Y [−1]) + Y [P [208]]);

/* Update and rotate Y */
7: Y [−3] = (ROTL32(s, 14)⊕ Y [−3]) + Y [P [153]];
8: rotate(Y);

3 Notation and Convention

As Py uses different types of internal and external states (e.g. S-box, 32-bit
integer) and they are updated every round, it is important to denote all the
states and rounds in a simple but consistent way for easy understanding of our
analysis. In every round of Py, we have the S-box P and the variable s getting
updated before the output-words are generated in that round (see Algorithm 1).
The other S-box, namely Y , gets updated after the output generation stage.
Hence, in the beginning of any round i, we consider to have Pi−1, si−1 but Yi.
At the end of the round, we have Pi, si and Yi+1. If this convention is followed,

3

we have Pi, si and Yi in the formulas for the generation of the output-words in
round i.

The nth element of arrays Yi and Pi, are denoted by Yi[n] and Pi[n] respec-
tively. The jth bit of Yi[n], Pi[n] and si are denoted by Yi[n](j), Pi[n](j) and
si(j), respectively (following the convention that the least significant bit is the
0th bit). Olm denotes the lth (l ∈ {1, 2}) output-word generated in the mth
round of Py. Olm(j) denotes the jth bit of Olm. For example, O13(5) denotes the
5th bit of the 1st output-word of round 3. The output-word generated in line 5
of Algorithm 1 will be called the ‘1st output-word’. The output-word generated
in line 6 of Algorithm 1 is described as the ‘2nd output-word’.

The ‘+’ operator denotes addition modulo 232 except when it is used to
increment elements of P (particularly in expressions of the form Pi[n] = Pj [m]+
1, where ‘+’ denotes addition over Z). Similarly, the ‘-’ and ‘⊕’ denote subtraction
modulo 232 and bitwise exclusive-or. P [A] denotes the probability of occurrence
of the event A.

4 Motivational Observation

Our main observation is that, if certain conditions on the elements of the S-box
P are satisfied then the least significant bit (lsb) of the 1st output-word at the
1st round is equal to the lsb of the 2nd output-word at the 3rd round.

Theorem 1. O11(0) = O23(0) if the following six conditions on the elements of
the S-box P are simultaneously satisfied.

1. P2[116] ≡ −18(mod 32) (event A),
2. P3[116] ≡ 7(mod 32) (event B),
3. P2[72] = P3[239] + 1 (event C),
4. P2[239] = P3[72] + 1 (event D),
5. P1[26] = 1 (event E),
6. P3[208] = 254 (event F).

Proof. The formulas for the O11, O23, s2 are given below (see Sect. 2).

O11 = (ROTL32(s1, 25)⊕ Y1[256]) + Y1[P1[26]], (1)
O23 = (s3 ⊕ Y3[−1]) + Y3[P3[208]], (2)

s2 = ROTL32(s1 + Y2[P2[72]]− Y2[P2[239]], ((P2[116] + 18) mod 32)). (3)

– Condition 1 (i.e., P2[116] ≡ −18(mod 32)) reduces (3) to

s2 = s1 + Y2[P2[72]]− Y2[P2[239]].

– Condition 2 (i.e., P3[116] ≡ 7(mod 32)) together with Condition 1 implies

s3 = ROTL32((s1 + Y2[P2[72]]− Y2[P2[239]] + Y3[P3[72]]− Y3[P3[239]]), 25).

4

−1 0 1

−1 0 1

−1 0 1 254

A

A

A

B

B

B

 255254 256

254 255 256

 255 256

(a) The S−box Y after Key/IV Set up

(b) Y after the first round

(c) Y after the second round

O11

O23

Fig. 1. (a) P1[26] = 1 (condition 5): A and B are used in O11, (b) Y2 (i.e., Y after 1st

round), (c) P3[208] = 254 (condition 6): A and B are used in O23

– Condition 3 and 4 (that is, P2[72] = P3[239] + 1 and P2[239] = P3[72] + 1)
reduces the previous equation to

s3 = ROTL32(s1, 25). (4)

From (1), (2), (4) we get,

O11 = (ROTL32(s1, 25)⊕ Y1[256]) + Y1[P1[26]], (5)
O23 = (ROTL32(s1, 25)⊕ Y3[−1]) + Y3[P3[208]]. (6)

In Fig. 1, conditions 5 and 6 are described. According to the figure,

A = Y1[P1[26]] = Y3[−1] (7)
B = Y1[256] = Y3[P3[208]]. (8)

Applying (7) and (8) in (5) and (6) we get,

O11(0) ⊕O23(0) = Y1[256](0) ⊕ Y1[P1[26]](0) ⊕ Y3[−1](0) ⊕ Y3[P3[208]](0) = 0.

This completes the proof. ut

5 Bias in the Distribution of the 1st and the 3rd Outputs

In this section, we shall compute P [O11(0) ⊕ O23(0) = 0] using the results of
Sect. 4. We now recall the six events (or conditions) A, B, C, D, E, F as
described in Theorem 1. First, we shall compute P [A∩B ∩C ∩D ∩E ∩F]. We
assume that the key set-up and the IV set-up algorithms of Py are perfect, and
after the execution of them, the distributions of the permutation P , the elements
of Y and the s are uniform and random.

5

Therefore, on a randomly chosen key/IV pair,

P [E] =
1

256
. (9)

Next, we compute P [A ∩ E]. Observe that event E, (i.e., P1[26] = 1) implies
P2[25] = 1 or P2[255] = 1. In each case, P2[116] 6= 1. Therefore,

P [A|E] =
8

255
.

Hence, using Bayes’ rule,

P [A ∩ E] = P [A|E] · P [E] =
8

255
· 1
256

. (10)

Next, we compute P [A ∩B ∩ E] using the following formula,

P [A ∩B ∩ E] = P [B|A ∩ E] · P [A ∩ E].

If P1[26] = 1 then there are two cases: either P2[25] = 1 or P2[255] = 1. The first
case implies P3[24] = 1 or P3[255] = 1 and the second case implies P3[254] = 1
or P3[255] = 1. Therefore, P3[116] 6= 1. Also, P3[116] 6= P2[116]. Hence,

P [B|A ∩ E] =
8

254
.

Therefore,

P [A ∩B ∩ E] =
8

254
· 8
255

· 1
256

. (11)

Next, we compute P [A ∩ B ∩ C ∩ E]. We again note that if P1[26] = 1 then
either P2[25] = 1 or P2[255] = 1. The first case implies P3[24] = 1 or P3[255] = 1
and the second case implies P3[254] = 1 or P3[255] = 1. Proceeding in the same
way, we observe that P2[72] 6= 1 and P3[239] 6= 1. Also by similar arguments,
P3[239] 6= P2[72], P3[239] 6= P2[116] and P3[239] 6= P3[116]. Hence,

P [C|A ∩B ∩ E] =
251

252 · 253
.

Therefore, using (11),

P [A ∩B ∩ C ∩ E] = P [C|A ∩B ∩ E] · P [A ∩B ∩ E]

=
251

252 · 253
· 8
254

· 8
255

· 1
256

. (12)

Similarly, we compute

P [A ∩B ∩ C ∩D ∩ E] =
249

250 · 251
· 251
252 · 253

· 8
254

· 8
255

· 1
256

. (13)

6

Finally, it can be shown that,

P [A ∩B ∩ C ∩D ∩ E ∩ F] =
1

249
· 249
250 · 251

· 251
252 · 253

· 8
254

· 8
255

· 1
256

≈ 2−41.91. (14)

Under the assumption of randomness and uniformity of the distributions of
the S-box elements and the s after the Key/IV set up, if any of the six events –
described in Theorem 1 – does not occur then P [O11(0) ⊕O23(0) = 0] = 1

2 . That
is,

P [O11(0) ⊕O23(0) = 0|(A ∩B ∩ C ∩D ∩ E ∩ F)c] =
1
2
.

We denote the event A ∩ B ∩ C ∩ D ∩ E ∩ F by L and its compliment by Lc.
Therefore,

P [O11(0) ⊕O23(0) = 0] = P [O11(0) ⊕O23(0) = 0|L] · P [L]
+ P [O11(0) ⊕O23(0) = 0|Lc] · P [Lc]

= 1 · 2−41.91 +
1
2
· (1− 2−41.91)

=
1
2
· (1 + 2−41.91). (15)

Note that, if Py had been a secure pseudorandom bit generator then the above
probability would have been exactly 1

2 .

6 The Distinguisher

A distinguisher is an algorithm which distinguishes a stream of bits from a
perfectly random stream of bits, that is, a stream of bits that has been chosen
according to the uniform distribution. There are two ways a cryptanalyst may
try to distinguish between a string, generated by an insecure pseudorandom
bit generator, and one from a perfectly random source. In one case, she selects
only one key randomly and produce keystream, seeded by the chosen key, long
enough to detect a bias. In this scenario the attacker is “weak” as she has a
keystream produced by a single key and therefore, the distinguisher is called
a weak distinguisher. In the other case the adversary may use any number of
randomly chosen keys and the respective keystreams generated by those keys.
In this case the adversary is “strong” because she may collect outputs to her
advantage from many keystreams to detect a bias. Therefore, the distinguisher
so constructed is called a strong distinguisher. A bias present in the output at
time t in a single stream may hardly be detected by a weak distinguisher but a
strong distinguisher can easily discover the anomaly with a few bytes. This fact
was exploited by Mantin and Shamir[3] to detect a strong bias toward zero in
the second output byte of RC4.

7

The distinguishers that we construct in this section and Sect. 7, using the bias
described in Sect. 5, are strong distinguishers. In Sect. 8 we have constructed a
weak distinguisher. Here, essentially what we do is collect many pairs of outputs
(i.e., outputs in the first and the third rounds), each generated by a randomly
chosen key/IV and finally show that distribution of the pair is not uniform on
a randomly chosen key/IV (this fact is already proved in Theorem 1). In the
rest of the section we address the question as to how many randomly key/IV’s
are required to establish the distinguisher. To this end we use a corollary of a
theorem used in [3] (see the paper for the proof).

Corollary 1. If an event e occurs in a distribution X with probability p and
in Y with probability p(1 + q) then, if p = 1

2 , O(1
q2) samples are required to

distinguish X from Y with non-negligible probability of success.

Proof. Let Xe and Ye denote the random variables specifying the number of
occurrences of e in t samples. Then Xe and Ye have binomial distributions with
parameters (t, p) and (t, p(1 + q)) respectively. The expectations of Xe and Ye

are denoted by E[Xe] and E[Ye], their variances by V (Xe) and V (Ye) and their
standard deviations by σ(Xe) and σ(Ye) respectively.

E[Xe] = tp, E[Ye] = tp(1 + q)
V (Xe) = tp(1− p), V (Ye) = tp(1 + q)(1− p(1 + q))

σ(Xe) =
√

V (Xe) =
√

tp(1− p), σ(Ye) =
√

V (Ye) =
√

tp(1 + q)(1− p(1 + q))

Here we determine the size of t that ensures a difference of at least one
standard deviation between the expectations of the two distributions: E[Ye] −
E[Xe] ≥ σ(Xe) =⇒ tp(1 + q) − tp ≥

√
tp(1− p) =⇒ tq

2 ≥
√

t
2 (as p = 1

2)
=⇒ t ≥ 1

q2 . Hence, O(1
q2) samples (the constant increases in tune with the

desired success probability) are enough to establish the distinguishing attack.
This proves the corollary. ut
In our case, X, Y and e are the distribution of (O11, O23) collected from a
perfectly random source, the distribution of these variables from Py and the
event that O11(0)⊕O23(0) = 0. Thus, p = 1

2 and q = 1
241.91 . Therefore, to establish

the distinguisher with non-negligible success probability, the minimum number
of required samples (i.e., the number of key/IV’s) is t = 1

(241.91)2
= 283.82. This

results show that the designers’ claim that distinguishing attacks on Py is not
possible with running time less than the exhaustive search is not true.

7 Biases among other Pairs of Bits and Distinguishers

In Sect. 5, we showed a bias in (O11(0), O23(0)). In this section, we show that the
bias is present in (O11(i), O23(i)) for all i, where 0 ≤ i ≤ 31, however, the amount
of bias is reduced as i increases. From (1) and (2), we get,

O11(i) = ROTL32(s1, 25)(i) ⊕ Y1[256](i) ⊕ Y1[P1[26]](i) ⊕ c1(i),

O23(i) = s3(i) ⊕ Y3[−1](i) ⊕ Y3[P3[208]](i) ⊕ c3(i)

8

where 0 ≤ i ≤ 31 and c1, c3 are the carry terms in (1) and (2) respectively. If all
the 6 conditions of Theorem 1 are satisfied, then O11 and O23 can be written in
the following form (see Theorem 1)

O11 = (S ⊕B) + A, (16)
O23 = (S ⊕A) + B (17)

which implies that

O11(i) ⊕O23(i) = c1(i) ⊕ c3(i).

In this section we give a general expression to compute

P [O11(i) ⊕O23(i) = 0], 0 ≤ i ≤ 31.

Note that

P [O11(i) ⊕O23(i) = 0] = P [O11(i) ⊕O23(i) = 0|L] · P [L]
+ P [O11(i) ⊕O23(i) = 0|Lc] · P [Lc]
= P [c1(i) ⊕ c3(i) = 0|L]︸ ︷︷ ︸

pi

·P [L]

+ P [O11(i) ⊕O23(i) = 0|Lc]︸ ︷︷ ︸
Xi

·P [Lc] (18)

where the event L is A ∩B ∩ C ∩D ∩ E ∩ F and 0 ≤ i ≤ 31.
From (14) we can calculate P [L] and P [Lc]. Now we compute P [c1(i)⊕c3(i) =

0|L] (denoted by pi in (18), similarly pi−1 should be understood) recursively. We
consider the bits of the variables A, B, S in (16) and (17) in Table 1 (note that
these variables are uniformly distributed and independent). From Table 1, using
Bayes’ rule, we obtain the following recursion to compute pi,

pi =
pi−1

2
+

1
4
.

We already know p0 = 1 (i.e., P [O11(0) ⊕ O23(0) = 0|L] = 1). Therefore, using
the above recurrence relation, finally we get,

pi =
1
2

+
1

2i+1
, 0 ≤ i ≤ 31. (19)

As shown in (18), Xi = 1
2 for all i’s except when i = 25 (we omit the details of the

proof).1 It can be shown that X25 is marginally greater than 1
2 . Therefore, (18)

and (19) imply,

P [O11(i) ⊕O23(i) = 0] >
1
2
.

1 The case when (i)P2[72] = P3[72] + 1, (ii)P2[239] = P3[239] + 1 and the conditions
1,2,5,6 of Theorem 1 are satisfied, is responsible for the anomalous behavior at i = 25.

9

Table 1. Truth table for computing pi using pi−1. The last column in each row indicates
the probability of the occurrence of that row

c1(i−1) ⊕ c3(i−1) S(i−1) B(i−1) A(i−1) c1(i) ⊕ c3(i) Probability

0 0 0 0 0
pi−1

8

0 0 0 1 0
pi−1

8

0 0 1 0 0
pi−1

8

0 0 1 1 0
pi−1

8

0 1 0 0 0
pi−1

8

0 1 0 1 1

0 1 1 0 1

0 1 1 1 0
pi−1

8

1 0 0 0 0
1−pi−1

8

1 0 0 1 1

1 0 1 0 1

1 0 1 1 0
1−pi−1

8

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

One can note that pi=0 attains the maximum value 1 (see (19)). In Sect. 5
and 6, we used pi=0 = 1 to construct our distinguisher. The above equations sug-
gest that many distinguishers can be generated using different (O11(i), O23(i))’s
rather than only (O11(0), O23(0)), however, the amount of bias decreases as i in-
creases (i.e., we get the most effective distinguisher when i = 0 as described in
Sect. 6). For example, when i = 1, using p1 = 3

4 from (19),

P [O11(1) ⊕O23(1) = 0] = P [O11(1) ⊕O23(1) = 0|L] · P [L]
+ P [O11(1) ⊕O23(1) = 0|Lc] · P [Lc]
= p1 · P [L] + P [O11(1) ⊕O23(1) = 0|Lc] · P [Lc]

=
3
4
· 2−41.91 +

1
2
· (1− 2−41.91)

=
1
2
· (1 + 2−42.91).

Now, for the above case, i.e., taking the 1st and the 3rd bits of O11 and O23,
using Corollary 1, the minimum number of samples (i.e., the number of key/IV’s)
required to establish a distinguisher is 285.82 (note that in Sect. 6, we considered
0th bits of O11 and O23 and the number of samples was 283.82). Similarly, if we
consider i = 2 then the number of required samples is 287.82.

10

8 Existence of Bias at t and t + 2 rounds and a
Distinguisher

We assert that all the above results are valid if we consider any rounds t and
t + 2 instead of just rounds 1 and 3. In other words, instead of (O11(0), O23(0)),
one can show that the bias exists even in the distribution of (O1,t(i), O2,(t+2)(i)).
Now, we state a theorem which is the generalized version of Theorem 1.

Theorem 2. O1,t(0) = O2,(t+2)(0) if the following six conditions on the elements
of the S-box P are simultaneously satisfied.

1. Pt+1[116] ≡ −18(mod 32),
2. Pt+2[116] ≡ 7(mod 32),
3. Pt+1[72] = Pt+2[239] + 1,
4. Pt+1[239] = Pt+2[72] + 1,
5. Pt[26] = 1,
6. Pt+2[208] = 254.

Using the above theorem and the techniques used before, it is easy to show
(see (15)),

P [O1,t(0) ⊕O2,(t+2)(0) = 0] =
1
2
(1 + 2−41.91).

The fact that the above probability is valid ∀t > 0, allows us to generate a weak
distinguisher with number of rounds 283.82 (see Sect. 6 for a definition of a weak
distinguisher). This means that 283.82 × 23 = 286.82 bytes of a single stream
generated by a randomly chosen key is sufficient to distinguish Py from random.
However, the amount of bytes falls outside the allowable stream length of Py
(which is 264 bytes).

9 Conclusion and Remarks

In this paper, for the first time, several weaknesses on the stream cipher Py
have been presented. We presented a class of distinguishers on the stream cipher
Py, the best of which works with 283.82 random key/IV’s which is better than
the exhaustive search (for the cipher the recommended key length is 256 bits).
We also showed that the output stream of Py of recommended length of 264

bytes, contains biases at different points on it. These results break the cipher
Py academically. However, the time complexity of the best distinguishing attack
mentioned in this paper is far beyond the reach of the fastest machine available.
Therefore, these weaknesses pose no practical threat to the security of the cipher
at this moment. However, the shortened version of Py, known as Py6, may
contain more serious weaknesses than the ones described here, but the complete
description of Py6 is not provided by the designers.

11

10 Acknowledgments

The work has been done when the first author was visiting the research group
COSIC at the Electrical Engineering Department of Katholieke Universiteit Leu-
ven, Belgium.

References

1. E. Biham, J. Seberry, “Py (Roo): A Fast and Secure Stream Cipher using Rolling
Arrays,” ecrypt submission, 2005.

2. Ecrypt, http://www.ecrypt.eu.org.
3. I. Mantin, A. Shamir, “A Practical Attack on Broadcast RC4,” Fast Software

Encryption 2001 (M. Matsui, ed.), vol. 2355 of LNCS, pp. 152-164, Springer-Verlag,
2001.

4. NESSIE: New European Schemes for Signature, Integrity and Encryption
http://www.cryptonessie.org.

12

