
Cascade Jump Controlled Sequence Generator
(CJCSG)

Tor Helleseth1, Cees J.A. Jansen2 and Alexander Kholosha1

1 The Selmer Center
University of Bergen, P.O. Box 7800,

5020 Bergen, Norway
2 Banksys NV

Haachtsesteenweg 1442
1130 Brussels, Belgium

cja@iae.nl; {Tor.Helleseth,Alexander.Kholosha}@ii.uib.no

1 Introduction

Linear feedback shift registers (LFSR) are known to allow fast implementation
and produce sequences with large period and good statistical properties (if the
feedback polynomial is chosen appropriately). But inherent linearity of these
sequences results in susceptibility to algebraic attacks. That is the prime rea-
son why LFSR’s are not used directly for key-stream generation. A well-known
method for increasing the linear complexity preserving at the same time a large
period and good statistical properties, is to apply clock control, i.e. to irregu-
larly step the LFSR through successive states. Key-stream generators based on
regularly clocked LFSR’s are susceptible to basic and fast correlation attacks.
Using irregular clocking reduces the danger from correlation attacks and provides
practical immunity against fast correlation attacks.

Due to the multiple clocking, key stream generators that use clock-controlled
LFSRs have decreased rate of sequence generation since such generators are
usually stepped a few times to produce just one bit of the key stream. The
efficient way to let an LFSR move to a state that is more than one step further
but without having to step though all the intermediate states (so called, jumping)
was suggested in [1]. Further in Section 2 we give a brief description of the this
technique.

The extremely serious weakness found in key stream generators that use
irregular clocking is their vulnerability to timing and power attacks. This was one
of the reasons why the stream ciphers such as SOBER-t16 and SOBER-t32 did
not pass the security evaluation and were not included into the NESSIE portfolio
of strong cryptographic primitives. Using jump controlled LFSRs instead of the
traditional clock-controlled ones allows to build efficient countermeasures against
the side-channel attacks while preserving all the advantages of irregular clocking.

We are planning to make a word-oriented stream cipher based on the ideas
of Jump Control. Theoretical basis for such an arrangement is partly developed
now (see [2]). This will be implemented in a second version of the CJCSG.

1

We state that there are no hidden weaknesses in the key stream
generator that are inserted by the designers. Security of the CJCSG
is not less than the complexity of the exhaustive key search.

People from the Selmer Center who also contributed to this project are Igor
Semaev, Matthew G. Parker and H̊avard Raddum. We want to thank Sondre
Ronjom from the Department of Informatics at the University of Bergen for
making the alternative implementation of the algorithm.

2 Jump Controlled LFSR

The ideas presented in this section are well described in [1, 3, 4, 2] and were
presented at SASC 2004, the Benelux Information Theory Symposium 2005 and
earlier at RECSI 2002 and EIDMA Cryptography Working Group meeting in
February 2003.

Consider an autonomous Linear Finite State Machine (LFSM), not necessar-
ily an LFSR, defined by the transition matrix A of size L over GF(2) with primi-
tive characteristic polynomial f(x) = det(xI+A), where I is the identity matrix.
It is well known that A is similar to the companion matrix of f(x), i.e., there
exists a nonsingular matrix M such that M−1AM = S(f). Let zt (t = 0, 1, 2, . . .)
denote the inner state of the LFSM at stage t. Then zt = z0A

t = z0MS(f)tM−1

and ztM = (z0M)S(f)t. Thus, LFSMs defined by A and S(f) are equivalent.
Take a matrix representation of the elements of the finite field GF(2L). Since

f(S(f)) = 0 and f(x) is primitive, S(f) can play the role of a root of f that is a
primitive element in GF(2L). Then S(f)+I being an element of GF(2L) is equal
to S(f)J for some power J and, thus, AJ = MS(f)JM−1 = MS(f)M−1 + I =
A+I. Note that identity S(f)J = S(f)+I is equivalent to xJ ≡ x+1 (mod f(x))
and, therefore, such a value of J is called the Jump Index of f . It is important to
observe here that changing the transition matrix of the LFSM from A to A + I
results in making J steps through the state space of the original LFSM.

Let f⊥(x) denote the characteristic polynomial of the modified transition
matrix A+I that is equal to f⊥(x) = det(xI+A+I) = f(x+1). The polynomial
f⊥(x) is called the dual of f(x). It is easy to see that f(x) is irreducible if and
only if f⊥(x) is irreducible (however, this equivalence does not hold for being
primitive). It can also be shown (see [3, Theorem 2]) that if the dual polynomial
f⊥ is primitive (the jump index of f⊥, naturally, exists) then the jump index of
f is coprime with λ = 2L − 1 and J⊥ ≡ J−1 (mod λ).

The transition matrix A that defines the LFSM used in the CJCSG has a
very special form, i.e.:




dL 0 0 · · · 0 1
1 dL−1 0 · · · 0 tL−1

0 1 dL−2
. . .

...
...

0 0
. 0

...
...

...
. . . 1 d2 t2

0 0 · · · 0 1 d1 + t1




(1)

2

It is the companion matrix of a polynomial of degree L (L is even) with additional
L/2 ones on the main diagonal. The right-hand column has constants ti, 1 ≤
i ≤ L − 1, representing the feedback taps. The constants di, 1 ≤ i ≤ L, on the
main diagonal represent feedback cells, and here half of the di’s are equal to 0
and the other half are equal to 1. If there is only one feedback tap at position n,
then all ti’s are 0, except for tn. From this transition matrix the characteristic
polynomial can be determined directly:

C(x) = 1 +
L−1∑

i=0

ti

L∏

j=i+1

(dj + x) ,

where t0 = 1 is introduced for simplicity of the formula. Taking the aforemen-
tioned restrictions on the di’s into account, and assuming only tn is non-zero
with k F-cells in the first n cells, one arrives at:

Cn,k(x) = x
L
2 (1 + x)

L
2 + x

L
2 +k−n(1 + x)

L
2 −k + 1 . (2)

The tap of the trinomial and the positions of ones on the main diagonal
are chosen in such a way that the characteristic polynomial is primitive and
is neither self-reciprocal nor self-dual nor dual-reciprocal, i.e., they belong to a
primitive S6 set, that is a set of six primitive polynomials which are each others
reciprocals and duals (for the details see [3]). Jump indices of the polynomials
in S6 set are coprime with the period λ. In particular, this means that the jump
index of the characteristic polynomial satisfies gcd(J − 1, λ) = 1. The latter
property is needed to provide the maximal period, that will be discussed further
in Section 5. Choosing A to be of such a form we guarantee that the same number
of XORs are used irrespective of the jump control signal that defines whether
the LFSM is stepped once or makes a jump.

3 Description of the CJCSG

The CJCSG is the binary one clock pulse cascade clock control sequence gen-
erator with a bit stream output that operates in the Initialization Value (IV)
Accommodation Mode. The key size is 128 bits and the IV length is allowed ar-
bitrary in the range from 64 to 112 bits. The CJCSG consists of eight identical
sections plus the incomplete ninth section that has the Jump Register (JR) only.

Section Keys. The 128-bit key K is split into eight 16-bit section keys that
will be denoted as Ki (i = 1, . . . , 8). The most significant bit (msb) of K is the
msb of K1, and so on, the least significant bit (lsb) of K is the lsb of K8.

Jump Register. The JR implements a Linear Finite State Machine (LFSM)
built on 14 memory cells. As shown in Fig. 1, cells can behave either as simple
delay shift cells (S-cells) or feedback cells (F-cells) depending on the value of
the Jump Control (JC) signal. Due to this mechanism, the diagonal entries in
the transition matrix (1) of the LFSM are inverted, thereby creating the jump
behavior. Both the number of S-cells and the number of F-cells in the JR is

3

equal to 7. This means that for both values of the JC bit there are 7 S-cells and
7 F-cells in the JR. Fig. 2 shows the configuration of cells that corresponds to
the zero value of the JC. When JC is one then all the cells are switched to the
opposite mode. The JR is a feedback shift register with a trinomial characteristic
polynomial having the tap position at cell 6. For these values of n = 6 and k = 2
the characteristic polynomial of the LFSM (see (2)) is primitive with the jump
index 5945.

Key Map. The 9-bit input vectors for the Key Map are composed of the
cells numbered 2, 3, 4, 5, 7, 8, 9, 10, 11 of the Jump Register and are considered
as the numbers (denoted as v) in the range from 0 to 29 − 1 with the bit from
cell 2 being the least significant and from cell 11 the most significant in v. Next,
9 least significant bits of the section key are bitwise XORed to v with the lsb
of v XORed with the lsb of the section key. The sum (considered as a 9-bit
number) is substituted by the 9-to-7 bit S-box which lookup table is provided in
Appendix A. The result (denoted as w) is taken as a 7-bit vector and is bitwise
XORed to the 7 most significant bits of the section key with the msb of w
XORed with the msb of the section key. The resulting 7-bit sum is considered as
a number and is fed into the Boolean function F which lookup table is provided
in Appendix A. The output of F is called the “JC out” bit of the section and
denoted as JCo.

Jump Register Section. A complete jump register section is shown in
Fig. 2. It consists of the Jump Register and the Key Map. The Key Map im-
plements a key-dependent filter function on the state of the JR and contains a
9-to-7 bit S-box and a balanced nonlinear Boolean function of 7 variables. In the
Key Stream Generation mode (see Fig. 3) Jump Control bit (called “JC in” and
denoted JCi) for section 1 is constantly 0. JC in for section i with i ∈ {2, . . . , 9}
is the sum of the JCo and JCi of section i− 1. Section 9 consists of the JR only
and does not have the Key Map. Denote the jump register in section i as JR−i.

Key Stream Generation Mode. Key stream is produces as an XOR sum
of the taps from all 9 registers. The tap is taken from the cell 13 of the jump
registers.

Shift Mode. This mode is used only during the initialization of the CJCSG
(see Fig. 4 and Fig. 2). In this mode the JCo (the Key Map output) of section i
(i = 1, . . . , 8) is added to the feedback of the JR−(i + 1). The tap from cell 1 in
the JR−9 is added to the feedback of the JR−1 and this closes “the big loop”.
Configuration of the jump registers does not change in the Shift Mode, they all
operate as if the JC bit was constantly zero. In a software implementation the
repeated sequence of steps in the Shift Mode is following: save the contents of
the cell 1 in the JR−9; calculate JCo for all the sections from 1 to 8; update the
state of all the sections from 1 to 9.

Initialization of the CJCSG. The CJCSG needs to be initialized before
starting the key stream generation. Firstly, preset the state of the jump register
i (i = 1, . . . , 9) to the value of pi[i] with the lsb of pi[i] coming in cell 1 of the
register. Then run the generator for 128 steps in the Shift Mode. Finally, save

4

the 14-bit state of all 9 jump registers (call it the Initialization Vector) for the
later use in the IV Mode.

IV Mode. Firstly, load all 9 jump registers with the Initialization Vector
that was saved earlier during the initialization phase. IV can have arbitrary
length in the range from 64 to 112 bits. Further, XOR the IV bitwise to the
contents of the jump registers in such a way that 14 most significant bits of the
IV are XORed with the JR−1 (msb of the IV is XORed with the msb of JR−1).
The next 14 bits of the IV are XORed similarly to JR−2 and so on till we run
out of the IV bits. When this happens we proceed cyclically starting again from
the msb of the IV. The runup of the generator consists of 128 steps in the Key
Stream Generation Mode but output bits unused.

After the runup the CJCSG starts generating the key stream in the Key
Stream Generation Mode. Initialization of the CJCSG is done only once for a
given key. Therefore, using the Initialization Vector allows to achieve fast start
of the new IV session and re-synchronization.

4 Implementation

Hardware. The CJCSG is ideally suited for implementation in hardware. It
can be implemented using standard components and has no complex circuits
causing timing bottlenecks. The linear shift register part (Jump Register) uses
14 memory cells, each with an EXOR and switch. Typically, this takes about
170 gates (two-input equivalent). The 9-to-7 S-box in the Key Map is the most
expensive real-estate, followed by the 7-to-1 Boolean function and the 16 EXORs.
Implementation of these components by direct synthesis of the Boolean circuitry
is estimated at 1000 gates. No attempts have been made to optimize the footprint
of these circuits, by any means. For the complete design a total estimate is
obtained of 8 · 1000 + 9 · 170 ≈ 9500 gates. A reduction of the gate-complexity
of the S-box could lower this number substantially.

Software. In a software implementation of the CJCSG we need 512 bytes of
data memory for the S-box lookup table plus the storage for the 7-to-1 Boolean
function that can be reduced just to 16 bytes if the bits are packed into the byte.
In total we can do with about 600 bytes for data plus something for the code.
In a really compact implementation (although, much slower) we can replace the
table lookup for the S-box with the algebraic calculation of the multiplicative
inverse in the finite field. On the other hand, in the fastest implementation we
can make a precalculation for 8 Key Maps (they depend on the key) and save
them for the lookup during the keystream generation. Every Key Map is a 9-to-1
Boolean function and keeping 8 lookup tables will cost 512 bytes of memory. Our
straightforward implementation of the CJCSG using portable C and Microsoft
Visual Studio .NET 2003 compiler (no Key Map precalculation was done) with-
out any code optimization gave the speed of 16 Mbits per second on Pentium
4, 2.8 GHz with 1GB RAM. Optimization of the code will considerably improve
the speed. Moreover, the CJCSG is easy to parallelize, the property that can be
used on some platforms.

5

5 Period and Linear Complexity

The CJCSG consists of N section of the similar type. We will number the sec-
tions from 1 to N starting with the rightmost section that is clocked regularly.
Consider section number i > 1 of the CJCSG. It consists of the LFSR of length L
which clocking is controlled by the binary Jump Control (JC) signal. Zero value
in the JC signal makes the LFSR shift c0 times and one makes it shift c1 times.
Assume that the JC sequence cycles periodically with the period πi = λi−1

where λ = 2L−1 and there are N0
i zeroes and N1

i ones in the period. Obviously,
N0

i + N1
i = λi−1. Denote Si = c0N

0
i + c1N

1
i that is equal to the total number of

shifts the LFSR makes when the JC sequence runs over its full period. Assume
also that the characteristic polynomial of the LFSR is primitive of degree L and
order λ.

Consider the sequence of LFSR states obtained when the clocking is con-
trolled by the JC sequence and denote this sequence of states as u that is fur-
ther called the output. We assume that the initial LFSR state is nonzero which
means that the zero state will never be found in the output sequence. It is known
(see, for instance, [5, Chapter 3] and [6]) that the period of the output sequence
divides πiλ

gcd(Si,λ) and from [7, Lemma 1] it also follows that this period is a mul-

tiple of π′iλ
gcd(Si,λ) where π′i is the product of all prime factors of πi, not necessarily

distinct, which are also factors of λ
gcd(Si,λ) . In particular, if every prime factor of

πi also divides λ
gcd(Si,λ) then the period of u reaches the maximal value πiλ

gcd(Si,λ) .
This will be the case if we provide gcd(Si, λ) = 1.

Now for i > 1 consider the gcd(Si, λ) with

Si = c0N
0
i + c1N

1
i = c0(N0

i + N1
i) + (c1 − c0)N1

i = c0λ
i−1 + (c1 − c0)N1

i .

By the appropriate selection of the jump indices we guarantee that gcd(c1 −
c0, λ) = 1 (in our case one of the ci is 1 and the other is J or J⊥). Then
gcd(Si, λ) = gcd((c1 − c0)N1

i , λ) = gcd(N1
i , λ). Recall that the JC sequence is

obtained as a sum of the Key Map output from the previous section and the
JC signal for the previous section. Exception is the second section where the JC
sequence is just the Key Map output from the first section.

Further we apply induction on i > 1 to prove that gcd(Si, λ) = 1. For i = 2
(the induction base) the JC sequence of the second section is the Key Map output
from the first section that is a filtered m-sequence of period λ. Since the filter
function (the Key Map) is balanced, then N1

2 is either equal to 2L−1 or 2L−1−1
depending on the value the filter function takes on the all-zero input vector. Thus,
gcd(S2, λ) = gcd(N1

2 , λ) = 1. Now assume that gcd(Si, λ) = gcd(N1
i , λ) = 1.

It is easy to see that any uniform πi-decimation of the output sequence u is a
uniform Si-decimation of the original LFSR sequence of states. If gcd(Si, λ) = 1
then the latter decimation has period λ and contains all the nonzero states of the
LFSR. We can write down sequence u row-by-row in a matrix with πi columns
and λ rows that will contain the full period of u. Each column of the matrix
contains all the nonzero states of the LFSR. Let ν denote the number of nonzero

6

states of the LFSR producing a one when fed into the Key Map of section number
i. Since the Key Map is a balanced Boolean function, then ν is either equal to
2L−1 or 2L−1− 1 depending on the value the filter function takes on the all-zero
input vector. We can write down the JC sequence of period πi that controls the
section number i in another matrix of the same size. This matrix will consist of
N1

i columns containing only ones and N0
i = πi − N1

i columns containing only
zeros. Adding the matrices we get the full period of the JC sequence for the next
section with

N1
i+1 = (λ− ν)N1

i + ν(πi −N1
i) = λN1

i + νλi−1 − 2νN1
i

and
gcd(Si+1, λ) = gcd(N1

i+1, λ) = gcd(2νN1
i , λ) = gcd(N1

i , λ) = 1

by the induction hypothesis.
Therefore, provided primitive characteristic polynomials for all the sections

of the CJCSG, section number i generates the output sequence of the maximal
period λi. Note that if just the Key Map output from the previous section was
used to control the clocking then we would have

gcd(Si+1, λ) = gcd(N1
i+1, λ) = gcd(νλi−1, λ) = λ 6= 1

for i > 1.
On the other hand, using [8, Theorem 2] we can evaluate the linear complexity

of the component sequences of the output u. In particular, if the LFSR charac-
teristic polynomial is primitive and gcd(Si, λ) = 1 then any component sequence
taken from the output of the section number i is a linear recurring sequence with
irreducible characteristic polynomial of degree λi−1L giving the maximal linear
complexity. N component sequences taken from the output of each section are
XORed to produce the key stream. Characteristic polynomials of these compo-
nent sequences are irreducible and have different degrees λi−1L for i = 1, . . . , N
which means that they are pairwise coprime. Thus, by [9, Theorem 8.57], the
linear complexity of the key stream sequence is equal to L(1+λ+λ2+. . .+λN−1)
and the period is equal to λN .

Note that every component sequence taken from the output of the section
number i contains λi−1(2L−1 − 1) zeros and λi−12L−1 ones in the period. XOR
of N sequences allows to compensate for this imbalance.

6 Security Analysis of the Cipher

The most important aspect of a cipher security is its resistance to different
attacks. The goal is make any attack at least as difficult as the exhaustive search.
Consider some general attacks on stream ciphers. We always assume the known
plain text scenario when the attacker knows the key stream. No weak keys
have been identified.

Exhaustive Key Search. This is the most efficient attack against the
CJCSG. Searching through the whole key space gives the complexity of 2128.

7

Time-Memory Trade-off. Assume that the attacker knows the state of
the jump registers right before the generator starts producing the key stream.
Then the kind of meet in the middle attack can be launched. The procedure is as
follows. Take all possible 216 keys that define the Key Map of section 8 (denote
it K) and take all 2n binary sequences of length n as the jump control for section
8 (denote this a). For each combination generate the sequence of length n that
is the key stream contribution from section 9 (denote it F (K, a)). Put the vector
(F (K, a), a,K) in a list sorted along (F (K, a),a). The value of n is chosen to
be minimal with the property that the multi-set

{(F (K, a), a) | K ∈ V216 , a ∈ V2n}

consists of different vectors. Then obviously, n ≥ 16 and assuming the random-
ness of the F mapping we can take n = 16.

Run the exhaustive search on the remaining 128− 16 = 112 bits of the key.
Calculate the sum of the key stream contributions from sections 1 to 8, add it to
the key stream (get n bits like that) and also calculate n bits of the jump control
sequence for section 8. If n is taken to be equal 16 then for each choice of the
remaining 112 bits of the key we will find one match in the pre-computed list.
The final elimination of wrong keys is done by generating and matching more
bits in the jump control sequence for section 8 and the key stream contribution
from section 9.

The total computational complexity consists of O(216+n) in pre-computation
plus O(2112) in the main phase. The lowest time complexity of the attack is
achieved if we start with trying 32 bits of the key (take the last 2 sections and
not just one). Then we need O(232+n) bits of memory and the computational
complexity is O(232+n) in pre-computation plus O(296) in the main phase. If n
is equal 32 then the total complexity will have the order of O(296). It can be
concluded that if the internal state of the generator just before it starts producing
the key stream is made secret then security against this type of the attacks is
achieved.

Timing, Power and Side-Channel attacks. Resistance against timing
attacks is inherent of the CJCSG and is achieved due to the use of jump control
instead of the traditional clock control. Power and side-channel attacks are ad-
ditionally countered by the important feature that the same number of XORs
are used in each section of the generator irrespective of the jump control signal.

Fault Analysis Attacks. These attacks are countered due to the nonlinear
functions in conditional jumping, accumulation of JC signals and accumulation
of key stream outputs from individual LFSMs.

Guess and Determine Attacks. We have not found any attack of this
kind on the proposed cipher.

Distinguishing Attacks. The distinguishing attack is assumed to succeed
if the attacker can distinguish the key stream from the purely random sequence.
It is reasonable to assume that the needed key stream length does not exceed
the total number of keys for the generator since the distinguishing attack should
not run longer than the exhaustive key search. The key stream produced by the

8

CJCSG is obtained as a sum of linear recurring sequences and this makes any
statistical weaknesses in the key stream unlikely. The alternative is to look for
the regularities during the initialization phase but we were not able to find any
of this kind.

Another approach would be to consider a set of key stream sequences gen-
erated with the same key but for different IV values trying to find some depen-
dencies between them that can not be found in the set of random independent
sequences. This is also related to differential attack considered next.

Differential Attacks. This type of attacks, that was initially introduced
for block ciphers, can also be applied to stream ciphers (see [10]). For synchro-
nous stream ciphers differential attacks can use the known difference in the IV
value. Usually is assumed that the attacked can choose the IV. The important
precaution against these attacks against CJCSG is limiting the IV length to 112
bits and cyclical filling of the IV into the jump registers. This makes impossible
(by choosing a suitable pair of IVs) to provide that the state, the jump registers
get after loading these IVs, differ just in the last 9th section. Having two key
stream sequences generated from the states that differ only in the 9th register
the attacker can recover the jump control sequence for section 9. We will consider
this attack in more details later in the extended version of this paper.

References

1. Jansen, C.J.: Modern stream cipher design: A new view on multiple clocking
and irreducible polynomials. In González, S., Mart́ınez, C., eds.: Actas de la VII
Reunión Española sobre Criptoloǵıa y Seguridad de la Información. Volume Tomo
I. Servicio de Publicaciones de la Universidad de Oviedo (2002) 11–29

2. Jansen, C.J.: Partitions of polynomials: Stream ciphers based on jumping shift
registers. In: 26th Symposium on Information Theory in the Benelux, Enschede,
Werkgemeenschap voor Informatie- en Communicatietheorie (2005)

3. Jansen, C.J.: Modern streamcipher design: On multiple clocking and irreducible
polynomials (2003)

4. Jansen, C.J.: Streamcipher design: Make your LFSRs jump! In: The State of
the Art of Stream Ciphers, Workshop Record, ECRYPT Network of Excellence in
Cryptology (2004) 94–108

5. Kholosha, A.: Investigations in the Design and Analysis of Key-Stream Generators.
PhD thesis, Technische Universiteit Eindhoven (2003)

6. Kholosha, A.: Clock-controlled shift registers and generalized Geffe key-stream
generator. In Rangan, C.P., Ding, C., eds.: Progress in Cryptology - INDOCRYPT
2001. Volume 2247 of Lecture Notes in Computer Science., Berlin, Springer-Verlag
(2001) 287–296

7. Golić, J.D.: Periods of interleaved and nonuniformly decimated sequences. IEEE
Transactions on Information Theory 44 (1998) 1257–1260

8. Chambers, W.G.: Clock-controlled shift registers in binary sequence generators.
IEE Proceedings - Computers and Digital Techniques 135 (1988) 17–24

9. Lidl, R., Niederreiter, H.: Finite Fields. Volume 20 of Encyclopedia of Mathematics
and its Applications. Addison-Wesley, Amsterdam (1983)

9

10. Muller, F.: Differential attacks and stream ciphers. In: The State of the Art of
Stream Ciphers, Workshop Record, ECRYPT Network of Excellence in Cryptology
(2004) 133–146

A S-Box and Function for the Key Map

S-box is defined by the inversion operation in the multiplicative group of GF(29)
when the the finite field is defined by the primitive polynomial f(x) = x9+x+1.

unsigned char S[512] = {
0,0,0,127,64,85,127,54,96,18,42,57,63,83,91,51,112,17,73,38,21,
103,92,49,95,122,105,113,45,104,25,61,120,107,8,112,100,89,19,39,
74,102,115,41,110,80,88,119,47,62,61,15,52,29,56,88,22,16,52,26,
12,125,94,93,124,75,53,14,4,77,120,84,114,2,44,112,73,9,19,19,
101,121,115,21,57,5,20,115,55,72,104,14,108,63,59,116,87,121,31,
89,94,80,7,91,90,98,14,33,92,84,44,72,75,82,72,82,90,85,13,48,70,
97,62,34,47,24,46,108,126,91,101,76,26,69,71,119,66,30,38,95,60,
97,106,117,57,82,65,78,86,78,56,82,100,111,4,34,73,65,9,51,50,94,
124,87,57,72,10,77,92,54,2,64,74,78,121,48,27,56,100,18,52,98,7,
51,54,84,31,94,93,31,122,12,43,29,60,70,79,5,108,110,111,76,40,
121,3,39,45,68,45,14,113,13,71,117,16,120,46,63,42,1,22,80,100,
76,37,44,105,13,36,2,41,21,109,125,106,71,70,122,88,23,35,84,48,
87,95,12,81,7,87,81,12,30,23,105,54,3,127,1,109,42,114,36,102,39,
77,34,98,79,99,117,123,81,97,86,79,51,83,77,111,33,30,125,48,59,
53,33,58,123,28,22,41,27,96,4,39,19,43,115,103,10,28,16,105,126,
50,114,55,32,66,69,17,41,36,37,96,43,68,66,89,49,25,55,111,11,62,
61,107,67,28,37,36,28,69,95,102,3,46,60,27,17,1,109,96,29,37,112,
103,68,60,40,24,62,13,59,92,11,114,24,9,79,26,29,113,106,3,127,25,
32,27,88,42,5,15,123,47,116,46,40,15,25,61,34,6,83,85,2,78,73,30,
68,35,107,103,45,66,26,118,122,119,67,55,44,38,9,20,102,124,32,65,
101,83,10,86,74,98,5,22,110,7,123,56,75,6,63,35,120,58,90,8,97,
124,81,23,119,31,49,85,58,64,126,11,49,104,118,50,80,38,69,18,4,
86,8,52,90,6,117,18,89,65,76,20,74,10,21,118,93,126,23,53,113,35,
67,99,110,125,116,108,99,11,33,17,8,106,53,24,50,43,20,47,59,6,99,
104,93,67,71,107,16,40,101,70,118,15,58,75,32,116,109,91,64,1,0};

Boolean function F of 7 variables is 2-resilient of degree 4 and nonlinearity 56.

unsigned char F[128] = {
0,1,1,1,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,0,0,0,0,1,0,1,1,1,1,1,0,0,
1,1,0,0,0,1,0,1,1,0,0,0,1,0,0,1,0,0,1,1,1,0,1,1,1,0,1,0,0,1,1,0,
1,0,1,0,1,1,0,0,0,0,1,1,0,0,1,0,0,1,1,0,1,1,1,0,0,1,0,0,0,1,1,1,
0,1,1,0,0,0,0,1,1,0,0,1,1,1,1,1,0,1,0,1,1,0,1,0,1,1,0,1,0,0,0,0};

Initial state of the jump registers.

10

unsigned short pi[9] = {
0x90F, 0x36A8, 0x2216, 0x2308, 0x34C4,
0x3198, 0x28B8, 0x370, 0x1CD1};

11

