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Abstract. Pomaranch is a synchronous bit-oriented stream cipher submitted to eSTREAM, the 
ECRYPT Stream Cipher Project. Following the recently published chosen IV [1] and correlation [7] 
key-recovery attacks, the authors changed the configuration of jump registers and introduced two new 
key-IV setup procedures for the cipher. We call the updated version as Tweaked Pomaranch vs. Origi-
nal Pomaranch [4]. In this paper we use the findings of [7] to mount a chosen IV key-recovery attack 
on the Original Pomaranch with computational complexity of O(273.5). The attack is also applicable to 
the first key-IV setup proposal for Tweaked Pomaranch with computational complexity of O(2117.7). 
The alternative key-IV setup for Tweaked Pomaranch is immune against our attack. Both versions of 
Pomaranch deal with 128 bit keys.  
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1   Introduction 

Pomaranch (also known as a Cascade Jump Controlled Sequence Generator or CJCSG) [4] is a synchro-
nous bit-oriented stream cipher, one of the ECRYPT Stream Cipher Project [2] candidates. It uses 128-bit 
keys and in its original design - which we call Original Pomaranch - accommodates an Initial Value (IV) of 
64 up to 112 bits long. The algorithm uses a one-clock-pulse cascade construction of so called jump regis-
ters [3] being essentially linear finite state machines with a special transition matrix. Moreover, the charac-
teristic polynomial of the transition matrix was made to be primitive and satisfying additional constraints 
that arise from the need to use the register in a cascade jump control setup. The principal advantage of 
jump registers over the classical clock-controlled arrangements is their ability to move a Linear Feedback 
Shift Register (LFSR) to a state that is more than one step ahead but without having to step through all the 
intermediate states. The transition matrix of the jump registers in Pomaranch has been chosen so to secure 
the design against side-channel attacks while preserving all the advantages of irregular clocking. 

Following the recently published chosen IV [1] and correlation [7] key-recovery attacks, the authors 
made some tweaks on the cipher. Firstly, they changed the configuration of jump registers and then intro-
duced two different key-IV setup procedures for the cipher - one mixes the IV and key similarly to Original 
Pomaranch limiting the IV length to 78 bits and the other is totally different from the original version and 
can accommodate IV’s up to 126 bits long [6]. These changes effectively counter the attacks introduced in 
[7, 1]. We call this updated version as Tweaked Pomaranch. 

Paper [7] describes a new inherent property of jump registers that allows constructing their linear 
equivalences. This property was further investigated in [5]. In this paper we use the same idea to mount a 
resynchronization attack (IV attack) on Original Pomaranch and the first key-IV setup of Tweaked Po-
maranch. The second key-IV setup of Tweaked Pomaranch is immune against our attack. In the rest of the 
paper we just consider Tweaked Pomaranch with the first key-IV setup and refer to Tweaked Pomaranch 
for convenience. 

Our results show that the key of both Original and Tweaked Pomaranch can be found when a key is 
used with about 235 chosen IV’s. The required computational complexities are O(273.5) and O(2117.7) for 
Original and Tweaked Pomaranch respectively. There are also many tradeoffs between the number of IV’s 
and the required bit-stream from each IV.  
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2   Outline of Original and Tweaked Pomaranch 

The key-stream generator of Pomaranch is depicted in Figure 1. The cipher consists of nine cascaded JR 
denoted by R1 to R9. Each JR is built on 14 memory cells which behave either as simple delay shift cells or 
feedback cells, depending on the value of JC sequence. At any moment, half of the cells in the registers are 
shift cells, while the other half is feedback cells. The initial configuration of cells is determined by the 
transition matrix A, and is used if the JC value is zero. If JC is one, all cells are switched to the opposite 
mode. This is equivalent to switching the transition matrix to (A + I) [4].  

 
Figure 1. Schematic of the Pomaranch 

The 128-bit key K is divided into eight 16-bit sub keys k1 to k8. At time t, the current states of the regis-
ters tR1  to tR8  are non-linearly filtered, using a function that involves the corresponding sub key ki. These 

functions provide as output eight bits tc1  to tc8 , which are used to produce the jump control bits tJC1  to 
tJC8  controlling the registers R2 to R9 at time t, as following: 

t
i

tt
i ccJC 11 −⊕⊕= L ,      92 ≤≤ i . (1)

The jump control bit JC1 of register R1 is permanently set to zero. The key-stream bit zt produced at time 
t is the XOR of nine bits t

 r1  to t
 r 9  selected at second position of the registers R1 to R9, that is 

ttt rrz 91 ⊕⊕= L . 
The only difference between the key-stream generator of Original and Tweaked Pomaranch is the con-

figuration of the jump registers or equivalently the A matrix. 

Key-IV Setup of Original Pomaranch [4]: During the cipher initialization, the content of registers R1 to 
R9 is first set to non-zero constant 14-bit values derived from π, then the sub keys ki are loaded and the 
registers are run for 128 steps in a special mode (called Shift Mode). The main difference between the 
Key-Stream Generation Mode and the Shift Mode is that, in the latter the output of the filter function of 
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register Ri (denoted by ci) is added to the feedback of register Ri+1, with the tap from cell 1 in the register 
R9 being added to the register R1, making then what can be seen as a “big loop”. Note that the configuration 
of the jump registers does not change in this mode (they all operate as if JCi = 0). This process ensures that 
the states of the registers R1 to R9 after this key loading phase depend upon the entire key K. We denote 
these states by R1(K)  to R9(K). 

Next the IV is loaded into the registers. The IV can have any arbitrary length between 64 and 112 bits. 
First, the IV is expanded by cyclically repeating it until a length of exactly 126 (= 9×14) bits is obtained. 
This new string is then split into nine 14-bit parts, denoted by IV1 to IV9, which are XORed with the 14-bit 
states of registers R1(K) to R9(K) obtained at the end of the key loading. If any of the resulting states con-
sists of 14 null bits, its least significant bit is set to one (this ensures that no state will be made up entirely 
of null bits). The resulting register states R1 to R9 form the nine initial states. The key-stream generation 
mode showed in Figure 1 is now activated, and the run-up consists of 128 steps in which the produced key-
stream bits are discarded. 

Key-IV Setup of Tweaked Pomaranch [6]: Following the recently published chosen IV attack [1], the 
authors introduced two different tweaks in key-IV setup of the cipher. In the first version, the length of IV 
is limited to 78 (= 6×13) bits; all IV's are expanded by cyclically repeating IV-bits until a length of exactly 
117 (= 9×13) bits is obtained. First, the key K is loaded into the registers the same way as in the original 
version. Then for IV loading, the IV-bits are split into groups of 13 bits denoted by IVi , 1≤ i ≤ 9. These 13 
bit IV-values are XORed with the 13 most significant bits of the registers Ri, that is Ri(K), 1 ≤ i ≤ 9. Now 
all registers are checked for the all-zero state and if all-zero the least significant bit of the register is set to 
one.  

The second proposed version for key-IV setup is totally different from the old version and uses IV’s up 
to 126 bits length. Since our attack is just applicable on the first version of the newly proposed key-IV 
setup, we skip the description of this alternative and refer the reader to [6]. Both versions of key-IV setup 
effectively counter the chosen IV attack introduced in [1]. Note a slight difference between what the au-
thors of [1] considered in their paper as the IV loading procedure and what is in Original Pomaranch. 
However, this modification does not affect their attack. 

3   Description of the Attack 

In [7, 5] it has been shown that there are certain linear relations in the output sequence of a Jump Register 
Section which hold with a fixed bias. Define the correlation coefficient of a binary random variable x as ε = 
1 - 2 Pr{x = 1}. In particular, for JR’s of Original Pomaranch the correlation coefficient of the linear rela-
tion 148 ++ ⊕⊕ ttt rrr  is equal to ε = 840/214 provided that the JC sequence is purely random [7]. This 
value was called the Linear Equivalent Bias (LEB) in [5]. In [7] using this bias a correlation based key-
recovery attack mounted on Original Pomaranch which has computational complexity of O(295.4) and re-
quires 271.8 bits of the key-stream generated using a single key and IV pair. In this section we explain how 
to improve this attack using different IV’s.  

3.1   Application to the Original Pomaranch 

Suppose that we are given the first T bits of the Pomaranch key-stream generated from an unknown 
fixed key and l +1 known random IV’s whose first part corresponding to R1 (14 bits in Original Pomaranch 
and 13 bits in Tweaked Pomaranch) are the same. Let denote the IV’s by iIV ( li ≤≤0 ) and the output 
sequence corresponding to iIV by ∞

=0)}({ t
t iz .  

We also denote the output sequence of the nth register by ∞
=0)}({ t

t
n ir when iIV  is used, thus 

)()()( 91 iririz ttt ⊕⊕= L . Let introduce the following sequences: 
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)()()()( 148 iriririe t
n

t
n

t
n

t
n

++ ⊕⊕= , li ≤≤0 , 92 ≤≤ n  (2)

)()()( 910 ieieiu tt
n

t
n ⊕⊕= − L , li ≤≤0 , 81 ≤≤ n  (3)

)()()()( 148 iziziziZ tttt ++ ⊕⊕= , li ≤≤0 . (4)

Using this notation the following relation holds for every li ≤≤0 : 

)()()()()( 8
14

1
8

11 iuiriririZ ttttt ⊕⊕⊕= ++ . (5)

Since the correlation coefficient of the sequence )(iet
n , 92 ≤≤ n , is equal to 142/840=ε , the correla-

tion coefficient of the sequence )(iut
n , 81 ≤≤ n , is equal to εn under the independence assumption of )(iet

n  
sequences, 92 ≤≤ n , for every li ≤≤0 . 

In [7] the equation (5) has been used in a correlation attack to recover the initial sate of R1 using a single 
IV (the assumption of using just one IV has been implicitly used). The required key-stream length and 
computational complexity are 8.728

0 2))1(5.0(/14 ≈ε−= CN  and 8.86
0

14 22 ≈N  respectively (see [7] for 
details).  

The main contribution of this paper is to increase first the correlation coefficient of )(8 iut for a fixed 
value of i, i.e. i = 0 and then apply correlation attack. This method will considerably improve the attack. 
The idea of increasing the correlation coefficient of )0(8

tu is based on trying to estimate it using the follow-
ing group of relations 

)()0()()()()0()0()0()()0( 88
14

1
8

11
14

1
8

11 iuuiririrrrriZZ tttttttttt ⊕⊕⊕⊕⊕⊕⊕=⊕ ++++ . (6)

Since the first part of IV’s ( iIV , li ≤≤0 ) are the same, we have 0)()0( 11 =⊕ irr tt . Therefore, the rela-
tion (6) can be rewritten as 

)()0()( 88 iuui tt ⊕=Δ , li ≤≤1 , (7)

where )()0()( iZZi tt ⊕=Δ  is completely known. 

The ML estimation of )0(8
tu denoted by )0(ˆ8

tu is achieved by comparing ∑
=

Δ
l

i
i

1
)(  with the threshold l/2. 

That is, we decide on 0)0(ˆ8 =tu , if 2/)(
1

li
l

i
<Δ∑

=

 and on 1)0(ˆ8 =tu otherwise. The error probability of this 

estimation is approximately equal to )( 8εlQ , where ∫
∞

−=
x

t dtexQ 2/2

2
1)(
π

. The estimation )0(ˆ8
tu  of  

)0(8
tu  and )0(8

tu  can be related by )0()0(ˆ)0( 888
ttt wuu ⊕=  where )0(8

tw  is the estimation error whose corre-

lation coefficient is equal to )(21 8ε−=ε′ lQ . 
Using this estimation, the relation (5) for i = 0 turns into 

)0()0(ˆ)0()0()0()0( 88
14

1
8

11
tttttt wurrrZ ⊕⊕⊕⊕= ++ . (8)

Now the equation (8) can be used in a correlation attack to recover the initial state of R1 for IV 0. The re-
quired key-stream length and computational complexity are ))1(5.0(/14 ε′−= CT  and T142  respectively 
(see [7] for details). 

Since in the first phase we must estimate )0(8
tu for 10 −≤≤ Tt  using l different IV’s, the required com-

putational complexity of this phase is Tl resulting in a total computational complexity of )2( 14+= lTC for 
initial state recovery of R1. 
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For every value of l between 218 and 264, the minimum amount of the computational complexity is ob-
tained which is equal to C = 273.5. The required key-stream length from each IV is equal to lT /2 5.73= , 
where an attacker can choose the parameter l on his/her fitness.    

After finding the initial state of R1, we can eliminate the portion of )(1 ir t
  from the output sequence of 

Pomaranch for each IV. Define the sequence )(1 iz t  as an XOR of )(iz t  and )(1 ir t
  which is now available. 

Then similarly to (5) we have 

)()()()()( 7
14

2
8

221 iuiriririZ ttttt ⊕⊕⊕= ++ , (9)

where 

)()()()( 14
1

8
111 iziziziZ tttt ++ ⊕⊕= . (10)

The sequence )()()( 14
2

8
22 iririr ttt ++ ⊕⊕ can be generated if we know both the 14-bit initial state of R2 and 

16-bit sub-key k1 (totally 30 bits). In [7] the equation (9) has been used in a correlation attack to recover 
these 30 bits using a single IV. The required key-stream length and computational complexity are 

4.657
0 2))1(5.0(/30 ≈ε−= CN  and 4.95

0
30 22 ≈N  respectively (see [7] for details).  

Again we can increase the correlation coefficient of )(7 iu t for a fixed value of i, i.e. i = 0, and then apply 
correlation attack. The following group of relations 

)()0()()()()0()0()0()()0( 77
14

2
8

22
14

2
8

2211 iuuiririrrrriZZ tttttttttt ⊕⊕⊕⊕⊕⊕⊕=⊕ ++++  (11)

can be used to estimate )0(7
tu similarly to (6). In the first part we assumed that the IV’s iIV  are the same in 

the first part. Here, we must force the IV’s iIV  to be the same in the first two parts. Under this condition 
we have .0)()0( 22 =⊕ irr tt  Therefore we can compute an estimation of  )0(7

tu  denoted by )0(ˆ7
tu  where 

)0()0(ˆ)0( 777
ttt wuu ⊕=  and )0(7

tw  is the estimation error whose correlation coefficient is equal to 

)(21 7ε−=ε ′′ lQ . Using this estimation, the relation (9) for i = 0 turns into 

)0()0(ˆ)0()0()0()0( 77
14

2
8

221
tttttt wurrrZ ⊕⊕⊕⊕= ++ . (12)

Now the equation (12) can be used in a correlation attack to recover the initial state of R2 for IV 0 and 
key segment k1. The required key-stream length and computational complexity are ))1(5.0(/30 ε ′′−= CT  

and T302  respectively (see [7] for details). The total computational complexity of initial state recovery of 
R2 and key segment k1 is equal to )2( 30+= lTC . 

For every value of l between 235 and 255, the minimum amount of the computational complexity is ob-
tained which is equal to C = 266. The required key-stream length from each IV is equal to lT /266= , where 
an attacker can choose the parameter l on his/her fitness. Similarly these parameters can be computed for 
other registers and key parts. These parameters are summarized in Table 1 for the initial state recovery of 
R1 to R5 and key segments k1 to k4.  

Table 1. Different parameters of finding different sections of Original Pomaranch 
Recovered 
Sections 

l T Complexity Number of fixed 
part of IV’s 

R1 218 ≤ l ≤ 264 273.5/l 273.5 1 
R2, k1 235 ≤ l ≤ 255 266/l 266 2 
R3, k2 231 ≤ l ≤ 251 257.5/l 257.5 3 
R4, k3 230 ≤ l ≤ 235 241/l 241 4 
R5, k4 l = 228 25.3 235.8 5 

After finding key parts k1 to k4, the rest part of the key can be found by exhaustive search with computa-
tional complexity O(264). Therefore the total computational complexity of our key-recovery attack is 
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O(273.5),  and the required number of IV’s, the imposed condition on IV’s and the required number of key-
stream bits from each IV are determined by Table 1 which provides many tradeoffs.  

3.2   Application to Tweaked Pomaranch 

Following the recently published key-recovery attack [7], the authors changed the configuration of jump 
registers. The Linear Equivalent Bias (LEB) of new configuration of jump registers is equal to ε = 124/214 
[5] which effectively counters the attack introduced in [7]. For JR’s of Tweaked Pomaranch the LEB value 
is held for the linear relation 141065 ++++ ⊕⊕⊕⊕ ttttt rrrrr . Although the change in configuration count-
ers the attack in [7], the chosen IV attack introduced in section 3.1 is still applicable to the first key-IV 
setup of Tweaked Pomaranch. A similar procedure to what explained in Section 3.1 leads to the following 
numbers.  

Table 2. Different parameters of finding different sections of Tweaked Pomaranch 
Recovered 
Sections 

l T Complexity Number of fixed 
part of IV’s 

R1 228 ≤ l ≤ 278 2117.7/l 2117.7 1 
R2, k1 235 ≤ l ≤ 252 2104.7/l 2104.7 2 

After finding key part k1, the rest part of the key can be found by exhaustive search with computational 
complexity O(2112). Therefore the total computational complexity of our key-recovery attack is O(2117.7),  
and the required number of IV’s, the imposed condition on IV’s and the required number of key-stream  
bits from each IV are determined by Table 2 which provides many tradeoffs. 

5.  Conclusion  

In this paper we presented a chosen IV key-recovery attack on Original Pomaranch. In our attack we used 
the idea of Linear Equivalence Bias which was introduced in [7, 5]. The complexity of our chosen IV at-
tack is O(273.5) on Original Pomaranch which is not less than O(252), the complexity achieved in [1]. How-
ever, our attack is applicable to the first version of proposed key-IV setup of Tweaked Pomaranch with 
computational complexity of O(2117.7) while the attack of [1] is not applicable. The second version of the 
proposed key-IV setup for Tweaked Pomaranch is immune against our attack. 
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