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Abstract. Pomaranch is a synchronous stream 
cipher submitted to eSTREAM, the ECRYPT 
Stream Cipher Project. It uses 128-bit keys and IVs
with different lengths. The cipher is constructed as a 
cascade clock control sequence generator, which is 
based on the notion of jump registers. Each jump 
register can be considered as a non-autonomous 
finite state machine which the input sequence is 
called jump control sequence. In this paper we show 
that a jump register with a balanced identically 
distributed binary jump control sequence can be 
modeled as a non-autonomous linear finite state 
machine with an additive unbalanced input 
sequence. Using this result we mount a correlation 
based key-recovery attack on Pomaranch with 
computational complexity around 295.4 using about 
271.8 bits of the output sequence.

1.  Introduction

Pomaranch1 [5] is one of the ECRYPT Stream Cipher Project [3] candidates. The cipher 
is implemented as a binary one clock pulse cascade clock control sequence generator, and 
uses 128- bit keys and IVs of length between 64 and 112 bits [5]. The construction is 
based on the notion of Jump Registers (JR) first introduced in [4] as alternative to 
traditional clock-controlled registers to prevent timing and power attacks. A JR is an 
LFSR which is able to move to a state that is more than one step ahead without having to 
step through all the intermediate states. The so-called Jump Control (JC) sequence
controls the clocking way of the LFSR. In [2] using a weakness in the initialization 
procedure of Pomaranch, a chosen IV attack has been mount on it which recovers the 
128- bit secret key using about 265 computations. The improved version of the attack is 
also applicable with complexity 252 [2]. In this paper we show that a JR with a balanced 
identically distributed binary JC sequence can be modeled as a non-autonomous linear 
Finite State Machine (FSM) with an additive unbalanced input sequence. This shows that

1 The cipher is also referred in the specification document [JHK05] as Cascade Jump Controlled Sequence 
Generator (CJCSG).



a chi-square test could be applied to distinguish the output sequence of a single JR with 
balanced identically distributed binary JC sequence. Using this result we mount a key-
recovery attack on Pomaranch with computational complexity around 295.4 using about 
271.8 bits of the output sequence. This is the first attack on the keystream generator of 
Pomaranch.

2. Description of the Keystream Generator of the Pomaranch

The keystream generator of Pomaranch is depicted in Figure 1. The cipher consists of 
nine cascaded JR denoted by R1 to R9. Each JR is built on 14 memory cells which behave 
either as simple delay shift cells or feedback cells, depending on the value of JC 
sequence. At any moment, half of the cells in the registers are shift cells, while the other 
half are feedback cells. The initial configuration of cells is determined by the transition 
matrix A, and is used if the JC value is zero. If JC is one, all cells are switched to the 
opposite mode. This is equivalent to switching the transition matrix to (A + I) [5].  

Figure 1. Schematic of the Pomaranch (adopted from [2])

The 128-bit key K is divided into eight 16-bit sub keys k1 to k8. At time t, the current 
states of the registers tR1 to tR8 are non-linearly filtered, using a function that involves the 
corresponding sub key ki. These functions provide as output eight bits tc1  to tc8 , which are 
used to produce the jump control bits tJC1 to tJC8 controlling the registers R2 to R9 at 
time t, as following:
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for 92 ≤≤ i .
The jump control bit JC1 of register R1 is permanently set to zero. The key stream bit zt

produced at time t is the XOR of nine bits tr1 to tr 9 selected at second position of the 
registers R1 to R9.

3.  Description of the Attack

In this section we first derive a non- autonomous FSM model with unbalanced additive 
input for Jump Registers. Then we use this model to mount a key recovery attack on 
Pomaranch with time complexity much less than exhaustive key search.

3.1. The Non-Autonomous FSM Model With Unbalanced Additive Input for JR’s

Consider a JR built on M bits of memory with transition matrix A. Let denote the JC and 
output sequence by ∞

=1}{ t
tJC and ∞

=1}{ t
tr  respectively. If we denote the state sequence of 

the register by the sequence ∞
=0}{ t

tR  of M-bit column vectors, the act of JR can be 
described by the following non-autonomous FSM
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for 1≥t , where B is an M-bit row vector determined by the position of the register where 
the output is produced.
Since the state of the JR is linearly updated, each bit of the JR output sequence is a linear 
combination of the initial M-bit state of the JR. Therefore each M + 1 bits of the output 
sequence are linearly dependent where the linear dependence is determined by some bits 
of the JC sequence. Let concentrate on M + 1 consecutive bits tr , 1+tr , … and Mtr + . In 
this case, for each 2M possible values of tJC , 1+tJC , … and 1−+MtJC , there is a non-zero 
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Ideally, the uniform distribution of all 2M vectors w among all 2M+1 possible values for 
them is desired3. Suppose that a vector w* appears F times among all 2M vectors. 
Assuming that ∞
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tJC  is a balanced identically distributed binary sequence, it turns out

that the sequence ∑
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* is an unbalanced binary sequence with correlation

coefficient4 (or bias) MF 2/=ε . This could be proved as follows. Let H denote the event 
that the corresponding w of a purely random 1
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ktJC  is equal to *w . The complement 
event of H is denoted by H . Clearly MFH 2/)Pr{ =  and 0)|1Pr{ == Het . The 

2 We conjecture that this vector is unique and w0 = wM = 1. 
3 If the conjecture w0 = wM = 1is true 2M+1 should be changed to 2M-1 (see footnote 2).
4 The correlation coefficient of the random variable x is defined as ε = 1 – 2Pr{x = 1}. 



probability )|1Pr{ Het =  can be considered equal to one half because in this case 
*ww ≠  and in half percent of the times et is equal to one. Therefore,
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which is what we were going to prove.
Having a large bias makes a JR unsuitable. The distribution of vectors w in general must 
be more investigated. 
Now let go on with Pomaranch. The transition matrix A and vector B of JR’s of 
Pomaranch are given in the following.
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In this case, we have computed and tabulated all the vectors w for all 214 possible values 
of tJC , 1+tJC , … and 13+tJC . We realized that only 334 different vectors of w have non-
zero frequency of appearance which differs from 2 to 840. The maximum frequency of 
appearance, that is 840, belongs to these two vectors.

1]00000100000001[* =w (7) 

1]10000100000001[** =w (8) 

Let just consider the vector w*. Assuming that the JC sequences of JR R2 to R9 are i.i.d., it 
follows that the sequences 148 ++ ++= t
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i rrre , 92 ≤≤ i , are unbalanced with 

correlation coefficient ε = 840/214. This was verified by computer simulation.

3.2. Recovery of the Initial State of the Registers and the Secret Key

Let first introduce the following sequence for 81 ≤≤ i . 
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Using this notation the output sequence of the Pomaranch satisfies the following relation
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Under the independence assumption of t
ie sequences, 92 ≤≤ i , the correlation 

coefficient of the sequences t
iu  is equal to ii )2/840( 14=ε  for 81 ≤≤ i .

The equation (10) can be used in a correlation attack for finding the correct initial state of 
R1. The aim of correlation attack, first introduced by Siegenthaler [6], is to find the initial 
state of a binary LFSR of length L, given the noisy output sequence of a BMSC5 when 
the output sequence of the LFSR is applied to the input of this channel. As the first N bits 
of the output sequence of an LFSR is a codeword of the corresponding truncated cyclic 
linear code of given LFSR, the problem is essentially a decoding problem. Siegenthaler 
solves this problem using ML6 decoding and computes the minimum required output 
length of the given noisy sequence, denoted by N0, for successfully finding the initial 
state of the LFSR by considering a Hypotheses Testing problem. However, it is easier to 
express, N0, using the capacity of the corresponding channel [1]. The ML decoding is 
performed by searching over all 2L possible initial states for the LFSR and choosing one 
that its corresponding output sequence has the least (most) hamming distance from the 
given noisy sequence if the channel error probability is less (more) than one half.
However, the correlation attack is not limited to LFSR’s and can be applied to any 
generator with M different equally probable initial states provided that the output 
sequences of different initial states have good statistical properties. The channel capacity 
argument shows that the minimum required output length of the given noisy sequence of 
the generator is determined by 

)()(log20 pCMN = (11)

where p is the error probability and C(p) is the Channel Capacity7 of  the corresponding 
BMSC. Since the ML decoding is performed by exhaustive search over all possible initial
states, the required computational complexity is O(MN0). 
The aforementioned discussion on correlation attack shows that the initial state of R1 of 
Pomaranch can successfully be found using 8.728

0 2))1(5.0(/14 ≈−= εCN bits of the 
output sequence with computational complexity 8.86

0
14 22 ≈N . Note that 

)2ln2/())1(5.0( 2εε ≈−C  when 1<<ε .

After finding the initial state of the R1, we can eliminate the portion of tr1  from the output 
sequence of Pomaranch. Let define the sequence tz1  as the XOR of tz  and tr1  which is 
now available. Then similar to (10) we have
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5 Binary Memoryless Symmetric Channel 
6 Maximum Likelihood
7 C(p) = 1 – plog2(p) – (1-p)log2(1-p)



Since tr2  depends on both the 14-bit initial state of R2 and 16-bit sub-key k1, it can be 
considered as output of a generator with 230 possible output sequences. Similarly, (12) 
can be used in a correlation attack to find the correct value of initial state of R2 and sub-
key k1. Since the correlation coefficient of tu7  is 7ε , the required output length and 
computational complexity are 4.657

0 2))1(5.0(/30 ≈−= εCN  and 4.95
0

30 22 ≈N
respectively. The initial state of the other registers and other sub-keys can be found 
similarly with much lower computational complexity.
In this attack we have only used the vector w* introduced in (7). Using both w* and w**, 
relations (7) and (8), halves the required output length. To summarize the results, we 
showed that the secret key of Pomaranch can be found using 271.8 bits of the output 
sequence with computational complexity 295.4.

4.  Conclusion and Open Problem

In this paper we showed that an M-bit JR with a balanced identically distributed binary 
JC sequence can be modeled as a non-autonomous linear Finite State Machine (FSM)
with an additive unbalanced input sequence. In order to find the best model, that is one 
whose unbalanced input sequence has the largest correlation coefficient, we made 
exhaustive search over all 2M possible M consecutive bits of the JC sequence which has 
computational complexity )2( 3 MMO . Since the JR’s of Pomaranch are very short, M = 
14, we could easily derive the model. Now, the open problem is the existence of any 
reduced complexity procedure. If there is any, it would be a new distinguisher for 
traditional clock-controlled LFSR’s.
Using this model we applied a correlation based key-recovery attack on Pomaranch using 
271.8 bits of the output sequence with computational complexity 295.4.
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