
A New 128-bit Key Stream Cipher LEX

Alex Biryukov

Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC,
Kasteelpark Arenberg 10, B–3001 Heverlee, Belgium
http://www.esat.kuleuven.ac.be/~abiryuko/

Abstract. A proposal for a simple AES-based stream cipher which is
at least 2.5 times faster than AES both in software and in hardware.

1 Introduction

In this paper we suggest a simple notion of a leak extraction from a block cipher.
The idea is to extract parts of the internal state at certain rounds and give them
as the output key stream (possibly after passing an additional filter function).
This idea applies to any block cipher but a careful study by cryptanalyst is
required in each particular case in order to decide which parts of the internal
state may be given as output and at what frequency. This mainly depends on
the strength of the cipher’s round function and on the strength of the cipher’s
key-schedule. For example, ciphers with good diffusion might allow to output
larger parts of the internal state at each round than ciphers with weak diffusion.

2 Description of LEX

In this section we describe a 128-bit key stream cipher LEX (which stands for
Leak EXtraction, and is pronounced “leks”). The design is simple and is using
AES in a natural way: at each AES round output certain four bytes from the
intermediate variable. The AES with all three different key lengths (128, 192,
256) can be used. The difference with AES is that the attacker never sees the full
128-bit ciphertext but only portions of the intermediate state. Similar principle
can be applied to any other block-cipher.

In Fig. 1 we show how the cipher is initialized and chained. First a standard
AES key-schedule for some secret 128-bit key K is performed. Then a given
128-bit IV is encrypted by a single AES invocation: S = AESK(IV). The 128-
bit result S together with the secret key K constitute a 256-bit secret state of
the stream cipher.1 S is changed by a round function of AES every round and
K is kept unchanged (or in a more secure variant is changing every 500 AES
encryptions).

The most crucial part of this design is the exact locations of the four bytes
of the internal state that are given as output as well as the frequency of outputs

1 In fact the K part is expanded by the key-schedule into ten 128-bit subkeys.

IV AES

K K K

AES AES AES
128−bit

128−bit

K

Output stream

320−bit 320−bit 320−bit

128−bit 128−bit 128−bit

Fig. 1. Initialization and stream generation.

(every round, every second round, etc.). So far we suggest to use the bytes
b0,0, b2,0, b0,2, b2,2 at every odd round and the bytes b0,1, b2,1, b0,3, b2,3 at every
even round. We note that the order of bytes is not relevant for security but
is relevant for fast software implementation. The order of bytes as given above
allows to extract a 32-bit value from two 32-bit row variables t0, t2 in just four
steps (that can be pipelined):

out32 = ((t0&0xFF00FF) << 8) ⊕ (t2&0xFF00FF),

while each round of AES uses about 40 steps. Here ti is a row of four bytes:
ti = (bi,0, bi,1, bi,2, bi,3). So far we do not propose to use any filter function and
output the bytes as they are. The choice of the output byte locations (see also

b
0,0

b
1,0

b

b b b b

bbb

b

b b b
0,1 0,2 0,3

1,1
b

0,0
b

1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

b
0,0

b
1,0

b b b b

bb

b

b b
0,1 0,3

1,1
b

0,0
b

1,3

2,1 2,3

3,0 3,1 3,2 3,3

b
1,0

b

b b b b

bbb

b

b b b
0,1 0,2 0,3

1,1
b

0,0
b

1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

0,0 0,2

b
2,0

b
2,2

bb

Odd rounds Even rounds

Fig. 2. The positions of the leak in the even and in the odd rounds.

Fig. 2) is motivated by the following: both sets constitute an invariant subset of

the ShiftRows operation (the first row is not shifted and the third is rotated by
two bytes). By alternating the two subsets in even and odd rounds we ensure
that the attacker does not see input and output bytes that are related by a
single SubBytes and a single MixColumn. This choice ensures that the attacker
will have to analyze two consecutive rounds. The two rounds of AES have full
diffusion thus limiting divide-and-conquer capabilities of the attacker.

The speed of this cipher is exactly 2.5 times faster than AES up to a cost of
extraction of four bytes at each round.

3 Analysis of LEX

In this section we analyze resistance of LEX to various attacks.

3.1 Period of the Output Sequence

The way we use AES is essentially an Output Feedback Mode (OFB), in which
instead of using the ciphertexts as a key-stream we use the leaks from the inter-
mediate rounds as a key-stream. The output stream will eventually cycle when
we traverse the full cycle of the AES-generated permutation. If one assumes
that AES is indistinguishable from a random permutation for any fixed key, one
would expect the cycle size to be of the order O(2128) since the probability of
falling into one of the short cycles is negligible2.

If the output stream is produced by following a cycle of a random permutation
it is easily distinguished from random after observing absence of 128-bit collisions
in a stream of 264 outputs. In our case since we output only part of the state at
each round, the mapping from internal state to the output is not 1-1 and thus
such collisions would occur.

3.2 Tradeoff Attacks

For a stream cipher to be secure against time-memory and time-memory-data
tradeoff attacks [1, 5, 2] the following conditions are necessary: |K| = |IV | =
|State|/2. This ensures that the best tradeoff attack has complexity roughly
the same as the exhaustive key-search. The IV’s may be public, but it is very
important that full-entropy IV’s are used to avoid tradeoff-resynchronization at-
tacks [6]. In the case of LEX |K| = |IV | = |Block| = 128 bits, where Block
denotes an intermediate state of the plaintext block during the encryption. In-
ternal state is the pair (IV, K) at the start and (Block, Key) during the stream
generation, and thus |K|+ |IV | = |K|+ |S| = 256 bits which is enough to avoid
the tradeoff attacks. Note that if one uses LEX construction with larger key
variants of AES this might be a problem. For example for 192-bit key AES the
state would consist of 128-bit internal variable and the 192-bit key. This would

2 A random permutation over n-bit integers typically consists of only about n cycles,
the largest of them spanning about 62% of the space.

allow to apply a time-memory-data tradeoff attack with roughly 2160 stream,
memory and time. Such attack is absolutely impractical but may be viewed as
a certificational weakness.

3.3 Algebraic Attacks

Algebraic attacks on stream ciphers [4] are a recent and a very powerful type
of attack. Applicability of these to LEX is to be carefully investigated. If one
could write a non-linear equation in terms of the outputs and the key – that
could lead to an attack. Re-keying every 500 AES encryptions may help to avoid
such attacks by limiting the number of samples the attacker might obtain while
targeting a specific subkey. We expect that after the re-keying the system of non-
linear equations collected by the attacker would become obsolete. Shifting from
AES key-schedule to a more robust one might be another precaution against
these attacks. Note also that unlike in LFSR-based stream ciphers we expect
that there do not exist simple relations that connect internal variables at dis-
tances of 10 or more steps. Such relations if they would exist would be useful in
cryptanalysis of AES itself.

3.4 Differential, Linear or Multiset Resynchronization Attacks

If mixing of IV and the key is weak the cipher might be prone to chosen or known
IV attacks similar to the chosen plaintext attacks on the block-ciphers. However
in our case this mixing is performed via a single AES encryption. Since AES
is designed to withstand such differential, linear or multiset attacks we believe
that such attacks pose no problem for our scheme either. Slide-resynchronization
attacks [3] should also not be a problem due to different round constants in the
key-schedule which break the self-similarity of the AES.

3.5 Potential Weakness – AES Key-schedule

There is a simple way to overcome weaknesses in AES key-schedule (which is
almost linear) and which might be crucial for our construction. The idea might
be to use ten consecutive encryptions of the IV as subkeys, prior to starting
the encryption. This method will however loose in key agility, since key-schedule
time will be 11 AES encryptions instead of one. If better key-agility is required
a faster dedicated key-schedule may be designed.

If bulk encryption is required then it might be advisable to replace static
key by slowly time-varying key. One possibility would be to perform additional
10 AES encryptions every 500 AES encryptions and to use the 10 results as
subkeys. This method quite efficient in software might not be suitable for small
hardware (Profile 2) due to the requirement to store 1280 bits (160 bytes) of
the subkeys. The overhead of such key-change is only 2% slowdown, while it
might stop potential attacks which require more than 500 samples gathered for
a specific subkey. This method quite efficient in software might not be suitable for

small hardware (Profile 2) due to the requirement to store 1280 bits (160 bytes)
of the subkeys. An alternative more gate-efficient solution would be to perform
single AES encryption every 100 steps without revealing the intermediate values
and use the result as a new 128-bit key. Then use the keyschedule of AES to
generate the subkeys. Note, that previously by iterating AES with the same key
we explored a single cycle of AES, which was likely to be of length O(2128) due
to the cipher being a permutation of 2128 values. However by doing intermediate
key-changes we are now in a random mapping scenario. Since state size of our
random mapping is 256 bits (key + internal state), one would expect to get into
a “short cycle” in about O(2128) steps, which is the same as in the previous case
and poses no security problem.

3.6 No Weak Keys

Since there are no weak keys known for the underlying AES cipher we believe that
weak keys pose no problem for this design either. This is especially important
since we suggest frequent rekeying to make the design more robust against other
cryptanalytic attacks.

3.7 Dedicated Attacks

An obvious line of attack would be to concentrate on every 10th round, since it
reuses the same subkey, and thus if the attacker guesses parts of this subkey he
still can reuse this information 10t, t = 1, 2, . . . rounds later. Note however that
unlike in LFSR or LFSM based stream ciphers the other parts of the intermediate
state have hopelessly changed in a complex non-linear manner and any guesses
spent for those are wasted (unless there is some weakness in a full 10-round
AES).

4 Implementation

We believe that LEX would be able to run about 2.5 times faster than AES in
both hardware and software. Since LEX could reuse existing AES implemen-
tations it might provide a simple and cheap speedup option in addition to the
already existing base AES encryption. For example, if one uses a fast software
AES implementation which runs at 14-15 clocks per byte we may expect LEX
to be running at about 5-6 clocks per byte. The same leak extraction principle
naturally applies to 192 and 256-bit AES resulting in LEX-192 and LEX-256.
LEX-192 should be 3 times faster than AES-192, and LEX-256 is 3.5 times faster
than AES-256. Note that unlike in AES the speed penalty for using larger key
versions is much smaller in LEX (a slight slowdown for a longer keyschedule, i.e.
resynchronization but not for the stream generation).

5 Strong Points of the Design

Here we list some benefits of using this design:

– AES hardware/software implementations can be reused with few simple
modifications. The implementors may use all their favorite AES implemen-
tation tricks.

– The cipher is at least 2.5 times faster than AES. In order to get an idea of
the speed of LEX divide performance figures of AES by a factor 2.5. The
speed of key and IV setup is equal to the speed of AES keyschedule followed
by a single AES encryption. In hardware the area and gate count figures are
essentially those of the AES.

– Unlike in the AES the key-setup for encryption and decryption in LEX are
the same.

– The cipher may be used as a speedup alternative to the existing AES imple-
mentation and with only minor changes to the existing software or hardware.

– Security analysis benefits from existing literature on AES.

– The speed/cost ratio of the design is even better than for the AES and
thus it makes this design attractive for both fast software and fast hardware
implementations (Profile 1). The design will also perform reasonably well in
restricted resource environments (Profile 2).

– Since this design comes with explicit specification of IV size and resynchro-
nization mechanism it is secure against time-memory-data tradeoff attacks.
This is not the case for the AES in ECB mode or for the AES with IV’s
shorter than 128-bits.

– Side-channel attack countermeasures developed for the AES will be useful
for this design as well.

6 Summary

In this paper we have described efficient extensions of AES into the world of
stream ciphers. We expect that (if no serious weaknesses of this approach would
be found) it may provide a very useful speed up option to the existing base
implementations of AES. We hope that there are no attacks on this design faster
than O(2128) steps. The design is rather bold and of course requires further study.
However so far there are no weaknesses known to the designers as well as there
are no hidden weaknesses inserted by the designers.

7 Acknowledgement

This paper is a result of several inspiring discussions with Adi Shamir. We would
also like to thank Christophe De Cannière, Joseph Lano, Ingrid Verbauwhede
and other cosix for the exchange of views on the stream cipher design.

References

[1] S. Babbage, “Improved “exhaustive search” attacks on stream ciphers,” in ECOS
95 (European Convention on Security and Detection), no. 408 in IEE Conference
Publication, May 1995.

[2] A. Biryukov and A. Shamir, “Cryptanalytic time/memory/data tradeoffs for
stream ciphers,” in Proceedings of Asiacrypt’00 (T. Okamoto, ed.), no. 1976 in
Lecture Notes in Computer Science, pp. 1–13, Springer-Verlag, 2000.

[3] A. Biryukov and D. Wagner, “Slide attacks,” in Proceedings of Fast Software En-
cryption – FSE’99 (L. R. Knudsen, ed.), no. 1636 in Lecture Notes in Computer
Science, pp. 245–259, Springer-Verlag, 1999.

[4] N. T. Courtois and W. Meier, “Algebraic attacks on stream ciphers with linear feed-
back,” in Advances in Cryptology – EUROCRYPT 2003 (E. Biham, ed.), Lecture
Notes in Computer Science, pp. 345–359, Springer-Verlag, 2003.

[5] J. D. Golic, “Cryptanalysis of alleged A5 stream cipher,” in Advances in Cryptol-
ogy – EUROCRYPT’97 (W. Fumy, ed.), vol. 1233 of Lecture Notes in Computer
Science, pp. 239–255, Springer-Verlag, 1997.

[6] J. Hong and P. Sarkar, “Rediscovery of time memory tradeoffs,” 2005. http:

//eprint.iacr.org/2005/090.

