
Stream Cipher HC-256 ?

Hongjun Wu

Institute for Infocomm Research, Singapore
hongjun@i2r.a-star.edu.sg

Abstract. HC-256 is a software-efficient stream cipher. It generates
keystream from a 256-bit secret key and a 256-bit initialization vector.
The encryption speed of the C implementation of HC-256 is about 1.9
bits per clock cycle (4.2 cycles/byte) on the Intel Pentium 4 processor.

1 Introduction

Stream cipher HC-256 is presented in this paper. HC-256 is a simple, secure,
software-efficient cipher and it is freely-available.

HC-256 consists of two secret tables, each one with 1024 32-bit elements. At
each step we update one element of a table with non-linear feedback function.
Every 2048 steps all the elements of the two tables are updated. At each step,
HC-256 generates one 32-bit output using the 32-bit-to-32-bit mapping similar
to that being used in Blowfish [24]. Then the linear masking is applied before
the output is generated.

HC-256 is suitable for the modern (and future) superscalar microprocessors.
The dependency between operations in HC-256 is greatly reduced: three consec-
utive steps can be computed in parallel; at each step, the feedback and output
functions can be computed in parallel; and in the output function, three additions
are used to combine the four table lookup outputs instead of the addition-xor-
addition being used in Blowfish (similar idea has been suggested by Schneier and
Whiting to use three xors to combine those four terms [25]). The high degree
of parallelism allows HC-256 to run efficiently on the modern processor. We im-
plemented HC-256 in C and tested its performance on the Pentium 4 processor.
The encryption speed of HC-256 reaches 1.93 bit/cycle.

HC-256 is very secure. Our analysis shows that recovering the key of HC-
256 is as difficult as exhaustive key search. To distinguish the keystream from
random, we expect that more than 2128 keystream bits are required (our current
analysis shows that about 2256 outputs are needed in the distinguishing attack).

This paper is organized as follows. We introduce HC-256 and the design
rationale in Section 2. The security analysis of HC-256 is given in Section 3 and
Section 4. Section 5 discusses the implementation and performance of HC-256.
Section 6 concludes this paper.

? The specification of HC-256 given in this paper is identical to that given in the Fast
Software Encryption 2004 proceedings [30].

2 Cipher Specification and Design Rationale

In this section, we describe the stream cipher HC-256. From a 256-bit key and a
256-bit initialization vector, it generates keystream with length up to 2128 bits.

2.1 Operations, variables and functions

The following operations are used in HC-256:

+ : x + y means x + y mod 232, where 0 ≤ x < 232 and 0 ≤ y < 232

¯ : x ¯ y means x− y mod 1024
⊕ : bit-wise exclusive OR
|| : concatenation
>> : right shift operator. x >> n means x being right shifted n bits.
<< : left shift operator. x << n means x being left shifted n bits.
>>> : right rotation operator. x >>> n means ((x >> n)⊕(x << (32−n))

where 0 ≤ n < 32, 0 ≤ x < 232.

Two tables P and Q are used in HC-256. The key and the initialization vector of
HC-256 are denoted as K and IV . We denote the keystream being generated as s.

P : a table with 1024 32-bit elements. Each element is denoted as P [i]
with 0 ≤ i ≤ 1023.

Q : a table with 1024 32-bit elements. Each element is denoted as Q[i]
with 0 ≤ i ≤ 1023.

K : the 256-bit key of HC-256.
IV : the 256-bit initialization vector of HC-256.
s : the keystream being generated from HC-256. The 32-bit output

of the ith step is denoted as si. Then s = s0||s1||s2|| · · ·
There are six functions being used in HC-256. f1(x) and f2(x) are the same as
the σ

{256}
0 (x) and σ

{256}
1 (x) being used in the message schedule of SHA-256 [21].

For g1(x) and h1(x), the table Q is used as S-box. For g2(x) and h2(x), the table
P is used as S-box.

f1(x) = (x >>> 7)⊕ (x >>> 18)⊕ (x >> 3)
f2(x) = (x >>> 17)⊕ (x >>> 19)⊕ (x >> 10)

g1(x, y) = ((x >>> 10)⊕ (y >>> 23)) + Q[(x⊕ y) mod 1024]
g2(x, y) = ((x >>> 10)⊕ (y >>> 23)) + P [(x⊕ y) mod 1024]

h1(x) = Q[x0] + Q[256 + x1] + Q[512 + x2] + Q[768 + x3]
h2(x) = P [x0] + P [256 + x1] + P [512 + x2] + P [768 + x3]

where x = x3||x2||x1||x0, x is a 32-bit word, x0, x1, x2 and x3 are four bytes.
x3 and x0 denote the most significant byte and the least significant byte of x,
respectively.

2

2.2 Initialization process (key and IV setup)

The initialization process of HC-256 consists of expanding the key and initializa-
tion vector into P and Q (similar to the message setup in SHA-256) and running
the cipher 4096 steps without generating output.

1. Let K = K0||K1|| · · · ||K7 and IV = IV0||IV1|| · · · ||IV7, where each Ki and
IVi denotes a 32-bit number. The key and IV are expanded into an array
Wi (0 ≤ i ≤ 2559) as:

Wi =

Ki 0 ≤ i ≤ 7
IVi−8 8 ≤ i ≤ 15
f2(Wi−2) + Wi−7 + f1(Wi−15) + Wi−16 + i 16 ≤ i ≤ 2559

2. Update the tables P and Q with the array W .

P [i] = Wi+512 for 0 ≤ i ≤ 1023
Q[i] = Wi+1536 for 0 ≤ i ≤ 1023

3. Run the cipher (the keystream generation algorithm in Subsection 2.3) 4096
steps without generating output.

The initialization process completes and the cipher is ready to generate keystream.

2.3 The keystream generation algorithm

At each step, one element of a table is updated and one 32-bit output is gen-
erated. An S-box is used to generate only 1024 outputs, then it is updated in
the next 1024 steps. The keystream generation process of HC-256 is given below
(“¯” denotes “−” modulo 1024, si denotes the output of the i-th step).

i = 0;
repeat until enough keystream bits are generated.
{

j = i mod 1024;
if (i mod 2048) < 1024
{

P [j] = P [j] + P [j ¯ 10] + g1(P [j ¯ 3], P [j ¯ 1023]);
si = h1(P [j ¯ 12])⊕ P [j];

}
else
{

Q[j] = Q[j] + Q[j ¯ 10] + g2(Q[j ¯ 3], Q[j ¯ 1023]);
si = h2(Q[j ¯ 12])⊕Q[j];

}
end-if
i = i + 1;

}
end-repeat

3

2.4 Design rationale

We applied the following rules in the design of HC-256.

Rule 1. Design a stream cipher with large security margin so as to minimize
the damage that may be caused by the flaws undetected during the evaluation
process.

Rule 2. To maximize the security and efficiency of a stream cipher, we update
each secret variable in the stream cipher frequently and try to avoid the use of
static sub-key; and we update each secret variable frequently by using all the
secret variables in the cipher. The benefit of this approach is that the varying
secret variables are much more difficult to analyze; and the resistance against
the divide-and-conquer attack could be greatly improved.

Rule 3. Use the highly non-linear feedback function. It reduces the chance of
developing attacks based on algebraic structure.

Rule 4. Use the key-dependent large random and varying S-box in the stream
cipher. Such approach may be the most effective way to resist the most sophis-
ticated attacks. (Here “effective” means that the effort and knowledge required
in the cipher design and evaluation are relatively small.)

Rule 5. To design a software efficient stream cipher, the dependency between
the consecutive operations should be as small as possible.

HC-256 is the outcome of our repeated attacks and improvements. The security
analysis given in Section 3 and Section 4 would explain many details of HC-256.

3 Security Analysis of HC-256

We make the following statements on the security of HC-256.

Statement 1. There is no hidden flaw in HC-256.
Statement 2. The smallest period is expected to be much larger than 2256.
Statement 3. Recovering the secret key is as difficult as exhaustive key search.
Statement 4. Distinguishing attack requires more than 2128 keystream bits.
Statement 5. There is no weak key in HC-256.

We start with a brief review of the attakcs on stream ciphers. Many stream
ciphers are based on the linear feedback shift registers (LFSRs). A number of
correlation attacks, such as [26, 27, 19, 14, 20, 6, 17], have been developed to an-
alyze them. Later, Golić [15] devised the linear cryptanalysis of stream ciphers.
That technique could be applied to a wide range of stream ciphers. Recently
Coppersmith, Halevi and Jutla [8] developed the distinguishing attacks (the lin-
ear attack and low diffusion attack) on stream ciphers with linear masking. And

4

there are algebraic attacks that can be used to break stream ciphers with low
algebraic degrees. Recently the improved algebraic attacks (with new techniques
to reduce the algebraic degrees) can be applied to break several LFSR-based
stream ciphers [1, 9–11].

Because the output and feedback functions of HC-256 are highly non-linear,
it is impossible to apply the correlation attacks and algebraic attacks to recover
the secret key of HC-256. The output function of HC-256 uses the 32-bit-to-32-
bit mapping similar to that being used in Blowfish. The past-ten year anlaysis
on Blowfish shows that the round function of Blowfish is very strong. Especially
there is no attack based on linear cryptanalysis [18] has been developed against
the large secret S-box of Blowfish. The large secret S-box of HC-256 is updated
during the keystream generation process, so it is almost impossible to develop
linear relations linking the input and output bits of the S-box. Vaudenay has
found some differential weakness of the randomly generated large S-box [28].
But it is very difficult to launch differential cryptanalysis [3] against HC-256
since it is a synchronous stream cipher for which the keystream generation is
independent of the message.

In this section, we will analyze the period of HC-256, the security of the
secret key and the security of the initialization process. The randomness of the
keystream will be analyzed separately in Section 4.

3.1 Period

The 65547-bit state of HC-256 ensures that the period of the keystream is ex-
tremely large. But the exact period of HC-256 is difficult to predict. The average
period of the keystream is estimated to be about 265546 (if we assume that the
invertible next-state function of HC-256 is random). The large number of states
also eliminates the threat of the time-memory-data tradeoff attack on stream
ciphers [4] (also [2, 16]).

3.2 Security of the secret key

We note that the output function and the feedback function of HC-256 are
highly non-linear. The non-linear output function leaks very small amount of
partial information at each step. The non-linear feedback function ensures that
the secret key could not be recovered from those leaked partial information.

In this subsection, we will first illustrate that even for the HC-256 with no
linear masking, it is impossible to recover the secret key faster than exhaustive
key search. Then we show that recovering the secret key of HC-256 is more
difficult.

HC-256 with no linear masking. For HC-256 with no linear masking, the
output at the ith step is generated as si = h1(P [i ¯ 12]) or si = h2(Q[i ¯ 12]).
If two outputs generated from the same S-box are equal, then those two inputs
to the S-box are equal with large probability. According to the analysis of the

5

randomness of h1(x) and h2(x) given in Subsection 4.1, we know that for 2048×
α ≤ i < j < 2048×α+1024, the probability that si = sj is about 2−31. If si = sj ,
then at the j-th step, P [i¯ 12] = P [j ¯ 12] with probability about 0.5. It means
that 15-bit information of the table P is leaked. We note that each S-box is used
in only 1024 steps. For these 1024 outputs, there are about

(
1024

2

)× 2−31 ≈ 2−12

collisions. To recover P , we need 1024×32
2−12×15 × 1024 ≈ 233.1 outputs. We also note

that P and Q interact in a very complicated way (each table is used as S-box to
update another table), so they must be recovered together. Thus 234.1 outputs
are needed in the attack to recover P and Q if we exploit the information being
leaked in this way. Note that the feedback function of HC-256 is highly non-linear
and it can not be simply approximated as LFSR, we conclude that recovering P
and Q from those 234.1 outputs would be more difficult than exhaustive search.

HC-256. The analysis above shows that the secret key of HC-256 with no linear
masking is secure. With the linear masking, the information leakage is greatly
reduced. For 2048 × α ≤ i < j < 2048 × α + 1024, if two outputs si and sj are
equal, we know that h1(P [i ¯ 12])⊕ P [i] = h1(P [j ¯ 12])⊕ P [j]. Since h1(P [i ¯
12]) = h1(P [j¯12) with probability about 2−31, the probability that P [i] = P [j]
is about 2−31. It means that each collision leaks about 2−26.1-bit information,
which is 230 times less than that leaked from the collison of the outputs of HC-
256 with no linear masking. The information leakage is significantly reduced
and it is obvious that the linear masking improves the security tremendously.
Note that the analysis above shows already that the key of HC-256 with no
linear masking is secure, so we conclude that the secret key of HC-256 cannot
be recovered faster than exhaustive key search.

3.3 Security of the initialization process (key/IV setup)

The initialization process of the HC-256 consists of two stages, as given in Sub-
section 2.2. We expand the key and IV into P and Q. At this stage, every bit
of the key/IV affects all the bits of the two tables and any difference in the
related keys/IVs results in uncontrollable differences in P and Q. Note that the
constants in the expansion function at this stage play significant role in reducing
the effect of related keys/IVs (If there is no constants in the expansion function,
then set key KB and IVB as 16 consecutive elements in the array WA generated
from KA and IVB , the resulting WB and WA would be highly correlated). After
the expansion, we run the cipher 4096 steps without generating output so that
the P and Q become more random. After the initialization process, we expect
that any difference in the keys/IVs would not result in biased keystream.

4 Randomness of the keystream

We start with the description of a general (and obvious) distinguishing attack
that can be applied to any stream cipher. For a stream cipher with n-bit secret
key, this attack can succeed with probability 0.98 (with false negative rate and

6

false positive rate 0.02) with 21n×2
n
2 bits chosen keystream. The attack goes as

follows. Assume that the secret key is randomly generated and the initialization
vector is not used (or the same initialization vector is used for many secret keys).
From each secret key ki, a keystream ui with length 7.6n bits is generated. After
generating keystream from about 2.8×2

n
2 secret keys, the probability that there

is collision in the keystream, i.e. ui = uj for i 6= j, is about 0.98 due to the
collision of the n-bit keys. If the keystream is truly random, then this collision
rate is only 0.02. Thus this distinguishing attack can succeed with about 21n×2

n
2

bits chosen keystream.
For any stream cipher with 256-bit secret key, the above general distinguish-

ing attack can succeed with about 2139.4 bits chosen keystream. Since the key
length of HC-256 is 256 bits, we set the security goal as that if the available
keystream (generated from the same or different key/IV) is less than 2128 bits,
then it is computationally impossible to distinguish the keystream from random
signal.

In this section, we will investigate the randomness of the keystream of HC-
256. In Subsection 4.1, we exploit the weaknesses of HC-256 with no linear
masking. In Subsection 4.2, we will show that the linear masking eliminates
those threats. For the HC-256 with the deliberately weakened feedback function,
about 2174 outputs are needed in the distinguishing attack. In Subsection 4.3,
we show that about 2256 outputs are needed in the distinguishing attack against
HC-256.

4.1 Keystream of HC-256 with no linear masking

The attacks on HC-256 with no linear masking is to investigate the security
weaknesses in the output and feedback functions. We developed two attacks
against HC-256 with no linear masking.

Weakness of h1(x) and h2(x). For HC-256 with no linear masking, the output
is generated as si = h1(P [i ¯ 12]) or si = h2(Q[i ¯ 12]). Because there is no
difference between the analysis of h1(x) and h2(x), we use h(x) to refer h1(x)
and h2(x) here. Assume that h(x) is a 32-bit-to-32-bit S-box H(x) with randomly
generated secret elements and the inputs to H are randomly generated. Because
the elements of the H(x) are randomly generated, the output of H(x) is not
uniformly distributed. If a lot of outputs are generated from H(x), some values
in the range [0, 232) never appear and some appear with probability larger than
2−32. Then it is straightforward to distinguish the outputs from random signal.
However each H(x) in HC-256 is used to generate only 1024 outputs, then it
gets updated. The direct computation of the distribution of the outputs of H(x)
from those 1024 outputs cannot be successful. Instead, we consider the collision
between the outputs of H(x). The following theorem gives the collision rate of
the outputs of H(x).

Theorem 1. Let H be an m-bit-to-n-bit S-box and all those n-bit elements are
randomly generated, where m ≥ n. Let x1 and x2 be two m-bit random inputs to
H. Then H(x1) = H(x2) with probability 2−m + 2−n − 2−m−n.

7

Proof. If x1 = x2, then H(x1) = H(x2). If x1 6= x2, then H(x1) = H(x2) with
probability 2−n. x1 = x2 with probability 2−m and x1 6= x2 with probability
1− 2−m. The probability that H(x1) = H(x2) is 2−m + (1− 2−m)× 2−n.

Attack 1. According to Theorem 1, for the 32-bit-to-32-bit S-box H, the collision
rate of the outputs is about 2−32+2−32 = 2−31. With 235 pairs of (H(x1),H(x2)),
we can distinguish the output from random signal with success rate 0.761. (The
success rate can be improved to 0.996 with 236 pairs.) Note that only 1024
outputs are generated from the same S-box H, so 226 outputs are needed to
distinguish the keystream of HC-256 with no linear masking.

Experiment. To compute the collision rate of the outputs of HC-256 (with no
linear masking), we generated 239 outputs (248 pairs). The collision rate is
2−31 − 2−40.09. The experiment confirms that the collision rate of the outputs
of h(x) is very close to 2−31, and approximating h(x) with randomly generated
S-box has negligible effect on the attack.

Remarks. The distinguishing attack above can be slightly improved if we con-
sider the differential attack on Blowfish. Vaudenay [28] has pointed out that the
collision in a randomly generated S-box in Blowfish can be applied to distinguish
the outputs of Blowfish with reduced round number (8 rounds). The basic idea
of Vaudenay’s differential attack is that if Q[i] = Q[j] for 0 ≤ i, j < 256, i 6= j,
then for a0 ⊕ a′0 = i ⊕ j, h1(a3||a2||a1||a0) = h1(a3||a2||a1||a′0) with probability
2−7, where each ai denotes an 8-bit number. We can detect the collision in the
S-box with success rate 0.5 since that S-box Q is used as inputs to h2(x) to
produce 1024 outputs. If Q[i] = Q[j] for 256α ≤ i, j < 256α + 256, 0 ≤ α < 4,
i 6= j, and x1 and x2 are two random inputs (note that we cannot introduce
or identify inputs with particular difference to h(x)), then the probability that
h1(x1) = h1(x2) becomes 2−31 + 2−32. However the chance that there is one

useful collision in the S-box is only (256
2)×4

232 = 2−15. The average collision rate
becomes 2−15 × (2−31 + 2−32) + (1− 2−15)× 2−31 = 2−31 + 2−47. The increase
in collision rate is so small that the collision in the S-box has negligible effect on
this attack.

Weakness of the feedback function. The table P is updated with the non-
linear feedback function P [i mod 1024] = P [i mod 1024] + P [i ¯ 10] + g1(P [i ¯
3], P [i ¯ 1023]). The following attack is to distinguish the keystream by exploit-
ing this relation.

Attack 2. Assume that the h(x) is a one-to-one mapping function. Consider two
groups of outputs (si, si−3, si−10, si−2047, si−2048) and (sj , sj−3, sj−10, sj−2047,
sj−2048). If i 6= j and 1024 × α + 10 ≤ i, j < 1024 × α + 1023, they are equal
with probability about 2−128. The collision rate is 2−160 if the outputs are truely
random. 2−128 is much larger than 2−160, so the keystream can be distinguished
from random signal with about 2128 pairs of such five-tuple groups of outputs.

8

Note that the S-box is updated every 1024 steps, 2119 outputs are needed in the
attack.

The two attacks given above show that the HC-256 with no linear masking does
not generate secure keystream.

4.2 Keystream of HC-256 with the weakened feedback function

With the linear masking being applied, it is no longer possible to exploit those
two weaknesses separately and the attacks given above cannot be applied di-
rectly. We need to remove the linear masking first. We recall that at the ith
step, if (i mod 2048) < 1024, the table P is updated as

P [i mod 1024] = P [i mod 1024] + P [i ¯ 10] + g1(P [i ¯ 3], P [i ¯ 1023])

We know that si = h1(P [i¯12])⊕P [i mod 1024]. For 10 ≤ (i mod 2048) < 1023,
this feedback function can be written alternatively as

si ⊕ h1(zi) = (si−2048 ⊕ h′1(zi−2048) + (si−10 ⊕ h1(zi−10) +
g1(si−3 ⊕ h1(zi−3), si−2047 ⊕ h′1(zi−2047)) (1)

where h1(x) and h′1(x) indicate two different functions since they are related to
different S-boxes; zj denotes the P [j ¯ 12] at the j-th step. The linear masking
is removed successfully in (1). However, it is very difficult to apply (1) directly
to distinguish the keystream. To simplify the analysis, we attack a weak version
of (1). We replace all the ‘+’ in the feedback function with ‘⊕’ and write (1) as

si ⊕ si−2048 ⊕ si−10 ⊕ (si−3 >>> 10)⊕ (si−2047 >>> 23)
= h1(zi)⊕ h′1(zi−2048)⊕ h1(zi−10)⊕ (h1(zi−3) >>> 10)⊕
⊕ (h′1(zi−2047) >>> 23)⊕Q[ri], (2)

where ri = (si−3 ⊕ h1(zi−3) ⊕ si−2047 ⊕ h′1(zi−2047)) mod 1024. Because of the
random nature of h1(x) and Q, the right hand side of (2) is not uniformly
distributed. But each S-box is used in only 1024 steps, these 1024 outputs are
not sufficient to compute the distribution of si ⊕ si−2048 ⊕ si−10 ⊕ (si−3 >>>
10)⊕ (si−2047 >>> 23). Instead we need to study the collision rate. The effective
way is to eliminate the term h1(zi) before analyzing the collision rate.

Replace the i with i+10. For 10 ≤ i mod 2048 < 1013, (2) can be written as

si+10 ⊕ si−2038 ⊕ si ⊕ (si+7 >>> 10)⊕ (si−2037 >>> 23)
= h1(zi+10)⊕ h′1(zi−2038)⊕ h1(zi)⊕ (h1(zi+7) >>> 10)⊕
⊕ (h′1(zi−2037) >>> 23)⊕Q[ri+10] (3)

For the left-hand sides of (2) and (3) to be equal, i.e., for the following equation

si ⊕ si−2048 ⊕ si−10 ⊕ (si−3 >>> 10)⊕ (si−2047 >>> 23) =
si+10 ⊕ si−2038 ⊕ si ⊕ (si+7 >>> 10)⊕ (si−2037 >>> 23) (4)

9

to hold, we require that (after eliminating the term h1(zi))

h1(zi−10)⊕ h′1(zi−2048)⊕ (h1(zi−3) >>> 10)
⊕ (h′1(zi−2047) >>> 23)⊕Q[ri]

= h1(zi+10)⊕ h′1(zi−2038)⊕ (h1(zi+7) >>> 10)
⊕ (h′1(zi−2037) >>> 23)⊕Q[ri+10] (5)

For 22 ≤ i mod 2048 < 1013, we note that zi−10 = zi ⊕ zi−2048 ⊕ (zi−3 >>>
10)⊕ (zi−2047 >>> 23)⊕Q[(zi−3⊕zi−2047) mod 1024], and zi+10 = zi⊕zi−2038⊕
(zi+7 >>> 10) ⊕ (zi−2037 >>> 23) ⊕ Q[(zi+7 ⊕ zi−2037) mod 1024]. Approximate
(5) as

H(x1) = H(x2) (6)

where H denotes a random secret 106-bit-to-32-bit S-box, x1 and x2 are two 106-
bit random inputs, x1 = zi−3||zi−2047||zi−2048||ri and x2 = zi+7||zi−2037||zi−2038

||ri+10. (The effect of zi is included in H.) According to Theorem 1, (6) holds
with probability 2−32 + 2−106. So (4) holds with probability 2−32 + 2−106. We
approximate the binomial distribution with the normal distribution. The mean
µ = Np and the standard deviation σ =

√
Np(1− p), where N is the total

number of equations (4), and p = 2−32 + 2−106. For random signal, p′ = 2−32,
µ′ = Np′ and σ′ =

√
Np′(1− p′). If |u−u′| > 2(σ+σ′), i.e. N > 2184, the output

of the cipher can be distinguished from random signal with success rate 0.9772
(with false negative rate and false positive rate as 0.0228 since the cumulative
distribution function gives value 0.9772 at µ + 2σ).

After verifying the validity of 2184 equations (4), we can successfully distin-
guish the keystream from random signal. We note that the S-box is updated
every 1024 steps, so only about 210 equations (4) can be obtained from 1024
steps in the range 1024×α ≤ i < 1024×α+1024. To distinguish the keystream
from random signal, 2184 outputs are needed in the attack.

The attack above can be improved by exploiting the relation ri = (si−3 ⊕
h1(zi−3)⊕si−2047⊕h′1(zi−2047)) mod 1024. If (si−3⊕si−2047) mod 1024 = (si+7⊕
si−2037) mod 1024, then (6) holds with probability 2−32 + 2−96 and 2164 equa-
tions (4) are needed in the attack. Note that only about one equation (4) can
now be obtained from 1024 steps in the range 1024× α ≤ i < 1024× α + 1024.
To distinguish the keystream from random signal, 2174 outputs are needed in
the attack.

We note that the attack above can only be applied to HC-256 with all the ‘+’
in the feedback function being replaced with ‘⊕’. To distinguish the keystream
of HC-256, more than 2174 outputs are needed.

4.3 Keystream of HC-256

In this subsection, we investigate the randomness of the keystream of HC-256.
We note that there are three ‘+’ operations in the feedback function. We will
first investigate the least significant bits in the feedback function since they are

10

not affected by the ‘+’ operations. Denote the i-th least significant bit of a as
ai. From (1), we obtain that for 10 ≤ (i mod 2048) < 1023,

s0
i ⊕ s0

i−2048 ⊕ s0
i−10 ⊕ s10

i−3 ⊕ s23
i−2047

= (h1(zi))0 ⊕ (h′1(zi−2048))0 ⊕ (h1(zi−10))0 ⊕
⊕ (h1(zi−3))10 ⊕ (h′1(zi−2047))23 ⊕ (Q[ri])0 (7)

In Subsection 4.2, two techniques are used in deducing the randomness of the
keystream. One is to eliminate the term h1(zi). Another one is to exploit the
relation that those five zi terms are linked by the feedback function. But due
to the ‘+’ operations in the feedback function of HC-256, only one technique
can now be used. We use the latter technique in the attack because it is about
27 times better than the former (The former technique gives probability twice
better than the latter, but the relations generated from the former technique is
about 29 less than that generated from the latter). The attack is as follows.

For 2048× α + 10 ≤ i, j < 2048× α + 1023 and j 6= i, (7) is expressed as

s0
j ⊕ s0

j−2048 ⊕ s0
j−10 ⊕ s10

j−3 ⊕ s23
j−2047

= (h1(zj))0 ⊕ (h′1(zj−2048))0 ⊕ (h1(zj−10))0 ⊕
⊕ (h1(zj−3))10 ⊕ (h′1(zj−2047))23 ⊕ (Q[rj])0 (8)

For the left-hand side of (7) and (8) to be equal, i.e., for the following equation

s0
i ⊕ s0

i−2048 ⊕ s0
i−10 ⊕ s10

i−3 ⊕ s23
i−2047 =

s0
j ⊕ s0

j−2048 ⊕ s0
j−10 ⊕ s10

j−3 ⊕ s23
j−2047 (9)

to hold, we require that

(h1(zi))0 ⊕ (h′1(zi−2048))0 ⊕ (h1(zi−10))0

⊕ (h1(zi−3))10 ⊕ (h′1(zi−2047))23 ⊕ (Q[ri])0

= (h1(zj))0 ⊕ (h′1(zj−2048))0 ⊕ (h1(zj−10))0

⊕ (h1(zj−3))10 ⊕ (h′1(zj−2047))23 ⊕ (Q[rj])0 (10)

We note that zi = zi−2048 + zi−10 + g1(zi−3, zi−2047), and zj = zj−2048 + zj−10 +
g1(zj−3, zj−2047). Approximate (10) as

H(x1) = H(x2) (11)

where H denotes a random secret 138-bit-to-1-bit S-box, x1 and x2 are two 138-
bit random inputs, x1 = zi−3||zi−10||zi−2047||zi−2048||ri and x2 = zj−3||zj−10||
zj−2047||zj−2048||rj . According to Theorem 1, (11) holds with probability 1

2 +
2−139. So (9) holds with probability 1

2 + 2−139. Similar to the analysis given in
Subsection 4.2, we obtain that after testing the validity of 2280 equations (9),
the output of the cipher can be distinguished from random signal with success
rate 0.9772 (with false negative rate and false positive rate as 0.0228). Note
that only about 219 equations (9) can be obtained from every 1024 outputs, this

11

distinguishing attack requires about 2271 outputs. After exploiting the relation
ri = (si−3⊕h1(zi−3)⊕ si−2047⊕h′1(zi−2047)) mod 1024 (similar to that given in
Subsection 4.2), the amount of outputs needed in the distinguishing attack can
be reduced to 2261.

We note that the attack above only deals with the least significant bit in
(1). It may be possible to consider the rest of the 31 bits bit-by-bit. But due
to the effect of those three ‘+’ operations in the feedback function, the attack
exploiting those 31 bits would not be as effective as that exploiting the least
significant bit. Thus more than 2256 outputs are needed in this distinguishing
attack.

It may be possible that the distinguishing attack against HC-256 could be
improved in the future. However, it is very unlikely that our security goal could
be breached since the security margin is extremely large. We conjecture that any
successful distinguishing attack against HC-256 would require more than 2174

outputs. We thus conclude that it is computationally impossible to distinguish
2128 bits keystream of HC-256 from random signal.

5 Implementation and Performance of HC-256

The performance of the C implementation of HC-256 on Pentium IV (2.4 GHz
processor, 8 KB L1 data cache, 512 KB L2 cache) is given as follows.

Statement 6. Encryption speed is about 1.9 bits/cycle (4.2 cycles/byte)
Statement 7. The key and IV setup takes about 74,000 clock cycles

The direct C implementation of the encryption algorithm given in Subsection
2.3 runs at about 0.6 bit/cycle on the Pentium 4 processor. The program size
is very small but the speed is only about 1.5 times that of AES [12]. At each
step in the direct implementation, we need to compute (i mod 2048), i ¯ 3,
i ¯ 10 and i ¯ 1023. And at each step there is a branch decision based on the
value of (i mod 2048). These operations affect greatly the encryption speed. The
optimization process is to reduce the amount of these operations.

5.1 The optimized implementation of HC-256

This subsection describes the optimized C implementation of HC-256 given in
Appendix B (“hc256.h”). In the optimized code, loop unrolling is used and only
one branch decision is made for every 16 steps. The experiment shows that the
branch decision in the optimized code affects the encryption speed by less than
one percent.

There are several fast implementations of the feedback functions of P and
Q. We use the implementation given in Appendix B because it achieves the best
consistency on different platforms. The details of that implementation are given
below. The feedback function of P is given as

P [i mod 1024] = P [i mod 1024] + P [i ¯ 10] + g1(P [i ¯ 3], P [i ¯ 1023])

12

A register X containing 16 elements is introduced for P . If (i mod 2048) < 1024
and i mod 16 = 0, then at the begining of the ith step, X[j] = P [(i − 16 +
j) mod 1024] for j = 0, 1, · · · 15, i.e. the X contains the values of P [i¯16], P [i¯
15], · · · , P [i ¯ 1]. In the 16 steps starting from the ith step, the P and X are
updated as

P [i] = P [i] + X[6] + g1(X[13], P [i + 1]);
X[0] = P [i];

P [i + 1] = P [i + 1] + X[7] + g1(X[14], P [i + 2]);
X[1] = P [i + 1];

P [i + 2] = P [i + 2] + X[8] + g1(X[15], P [i + 3]);
X[2] = P [i + 2];

P [i + 3] = P [i + 3] + X[9] + g1(X[0], P [i + 4]);
X[3] = P [i + 3];

· · ·
P [i + 14] = P [i + 14] + X[4] + g1(X[11], P [i + 15]);

X[14] = P [i + 14];
P [i + 15] = P [i + 15] + X[5] + g1(X[12], P [(i + 1) mod 1024]);

X[15] = P [i + 15];

Note that at the ith step, two elements of P [i¯10] and P [i¯3] can be obtained
directly from X. Also for the output function si = h1(P [i¯12])⊕P [i mod 1024],
the P [i ¯ 12] can be obtained from X. In this implementation, there is no need
to compute i ¯ 3, i ¯ 10 and i ¯ 12.

A register Y with 16 elements is used in the implementation of the feedback
function of Q in the same way as that given above.

To reduce the memory requirement and the program size, the initialization
process implemented in Appendix B is not as straightforward as that given in
Subsection 2.2. To reduce the memory requirement, we do not implement the
array W in the program. Instead we implement the key and IV expansion on P
and Q directly. To reduce the program size, we implement the feedback functions
of those 4096 steps without involving X and Y .

5.2 Performance of HC-256

Encryption Speed. We use the C codes given in Appendix B and C to mea-
sure the encryption speed. The processor used in the test is Pentium 4 (2.4
GHz, 8 KB Level 1 data cache, 512 KB Level 2 cache, no hyper-threading). The
speed is measured by repeatedly encrypting the same 512-bit buffer for 226 times
(The buffer is defined as ‘static unsigned long DATA[16]’ in Appendix C). The
encryption speed is given in Table 1.

The C implementation of HC-256 is faster than the C implementations of al-
most all the other stream ciphers. (However different designers may have made

13

different efforts to optimize their codes. And the encryption speed may be mea-
sured in different ways. So the speed comparison is not absolutely accurate.)
SEAL [22] is a software-efficient cipher and its C implementation runs at the
speed of about 1.6 bit/cycle on Pentium III processor. The encryption speed
of Scream [7] is about the same as that of SEAL. The C implementation of
SNOW2.0 [13] runs at about 1.67 bit/cycle on Pentium 4 processor. TURING
[23] runs at about 1.3 bit/cycle on the Pentium III mobile processor. The C
implementation of MUGI [29] runs at about 0.45 bit/cycle on the Pentium III
processor. The encryption speed of Rabbit [5] is about 2.16 bit/cycle on Pentium
III processor, but it is programmed in assembly language inline in C.

Table 1. The speed of the C implementation of HC-256 on Pentium 4

Operating System Compiler Optimization
option

Speed
(bit/cycle)

Windows XP (SP1) Intel C++ Compiler 7.1 -O3 1.93
Microsoft Visual C++ 6.0

Professional (SP5)
-Release 1.81

Red Hat Linux 9 Intel C++ Compiler 7.1 -O3 1.92
(Linux 2.4.20-8) gcc 3.2.2 -O3 1.83

Remarks. In HC-256, there is dependency between the feedback and output func-
tions since the P [i mod 1024] (or Q[i mod 1024]) being updated at the ith step
is immediately used as linear masking. This dependency reduces the speed of
HC-256 by about 3%. In our optimized implementation, we do not deal with
this dependency because its effect on the encryption speed is very limited on the
Pentium 4 processor.

Initialization Process. The key setup of HC-256 requires about 74,000 clock
cycles (measured by repeating the setup process 216 times on the Pentium 4
processor with Intel C++ compiler 7.1). This amount of computation is more
than that required by most of the other stream ciphers (for example, the ini-
tialization process of Scream takes 27,500 clock cycles). The reason is that two
large S-boxes are used in HC-256. To eliminate the threat of related key/IV
attack, the tables should be updated with the key and IV thoroughly and this
process requires a lot of computations. So it is undesirable to use HC-256 in the
applications where key (or IV) is updated frequently.

6 Conclusion

In this paper, a software-efficient stream cipher HC-256 is illustrated. Our anal-
ysis shows that HC-256 is very secure. However, the extensive security analysis
of any new cipher requires a lot of efforts from many researchers. We encourage
the readers to analyze the security of HC-256.

Statement 8. HC-256 is not covered by any patent and it is freely available.

14

References

1. F. Armknecht, M. Krause, “Algebraic Attacks on Combiners with Memory”, in
Advances in Cryptology – Crypto 2003, LNCS 2729, pp. 162-75, Springer-Verlag,
2003.

2. S. Babbage, “A Space/Time Tradeoff in Exhaustive Search Attacks on Stream
Ciphers”, European Convention on Security and Detection, IEE Conference pub-
lication, No. 408, May 1995.

3. E. Biham, A. Shamir, “Differential Cryptanalysis of DES-like Cryptosystems”, in
Advances in Cryptology – Crypto’90, LNCS 537, pp. 2-21, Springer-Verlag, 1991.

4. A.Biryukov, A.Shamir, “Cryptanalytic Time/Memory/Data Tradeoffs for Stream
Ciphers”, in Advances in Cryptography – ASIACRYPT’2000, LNCS 1976, pp.1–13,
Springer-Verlag, 2000.

5. M. Boesgaard, M. Vesterager, T. Pedersen, J. Christiansen, and O. Scavenius,
“Rabbit: A New High-Performance Stream Cipher”, in Fast Software Encryption
(FSE’03), LNCS 2887, pp. 307-329, Springer-Verlag, 2003.

6. V.V. Chepyzhov, T. Johansson, and B. Smeets. “A Simple Algorithm for Fast
Correlation Attacks on Stream Ciphers”, in Fast Software Encryption (FSE’00),
LNCS 1978, pp. 181-195, Springer-Verlag, 2000.

7. D. Coppersmith, S. Halevi, and C. Jutla, “Scream: A Software-Efficient Stream
Cipher”, in Fast Software Encryption (FSE’02), LNCS 2365, pp. 195-209, Springer-
Verlag, 2002.

8. D. Coppersmith, S. Halevi, and C. Jutla, “Cryptanalysis of Stream Ciphers with
Linear Masking”, in Advances in Cryptology – Crypto 2002, LNCS 2442, pp. 515-
532, Springer-Verlag, 2002.

9. N. Courtois, “Higher Order Correlation Attacks, XL algorithm and Cryptanalysis
of Toyocrypt”, in (ICISC 2002), LNCS 2587, pp. 182-199, Springer-Verlag, 2002.

10. N. Courtois, and W. Meier, “Algebraic Attacks on Stream Ciphers with Linear
Feedback”, in Advances in Cryptology – Eurocrypt 2003, LNCS 2656, pp. 345?59,
Springer-Verlag, 2003.

11. N. Courtois, “Fast Algebraic Attacks on Stream Ciphers with Linear Feedback”, in
Advances in Cryptology – Crypto 2003, LNCS 2729, pp. 176?94, Springer-Verlag,
2003.

12. J. Daeman and V. Rijmen, “AES Proposal: Rijndael”, available on-line from NIST
at http://csrc.nist.gov/encryption/aes/rijndael/

13. P. Ekdahl and T. Johansson, “A new version of the stream cipher SNOW”, in
Selected Areas in Cryptology (SAC 2002), LNCS 2595, pp. 47–61, Springer-Verlag,
2002.

14. J. D. Golić, “Towards Fast Correlation Attacks on Irregularly Clocked Shift Regis-
ters”, in Advances in Cryptography – Eurocrypt’95, pages 248-262, Springer-Verlag,
1995.

15. J. D. Golić, “Linear Models for Keystream Generator”. IEEE Trans. on Computers,
45(1):41-49, Jan 1996.

16. J. D. Golić, “Cryptanalysis of Alleged A5 Stream Cipher”, in Advances in Cryp-
tology – Eurocrypt’97, LNCS 1233, pp. 239 - 255, Springer-Verlag, 1997.

17. T. Johansson and F. Jönsson. “Fast Correlation Attacks through Reconstruction
of Linear Polynomials”, in Advances in Cryptology – CRYPTO 2000, LNCS 1880,
pp. 300-315, Springer-Verlag, 2000.

18. M. Matsui, “Linear Cryptanalysis Method for DES Cipher”, in Advances in Cryp-
tology – Eurocrypt’93, LNCS 765, pp. 386-397, Springer-Verlag, 1994.

15

19. W. Meier and O. Staffelbach, “Fast Correlation Attacks on Certain Stream Ci-
phers”. Journal of Cryptography, 1(3):159-176, 1989.

20. M. Mihaljević, M.P.C. Fossorier, and H. Imai, “A Low-Complexity and High-
Performance Algorithm for Fast Correlation Attack”, in Fast Software Encryption
(FSE’00), pp. 196-212, Springer-Verlag, 2000.

21. National Institute of Standards and Technology, “Secure Hash Standard (SHS)”,
Federal Information Processing Standards Publication (FIPS) 180-2. Available at
http://csrc.nist.gov/publications/fips/

22. P. Rogaway and D. Coppersmith, “A Software Optimized Encryption Algorithm”.
Journal of Cryptography, 11(4), pp. 273-287, 1998.

23. G.G. Rose and P. Hawkes, “Turing: a Fast Stream Cipher”. Fast Software Encryp-
tion (FSE’03), LNCS 2887, pp. 290-306, Springer-Verlag, 2003.

24. B. Schneier, “Description of a New Variable-Length Key, 64-bit Block Cipher
(Blowfish)”, in Fast Software Encryption (FSE’93), LNCS 809, pp. 191-204,
Springer-Verlag, 1994.

25. B. Schneier and D. Whiting, “Fast Software Encryption: Designing Encryption
Algorithms for Optimal Software Speed on the Intel Pentium Processor”, in Fast
Software Encryption (FSE’97), LNCS 1267, pp. 242-259, Springer-Verlag, 1997.

26. T. Seigenthaler. “Correlation-Immunity of Nonlinear Combining Functions for
Cryptographic Applications”. IEEE Transactions on Information Theory, IT-
30:776-780,1984.

27. T. Seigenthaler. “Decrypting a Class of Stream Ciphers Using Ciphertext Only”.
IEEE Transactions on Computers, C-34(1):81-85, Jan. 1985.

28. S. Vaudenay, “On the Weak Keys of Blowfish”, in Fast Software Encryption
(FSE’96), LNCS 1039, pp. 27-32, Springer-Verlag, 1996.

29. D. Watanabe, S. Furuya, H. Yoshida, K. Takaragi, and B. Preneel, “A New
Keystream Generator MUGI”, in Fast Software Encryption (FSE’02), LNCS 2365,
pp. 179-194, Springer-Verlag, 2002.

30. H. Wu, “A New Stream Cipher HC-256”, in Fast Software Encryp-
tion (FSE’04), LNCS 3017, pp. 226-244. The full version is available at
http://eprint.iacr.org/2004/092.pdf

A Test Vectors of HC-256

Let K = K0||K1|| · · · ||K7 and IV = IV0||IV1|| · · · ||IV7. The first 512 bits of
keystream are given for different values of key and IV. Note that for each 32-bit
output given below, the least significant byte leads the most significant byte in
the keystream. For example, if S and T are 32-bit words, and S = s3||s2||s1||s0,
T = t3||t2||t1||t0, where each si and ti is one byte, and s0 and t0 denote the
least significant bytes, then the keystream S, T is related to the keystream
s0, s1, s2, s3, t0, t1, t2, t3.

1. The key and IV are set as 0.

8589075b 0df3f6d8 2fc0c542 5179b6a6
3465f053 f2891f80 8b24744e 18480b72
ec2792cd bf4dcfeb 7769bf8d fa14aee4
7b4c50e8 eaf3a9c8 f506016c 81697e32

16

2. The key is set as 0, the IV is set as 0 except that IV0 = 1.

bfa2e2af e9ce174f 8b05c2fe b18bb1d1
ee42c05f 01312b71 c61f50dd 502a080b
edfec706 633d9241 a6dac448 af8561ff
5e04135a 9448c434 2de7e9f3 37520bdf

3. The IV is set as 0, the key is set as 0 except that K0 = 0x55.

fe4a401c ed5fe24f d19a8f95 6fc036ae
3c5aa688 23e2abc0 2f90b3ae a8d30e42
59f03a6c 6e39eb44 8f7579fb 70137a5e
6d10b7d8 add0f7cd 723423da f575dde6

Let Ai =
⊕0xffff

j=0 s16j+i for i = 0, 1, · · · , 15, i.e. set a 512-bit buffer as 0 and
encrypt it repeatedly for 220 times. Set the key and IV as 0, the value of
A0||A1|| · · · ||A15 is given below:

c6b6fb99 f2ae1440 a7d4ca34 2011694e
6f36b4be 420db05d 4745fd90 7c630695
5f1d7bda 13ae7e36 aebc5399 733b7f37
95f34066 b601d21f 2d8cf830 a9c08937

B The optimized C implementation of HC-256
(“hc256.h”)

#include <stdlib.h>

typedef unsigned long uint32;
typedef unsigned char uint8;

uint32 P[1024],Q[1024];
uint32 X[16],Y[16];
uint32 counter2048; // counter2048 = i mod 2048;

#ifndef _MSC_VER
#define rotr(x,n) (((x)>>(n))|((x)<<(32-(n))))
#else
#define rotr(x,n) _lrotr(x,n)
#endif

#define h1(x,y) { \
uint8 a,b,c,d; \
a = (uint8) (x); \
b = (uint8) ((x) >> 8); \
c = (uint8) ((x) >> 16); \
d = (uint8) ((x) >> 24); \

17

(y) = Q[a]+Q[256+b]+Q[512+c]+Q[768+d]; \
}

#define h2(x,y) { \
uint8 a,b,c,d; \
a = (uint8) (x); \
b = (uint8) ((x) >> 8); \
c = (uint8) ((x) >> 16); \
d = (uint8) ((x) >> 24); \
(y) = P[a]+P[256+b]+P[512+c]+P[768+d]; \

}

#define step_A(u,v,a,b,c,d,m){ \
uint32 tem0,tem1,tem2,tem3; \
tem0 = rotr((v),23); \
tem1 = rotr((c),10); \
tem2 = ((v) ^ (c)) & 0x3ff; \
(u) += (b)+(tem0^tem1)+Q[tem2]; \
(a) = (u); \
h1((d),tem3); \
(m) ^= tem3 ^ (u) ; \

}

#define step_B(u,v,a,b,c,d,m){ \
uint32 tem0,tem1,tem2,tem3; \
tem0 = rotr((v),23); \
tem1 = rotr((c),10); \
tem2 = ((v) ^ (c)) & 0x3ff; \
(u) += (b)+(tem0^tem1)+P[tem2]; \
(a) = (u); \
h2((d),tem3); \
(m) ^= tem3 ^ (u) ; \

}

void encrypt(uint32 data[]) //each time it encrypts 512-bit data
{

uint32 cc,dd;
cc = counter2048 & 0x3ff;
dd = (cc+16)&0x3ff;

if (counter2048 < 1024)
{

counter2048 = (counter2048 + 16) & 0x7ff;
step_A(P[cc+0], P[cc+1], X[0], X[6], X[13],X[4], data[0]);
step_A(P[cc+1], P[cc+2], X[1], X[7], X[14],X[5], data[1]);

18

step_A(P[cc+2], P[cc+3], X[2], X[8], X[15],X[6], data[2]);
step_A(P[cc+3], P[cc+4], X[3], X[9], X[0], X[7], data[3]);
step_A(P[cc+4], P[cc+5], X[4], X[10],X[1], X[8], data[4]);
step_A(P[cc+5], P[cc+6], X[5], X[11],X[2], X[9], data[5]);
step_A(P[cc+6], P[cc+7], X[6], X[12],X[3], X[10],data[6]);
step_A(P[cc+7], P[cc+8], X[7], X[13],X[4], X[11],data[7]);
step_A(P[cc+8], P[cc+9], X[8], X[14],X[5], X[12],data[8]);
step_A(P[cc+9], P[cc+10],X[9], X[15],X[6], X[13],data[9]);
step_A(P[cc+10],P[cc+11],X[10],X[0], X[7], X[14],data[10]);
step_A(P[cc+11],P[cc+12],X[11],X[1], X[8], X[15],data[11]);
step_A(P[cc+12],P[cc+13],X[12],X[2], X[9], X[0], data[12]);
step_A(P[cc+13],P[cc+14],X[13],X[3], X[10],X[1], data[13]);
step_A(P[cc+14],P[cc+15],X[14],X[4], X[11],X[2], data[14]);
step_A(P[cc+15],P[dd+0], X[15],X[5], X[12],X[3], data[15]);

}
else
{

counter2048 = (counter2048 + 16) & 0x7ff;
step_B(Q[cc+0], Q[cc+1], Y[0], Y[6], Y[13],Y[4], data[0]);
step_B(Q[cc+1], Q[cc+2], Y[1], Y[7], Y[14],Y[5], data[1]);
step_B(Q[cc+2], Q[cc+3], Y[2], Y[8], Y[15],Y[6], data[2]);
step_B(Q[cc+3], Q[cc+4], Y[3], Y[9], Y[0], Y[7], data[3]);
step_B(Q[cc+4], Q[cc+5], Y[4], Y[10],Y[1], Y[8], data[4]);
step_B(Q[cc+5], Q[cc+6], Y[5], Y[11],Y[2], Y[9], data[5]);
step_B(Q[cc+6], Q[cc+7], Y[6], Y[12],Y[3], Y[10],data[6]);
step_B(Q[cc+7], Q[cc+8], Y[7], Y[13],Y[4], Y[11],data[7]);
step_B(Q[cc+8], Q[cc+9], Y[8], Y[14],Y[5], Y[12],data[8]);
step_B(Q[cc+9], Q[cc+10],Y[9], Y[15],Y[6], Y[13],data[9]);
step_B(Q[cc+10],Q[cc+11],Y[10],Y[0], Y[7], Y[14],data[10]);
step_B(Q[cc+11],Q[cc+12],Y[11],Y[1], Y[8], Y[15],data[11]);
step_B(Q[cc+12],Q[cc+13],Y[12],Y[2], Y[9], Y[0], data[12]);
step_B(Q[cc+13],Q[cc+14],Y[13],Y[3], Y[10],Y[1], data[13]);
step_B(Q[cc+14],Q[cc+15],Y[14],Y[4], Y[11],Y[2], data[14]);
step_B(Q[cc+15],Q[dd+0], Y[15],Y[5], Y[12],Y[3], data[15]);

}
}

//The following defines the initialization functions

#define f1(x) (rotr((x),7) ^ rotr((x),18) ^ ((x) >> 3))
#define f2(x) (rotr((x),17) ^ rotr((x),19) ^ ((x) >> 10))
#define f(a,b,c,d) (f2((a)) + (b) + f1((c)) + (d))

#define feedback_1(u,v,b,c) { \
uint32 tem0,tem1,tem2; \

19

tem0 = rotr((v),23); tem1 = rotr((c),10); \
tem2 = ((v) ^ (c)) & 0x3ff; \
(u) += (b)+(tem0^tem1)+Q[tem2]; \

}

#define feedback_2(u,v,b,c) { \
uint32 tem0,tem1,tem2; \
tem0 = rotr((v),23); tem1 = rotr((c),10); \
tem2 = ((v) ^ (c)) & 0x3ff; \
(u) += (b)+(tem0^tem1)+P[tem2]; \

}

void initialization(uint32 key[], uint32 iv[])
{

uint32 i,j;

//expand the key and iv into P and Q
for (i = 0; i < 8; i++) P[i] = key[i];
for (i = 8; i < 16; i++) P[i] = iv[i-8];

for (i = 16; i < 528; i++)
P[i] = f(P[i-2],P[i-7],P[i-15],P[i-16])+i;

for (i = 0; i < 16; i++)
P[i] = P[i+512];

for (i = 16; i < 1024; i++)
P[i] = f(P[i-2],P[i-7],P[i-15],P[i-16])+512+i;

for (i = 0; i < 16; i++)
Q[i] = P[1024-16+i];

for (i = 16; i < 32; i++)
Q[i] = f(Q[i-2],Q[i-7],Q[i-15],Q[i-16])+1520+i;

for (i = 0; i < 16; i++)
Q[i] = Q[i+16];

for (i = 16; i < 1024;i++)
Q[i] = f(Q[i-2],Q[i-7],Q[i-15],Q[i-16])+1536+i;

//run the cipher 4096 steps without generating output
for (i = 0; i < 2; i++) {

for (j = 0; j < 10; j++)
feedback_1(P[j],P[j+1],P[(j-10)&0x3ff],P[(j-3)&0x3ff]);

for (j = 10; j < 1023; j++)
feedback_1(P[j],P[j+1],P[j-10],P[j-3]);
feedback_1(P[1023],P[0],P[1013],P[1020]);

for (j = 0; j < 10; j++)
feedback_2(Q[j],Q[j+1],Q[(j-10)&0x3ff],Q[(j-3)&0x3ff]);

20

for (j = 10; j < 1023; j++)
feedback_2(Q[j],Q[j+1],Q[j-10],Q[j-3]);
feedback_2(Q[1023],Q[0],Q[1013],Q[1020]);

}

//initialize counter2048, and tables X and Y
counter2048 = 0;
for (i = 0; i < 16; i++) X[i] = P[1008+i];
for (i = 0; i < 16; i++) Y[i] = Q[1008+i];

}

C Test HC-256 (“test.c”)

//This program prints the first 512-bit keystream
//then measure the average encryption speed

#include "hc256.h"
#include <stdio.h>
#include <time.h>

int main()
{

uint32 key[8],iv[8];
static uint32 DATA[16]; // the DATA is encrypted

clock_t start, finish;
double duration, speed;
uint32 i;

//initializes the key and IV
for (i = 0; i < 8; i++) key[i]=0;
for (i = 0; i < 8; i++) iv[i]=0;

//key and iv setup
initialization(key,iv);

//generate and print the first 512-bit keystream
for (i = 0; i < 16; i++) DATA[i]=0;
encrypt(DATA);
for (i = 0; i < 16; i++) printf(" %8x ", DATA[i]);

//measure the encryption speed by encrypting
//DATA repeatedly for 0x4000000 times
start = clock();
for (i = 0; i < 0x4000000; i++) encrypt(DATA);

21

finish = clock();

duration = ((double)(finish - start))/ CLOCKS_PER_SEC;
speed = ((double)i)*32*16/duration;

printf("\n The encryption takes %4.4f seconds.\n\
The encryption speed is %13.2f bit/second \n",\
duration,speed);

return (0);
}

22

