
MERSENNE TWISTER AND FUBUKI STREAM/BLOCK
CIPHER

MAKOTO MATSUMOTO, TAKUJI NISHIMURA, MARIKO HAGITA, AND MUTSUO
SAITO

Abstract. We propose two stream ciphers based on a non-secure pseudoran-
dom number generator (called the mother generator). The mother generator
is here chosen to be the Mersenne Twister (MT), a widely used 32-bit integer
generator having 19937 bits of internal state and period 219937 − 1.

One proposal is CryptMT, which computes the accumulative product of
the output of MT, and use the most significant 8 bits as a secure random
numbers.

The other proposal, named Fubuki, is designed to be usable also as a block
cipher. It prepares nine different kinds of encryption functions (bijections
from blocks to blocks), each of which takes a parameter. Fubuki encrypts a
sequence of blocks (= a plain message) by applying these encryption functions
iteratedly to each of the blocks. Both the combination of the functions and
their parameters are pseudorandomly chosen by using its mother generator
MT. The key and the initial value are passed to the initialization scheme of
MT.

1. Introduction

In this paper, we consider cryptographic systems implemented in software. We
assume a 32-bit CPU machine with fast multiplication of words, and a moderate
size of working area (about 4K bytes).

In a narrow sense, a stream cipher system is to generate cryptographically secure
pseudorandom numbers (PN) from a shared key, and take exclusive-or with the
plain message to obtain ciphered message. One way to generate such PN is to use
a non-secure generator like LFSR (which we call the mother generator), initialize
it by using the key, and then apply some complicated functions to its outputs to
obtain a secure sequence.

Along this line, we propose to use a GF(2)-linear generator whose internal state
consists of 19937 bits, Mersenne Twister (MT). MT is invented by two of the
authors [2]. It has period 219937 − 1 and uniform equidistribution property upto
623 dimension. Its initialization scheme is improved to accept an array of any
length as an initial seed in 2002. The C-code is available from the homepage [3].

As described in this homepage, a way to generate a cryptographically secure PN
sequence is to use MT, and compress its outputs by using, say, MD5 or SHA1.

1.1. CryptMT. The first proposal in this paper is even simpler. MT generates
a sequence of unsigned 32 bit integers (which from now on we shall call words).
The given key and initial value are concatenated and passed to the initialization

Date: April 21, 2005.
Key words and phrases. Mersenne Twister, AES, stream cipher, CryptMT, Fubuki.

1

2 MAKOTO MATSUMOTO, TAKUJI NISHIMURA, MARIKO HAGITA, AND MUTSUO SAITO

scheme (§4) of MT. We prepare a variable accum of word size, which is set to 1 at
the beginning.

Then, we iterate the following process to obtain (probably) a cryptographically
secure PN sequence of 8-bit integers (= byte):

1. Generate one pseudorandom word gen rand by MT.
2. Multiply it to accum:

accum← accum× (gen rand | 1).
3. Output the most significant 8 bits of accum. Go to Step 1.

To make the sequence more secure, CryptMT discards the first 64 bytes of output.
Here the C-language-like notation “|” denotes bitwise-OR operation. This oper-

ation is to make the multiplier odd (otherwise, after several iteration accum would
be zero). Multiplication is considered modulo 232.

This method generates a PN sequence of bytes, which fits to the situation where
a plain text is a sequence of bytes. We call this stream cipher CryptMT.

Our experiment shows that CryptMT is faster by a factor of 1.5–2.0 than the well-
optimized counter-mode AES (see §5.1), widely known as rijndael-alg-fst.c.
The size of the internal state of MT seems to be enough to make any kind of
time-memory-trade-off attacks infeasible.

If all bits of accum were used (differently from the 8 bits as in CryptMT) then
the sequence would not be cryptographically secure, since from the change of the
accum we could recover the output of MT (except for the least significant bit), then
by linear algebra one can decide the internal state after observing 19937 bits of
the output. However, if only the most significant 8 bits after multiplication are
observed, then we can not imagine how to obtain the internal state of MT.

It is important to use the most significant bits: the least significant bit is always
1, and the second bit of accum coincides with the summation (modulo 2) of the
second bit of the outputs so far, from which one could compute MT’s internal
state. The most significant bits seem to be safe, since the bit-diffusion pattern of
the multiplication is from right to left, and most significant bits gather information
of all the less significant bits of the two operands: accum and the output of MT.

The above gave a complete description of CryptMT, except for the description
of the mother generator MT (§4). Security of CryptMT is largely depending on the
mother generator MT and its initialization. The facts that (1) the size of internal
state of MT is huge, (2) 3/4 of the output bits of MT are discarded, (3) MSBs
after multiplication gather information of all bits, and (4) initialization is highly
nonlinear, seem to imply high security, but we need more detailed study.

1.2. Fubuki. The other proposal in this paper is Fubuki cipher system. The basic
idea is: “software is soft, so we can make the choice of encryption functions as
flexible as possible.” This may be contrasted to Rijndael block cipher, where in
each round the encryption function is fixed: just the key (to be exor-ed) is changed.
The proposal of Fubuki is to change the parameters of each functions.

To fix the situation, we assume that a block consists of 4 words (i.e. 4 of 32-bit
integers), but the reference implementation of Fubuki allows 4, 8 or 16 words as
one block. We use the notations

W := the set of 32 bit words, B := W 4 = the set of blocks.

MERSENNE TWISTER AND FUBUKI STREAM/BLOCK CIPHER 3

A plain message is a finite sequence of blocks, i.e. an element of BL, where L ∈ N

is the length of the message.
This paper considers a stream cipher in a more general sense than taking exclusive-

or with PN. Let K be the key space. In a typical case,

K = W 4 = The set of 128 bits.

Definition 1.1. A stream cipher is a sequence of functions called encoding func-
tions

Ei : B → B, i = 1, 2, . . . ,

and another sequence of functions called decoding functions

Di : B → B, i = 1, 2, . . .

such that Di ◦ Ei = id (the identity function).
A plain message B1, B2, . . . is encoded into E1(B1), E2(B2), . . . , and then de-

coded by D1(E1(B1)), D2(E2(B2)), Each of Ei, Di depends on both the key K
and i.

Remark 1.2. If Ei and Di are independent of i, then the system is called a block
cipher.

Remark 1.3. A stream cipher in Definition 1.1 can be used to generate a crypto-
graphically secure PN, by merely encoding a message with all zero.

The basic strategy of Fubuki is to compose several simple encryption functions,
i.e., Shannon’s “product” in his 1949 paper.

We use the following definition, which is nothing but a usual block cipher system
(if we consider the parameter set as the set of keys).

Definition 1.4. A primitive encryption family PF with a parameter set P is a
mapping

PF : P × B → B
with its inverse family PF ′

PF ′ : P × B → B
such that for all P ∈ P and B ∈ B

PF ′(P, (PF (P, B))) = B

holds.

The size of P may vary among different PEFs.
Let us denote by

PF (P,−) : B → B, B �→ PF (P, B)

the bijection associated to the PF with parameter P .
Fubuki prepares nine different primitive encryption families. Four of them are

designed to diffuse the bit-information mainly inside each words in the block (word-
wise PEF), four of them are designed to mix the information of words (inter-word
PEF), and the last one is designed to cut off the incidence relation of bits in each
word (vertical rotate, denoted by PFv-rot).

The given key and initial value are passed to initialize the mother generator
MT. Using the non-secure PN sequence generated by MT, Fubuki pseudorandomly
selects one of the four wordwise PEFs, say PFword

1 , and its parameter Pword
1 ,

and apply it to B1. Then similarly selects one of the four inter-word PEFs, say

4 MAKOTO MATSUMOTO, TAKUJI NISHIMURA, MARIKO HAGITA, AND MUTSUO SAITO

PF inter
1 , and its parameter P inter

1 . Then apply PFv-rot with pseudorandomly
selected parameter Pv-rot

1 .
This is one round of Fubuki encryption, and it is repeated several times. The

choice in the reference code is four times iteration for each block. Thus, the block
Bi is encoded by applying

Ei := Round4,i ◦ Round3,i ◦ Round2,i ◦ Round1,i

where each round is given by

Roundj,i =
PFv-rot(Pv-rot

j,i ,−) ◦ PF inter
j,i (P inter

j,i ,−) ◦ PFword
j,i (Pword

j,i ,−) (j = 1, 2, 3, 4),

where PEFs and their parameters are pseudorandomly chosen by MT. (The PF inter
j,i

is uniformly pseudorandomly chosen from four inter-word PEFs and its parameter
is uniformly chosen from its parameter space. Similarly for PFword

j,i .)
The decoding function Di is its inverse, given by

Ei := Round′
1,i ◦ Round′

2,i ◦ Round′
3,i ◦ Round′

4,i

where each round is given by

Round′
j,i =

PFword
j,i

′
(Pword

j,i ,−) ◦ PF inter
j,i

′
(P inter

j,i ,−) ◦ PFv-rot′(Pv-rot
j,i ,−) (j = 1, 2, 3, 4),

where ′ denotes inverse PEFs.
The design raionale of Fubuki is as follows.
1. An idea is to choose simplest operations (i.e. those in the instruction set of

typical CPU, such as exor or multiplication) as the building blocks of PEF.
Any complicated operation is made from simple operations, so freely com-

posing simple ones seems better than fixing one way.
2. However, if it is too free, then (with very small probability) it may happen

that one same PEF is selected all the time. So, there should be a trade-off
between freedom to choose a combination of PEFs and restriction to assure
good bit-information diffusion.

Fubuki did this by making each PEF a combination of a few simple oper-
ations.

3. Fubuki has no S-boxes. In some sense, the integer multiplication replaces
the S-boxes. The integer multiplication has a good and fast bit-diffusion
property. It has two weakness: (1) the bit-diffusion is only from the right
bits to the left ones, (2) it is (bi)-linear, so differential cryptanalysis is valid.
However, Fubuki compensate this by (1) suitable bit-operations with left-to-
right diffusion property and (2) combining exclusive-or to make it non-linear.

4. Fubuki consumes far (e.g. 12 times more) PNs (from its mother generator)
than the size of the plain message: since the parameter space of each PEF
is large (actually we arranged the size to that of one block), every round
consumes three times block-size of PNs.

This redundancy makes it difficult to guess the internal state of the mother
generator, even by chosen-plain text attack with chosen keys and initial values.

Actually, Fubuki has an aspect of block cipher. Suppose that the key and the
initial value are fixed, and these are repeatedly used in a stream cipher for different
texts (which is prohibited usually for stream cipher; it is a block cipher scheme).

MERSENNE TWISTER AND FUBUKI STREAM/BLOCK CIPHER 5

Then, a stream cipher in a narrower sense (i.e. exor with PN) is easily broken by
known-plain text attack, since the PN sequence is recovered by taking exor.

In a block cipher, it is required that Ei (and Di) are difficult to guess from a
(even huge) number of pairs (B, Ei(B)) where B can be chosen (i.e. chosen plain
text attack). Fubuki is designed to have this type of resistance.

2. Description of Fubuki

2.1. Overview. Fubuki prepares four wordwize PEFs

empr, emer, emps, emes

and four inter-word PEFs
ma, mem, ome, eme

and one PEF vert rotate.
One round of Fubuki consists of three stages: choose one of the four wordwise

PEFs and apply it to the plain block, then choose one of the four inter-word PEFs,
then apply tt vert rotate. In C-like notation, it is described as

c = pseudorandom_two_bits();
switch (c) {
case 0: crypt_empr(msgbuf); break;
case 1: crypt_emer(msgbuf); break;
case 2: crypt_emps(msgbuf); break;
case 3: crypt_emes(msgbuf); break;
}

c = pseudorandom_two_bits();
switch (c) {
case 0: crypt_ma(msgbuf); break;
case 1: crypt_mem(msgbuf); break;
case 2: crypt_ome(msgbuf); break;
case 3: crypt_eme(msgbuf); break;
}
crypt_vert_rotate(msgbuf);

Here, msgbuf is an array of block size, and each PEF rewrites this array. The
parameters are generated in each of PEF by calling MT, so not visible in this
description. This round is iterated for Iteration times (which is 4 in default case,
for 128 bit blocks).

The two-bits pseudorandom integers are generated as follows. We use C-language-
like notation.
genrand_tuple_int32(func_choice, 4);
func_choice[2] *= (func_choice[0] | 1);
func_choice[3] *= (func_choice[1] | 1);
func_choice[0] ^= (func_choice[3] >> 5);
func_choice[1] ^= (func_choice[2] >> 5);

Here, the first function fills four PNs into the array func choice. The next four
transformations mixes these four words. The notation *= is to multiply the right
hand side to the left and write to the left, ^= is similar operation with exclusive-or,
| is bitwise OR operation, >> 5 is bit-shift-to-right by 5 bits.

6 MAKOTO MATSUMOTO, TAKUJI NISHIMURA, MARIKO HAGITA, AND MUTSUO SAITO

Fubuki uses the 128 bits in this array for function choice: first use the most
significant two bits of func choice[0], then next two bits of func choice[0], and
so on. Thus, if Iteration=4, then most significant 16 bits of func choice[0] are
used to choose PEFs 2× 4 times.

2.2. Primitive encryption families. To make the explanation and the imple-
mentation simpler, we choose one uniform parameter space P for all PEFs. Let t
be the number of words in the block (typically four, and assumed to be a power of
2). Then, B := W t, and we set

P := W t × {1, 2, . . . , t− 1}.
We denote an element of P ∈ P and B ∈ B by

P = (p0, p1, . . . , pt−1, jump), B = (b0, b1, . . . , bt−1).

Each of bi is considered as a variable of wordsize.

2.3. Wordwise PEFs. Each of wordwise PEFs is described as follows. Again, t
is the number of the words in a block.

We rewrite the block B as follows. Let j = 0. The first operation is

bj ← bj ⊕ pj ,

where ⊕ is the bit-wise exclusive-or operation. Note that its inverse is itself.
Then, multiply a constant

bj ← bj × cj mod 232.

The constant cj should be (multiplicatively) invertible modulo 232, i.e., should
be odd. Their inverses are necessary in decoding, and would be time-consuming.
So, before starting encryption, Fubuki prepares 32 pseudo-randomly chosen 32-
bit integers m0, m1, . . . , m31, using MT, and store them in an array mult table.
Before decoding, Fubuki computes their inverses m′

0, m
′
1, . . . , m′

31, and store them
in an array inv table.

These multipliers mk (k = 0, . . . , 31) are the first 32 outputs of the initialized
MT, but by bit-operations we set the least significant four bits of mk to 1011 for
k even, and to 0111 for k odd. Moreover, the ((k mod 8) + 1)-st bit and ((k
mod 8) + 2)-nd bit of mk are set to 1 and 0, respectively. This is to avoid too
trivial multipliers like 1 or 232 − 1.

The constant cj is chosen from these multipliers by putting

cj := mkj
, kj = (pj+�modt >> (32− 5)).

Here, � is a constant and >> (32 − 5) means right-shift by 32− 5 bits. For empr,
emer, emps, emes, the constant � is 1, 2, 2, 3, respectively.

Such a multiplication diffuses information of bits in bj from right to left. To
force the diffusion in the inverse direction, Fubuki prepares 32 pseudorandomly
chosen 32-bit constants a0, a1, . . . , a31 using MT, stored in an array add table of
32 words. This array is filled with the next 32 outputs of MT after setting mk’s.
To avoid trivial constants, apply the following operation:

for (i=0; i< 32; i++) {
u32 s;
s = (i * 1103515245 + 12345) & 31;
s ^= (s >> 2);
add_table[i] <<= 5;

MERSENNE TWISTER AND FUBUKI STREAM/BLOCK CIPHER 7

add_table[i] |= s;
}

That is, the content of add table[i] is shifted to left by five bits (the notation <<=
5), and the least five bits are set to be si which is given by

si ← (1103515245i + 12345) mod 32,
si ← si ⊕ (si >> 2),

for i = 0, . . . , 31. (The notation & is bitwise and, so & 31 is taking modulo 32.)
This is just to make the correspondence i → si a complicated permutation on
{0, 1, . . . , 31}. Then, apply the operation

b(j+jump)modt ← b(j+jump)modt � (add table[bj >> (32− 5)]),(1)

where � is plus (modulo 232) for empr and empr, and exclusive-or for emer and
emes. Here, jump is a component of the parameter. Each PEF is designed to
rewrite bj depending on the information in bj−jumpmodt.

The parameter jump is not randomly chosen: jump is set to 1 before encoding
each block, and after executing each PEF, it is rewritten by

jump← jump× 2;
if jump ≥ t then jump← 1.

Thus, jump moves 1, 2, 4, 8, . . . , and if it becomes more than or equal to t, it is
set to 1. This is to scatter the information of one word to the other words in the
block as quick as possible. Partial sum of 1, 2, 4, . . . represents any integer, so
after log2(t) times iteration of PEFs, the information of one word tends to pass to
all the other words in the block.

A shortcoming of a feedback (1) is that there are only 32 different patterns may
occur. However, the most significant bits of bj gather the information of all the
lower bits by multiplying cj , so a change of one bit in bj tends to be reflected in the
choice of an element in the array add table, so having good bit-diffusion property.

The final operation of wordwise PEF is “rotation” or “shift”. Using pj , obtain
pseudorandom integer between 16 and 23 by the following bit-operation

sj ← ((pj >> (32− 4))|0x10)&0x17,(2)

where 0x denotes that the following number is hexadecimal. Then, for the “rota-
tion” operation

bj = ((∼ bj) << (32− sj))|(bj >> sj);

is computed. This is rotate to the right by s bits, but the rotated s bits are reversed.
The unary operator ∼ means the bit reverse.

The “shift” operation is

bj ← bj ⊕ ((∼ bj) >> sj).(3)

Since sj is not less than 16 and a word is 32-bit, the inverse of this operation is
itself. The choice of the direction right is to compensate the multiplication’s “right
to left” diffusion.

The “rotate” is chosen for empr and emer, and the “shift” is chosen for emps and
emes.

The above operations (i.e. the operations stated in this subsection) are applied
for j = 0, 1, . . . , t− 1 in this order. This is the description of four wordwise PEFs.

8 MAKOTO MATSUMOTO, TAKUJI NISHIMURA, MARIKO HAGITA, AND MUTSUO SAITO

2.4. Inter-word PEFs. Wordwize PEFs are mainly to mix the information of
each word, except for the operation involving jump, which passes (only) 5-bit of
information to another word.

Inter-word PEFs ma, mem, ome, eme are designed to pass more information of
each word to the other words.

First we describe ma. Let j = 0. Put k := (j− jump) mod t. Then, we apply the
Feistel-network-type operation

bj ← bj + (bk × pj).

Compute a pseudorandom integer sj by (2), and apply the “shift” operation (3).
Iterate this for j = 0, 1, . . . , t − 1, in this order. This describes the PEF ma. The
other three PEFs are as follows.

Let j = 0. Put k := (j − jump) mod t. Generate a pseudorandom integer s
between 0 and t− 1 such that s 	= j, by

s← pj >> (32− log2(t));
if s = j then s← ((s− 1) mod t).(4)

Then apply the following operation

bj ← (bj ⊕ (bk × bs))− pj ;
bj ← bj ⊕ (bj >> 16);

in the case of mem, and apply

bj ← (bj ⊕ (bk × (bs�pj));
bj ← bj ⊕ (bj >> c);

where � =bitwise-OR and c = 16 for ome and � = ⊕ and c = 17 for eme. Iterate
this for j = 0, 1, . . . , t−1, in this order. This completes the description of inter-word
PEFs.

2.5. crypt vert rotate. This PEF is to cut of the incidence relation among bits
in each word. Put k := 2 ∗ (p0 + pt−1) + 1 (modulo 232). Put

jump odd := (jump− 1)|1,

which is the largest odd integer not exceeding jump. We consider B to be t × 32
matrix with components 0-1, and permute each row vector of B selected by the bit
mask k (i.e., if n-th bit of k is 1, then the n-th row is selected). The permutation
of a row vector is rotation with lag jump odd. Namely, a t-dimensional row vector
t(x0, x1, . . . , xt−1) is mapped to t(xo, x1+o, . . . xt−1+o), where o = jump odd and
the subscripts are considered modulo t. The jump odd is forced to be odd, since it
is faster to compute a cyclic permutation.

2.6. Security of Fubuki. Heuristically, one round of Fubuki has much better bit-
diffusion property than one round of AES. Each of steps in one round in AES has
some corresponding steps in Fubuki: ByteSub and ShiftRow in AES are replaced
by wordwise PEFs (multiplication plus feedback from right-to-left (1)), MixCol-
umn with inter-word PEFs and AddRoundKey appears in every PEFs where the
parameters pi are added, exor-ed, or subtracted. The 19937 bits of internal state
of MT seems to make time-memory-trade-off attacks infeasible. Although, we have
to say that we need to study more on the security, such as difference propagation
property.

MERSENNE TWISTER AND FUBUKI STREAM/BLOCK CIPHER 9

3. Pseudorandom number generator

The mother PN generator for Fubuki should be very fast, but the cryptographic
security will not matter so much, because of the redundancy. Suppose that one
block consists of t = 4 words. Each of the encoded blocks depends on 3× t+1 = 13
blocks of PNs in a complicated manner, which would suffice to prohibit any guess
on the PNs from the encoded result.

It is preferable to have a PN sequence with no correlation among consecutive
13 blocks. The Mersenne Twister [2] is proved to have no correlation among 623
words, so it seems to suffice.

In a 2002 version, MT is incorporated with an initialization scheme which admits
an array of arbitrary length as the initial seeding vector [3]. The given key and
the initial value (to the stream cipher) are concatenated to give one array, which
is passed to the initialization scheme of MT. The initialization is not designed for
cryptographic purpose, but it seems to have enough resistance, so we keep it as is.
We need to say that there are several points which can be improved.

4. Mersenne Twister

MT generates a PN word sequence by the GF(2)-linear recursion

w624+i = w397+i ⊕ ((wi&0x80000000)|(w1+i&0x7fffffff))A (i = 0, 1, 2, . . .).

Here wi (i = 0, 1, 2, . . .) are 32-bit integers, each of which is considered as 32-
dimensional row vectors over the two element field GF(2). The C-like hexadecimal
notation 0x80000000 denotes the vector whose components are all zero except for
the left most 1. Thus, ((wi&0x80000000)|(w1+i&0x7fffffff)) is the row vector
obtained by concatenating the MSB of wi and all bits but the MSB of w1+i. To
this vector a constant 32 × 32 matrix A is multiplied from the right. This matrix
A is of the form

1
1

. . .
1

a31 a30 · · · · · · a0

,

and so the multiplication is computed by

xA =
{

shiftright(x) (if the LSB of x is 0)
shiftright(x)⊕ a (if the LSB of x is 1),

where a is a constant vector

a = (a31, a30, . . . , a0) = 0x9908B0DF in the hexadecimal notation.

These constants are chosen so that the period of the sequence is 219937 − 1.
For initialization, we need to specify w0, w1, . . . , w623 as the initial state (to be

precise, all the 31 bits of w0 but the most significant bit are neglected in generating
the next word, so the state space has 624 × 32 − 31 = 19937 bits). The output
sequence of MT is w624, w625,

The initialization is particularly important in the case of MT. Because of the lin-
earity and the sparseness of the recursion of MT, if the initial state has too many
zeroes, then the output sequence has same tendency for more than 10000 out-
puts. The 2002 version of MT [3] has an initialization function init by array(u32

10MAKOTO MATSUMOTO, TAKUJI NISHIMURA, MARIKO HAGITA, AND MUTSUO SAITO

init key[], int key length), whose first argument is an array of 32-bit words
with length given by the second argument, which is described as follows.

First, w0, . . . , w623 are set to a fixed nontrivial value by a recursion

w0 ← 19650218,
wi ← ((wi−1 ⊕ (wi−1 >> 30)) + i)× 1812433253(5)

(1 ≤ i ≤ 623), where wi are considered as 32-bit unsigned integer variables, and
every arithmetic operation is modulo 232. (The constant 19650218 is the birthday
of one of the authors, chosen without reason. The other constant 1812433253 is a
multiplier for a linear congruential generator [1, P.106], here chosen without reason.)

This recursion is chosen to have a good bit-diffusion property (similarly to (3)),
and the assignment wi−1 �→ wi is bijective. The multiplication with constant has
a good bit-mixing property, except for that the diffusion of the bit information is
always from right to left. The most significant two bits (which gather the informa-
tion of all bits after multiplication) are sent to the least significant two bits of wi−1

by exclusive-or (the same with (3)).
Addition with i is to avoid the following phenomenon. Suppose that i is not

added in the recursion (5). Suppose that an initial value w0 is chosen (although it
is fixed to 19650218 in the above implementation) and let w0, w1, . . . , w623 be the
generated sequence. Suppose that in another initialization another initial value w′

0

is chosen, which generates a sequence w′
0, w

′
1, . . . , w′

623. What we worry is that it
may happen that w′

0 = w1 by accident (or w′
0 = w2, or alike), and then, w′

i = wi+1

for i = 0, 1, . . . , 622. Such similarity of the initial states yields correlated outputs
for 10000 outputs or so according to the experiments. The addition with i avoids
these phenomena.

The initial seed is given as an array init key[length] of an arbitrary length
length upto 64. The initialization scheme init by array rewrites the above
w1, . . . , w623 by the following recursive substitution:

wi ← (wi ⊕ (((wi−1 ⊕ (wi−1 >> 30))× 1664525))
+init key[i mod length] + (i mod length)(6)

for i = 1, 2, . . . , 623. Note that every multiplication or addition is done modulo
232. This recursion is chosen in the same spirit as (5), with adding init key[]
meanwhile. The reason why taking “i modulo length” at the last of the recur-
sion is as follows. Suppose that we don’t take modulo length. Suppose that one
initialization is given by an array init key[], and another initialization is given
another array of the twice length with the content being the two repetition of the
original array. Then the two initializations yield the same state. Such phenomenon
is avoided by taking modulo length.

Then, we substitute the first word

w0 ← w623,

and again apply a similar recursive substitution

wi ← (wi ⊕ (((wi−1 ⊕ (wi−1 >> 30))× 1566083941))− i(7)

for i = 1, 2, 3, . . . , 623.
Finally, the most significant bit of w0 is set to one, to avoid the zero initial state.
According to the experiments, this initialization has a good bit-distribution prop-

erty. Any one bit of the change in the initial seed array init key[] dramatically
changes the initial state. The worst related keys seem to be those having difference

MERSENNE TWISTER AND FUBUKI STREAM/BLOCK CIPHER 11

algorithm initial encrypt decrypt
PowerPC crypt-mt 256601 29 30
1.33GHz fubuki 414029 204 407

rijndael-alg-fst 2793 41 38
rijndael-alg-ref 33117 1068 1063

PentiumM crypt-mt 279123 20 19
1.4GHz fubuki 489662 133 256

rijndael-alg-fst 3192 40 41
rijndael-alg-ref 85253 916 916

Table 1. execution time (number of cycles per byte)

only at the last word of init key[]. However, the output of MT starts from w624,
which depends on w397, which seem to be difficult to control because of at least
397 − (64 + 64) times application of (6) at the last word of init key[]. (This
64 + 64 is because the size of the key and the size of the initial value are upto 64
words). In addition, each word of the internal state is transformed by the nonlinear
bit-mixing recurrence (7) on the key. It seems very difficult to utilize the technique
of differential cryptanalysis with respect to the key.

Remark 4.1. In the original MT, the output is transformed by a linear trans-
formation to attain nearly optimally high-dimensional equidistribution at MSBs.
This is called Tempering. We removed this transformation, since we think it non-
necessary because of the application of complicated functions to the outputs of MT
in the encryption process.

5. Comparison with AES

5.1. Speed and memory. Table 1 lists the approximate number of CPU cycles
consumed to (1) setup keys, (2) encrypt one byte, (3) decrypt one byte, for four
stream ciphers CryptMT, Fubuki, optimized AES (rijndael-alg-fst.c) and reference
AES (rijndael-alg-ref.c) [4]. Rough estimate of the size of the working area is 2.5K
bytes, 3K bytes, 10.5K bytes, and 1.4K bytes, respectively.

5.2. Bit-diffusion. Let E0 : B → B be one round of Fubuki encryption, with
both the key and the initial value are 128 bits of zeroes. To grasp the bit-diffusion
property of E0, we compute

∆fubuki,i := E0(εi)⊕ E0(0),

where εi is a 128-bit vector with all zero components except for the i-th bit being
1. For comparison, we compute

∆rijndael,i := A0(εi)⊕A0(0),

where A0 is the 2-round AES with randomly chosen key.
The result for i = 1 is described in Table 2. The bit patterns suggest that one

round of Fubuki seems to have quicker bit-diffusion property than two rounds of
rijndael. Similar result is observed for all 1 ≤ i ≤ 128.

12MAKOTO MATSUMOTO, TAKUJI NISHIMURA, MARIKO HAGITA, AND MUTSUO SAITO

∆fubuki,1 ∆rijndael,1

00100010111011011111001100110011
11101111001111111100110100011100
00101101111110010000000100100010
10100001000101110110011111100101

00111110000000000000000000000000
00000000000000000000000001010011
00000000000000001111000100000000
00000000010100000000000000000000

Table 2. Differential of one-round Fubuki and two-round AES

References

[1] Knuth, D. E.: The Art of Computer Programming. Vol. 2. Seminumerical Algorithms 3rd Ed.
Addison-Wesley, Reading, Mass., (1997).

[2] Matsumoto, M. and Nishimura, T. Mersenne Twister: A 623-dimensionally equidistributed
uniform pseudo-random number generator, ACM Transactions on Modeling and Computer
Simulation, 8 (1998) 3–30.

[3] Matsumoto, M. and Nishimura, T. Mersenne Twister Homepage.
http://www.math.sci.hiroshima-u.ac.jp/˜m-mat/emt.html

[4] AES lounge: http://www.iaik.tu-graz.ac.at/research/krypto/AES/

Department of Mathematics, Hiroshima University, Hiroshima 739-8526, JAPAN

E-mail address: m-mat@math.sci.hiroshima-u.ac.jp

Department of Mathematics, Yamagata University, Yamagata Japan

E-mail address: nisimura@sci.kj.yamagata-u.ac.jp

Department of Information Science, Ochanomizu University, Tokyo Japan

E-mail address: hagita@is.ocha.ac.jp

Department of Mathematics, Hiroshima University, Hiroshima 739-8526, JAPAN

E-mail address: saito@math.sci.hiroshima-u.ac.jp

