
Attack the Dragon

H̊akan Englund and Alexander Maximov

Dept. of Information Technology, Lund University,
P.O. Box 118, 221 00 Lund, Sweden

Abstract. 1 Dragon is a word oriented stream cipher submitted to the ECRYPT project, it
operates on key sizes of 128 and 256 bits. The original idea of the design is to use a nonlinear
feedback shift register (NLFSR) and a linear part (counter), combined by a filter function
to generate a new state of the NLFSR and produce the keystream. The internal state of
the cipher is 1088 bits, i.e., any kinds of TMD attacks are not applicable. In this paper we
present two statistical distinguishers that distinguish Dragon from a random source both
requiring around O(2155) words of the keystream. In the first scenario the time complexity is
around O(2155+32) with the memory complexity O(232), whereas the second scenario needs
only O(2155) of time, but O(296) of memory. The attack is based on a statistical weakness
introduced into the keystream by the filter function F . This is the first paper presenting an
attack on Dragon, and it shows that the cipher does not provide full security when the key
of size 256 bits is used.

1 Introduction

A stream cipher is a cryptographic primitive used to ensure privacy over a communication channel.
A common way to build a stream cipher is to use a keystream generator (KSG) and add the
plaintext and the output from the keystream generator, resembling a one-time pad. A block cipher
is another cryptographic primitive, which could be considered as a one-to-one function, mapping
a block of the plaintext to a block of the ciphertext. Although block ciphers are well studied,
stream ciphers can offer certain advantages compared to block ciphers. Stream ciphers can offer
much higher speed, and can be constructed to be much smaller in hardware, and thus they are of
great interest to the industry. To mention a few of the most recent proposals of such word-oriented
KSGs are, e.g., VMPC [1], RC4A [2], RC4 [3], SEAL [4], SOBER [5], SNOW [6, 7], PANAMA [8],
Scream [9], MUGI [10], Helix [11], Rabbit [12], Turing [13], etc.

The NESSIE project [14] was funded by the European Unions Fifth Framework Program
and was launched in 2000. The main objective was to collect a portfolio of strong cryptographic
primitives from different fields of cryptography, one of those fields was stream ciphers. During those
three years of NESSIE new techniques for cryptanalysis on stream ciphers were found, and many
new proposals were broken. After a few rounds of the project evaluation, all of the stream cipher
proposals were found to contain some weaknesses. At the end, no stream cipher was included in
the final portfolio.

The situation clearly requires the cryptographic community devote greater attention to design
and analysis of stream ciphers. Due to this reason, the European project ECRYPT announced a
call for stream cipher primitives. 35 proposals were submitted to the project by April 2005, and
most of them were presented at the workshop SKEW 2005 [15] in May.

Cryptanalysis techniques discovered during the NESSIE project have allowed to strengthen
new designs greatly, and to break new algorithms has become more difficult. However, there are
many good submissions to ECRYPT, and the stream cipher Dragon [16] is one of them.

Dragon, designed by a group of researches, Ed Dawson et. al., is a word oriented stream cipher
based on a linear block (counter) and a nonlinear feedback shift register (NLFSR) with a very
large internal state of 1088 bits, which is updated by a nonlinear function denoted by F . This
function is also used as a filter function producing the keystream. The idea to use a NLFSR is
quite modern, and there are not many cryptanalysis techniques on NLFSRs yet found.
1 This work is going to be presented at Indocrypt 2005.

This is the first work which propose an attack on Dragon. In a distinguishing attack one has
to decide whether a given sequence (keystream) is the product of a cipher, or a truly random
generator. In this paper we show how statistical weaknesses in the F function can be used to
create a distinguisher for Dragon. Our distinguishing attack requires around O(2155) words of
keystream from Dragon, it has time complexity O(2155+32) and needs O(232) of memory, an
alternative method is also presented that only requires time complexity O(2155) but needs O(296)
of memory. This is an academic attack which shows that Dragon does not provide full security
when a key of size 256 bits is used, i.e., it can be broken faster than exhaustive search. This kind
of analysis is, perhaps, the most powerful attack on stream ciphers, and, in some cases, it can be
turned into a key recovery attack.

The outline of the paper is the following. In Section 2 a short description of the stream cipher
Dragon is given. Afterward, in Section 3, we derive linear relations and build our distinguisher. In
Section 4 we summarize different attack scenarios on Dragon, and finally, in Section 5 we present
our results, make conclusions and discuss possible ways to overcome the attack.

1.1 Notations and Assumptions

For notation purposes we use ⊕ and � to denote 32 bit parallel XOR and arithmetical addition
modulo 232, respectively. By x � n we denote a binary shift of x by n bits to the right. We write
x(t) to refer the value of a variable x at the time instance t. By PExpr we denote a distribution of
a random variable or an expression “Expr”.

To build the distinguisher, we first make two reasonable assumptions common for linear crypt-
analysis:

(a) Assume that at any time t the internal state of NLFSR is from the uniform distribution, i.e.,
the words Bi are considered independent and uniformly distributed;

(b) Assume that the keystream words are independent.

2 A Short Description of Dragon

Dragon is a stream cipher constructed using a large nonlinear feedback shift register, an update
function denoted by F , and a memory denoted by M 2 . It is a word oriented cipher operating on
32 bit words, the NLFSR is 1024 bits long, i.e., 32 words long. The words in the internal state are
denoted by Bi, 0 ≤ i ≤ 31 . The memory M (counter) contains 64 bits, which is used as a linear
part with the period of 264. The cipher handles two key sizes, namely 128 bits keys and 256 bit
keys, in our attack we disregard the initialization procedure and just assume that the initial state
of the NLFSR is truly random.

Each round the F function takes six words as input and produces six words of output, as shown
in Figure 1. These six words, denoted by a, b, c, d, e, f , are formed from words of the NLFSR and
the memory register M , as explained in (1), where M = (ML||MR).

a = B0 b = B9 c = B16

d = B19 e = B30 ⊕ ML f = B31 ⊕ MR

(1)

The F function uses six Z232 → Z232 S-boxes G1, G2, G3, H1, H2 and H3, the purpose of
which is to provide high algebraic immunity and non-linearity. These S-boxes are constructed from

2 This is rather a new way to design stream ciphers, when two independent linear and nonlinear parts
are combined by a filter function. A similar idea is used in other proposals to ECRYPT, e.g., stream
cipher Grain and others.

Fig. 1. F -function.

two other fixed Z28 → Z232 S-boxes, S1 and S2, as shown below.

G1(x) = S1(x0) ⊕ S1(x1) ⊕ S1(x2) ⊕ S2(x3),
G2(x) = S1(x0) ⊕ S1(x1) ⊕ S2(x2) ⊕ S1(x3),
G3(x) = S1(x0) ⊕ S2(x1) ⊕ S1(x2) ⊕ S1(x3),
H1(x) = S2(x0) ⊕ S2(x1) ⊕ S2(x2) ⊕ S1(x3),
H2(x) = S2(x0) ⊕ S2(x1) ⊕ S1(x2) ⊕ S2(x3),
H3(x) = S2(x0) ⊕ S1(x1) ⊕ S2(x2) ⊕ S2(x3),

where 32 bits of input, x, is represented by its four bytes as x = x0||x1||x2||x3.
The exact specification of the S-boxes can be found in [16]. The output of the function F is

denoted as (a′, b′, c′, d′, e′, f ′), from which the two words a′ and e′ forms 64 bits of keystream as
k = a′||e′. Two other output words from the filter function are used to update the NLFSR as
follows B0 = b′, B1 = c′, the rest of the state is updated as Bi = Bi−2, 2 ≤ i ≤ 31. A short
description of the keystream generation function is summarized in Figure 2.

Input = {B0|| . . . ||B31, M}
1. (ML||MR) = M.
2. a = B0, b = B9, c = B16, d = B19, e = B30 ⊕ ML, f = B31 ⊕ MR.
3. (a′, b′, c′, d′, e′, f ′) = F (a, b, c, d, e, f).
4. B0 = b′, B1 = c′

5. Bi = Bi−2, 2 ≤ i ≤ 31.
6. M + +
7. k = a′||e′

Output = {k, B0, . . . , B31, M}

Fig. 2. Dragons’s Keystream Generation Function.

3 A Linear Distinguishing Attack on Dragon

3.1 Linear Approximation of the Function F

Recall, at time t the input to the function F is a vector of six words (a, b, c, d, e, f) = (B0, B9,
B16, B19, B30 ⊕ ML, B31 ⊕ MR). The output from the function is (a′, b′, c′, d′, e′, f ′). To simplify
further expressions let us introduce new variables.⎧⎪⎪⎪⎨

⎪⎪⎪⎩
b′′ = b ⊕ a = B9 ⊕ B0

c′′ = c � (a ⊕ b) = B16 � (B9 ⊕ B0)
d′′ = d ⊕ c = B19 ⊕ B16

f ′′ = f ⊕ e = B30 ⊕ B31 ⊕ ML ⊕ MR

(2)

If the words denoted by Bs are independent, then these new variables will also be independent
(since B19 is independent of B16 and random, then d′′ is independent and random as well; similarly,
independence of B16 lead to the independence of c′′, etc.).

The output from F can be expressed via (a, b′′, c′′, d′′, e, f ′′) as follows.

⎧⎪⎪⎨
⎪⎪⎩

a′ = (a � f ′′) ⊕ H1(b′′ ⊕ G3(e � d′′)) ⊕
(

(f ′′ ⊕ G2(c′′)) �
(
c′′ ⊕ H2(d′′ ⊕ G1(a � f ′′))

))
e′ = (e � d′′) ⊕ H3(f ′′ ⊕ G2(c′′)) ⊕

(
(d′′ ⊕ G1(a � f ′′)) �

(
(a � f ′′) ⊕ H1(b′′ ⊕ G3(e � d′′))

))
(3)

Let us now analyze the expression for a′. The variable b′′ appears only once (in the input of
H1), which means that this input is independent from other terms of the expression, i.e., the term
H1(. . .) can be substituted by H1(r1), where r1 is some independent and uniformly distributed
random variable. Then, the same will happen with the input for H2.

We would like to approximate the expression for a′ as

a′ = a ⊕ Na, (4)

where Na is some non uniformly distributed noise variable. If we XOR both sides with a and then
substitute a′ with the expression from (3), we derive

Na = a ⊕ (a � f ′′) ⊕ H1(r1) ⊕
(
(f ′′ ⊕ G2(c′′)) � (c′′ ⊕ H2(r2))

)
. (5)

Despite the fact that G and H are Z232 → Z232 functions, they are not likely to be one-to-one
mappings, consider the way the S-boxes are used as Z28 → Z232 functions 3 . It means that even
if the input to a G or a H function is completely random, then the output will still be biased.
Moreover, the output from the expressions (x⊕Gi(x) and similarly x⊕Hi(x)) is also biased, since
x in these expressions plays a role of an approximation of the Gi and the Hi functions. These
observations mean that the noise variable Na, is also biased if the input variables are independent
and uniformly distributed.

By a similar observation, the expression for e′ can also be approximated as follows.

e′ = e ⊕ Ne, (6)

where Ne is the noise variable. The expression for Ne can similarly be derived as

Ne = e ⊕ (e � d′′) ⊕ H3(r3) ⊕
(
(d′′ ⊕ G1(a′′)) � (a′′ ⊕ H1(r4)

)
, (7)

where a′′ = a � f ′′ is a new random variable, which is also independent since it has f ′′ as its
component, and f ′′ does not appear anywhere else in the expression (7). The two new variables
r3 and r4 are also independent and uniformly distributed random variables by a similar reason.
3 The cipher Turing uses similar Z232 → Z232 functions based on Z28 → Z232 S-boxes, which can be

regarded as a source of weakness. However, no attack was found on Turing so far.

3.2 Building the Distinguisher

The key observation for our distinguisher, is that one of the input words to the filter function F ,
at time t is partially repeated as input to F at time t + 15, i.e.,

e(t+15) = a(t) ⊕ M
(t+15)
L . (8)

Let us consider the following sum of two words from the keystream.

s(t) = a′(t) ⊕ e′(t+15) = (a(t) ⊕N (t)
a)⊕ (a(t) ⊕M

(t+15)
L ⊕N (t+15)

e) = N (t)
a ⊕ N (t+15)

e︸ ︷︷ ︸
N

(t)
tot

⊕M
(t+15)
L (9)

By this formula we show how to sample from a given keystream, so that the samples s(t) are
from some nonuniform distribution PDragon of the noise variable N

(t)
tot (later also referred as P

N
(t)
tot

).

Collected samples s(t) form a so-called type PType, or an empirical distribution. Then, we have two
hypothesis: {

H1 : PType is drawn according to PDragon

H2 : PType is drawn according to PRandom

. (10)

To distinguish between them with negligible probability of error (whether the samples are drawn
from the noise distribution PDragon or from the uniform distribution PRandom), the type should be
constructed from the following number of samples

N ≈ 1/ε2, (11)

where ε is the bias, calculated as

ε = |PDragon − PRandom| =
232−1∑
x=0

|PDragon(x) − PRandom(x)|. (12)

When the type PType is constructed, a common tool in statistical analysis is the log-likelihood
test. The ratio I is calculated as

I = D(PType||PRandom) − D(PType||PDragon)

=
232−1∑
x=0

PType(x) log2

PDragon(x)
PRandom(x)

, (13)

where D(·) is the relative entropy defined for any two distributions P1 and P2 as

D(P1||P2) =
∑
x∈Ω

P1(x) log2

P1(x)
P2(x)

, (14)

where Ω is the probability space.
Finally, the decision rule δ(PType) is the following

δ(PType) =

{
H1, if I ≥ 0
H2, if I < 0

. (15)

For more on statistical analysis and hypothesis testing we refer to, e.g., [17, 18].
The remaining question is how to deal with the counter value ML. Below we present a set of

possible solutions that one could consider.

(1) One possible solution would be to guess the initial state of the counter M (0) (in total 264

combinations), and then construct 264 types from the given keystream, assuming the value
M

(t)
L in correspondence to the guessed initial value of M (0). However, it will increase the time

complexity of the distinguisher by 264 times;

(2) One more possibility is to guess the first 32 bits M
(0)
R of the initial value of the counter M (0),

i.e., 232 values. If we do so, then we always know when the upper 32 bits ML are increased,
i.e., at any time t we can express M

(t)
L as follows.

M
(t)
L = M

(0)
L � ∆(t), (16)

where ∆(t) is known at each time, since M
(t)
R is known. Recall from (9), the noise variable

N
(t)
tot is expressed as s(t) ⊕ M

(t+15)
L . However, this expression can also be approximated as

s(t) ⊕ (M (0)
L � ∆(t+15)) → s(t) ⊕ (M (0)

L ⊕ ∆(t+15)) ⊕ N2, (17)

where N2 is a new noise variable due to the approximation of the kind “� ⇒ ⊕”. Since M
(0)
L

can be regarded as a constant for every sample s(t), it only “shifts” the distribution, but will
not change the bias. Consider that a shift of the uniform distribution is again the uniform
distribution, so, the distance between the noise and the uniform distributions will remain the
same. This solution requires O(232) guesses, and also introduce a new noise variable N2;

(3) Another possible solution could be to consider the sum of two consecutive samples s(t)⊕s(t+1).
Since ML changes slowly, then with probability (1 − 2−32) we have M

(t)
L = M

(t+1)
L , and this

term will be eliminated from the expression for that new sample. Unfortunately, this method
will decrease the bias significantly, and then the number of required samples N will be much
larger than in the previous cases.

In our attack we tried different solutions, and based on simulations we decided to choose
solution (2) for our attack, as it has the lowest attack complexity.

3.3 Calculation of the Noise Distribution

Consider the expression for the noise variable s(t) ⊕ M
(t+15)
L = N

(t)
a ⊕ N

(t+15)
e . For simplicity in

the formula, we omit time instances for variables.

N
(t)
tot = N (t)

a ⊕ N (t+15)
e = (a � f ′′) ⊕ (a � d′′) ⊕ H1(r1) ⊕ H3(r3)

⊕
((

f ′′ ⊕ G2(c′′)
)

�
(
c′′ ⊕ H2(r2)

)) ⊕
((

d′′ ⊕ G1(a′′)
)

�
(
a′′ ⊕ H1(r4)

))
(18)

We propose two ways to calculate the distribution of the total noise random variable N
(t)
tot. Lets

truncate the word size by n bits (when we consider the expression modulo 2n), then in the first case
the computational complexity is O(24n) . This complexity is too high and, therefore, requires the
noise variable to be truncated by some number of bits n � 32, much less than 32 bits. The second
solution has a better complexity O(n2n), but introduces two additional approximations into the
expression, which makes the calculated bias smaller than the real value, i.e., by this solution we
can verify the lower bound for the bias of the noise variable. Below we describe two methods and
give our simulation results on the bias of the noise variable N

(t)
tot.

(I) Consider the expression (18) taken by modulo 2n, for some n = 1 . . . 32. Then the distribu-
tion of the noise variable can be calculated by the following steps.
a) Construct three distributions, two of them are conditioned

P(G2(c′′) mod 2n|c′′), P(G1(a′′) mod 2n|a′′), P(H1(x) mod 2n)
4.

The algorithm requires one loop for c′′ (a′′ and x) of size 232. The time required is
O(3 · 232);

4 If the inputs to the Hi functions is random, their distributions are the same, i.e., PH1 = PH2 = PH3 .

b) Afterwards, construct two moore conditioned distributions

P(d′′⊕G1(a′′))�(a′′⊕H1(r4)) mod 2n|d′′) and P(f ′′⊕G1(c′′))�(c′′⊕H2(r2)) mod 2n|f ′′).

This requires four loops for d′′, a′′, x(= G1(a′′) mod 2n), and y(= H1(r4) mod 2n),
which takes time O(24n) (and similar for the second distribution);

c) Then, calculate another two conditioned distributions

P(Expr1|a) = P((a�f ′′)⊕(f ′′⊕G1(c′′))�(c′′⊕H2(r2)) mod 2n|a),

P(Expr2|a) = P((a�d′′)⊕(d′′⊕G1(a′′))�(a′′⊕H1(r4)) mod 2n|a).

Each takes time O(23n);
d) Finally, combine the results, partially using FHT, and then calculate the bias of the

noise:
PNtot = P(Expr1|a) ⊕ P(Expr2|a) ⊕ PH1 ⊕ PH3 .

This will take time O(23n + 3n · 2n).
This algorithm calculates the exact distribution of the noise variable taken modulo 2n, and
has the complexity O(24n). Due to such a high computational complexity we could only
manage to calculate the bias of the noise when n = 8 and n = 10:

εI |n=8 = 2−80.59

εI |n=10 = 2−80.57
. (19)

(II) Consider two additional approximations of the second � to ⊕ in (18). Then, the total noise
can be expressed as

N
(t)
tot = H1(r1)⊕H2(r2)⊕H3(r3)⊕H1(r4)⊕

(
G2(c′′)⊕c′′

)⊕(
G1(a′′)⊕a′′)⊕N3⊕N2,a⊕N2,e,

where
N3 = (a � f ′′) ⊕ (a � d′′) ⊕ f ′′ ⊕ d′′,

and N2,a and N2,e are two new noise variables due to the approximation � ⇒ ⊕, i.e.,
N2,a = (x�y)⊕ (x⊕y), for some random inputs x and y, and similar for N2,e. Introduction
of two new noise variables will statistically make the bias of the total noise variable smaller,
but it can give us a lower bound of the bias, and also allow us to operate with distributions
of size 232.
First, calculate the distributions P(Hi), P(G1(a′′)⊕a′′) and P(G1(c′′)⊕c′′), each taking time
O(232). Afterward, note that the expressions for N2,a, N2,e and N3 belong to the class of
pseudo-linear functions modulo 2n (PLFM), which were introduced in [19]. In the same
paper, algorithms for construction of their distributions were also provided, which take
time around O(δ · 2n), for some small δ. The last step is to perform the convolution of
precomputed distribution tables via FHT in time O(n2n). Algorithms (PLFM distribution
construction and computation of convolutions) and data structures for operating on large
distributions are given in [19]. If we consider n = 32, then the total time complexity to
calculate the distribution table for Ntot will be around O(238) operations, which is feasible
for a common PC. It took us a few days to accomplish such calculations on a usual PC with
memory 2Gb and 2×200Gb of HDD, and the received bias of Ntot was

εII |n=32 = 2−74.515. (20)

If we also approximate (M (0)
L � ∆(t)) → (M (0)

L ⊕∆(t))⊕ N2, and add the noise N2 to Ntot,
we receive the bias

ε∆
II |n=32 = 2−77.5, (21)

which is the lower bound meaning that our distinguisher requires approximately O(2155)
words of the keystream, according to (12).

4 Attack Scenarios

In the previous section we have shown how to sample from the given keystream, where 32 bit sam-
ples are drawn from the noise distribution with the bias ε∆

II |n=32 = 2−77.5. I.e., our distinguisher
needs around O(2155) words of the keystream to successfully distinguish the cipher from random.
Unfortunately, to construct the type correctly we have to guess the initial value of the linear part
of the cipher, the lower 32 bits M

(0)
R of the counter M . This guess increases the time complexity of

our attack to O(2187), and requires memory O(232). The algorithm of our distinguisher for Dragon
is given in Table 1.

for 0 ≤ M
(0)
R < 232

PType(x) = 0, ∀x ∈ Z232

∆ = 0 (or = −1, if M
(0)
R = 0)

for t = 0, 1, . . . , 2155

if (M
(0)
R � t) = 0 then ∆ = ∆ � 1

s(t) = a′(t) ⊕ e′(t+15) ⊕ ∆

PType(s
(t)) = PType(s

(t)) + 1

I =
�

x∈Z232
PType(x) · log2(PDragon(x)/2−32)

If I ≥ 0 break and output : Dragon

output : Random source

Table 1. The distinguisher for Dragon (Scenario I).

We, however, can also show that time complexity can easily be reduced downto O(2155), if
memory of size O(296) is available. Assume we first construct a special table T [∆][s] = #{t ≡ ∆
mod 264, s(t) = s}, where the samples are taken as s(t) = a′(t)⊕e′(t+15). Afterwards, for each guess
of M

(0)
L the type PType(·) is then constructed from the table T in time O(296). Hence, the total

time complexity will be O(2155 + 232 · 296) ≈ O(2155). This scenario is given in Table 2.

for 0 ≤ t < 2155

T [t mod 264][a′(t) ⊕ e′(t+15)] + +

for M
(0)
R = 0, . . . , 232 − 1

for ∆ = 0, . . . , 264 − 1

for x = 0, . . . , 232 − 1

PType

�
x ⊕ �

(∆ � M
(0)
R) � 32

��
+ = T [∆][x]

I =
�

x∈Z232
PType(x) · log2(PDragon(x)/2−32)

If I ≥ 0 break and output : Dragon

output : Random source

Table 2. Distinguisher for Dragon with lower time complexity (Scenario II).

5 Results and Conclusions

Two versions of a distinguishing attack on Dragon were found. The first scenarios requires a
computational complexity of O(2187) and needs memory only O(232). However, the second scenario
has a lower time complexity around O(2155), but requires a larger amount of memory O(296). These
attacks show that Dragon does not provide full security and can successfully be broken much faster
than the exhaustive search, when a key of 256 bits is used.

From the specification of Dragon we also note that the amount of keystream for an unique pair
initialization vector (IV) and key is limited to 264. However, since our attack is based on statistical
weaknesses in the F function, it is independent of the key, i.e., our attack can be performed by
observing several frames with different pairs of the key and IVs. I.e., our distinguisher has to
collect data from 2155−64 = 291 pairs of key and IV in order to be successful.

Actually, our distinguisher consists of 232 subdistinguishers. If one of them says “this is
Dragon”, then it is taken as the result of the final distinguisher. If all subdistinguishers output
“Random source”, then the overall result is “Random” as well 5.

Below we give a few suggestions how to prevent Dragon from this kind of attack:

1) The linear part M changes predictably, when the initial state is known. It might be more
difficult to mount the attack if the update of M would depend on some state of the NLFSR;

2) Another leakage is that two words a′||e′ are accessible to the attacker. If we would have an
access only to a′, or, may be, some other combination of the output from F (like, the output
a′||d′, instead), then it might also protect the cipher from this attack. However, both these
suggestions have weaknesses for different reasons;

3) One more weakness are poor Gi and Hi S-boxes. May be they can be constructed in a different
way, closer to some one-to-one mapping function.

Several new stream cipher proposals are based on NLFSRs and this topic has been poorly
investigate so far. We believe that it is important to study such primitives, since it could be an
interesting replacement for the widely used LFSR based stream ciphers.

References

1. B. Zoltak. VMPC one-way function and stream cipher. In B. Roy and W. Meier, editors, Fast Software
Encryption 2004, volume 3017 of Lecture Notes in Computer Science, pages 210–225. Springer-Verlag,
2004.

2. S. Paul and B. Preneel. A new weakness in the rc4 keystream generator and an approach to improve
the security of the cipher. In B. Roy and W. Meier, editors, Fast Software Encryption 2004, volume
3017 of Lecture Notes in Computer Science, pages 245–259. Springer-Verlag, 2004.

3. P. Rogaway and D. Coppersmith. A software-optimized encryption algorithm. Journal of Cryptology,
11(4):273–287, 1998.

4. P. Rogaway and D. Coppersmith. A software-optimised encryption algorithm. In R.J. Anderson,
editor, Fast Software Encryption’93, volume 809 of Lecture Notes in Computer Science, pages 56–63.
Springer-Verlag, 1994.

5. P. Hawkes and G.G. Rose. Primitive specification and supporting documentation for SOBER-
t16 submission to NESSIE. In Proceedings of First Open NESSIE Workshop, 2000. Available at
http://www.cryptonessie.org, Accessed October 5, 2003.

6. P. Ekdahl and T. Johansson. SNOW - a new stream cipher. In Proceedings of First Open NESSIE
Workshop, 2000.

7. P. Ekdahl and T. Johansson. A new version of the stream cipher SNOW. In K. Nyberg and H. Heys,
editors, Selected Areas in Cryptography—SAC 2002, volume 2595 of Lecture Notes in Computer Sci-
ence, pages 47–61. Springer-Verlag, 2002.

8. J. Daemen and C. Clapp. Fast hashing and stream encryption with PANAMA. In Fast Software
Encryption’98, volume 1372 of Lecture Notes in Computer Science, pages 60–74. Springer-Verlag,
1998.

5 The idea to use many subdistinguishers was first proposed in the attack on Scream [20].

9. S. Halevi, D. Coppersmith, and C.S. Jutla. Scream: A software-efficient stream cipher. In J. Daemen
and V. Rijmen, editors, Fast Software Encryption 2002, volume 2365 of Lecture Notes in Computer
Science, pages 195–209. Springer-Verlag, 2002.

10. D. Watanabe, S. Furuya, H. Yoshida, K. Takaragi, and B. Preneel. A new keystream generator MUGI.
In J. Daemen and V. Rijmen, editors, Fast Software Encryption 2002, volume 2365 of Lecture Notes
in Computer Science, pages 179–194. Springer-Verlag, 2002.

11. N. Ferguson, D. Whiting, B. Schneier, J. Kelsey, S. Lucks, and T. Kohno. Helix fast encryption and
authentication in a single cryptographic primitive. In Fast Software Encryption 2003, volume 2887 of
Lecture Notes in Computer Science, pages 330–346. Springer-Verlag, 2003.

12. M. Boesgaard, M. Vesterager, T. Pedersen, J. Christiansed, and O. Scavenius. Rabbit: A new high-
performance stream cipher. In Fast Software Encryption 2003, volume 2887 of Lecture Notes in
Computer Science, pages 307–329. Springer-Verlag, 2003.

13. G.G. Rose and P. Hawkes. Turing: A fast stream cipher. In T. Johansson, editor, Fast Software
Encryption 2003, To be published in Lecture Notes in Computer Science. Springer-Verlag, 2003.

14. NESSIE. New European Schemes for Signatures, Integrity, and Encryption. Available at
http://www.cryptonessie.org, Accessed August 18, 2003, 1999.

15. SKEW. Symmetric key encryption workshop. Available at
http://www2.mat.dtu.dk/people/Lars.R.Knudsen/stvl/, Accessed August 6, 2005, 2005.

16. K. Chen, M. Henricksen, W. Millan, J. Fuller, L. Simpson, E. Dawson, H. Lee, and S. Moon. Dragon:
A fast word based stream cipher. ECRYPT Stream Cipher Project Report 2005/006.

17. D. Coppersmith, S. Halevi, and C.S. Jutla. Cryptanalysis of stream ciphers with linear masking. In
M. Yung, editor, Advances in Cryptology—CRYPTO 2002, volume 2442 of Lecture Notes in Computer
Science, pages 515–532. Springer-Verlag, 2002.

18. J. Golić. Intrinsic statistical weakness of keystream generators. pages 91–103, 1994.
19. A. Maximov and T. Johansson. Fast computation of large distributions and its cryptographic appli-

cations. To appear at Asiacrypt 2005.
20. T. Johansson and A. Maximov. A Linear Distinguishing Attack on Scream. In Information Symposium

in Information Theory—ISIT 2003, page 164. IEEE, 2003.

0 The work described in this paper has been supported in part by Grant VR 621-2001-2149, and in part
by the European Commission through the IST Program under Contract IST-2002-507932 ECRYPT.
The information in this document reflects only the author’s views, is provided as is and no guarantee
or warranty is given that the information is fit for any particular purpose. The user thereof uses the
information at its sole risk and liability.

