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Abstract. This paper presents Dragon, a new stream cipher constructed
using a single word based non-linear feedback shift register and a non-
linear filter function with memory. Dragon uses a variable length key and
initialisation vector of 128 or 256 bits, and produces 64 bits of keystream
per iteration. At the heart of Dragon are two highly optimised 8 × 32
s-boxes. Dragon uses simple operations on 32-bit words to provide a high
degree of efficiency in a wide variety of environments, making it highly
competitive when compared with other word based stream ciphers. The
components of Dragon are designed to resist all known attacks.

1 Introduction

Traditionally stream cipher design has focussed on bit based linear feedback shift
registers (LFSRs), as these are well studied and produce sequences which satisfy
common statistical criteria. In these ciphers, non-linearity is introduced into the
keystream either by some type of non-linear combining function or filter function,
or by irregular clocking, or both. However, bit based LFSRs are notoriously slow
in software. Each iteration of the cipher’s update function produces only one bit
of keystream. Sparse LFSR feedback functions may be exploited in an attack,
but increasing the number of feedback taps results in a decrease in efficiency.
Also, the security of some LFSR based stream ciphers is threatened by algebraic
attacks [6].

Word based stream ciphers may provide a solution to the security-efficiency
tradeoff. These produce many times the amount of keystream per iteration than
do bit-based LFSRs, depending on the word size. The word size used for current
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word based stream cipher proposals range from 8-bit words for RC4 to 32-bit
words for Turing [16]. Many of these ciphers are very fast in software, outper-
forming even fast block ciphers like the Advanced Encryption Standard [15].
Although it is easy to assess the speed of these word based stream ciphers, it is
difficult to quantify their security precisely.

This paper presents Dragon, a new word based stream cipher designed with
both security and efficiency in mind. Dragon uses a word based non-linear feed-
back shift register (NLFSR), in conjunction with a non-linear filter to produce
keystream as 64-bit words. Dragon has a throughput of gigabits per second in
both modern software and hardware, and requires little more than four kilobytes
of memory, so is suitable for use in constrained environments. Not only is Dragon
fast for keystream generation, it is also very efficient when rekeying. This makes
Dragon especially suitable for applications that require frequent rekeying, such
as mobile and wireless communications.

Dragon can be considered an evolution of the output feedback mode (OFB)
of block ciphers. The modifications overcome a shortcoming of block ciphers in
OFB mode: the output keystream is also the feedback to the internal state. We
have analysed the security of Dragon using modern cryptanalytic techniques,
and believe it is suitable for use as a secure cryptographic primitive. Collision
attacks based on the birthday paradox can exploit this knowledge of the feed-
back. These attacks are prevented in the Dragon cipher by producing separate
output and feedback words from the update function. Also, ciphers with small
internal states are easily attacked by time/memory/data tradeoff attacks [3]. A
minimum requirement to overcome these type of attacks is to have an internal
state size at least twice the designed security. Time/memory/data tradeoff at-
tacks are prevented in the Dragon cipher by having a large internal state. To
increase the difficulty of guess and determine attacks [10], Dragon selects taps
from the NLFSR according to a Full Positive Difference Set (FPDS).

Section 2 presents the specification of the cipher. Section 3 describes the de-
sign decisions behind the Dragon algorithm. Section 4 and 5 includes a security
analysis of Dragon using modern cryptanalytic techniques. Section 6 discusses
the performance of Dragon in software and hardware, and associated implemen-
tation issues.

2 Specification of Dragon

Dragon is a stream cipher constructed using a single word based NLFSR. Dragon
has a large NLFSR of 1024 bits, an update function, denoted F , and a 64-
bit memory, denoted M . Dragon-256 uses a secret master key of 256 bits, and
a publicly known initialisation vector (IV), also of 256 bits to accommodate
rekeying scenarios, while Dragon-128 uses 128-bit key and IV. The F function,
which is called once per round, manipulates the internal state to generate 64
bits of pseudo-random keystream. The cipher’s key setup converts the master
key and initialisation vector for use in Dragon’s large internal state.



Input = { a, b, c, d, e, f }
Pre-mixing Layer:

1. b = b⊕ a; d = d⊕ c; f = f ⊕ e;
2. c = c � b; e = e � d; a = a � f ;

S-box Layer:
3. d = d⊕G1(a); f = f ⊕G2(c); b = b⊕G3(e);
4. a = a⊕H1(b); c = c⊕H2(d); e = e⊕H3(f);

Post-mixing Layer:
5. d′ = d � a; f ′ = f � c; b′ = b � e;
6. c′ = c⊕ b; e′ = e⊕ d; a′ = a⊕ f ;

Output = { a′, b′, c′, d′, e′, f ′ }
Table 1. Dragon’s F Function

2.1 Dragon’s State Update Function (F Function)

The F function is used in both key setup and keystream generation. The F
function is a reversible mapping of 192 bits (six 32-bit words) to 192 bits. It takes
six 32-bit words as input and produces six 32-bit words as output. In Table 1 the
input words are denoted a, b, c, d, e, f and the output words a′, b′, c′, d′, e′, f ′. The
F function has six component functions denoted G1, G2, G3, H1, H2 and H3,
as described below. The G and H functions provide algebraic completeness [11]
and high non-linearity. A network of modular and binary additions are used
for diffusion in the F function. It can be divided to three parts: pre-mixing,
substitution, and post-mixing. Each step is designed to allow for parallelisation,
giving Dragon its speed. The F function is shown in Table 1 where ⊕ denotes
XOR and � denotes addition modulo 232.
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Fig. 1. F Function



G and H Functions The G and H functions are constructed from two 8×32-
bit s-boxes, S1 and S2 to form virtual 32× 32 s-boxes. The G functions contains
three S1s and one S2, while the H functions have three S2s and one S1. S1

and S2 are included in Appendix B. The 32-bit input is broken into four bytes
(x = x0‖x1‖x2‖x3. Each byte is passed through an 8 × 32 s-box and the four
32-bit outputs combined using binary addition.

G and H functions are defined as

G1(x) = S1(x0)⊕ S1(x1)⊕ S1(x2)⊕ S2(x3)

G2(x) = S1(x0)⊕ S1(x1)⊕ S2(x2)⊕ S1(x3)

G3(x) = S1(x0)⊕ S2(x1)⊕ S1(x2)⊕ S1(x3)

H1(x) = S2(x0)⊕ S2(x1)⊕ S2(x2)⊕ S1(x3)

H2(x) = S2(x0)⊕ S2(x1)⊕ S1(x2)⊕ S2(x3)

H3(x) = S2(x0)⊕ S1(x1)⊕ S2(x2)⊕ S2(x3)

Input = { K, IV } (256-bit) Input = { k, iv } (128-bit)

1. W0 ‖ ... ‖ W7 = K ‖ K ⊕ IV ‖ K ⊕ IV ‖ IV (256-bit)
W0 ‖ ... ‖ W7 = k ‖ k′ ⊕ iv′ ‖ iv ‖ k ⊕ iv′ ‖ k′ ‖ k ⊕ iv ‖ iv′ ‖ k′ ⊕ iv (128-bit)

2. M = 0x0000447261676F6E
Perform steps 3-8 16 times

3. a ‖ b ‖ c ‖ d = (W0 ⊕W6 ⊕W7)
4. e ‖ f = M

5. {a′, b′, c′, d′, e′, f ′} = F (a, b, c, d, e, f)

6. W0 = (a′ ‖ b′ ‖ c′ ‖ d′ )⊕W4

7. Wi = Wi−1, for i = 7 down to 1 (shifting the state by one word)
8. M = e′ ‖ f ′

Output = { W0 ‖ ... ‖ W7 }
Table 2. Dragon’s Key Initialisation function

2.2 Initialisation

Dragon can be used with two different key and initialisation vector lengths: 128-
bit and 256-bit. We denote the 256-bit key and initialisation vector K and IV
respectively. The 128-bit key and initialisation vector are denoted k and iv.

Dragon has a simple keying (and rekeying) strategy using the key and the
publicly known initialisation vector. The 1024-bit internal state is divided into
eight 128-bit words, labelled W0 to W7. The internal state is initially filled by con-
catenating the key and the initialisation vector. The state initialisation process



makes extensive use of the F function. The initialisation involves 16 iterations
of the F function as shown in Table 2 where x denotes the complement of x and
x′ denotes the swapping of the upper half and the lower half of x. To protect
against unknown future attacks, and against attacks that require large amounts
of keystream, the cipher should be rekeyed at least once for every 264 bits of
keystream generated. The use of existing components for both initialisation and
keystream generation simplifies analysis and increases implementation efficiency.
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Fig. 2. Initialisation

Input = { B0 ‖ ... ‖ B31, M }
1. (ML ‖ MR) = M
2. a = B0, b = B9, c = B16, d = B19, e = B30⊕ML, f = B31⊕MR

3. (a′, b′, c′, d′, e′, f ′) = F (a, b, c, d, e, f)
4. B0 = b′, B1 = c′

5. Bi = Bi−2, 2 ≤ i ≤ 31
6. M = M + 1
7. k = a′ ‖e′

Output = { k, B0 ‖ ... ‖ B31, M }
Table 3. Dragon’s Keystream Generation Function

2.3 Keystream Generation

Dragon has a large NLFSR of 1024 bits divided into thirty two 32-bit words
Bi, 0 ≤ i ≤ 31. During each round, six words from the internal state are used as
inputs to the F function. The indices to these words are 0, 9, 16, 19, 30, 31, and



form a Full Positive Difference Set (FPDS). Additionally, a 64-bit memory com-
ponent, M , acts as a counter in keystream generation, with the initial value for
keystream generation being the final value of M defined by the key initialisation
process. Each round of the keystream generation results in the output of a 64-bit
word k. Table 3 shows one round of keystream generation. Note the output of
the process is a keystream word k, and an updated state B and memory M .

3 Design Principles of Dragon

3.1 Design of F Function

All the keystream words and feedback words are dependent on all input words,
both at the bit level and word level. A single bit change in any of the six input
words results in completely different keystream and feedback words.

3.2 Design of S-boxes

Dragon uses two 8× 32 S-boxes that have been designed heuristically to satisfy
a range of important security related properties. They are used to create two
nonlinear 32 × 32 mappings G and H. The simple construction (shown in Sec-
tion 2.1) allows the non-linearity properties of the output bits of G and H to be
calculated exactly from the known properties of the components of the under-
lying 8 × 32 S-boxes, S1 and S2. Both s-boxes were designed to have balanced
component Boolean functions with:

– best known non-linearity of 116,
– optimum algebraic degree 6 or 7 according to Siegenthaler’s tradeoff [18],
– low autocorrelation,
– distinct equivalence classes,
– all XOR pairs satisfying:

• better than random non-linearity with 102 minimum,
• almost balanced (the imbalance is not more than 16),
• distinct equivalence classes,
• same optimal degree as the components.

We adopt a standard notation (n, t, d, x, y) to describe Boolean function prop-
erties where n is the number of variables, t is the order of resiliency (where t = 0
indicates a balanced function), d is the algebraic degree, x is the non-linearity
and y is the largest magnitude in the autocorrelation function. All the compo-
nents of S1 are (8, 1, 6, 116, y) where 32 ≤ y ≤ 48 which is considered sufficiently
low. S1 functions achieve the highest non-linearity possible for resilient functions.
All the components of S2 are (8, 0, 7, 116, 24), where we note that the achieved
autocorrelation of 24 is the lowest known for balanced functions of this size.

These s-boxes were created one output bit at a time using heuristic tech-
niques. Existing methods [14] were adopted to generate the individual functions,
then they were compared to the existing s-box functions to check the above-listed



requirements for the XOR pairs. When the candidate function was acceptable it
was appended to the s-box, else another function was tested. We found it was
possible to generate 32 functions for each s-box while satisfying the stringent
requirements outlined above.

Finally we remark that the output functions of resulting Dragon virtual s-
boxes G and H have higher non-linearity (at 116) than other popular 32 ×
32 cryptographic mappings, such as the SBOX/MIXCOL operation from AES [15]
and Mugi[19], which use only 112 non-linearity functions. Also Dragon’s s-boxes
avoid the linear redundancy weakness that is intrinsic to finite field operation
based s-boxes [9] which are used in the international standard ciphers AES [15],
Camellia [2].

3.3 Design of Key Initialisation

The key setup and keystream generation of Dragon both use the F function,
for ease of implementation and efficiency. However, the key setup of Dragon
is deliberately designed to be different to keystream generation, so that the
mapping of internal state to the feedback is different.

There are three differences between the key setup and the keystream gener-
ation: the use of the 64-bit memory M , the size of the feedback and the FPDS
selection used.

From Section 3.1, F is a reversible mapping, and the design of the key setup
network uses this property of F to produce a bijective process. For any unique
pair of K and IV , the key setup procedure initialises the internal state and M
to unique values. Note that M is used as memory in key setup, but as a counter
in keystream generation.

The feedback of Dragon consists of four words of the F function outputs,
totalling 128 bits in key setup (the feedback size is 64 bits in keystream genera-
tion). This means that F can mix K and IV effectively in a minimum number
of rounds. A smaller number of rounds in key setup translate directly into high
rekeying performance. This makes Dragon very competitive in practical applica-
tions that require frequent rekeying, such as mobile and wireless transmissions
that usually use the frame number as the IV .

A different FPDS is chosen for the key setup because of the change in the size
of the feedback. The taps from the internal state, {0,4,6,7}, form a FPDS both in
the forward and reverse direction. This is designed to frustrate the cryptanalysis
of key setup by guess and determine techniques.

Dragon-128 and Dragon-256 are designed to have very similar initialisation
process so that the speed is identical. However, another important design con-
sideration is the use 128-bit and 256-bit key and initialisation vector pairs. We
ensured that no pair of 256-bit K and IV can initialise Dragon to the same state
as any arbitrary pair of 128-bit k and iv. This avoids the cryptanalyst reducing
the search space in a brute force attack from 256-bit to 128-bit.



4 Analysis of Cipher

4.1 Statistical Tests

Statistical tests provided by the CRYPT-X [8] package were performed on keystream
produced by the Dragon cipher. The frequency, binary derivative, change point,
subblock and runs tests were executed with 30 streams of Dragon output, each
eight megabits in length. The sequence and linear complexity tests were executed
for the 30 streams with two hundred kilobits each. Dragon passed all pertinent
statistical tests.

4.2 Period Length

Given that Dragon has a 1024-bit internal state, the expected period of the
internal state is 2512, assuming the mapping is pseudo-random [4]. For crypto-
graphic use, establishing the lower bound for the period of the output sequence
is critical. Each round of Dragon is under the influence of a 64-bit counter, M .
Since the counter M has a period of 264, the period of Dragon’s internal state
is lower bounded by 264. Taken together, the internal state and the counter M
give Dragon an expected period of 2576.

The amount of keystream produced by a unique pair of K and IV is limited
to 264 bits (in most applications the actual keystream would be much smaller)
in the specification of Dragon. This is a small fraction of the lower bound of the
period (and a very small fraction of the expected period), and therefore avoids
the possibility of keystream collision attacks.

4.3 Weak Keys

Weak keys are those keys that bypass some operations of the cipher. That is,
the operations have no effect in the calculation of the feedback or the output
keystream.

Dragon is designed to avoid weak keys. The internal state is an NLFSR,
therefore the all zero state is not a problem as Dragon is designed to avoid fixed
points. While it is easy to bypass the pre-mixing phase in a single iteration of
the F function by having repetitive inputs such as all zeros or all ones, it is only
possible for the first of the 16 iterations of F in the key setup. Also, selected
values are limited to the first four inputs of the F function, as the last two inputs
take the value of M . The network of G and H functions ensure that the initial
states which bypass the pre-mixing phase cannot bypass any other operations
in F . We believe that the above design features provide a strong guarantee that
there are no weak keys for Dragon.

5 Cryptanalysis of Dragon

5.1 Related Key and IV Attacks

The Dragon rekeying strategy is simple, and the use of initialisation vectors
provides a way to reuse a master key without generating identical keystreams.



The rekeying strategy prevents related key and IV attacks before even the first
word of output is generated, by mixing each bit of the key into all words of
the initial state over 16 rounds of the highly non-linear F function defined for
the keystream generator module. This function has six 32-bit inputs and six
32-bit outputs. During rekeying, the F function is iterated 16 times, each time
populating the leftmost side of the internal state with 128 bits comprising four
outputs. After eight rounds, all of the initial keying material in the state has
been replaced by unknown output from the F function.

Of the six inputs to the F function, four words are taken directly from the
keyed internal state, while two are taken from a 64-bit memory M . The contents
of this memory are initially known, since they are determined by a published
constant. Also, the memory can not be manipulated by the attacker in the same
way as the internal state, since it is not keyed. Two outputs from the F function
feedback to the memory, making its value hard to determine after the first round.
All output words of F are affected by the memory, increasing the difficulty that
the attacker faces in controlling inputs to subsequent rounds.

Diffusion One strategy in an attack is to minimise the number of words with
a non-zero difference in the internal state. The aim of this strategy is controlla-
bility. The larger the number of non-zero words used as input to the non-linear
function, the more complex the resulting output. The key schedule of Dragon is
designed so that after 12 rounds, even an initial difference of single word differ-
ence is propagated to all words in the internal state (see Table 4). Since there are
16 rounds, this is an ample margin to ensure an attacker is unable to determine
the state contents after rekeying. The speed of this diffusion is aided by the fact
that the first word of the state is used as input to F function, and the output of
the F function replaces the first word.

1 0 ∆A 0 0 0 0 0 0
2 0 0 ∆A 0 0 0 0 0
3 0 0 0 ∆A 0 0 0 0
4 0 0 0 0 ∆A 0 0 0
5 ∆A 0 0 0 0 ∆A 0 0
6 ∆B ∆A 0 0 0 0 ∆A 0
7 ∆C ∆B ∆A 0 0 0 0 ∆A
8 ∆D ∆C ∆B ∆A 0 0 0 0
9 ∆E ∆D ∆C ∆B ∆A 0 0 0
10 ∆F ∆E ∆D ∆C ∆B ∆A 0 0
11 ∆G ∆F ∆E ∆D ∆C ∆B ∆A 0
12 ∆H ∆G ∆F ∆E ∆D ∆C ∆B ∆A

Table 4. Propagation of non-zero difference in internal state of the rekeying



Even a single round of Dragon F function prevents high probability differen-
tials due to its use of the G and H functions, and high diffusion. A single input
difference is propagated to differences in each of the outputs. The F function
consists of three layers: pre-mixing, confusion through s-box application, and
post-mixing. Referring to the notation of section 2.1, only inputs a, b, c and d
can be initially and indirectly controlled by an attacker, since e and f come from
internal and inaccessible memory.

The attacker may wish to make use of the fact that b and d are mixed with
only one other word in the pre-mixing phase, while a and c are mixed with two
others. For the input −(e ⊕ f), b,−(b ⊕ e ⊕ f),−(b ⊕ e ⊕ f), e, e ⊕ f) the pre-
mixing stage produces the output (0, b ⊕ −(e ⊕ f), 0, 0, e, e ⊕ f). For difference
input ∆b, this produces the difference (0,∆b, 0, 0, 0, 0) since e and f are at this
stage constants. This bypasses the G row of s-boxes and activates a single s-box
in the second row to produce the post-mixing input (∆H1(∆b),∆b, 0, 0, 0, 0).
The post-mixing output is (∆H1(∆b),∆b,∆b, (∆H1(∆b), 0, 0)).

At this stage, all of the feedback words to the internal state are non-zero.
However, the difference of the feedback to the internal state is still zero. This fact
cannot be exploited by the attacker since the input differences to this round are
not reproducible in later rounds, and thus the difference of the internal memory
cannot be maintained. Consequently Dragon is not vulnerable to related key
attacks that are more efficient than a brute force search of the 256-bit key.

5.2 Time-Memory Tradeoff Attacks

Time-Memory tradeoff attacks [3] rely on pre-computation to reduce the effort
required for a key recovery attack on a keystream. The attack comprises two
steps. The first, the preprocessing step, sees the attacker calculating a table of
keys or internal states and corresponding keystream prefixes. The table is ordered
upon the prefix. The second step involves observing keystreams and attempting
to match each against a prefix in the table. If the match is successful, then with
some likelihood the internal state is known by reading the opposing entry in the
table.

The parameters in an attack are time (T ), memory (M), and amount of data
(D). Generally, T ×M2×D2 = S2 where S is the state space of the cipher, and
D2 ≤ T [3]. The pre-computation time P is equal to S ÷D.

Dragon has an internal state space of 1088 bits (including the 64-bit mem-
ory). Since the design strength of Dragon is 256 bits, the time-memory tradeoff
attack is infeasible. For the brute-force equivalent attack with T = 2256, data
requirements are limited to 264 bits, which imposes a lower bound on memory
for the attack of 2896 bits.

5.3 Guess and Determine Attacks

The indices {0, 9, 16, 19, 30, 31} of the state elements used in Dragon’s update
function form a full positive difference set. This is a design decision to prevent
guess and determine attacks [10].



In keystream generation, guessing six inputs (192 bits) to F in a round allows
an attacker to calculate the feedback words b′ and c′ and the keystream words
a′ and e′, which can be used to discard most incorrect guesses. At this point the
attacker has knowledge of the state words at indices {0, 1, 10, 17, 20} and some
information about the value of B31 and M . However, the FPDS selection of the
internal state means that to obtain the next pair of keystream words, guessing
a further five inputs (160 bits) is necessary. The attacker can attempt to jump
ahead to a future keystream word pair, but again the FPDS means that the
attacker needs to guess five inputs. This rapid increase in the number of possible
guess pathways makes the attack infeasible. In addition, the interplay of B30,
B31 and M means there will be more than one set of values for these three
elements for a unique pair of e and f , further complicating the cryptanalytic
attempt by guess and determine.

The attacker is unable to reduce the complexity of a guess and determine
attack by guessing individual state bytes, rather than whole words. The use of
large s-boxes (G and H functions are effectively 32 × 32 s-boxes) means that
guessing three of the four input bytes is insufficient to deduce any byte of the
s-box output.

To calculate keystream words from two rounds of Dragon, the attacker is
required to guess more than 256 bits of the internal state. This is worse than
exhaustive key search, and makes guess and determine attacks on Dragon infea-
sible.

5.4 Distinguishing Attacks

If the output sequence of a stream cipher can be statistically distinguished from
a random sequence, then the cipher is not strong enough for cryptographic ap-
plications. Dragon is designed with a large state and complex initialisation and
update function. It has no linear masking, and therefore immune to this type
of distinguishing attacks [5]. It is expected to have a very large period of 2582

(with a lower bound of 264 because of the influence of the 64-bit counter) and
it passes standard statistically tests for randomness. The amount of keystream
output for an unique pair key and initialisation vector is limited to 264 bits.
We conjecture that it is impractical to collect an amount of output sufficient to
distinguish Dragon keystream output from a random binary sequence.

5.5 Linear Approximations

From Lemma 15 of [17], the non-linearity of the sum of disjoint functions can be
calculated as follows. Let g(x1, . . . , xs, y1, . . . , yt) = f1(x1, . . . , xs)⊕f2(y1, . . . , yt).
Then the non-linearity of g satisfies Ng ≥ 2s+t−1 − 1

2P1 · P2 where P1 and P2

are the maximum Walsh-Hadamard transform values of f1 and f2, respectively.
The G and H functions of Dragon are composed from two 8× 32 s-boxes, S1

and S2. Both s-boxes have all outputs with non-linearity 116, therefore PS1 =
PS2 = 28 − 2 · 116 = 24. The non-linearity of the output bits of the G and H
functions can then be calculated as NG = NH ≥ 28+8+8+8−1− 1

2 ·24 ·24 ·24 ·24 =



231 − 165888. The best affine approximation to the G or H function output bits
has bias no greater than 231−231+165888

231 = 2−14.66. At any given round, the
keystream words of Dragon are the results of five G or H functions each, hence
the best affine approximation to the Dragon F function output bits has bias no
greater than (2−14.66)5 = 2−73.3.

Linear cryptanalysis requires equations relating the key bits to the internal
state bits, and in turn the keystream bits, where the internal state variables
can be cancelled. The complete mixing of Dragon’s key setup avoids the divide
and conquer approach, therefore all the internal state variables are needed in
the linear equations. The output keystream will be dependent on all 1,024 bits
of the initial internal state after 8 iterations of F . The bias of the best affine
approximation over 8 iterations of F is no greater than (2−73.3)8 = 2−586.4. As
the key size of Dragon is 256 bits, attack on Dragon using linear approximation
has complexity greater than exhaustive key search.

5.6 Algebraic Attacks

Successful algebraic attacks on keystream generators [6] have so far been re-
stricted mainly to LFSR based generators. The general attack model consists of
the internal state S, the linear update function L and the output function f . Let
S0 denote the internal state at time t = 0, and Lt(S0) denote the internal state
at time t. The attacker constructs a system of equations relating the internal
state bits with the observed keystream bits, where zt = f(Lt(S0)) at time t.
The attacker can set up a large number of equations just by merely collecting
keystream bits, since the internal state at time t can easily be derived from the
linear nature of LFSRs.

This model cannot be applied to Dragon since the update function is non-
linear. Let the non-linear update function be N , then the equation becomes
zt = f(N t(S0)). Note that N has a poor linear approximation of 2−73.3 as
shown in Section 5.5. The lack of the linear update function means the attacker
can not simply calculate the internal state at time t to construct the system of
equations.

When constructing the system of equations for Dragon, the degree of equa-
tions would grow exponentially. This is easy to see as any output of G or H is a
degree 7 function of the inputs since S2 has algebraic order 7. If we approximate
� with ⊕, we can then write equations of degree 72 = 49 that maps the 192
input bits to the first 64 output keystream bits. However, the feedback is used
immediately in the production of the next 64 bits of keystream, and results in
equations of degree 74 = 2, 401. Note that at this point, the inputs consist of
only 352 bits, and therefore the equations would be limited to degree 352. The
degree of the equations would grow to the full 1024 bits of the internal state,
after 8 iterations of the F function, or 512 bits of keystream produced.

Using the technique published in [7] to describe the 8×32 s-boxes of Dragon
using quadratic equations results in 565 quadratic equations in 256 monomials
for each s-box (identical to the analysis of CAST [1]). Again, let us approximate
� with ⊕, then after 8 iterations of F , the system of equations has degree 1,024



as well. This is to say, even if there existed some annihilators [13] that reduce
Dragon’s Boolean functions right down to quadratic, the degree of the overall
equations would still grow to unmanageable sizes.

It is clear that the system of equations for Dragon will be very difficult to
solve, if it is solvable at all. Furthermore, it will require far more effort than
exhaustive key search since solving techniques all have complexities exponential
in the degree of the equations. It is interesting to note that the above analysis
approximates modular addition with XOR, and thus resulting in a weaker version
of Dragon. With the modular addition in place, it will be even more difficult for
algebraic attacks to succeed against Dragon (see similar example of the effect of
modular addition in CAST [1]).

6 Implementation and Performance

Dragon is designed to be efficient in both software and hardware, in terms of
throughput and a small implementation footprint. Its 32-bit word size is chosen
to match that of the ubiquitous Intel Pentium family, since this leads to the
best software efficiency on that platform. Note that the results presented in this
Section apply to both Dragon-128 and Dragon-256.

6.1 Software

On an Intel Pentium 4, a näıve C implementation of Dragon produces one byte
of keystream every 6.74 clock cycles, and 1,395 cycles per rekeying operation.
On a 3.2GHz Pentium 4, the throughput of Dragon is 3.8Gbps. This is compet-
itive with many of its peers, including SNOW 2 (5.5 cycles/byte), Turing (6.1
cycles/byte) and RC4 (7.1 cycles/byte).

Storage requirements include 2,048 bytes to store Dragon’s two 8×32 s-boxes,
1,024 bits (128 bytes) for the internal state, and a further 8 bytes for the 64-bit
counter. Including temporary variables and an object code size of 2,810 bytes,
Dragon has memory requirements totalling 4,994 bytes. This is suitable for even
very constrained environments.

A reference implementation of Dragon written in C can be obtained from
http://www.isrc.qut.edu.au/resource/dragon/.

6.2 Hardware

The design of Dragon allows high degree of parallelisation in hardware. The op-
erations on the six inputs of the F function can be divided into three groups,
each operating on two inputs. The pre-mixing and the post-mixing are imple-
mented using 32-bit modular adders. The G and H functions are implemented
using look-up tables and XOR operations. The hardware complexity is about
6,524 gates and 196,672 bits of memory. On Samsung 0.13um ASIC running at
2.6GHz, the minimum delay is 2.774ns with a throughput of 23Gbps.



The speed in hardware can be improved by using m-parallel-structure pro-
posed in [12]. This hardware implementation strategy applies to all shift reg-
isters, and achieves an m times increase in efficiency with m times increase in
hardware complexity. On Altera FPGA/CPLD running at 16.67MHz, an imple-
mentation of Dragon achieves a throughput of 1.06Gbps with 16 times hardware
complexity.

7 Conclusion

This paper presents Dragon, a new stream cipher constructed upon a word based
non-linear feedback shift register. The key and initialisation vector are 128 bits
for Dragon-128 and 256 bits for Dragon-256. Dragon is designed with both se-
curity and efficiency in mind. It has been shown that Dragon is secure against
all known cryptanalytic attacks.
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A Test Vectors

128-BIT KEY AND IV

KEY:
00001111 22223333 44445555 66667777
IV:
00001111 22223333 44445555 66667777
KEYSTREAM:
99B3AA14 B63BD02F E14358A4 54950425 F4B0D3FD 8BA69178 E0392938 A718C165
2E3BEB1E 11613D58 9EABB9F5 43A1C51C 73C1F227 9D1CAEA8 5C55F539 BAFD3C59
ECAC88BD 17EB1C9D A28DD63E 9093C913 3032D918 3A9B33BC 2933A79D 75669827
20EF3004 C53B0253 7A1BE796 29F8D9A3 8DC1FD31 ED9D1100 B07DFFB1 AC75EB31

KEY:
00112233 44556677 8899AABB CCDDEEFF
IV:
00112233 44556677 8899AABB CCDDEEFF
KEYSTREAM:
98821506 0E87E695 EB7AEF36 313FF910 E6C7312F 30357424 4922043D 98146EE2
202D4D49 6C602ECC 937DD3F4 E39BE26C 849DB415 F04C540E 88588C7A A3C65A31
E2156229 1E86028B 3F5A21B9 4A94C135 B3A01527 747E6521 FFEE14F0 FA1FCC73
74C8B204 4009F57D 1D63007E F1D8D221 E429EBA8 60F56098 45891D74 716694B2

256-BIT KEY AND IV

KEY:
00001111 22223333 44445555 66667777 88889999 AAAABBBB CCCCDDDD EEEEFFFF
IV:
00001111 22223333 44445555 66667777 88889999 AAAABBBB CCCCDDDD EEEEFFFF
KEYSTREAM:
BC020767 DC48DAE3 14778D8C 927E8B32 E086C6CD E593C008 600C9D47 A488F622
3A2B94D6 B853D644 27E93362 ABB8BA21 751CAAF7 BD316595 2A37FC1E A3F12FE2
5C133BA7 4C15CE4B 3542FDF8 93DAA751 F5710256 49795D54 31914EBA 0DE2C2A7
8013D29B 56D4A028 3EB6F312 7644ECFE 38B9CA11 1924FBC9 4A0A30F2 AFFF5FE0

KEY:
00112233 44556677 8899AABB CCDDEEFF 00112233 44556677 8899AABB CCDDEEFF
IV:
00112233 44556677 8899AABB CCDDEEFF 00112233 44556677 8899AABB CCDDEEFF
KEYSTREAM:
8D3AB9BA 01DAA3EB 5CBD0F6D E3ECFCAB 619AF808 CF9C4A42 E2877766 6D2D7037
EE6F94AC 29D1EEE5 340DB047 8E91A679 480D8D88 2367CE2A 31C96AD4 49E70756
815EBEB2 290DBA7A 3CCB76A2 257BD122 2B0B7AED 917FAFFF 6B58B2B2 B05F24F6
E271A016 9E897BEF F5C22451 DA6F9E40 52B78BE5 6C97C1A5 C6F8E791 0F7B9C98



B Dragon’s S-Boxes

sbox1[256]={
0x393BCE6B,0x232BA00D,0x84E18ADA,0x84557BA7,0x56828948,0x166908F3,
0x414A3437,0x7BB44897,0x2315BE89,0x7A01F224,0x7056AA5D,0x121A3917,
0xE3F47FA2,0x1F99D0AD,0x9BAD518B,0x99B9E75F,0x8829A7ED,0x2C511CA9,
0x1D89BF75,0xF2F8CDD0,0x2DA2C498,0x48314C42,0x922D9AF6,0xAA6CE00C,
0xAC66E078,0x7D4CB0C0,0x5500C6E8,0x23E4576B,0x6B365D40,0xEE171139,
0x336BE860,0x5DBEEEFE,0x0E945776,0xD4D52CC4,0x0E9BB490,0x376EB6FD,
0x6D891655,0xD4078FEE,0xE07401E7,0xA1E4350C,0xABC78246,0x73409C02,
0x24704A1F,0x478ABB2C,0xA0849634,0x9E9E5FEB,0x77363D8D,0xD350BC21,
0x876E1BB5,0xC8F55C9D,0xD112F39F,0xDF1A0245,0x9711B3F0,0xA3534F64,
0x42FB629E,0x15EAD26A,0xD1CFA296,0x7B445FEE,0x88C28D4A,0xCA6A8992,
0xB40726AB,0x508C65BC,0xBE87B3B9,0x4A894942,0x9AEECC5B,0x6CA6F10B,
0x303F8934,0xD7A8693A,0x7C8A16E4,0xB8CF0AC9,0xAD14B784,0x819FF9F0,
0xF20DCDFA,0xB7CB7159,0x58F3199F,0x9855E43B,0x1DF6C2D6,0x46114185,
0xE46F5D0F,0xAAC70B5B,0x48590537,0x0FD77B28,0x67D16C70,0x75AE53F4,
0xF7BFECA1,0x6017B2D2,0xD8A0FA28,0xB8FC2E0D,0x80168E15,0x0D7DEC9D,
0xC5581F55,0xBE4A2783,0xD27012FE,0x53EA81CA,0xEBAA07D2,0x54F5D41D,
0xABB26FA6,0x41B9EAD9,0xA48174C7,0x1F3026F0,0xEFBADD8E,0x387E9014,
0x1505AB79,0xEADF0DF7,0x67755401,0xDA2EF962,0x41670B0E,0x0E8642F2,
0xCE486070,0xA47D3312,0x4D7343A7,0xECDA58D0,0x1F79D536,0xD362576B,
0x9D3A6023,0xC795A610,0xAE4DF639,0x60C0B14E,0xC6DD8E02,0xBDE93F4E,
0xB7C3B0FF,0x2BE6BCAD,0xE4B3FDFD,0x79897325,0x3038798B,0x08AE6353,
0x7D1D20EB,0x3B208D21,0xD0D6D104,0xC5244327,0x9893F59F,0xE976832A,
0xB1EB320B,0xA409D915,0x7EC6B543,0x66E54F98,0x5FF805DC,0x599B223F,
0xAD78B682,0x2CF5C6E8,0x4FC71D63,0x08F8FED1,0x81C3C49A,0xE4D0A778,
0xB5D369CC,0x2DA336BE,0x76BC87CB,0x957A1878,0xFA136FBA,0x8F3C0E7B,
0x7A1FF157,0x598324AE,0xFFBAAC22,0xD67DE9E6,0x3EB52897,0x4E07E855,
0x87CE73F5,0x8D046706,0xD42D18F2,0xE71B1727,0x38473B38,0xB37B24D5,
0x381C6AE1,0xE77D6589,0x6018CBFF,0x93CF3752,0x9B6EA235,0x504A50E8,
0x464EA180,0x86AFBE5E,0xCC2D6AB0,0xAB91707B,0x1DB4D579,0xF9FAFD24,
0x2B28CC54,0xCDCFD6B3,0x68A30978,0x43A6DFD7,0xC81DD98E,0xA6C2FD31,
0x0FD07543,0xAFB400CC,0x5AF11A03,0x2647A909,0x24791387,0x5CFB4802,
0x88CE4D29,0x353F5F5E,0x7038F851,0xF1F1C0AF,0x78EC6335,0xF2201AD1,
0xDF403561,0x4462DFC7,0xE22C5044,0x9C829EA3,0x43FD6EAE,0x7A42B3A7,
0x5BFAAAEC,0x3E046853,0x5789D266,0xE1219370,0xB2C420F8,0x3218BD4E,
0x84590D94,0xD51D3A8C,0xA3AB3D24,0x2A339E3D,0xFEE67A23,0xAF844391,
0x17465609,0xA99AD0A1,0x05CA597B,0x6024A656,0x0BF05203,0x8F559DDC,
0x894A1911,0x909F21B4,0x6A7B63CE,0xE28DD7E7,0x4178AA3D,0x4346A7AA,
0xA1845E4C,0x166735F4,0x639CA159,0x58940419,0x4E4F177A,0xD17959B2,
0x12AA6FFD,0x1D39A8BE,0x7667F5AC,0xED0CE165,0xF1658FD8,0x28B04E02,
0x1FA480CF,0xD3FB6FEF,0xED336CCB,0x9EE3CA39,0x9F224202,0x2D12D6E8,
0xFAAC50CE,0xFA1E98AE,0x61498532,0x03678CC0,0x9E85EFD7,0x3069CE1A,
0xF115D008,0x4553AA9F,0x3194BE09,0xB4A9367D,0x0A9DFEEC,0x7CA002D6,
0x8E53A875,0x965E8183,0x14D79DAC,0x0192B555};



sbox2[256]={
0xA94BC384,0xF7A81CAE,0xAB84ECD4,0x00DEF340,0x8E2329B8,0x23AF3A22,
0x23C241FA,0xAED8729E,0x2E59357F,0xC3ED78AB,0x687724BB,0x7663886F,
0x1669AA35,0x5966EAC1,0xD574C543,0xDBC3F2FF,0x4DD44303,0xCD4F8D01,
0x0CBF1D6F,0xA8169D59,0x87841E00,0x3C515AD4,0x708784D6,0x13EB675F,
0x57592B96,0x07836744,0x3E721D90,0x26DAA84F,0x253A4E4D,0xE4FA37D5,
0x9C0830E4,0xD7F20466,0xD41745BD,0x1275129B,0x33D0F724,0xE234C68A,
0x4CA1F260,0x2BB0B2B6,0xBD543A87,0x4ABD3789,0x87A84A81,0x948104EB,
0xA9AAC3EA,0xBAC5B4FE,0xD4479EB6,0xC4108568,0xE144693B,0x5760C117,
0x48A9A1A6,0xA987B887,0xDF7C74E0,0xBC0682D7,0xEDB7705D,0x57BFFEAA,
0x8A0BD4F1,0x1A98D448,0xEA4615C9,0x99E0CBD6,0x780E39A3,0xADBCD406,
0x84DA1362,0x7A0E984B,0xBED853E6,0xD05D610B,0x9CAC6A28,0x1682ACDF,
0x889F605F,0x9EE2FEBA,0xDB556C92,0x86818021,0x3CC5BEA1,0x75A934C6,
0x95574478,0x31A92B9B,0xBFE3E92B,0xB28067AE,0xD862D848,0x0732A22D,
0x840EF879,0x79FFA920,0x0124C8BB,0x26C75B69,0xC3DAAAC5,0x6E71F2E9,
0x9FD4AFA6,0x474D0702,0x8B6AD73E,0xF5714E20,0xE608A352,0x2BF644F8,
0x4DF9A8BC,0xB71EAD7E,0x6335F5FB,0x0A271CE3,0xD2B552BB,0x3834A0C3,
0x341C5908,0x0674A87B,0x8C87C0F1,0xFF0842FC,0x48C46BDB,0x30826DF8,
0x8B82CE8E,0x0235C905,0xDE4844C3,0x296DF078,0xEFAA6FEA,0x6CB98D67,
0x6E959632,0xD5D3732F,0x68D95F19,0x43FC0148,0xF808C7B1,0xD45DBD5D,
0x5DD1B83B,0x8BA824FD,0xC0449E98,0xB743CC56,0x41FADDAC,0x141E9B1C,
0x8B937233,0x9B59DCA7,0xF1C871AD,0x6C678B4D,0x46617752,0xAAE49354,
0xCABE8156,0x6D0AC54C,0x680CA74C,0x5CD82B3F,0xA1C72A59,0x336EFB54,
0xD3B1A748,0xF4EB40D5,0x0ADB36CF,0x59FA1CE0,0x2C694FF9,0x5CE2F81A,
0x469B9E34,0xCE74A493,0x08B55111,0xEDED517C,0x1695D6FE,0xE37C7EC7,
0x57827B93,0x0E02A748,0x6E4A9C0F,0x4D840764,0x9DFFC45C,0x891D29D7,
0xF9AD0D52,0x3F663F69,0xD00A91B9,0x615E2398,0xEDBBC423,0x09397968,
0xE42D6B68,0x24C7EFB1,0x384D472C,0x3F0CE39F,0xD02E9787,0xC326F415,
0x9E135320,0x150CB9E2,0xED94AFC7,0x236EAB0F,0x596807A0,0x0BD61C36,
0xA29E8F57,0x0D8099A5,0x520200EA,0xD11FF96C,0x5FF47467,0x575C0B39,
0x0FC89690,0xB1FBACE8,0x7A957D16,0xB54D9F76,0x21DC77FB,0x6DE85CF5,
0xBFE7AEE9,0xC49571A9,0x7F1DE4DA,0x29E03484,0x786BA455,0xC26E2109,
0x4A0215F4,0x44BFF99C,0x711A2414,0xFDE9CDD0,0xDCE15B77,0x66D37887,
0xF006CB92,0x27429119,0xF37B9784,0x9BE182D9,0xF21B8C34,0x732CAD2D,
0xAF8A6A60,0x33A5D3AF,0x633E2688,0x5EAB5FD1,0x23E6017A,0xAC27A7CF,
0xF0FC5A0E,0xCC857A5D,0x20FB7B56,0x3241F4CD,0xE132B8F7,0x4BB37056,
0xDA1D5F94,0x76E08321,0xE1936A9C,0x876C99C3,0x2B8A5877,0xEB6E3836,
0x9ED8A201,0xB49B5122,0xB1199638,0xA0A4AF2B,0x15F50A42,0x775F3759,
0x41291099,0xB6131D94,0x9A563075,0x224D1EB1,0x12BB0FA2,0xFF9BFC8C,
0x58237F23,0x98EF2A15,0xD6BCCF8A,0xB340DC66,0x0D7743F0,0x13372812,
0x6279F82B,0x4E45E519,0x98B4BE06,0x71375BAE,0x2173ED47,0x14148267,
0xB7AB85B5,0xA875E314,0x1372F18D,0xFD105270,0xB83F161F,0x5C175260,
0x44FFD49F,0xD428C4F6,0x2C2002FC,0xF2797BAF,0xA3B20A4E,0xB9BF1A89,
0xE4ABA5E2,0xC912C58D,0x96516F9A,0x51561E77};


