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Abstract: In this paper, we will propose a new synchronous stream cipher 
named DICING, which can be taken as a clock-controlled one but with a new 
mechanism of altering steps. With the simple construction, DICING has 
satisfactory performance, faster than AES about two times. For the security, 
there have not been found weakness for the known attacks, the key sizes can 
be 128bits and 256bits respectively.  
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1. Introduction  
 
In a synchronous stream cipher, the ciphertext is generally made by bitwise adding (XOR) the 
plaintext with a binary sequence called keystream. Hence the principle task for a synchronous 
stream cipher is to produce a secure keystream. For the real cases that there is the possibility that 
the cipher is abused or the plaintext of some ciphertext are known by some people, thus the 
keystream will become visible for them, the analysis for this case is called the plaintext-known 
analysis. Therefore, a secure keystream should satisfy two basic conditions: The first is that the 
original key can not be recovered from the keystream, the second is that the contents of the bits in 
the keystream should be unpredictable for an adversary, in other words, for the adversaries the 
keystream should look like a random one, i.e. pseudo-random. Clearly, if the keystream sequence 
is periodic and the period is short, then it will be predictable, thus the keystream should have 
enough large period. It is known that the technique of the linear feedback shift registers (LFSR) is 
able to generate the larger periods of sequences, so LFSRs are often used in the stream ciphers as 
the component parts. However, LFSR also has an obvious weakness that the each bit in a LFSR’s 
sequence is linearly related to the initial state, and so this implies that the initial state is easy 
deduced from some of the later bits in the sequence, the famous Berlekamp-Massey’s algorithm 
[18,21] is such a example of the algorithms. In the almost of known attacks such as correlation 
attacks, algebraic attacks and distinguishing attacks, etc. just exploited the weakness of LFSR. So, 
LFSR-based stream ciphers should interfere the linear relations in the bits of the LFSRs. Clearly, 
the clock-controlled methods comes from this consideration, see [12,21].  
 
On the other hand, in respect to the implementation, the operation of the ordinary LFSRs is in bits, 

that is, is based on the finite field )2(GF , not convenient for software implement, so the later 

stream ciphers such as BLUETOOTH [1], SOBER [14,15], SNOW [7] and SCREAM [13] have 

been developed to the finite field 32,16,8),2( orkGF k = .  

In this paper, we will present a new synchronous stream cipher called DICING. It satisfies the 
security requirement, with a simple construct and has a satisfactory performance.  
The cipher DICING may be taken as a clock-controlled one, but with a new mechanism of altering 
steps. It consists of a controller and a combiner. In the proposal cipher, we will substitute the 

LFSR for the LFSR-like called projector (Pr.). A projector consists of an element tσ  called state 

from some finite field )2( mGF and an updating rule. The rule of updating states is that 

multiplying tσ  with kx , k is an integer, namely,   

t
k

t x σσ ⋅=+1 .                          (1.1) 

The finite fields used in here are )2( mGF , 126,127,128 orm = . In other word, the operation 

shift in LFSR now is replaced by multiplying kx  in the field )2( mGF .  



The key sizes in DICING can be 128 bits or 256 bits, and the size of initial value is assumed same 
as the key size, and the size of output of DICING is 128 bits.  
 
In the section 2, we will give a detail description for the construction, the section 3 is security 
analysis, the section 4 is a report of software implementation, the section 5 are some 
considerations in the design, in the section 6 are some possible variance for the proposal cipher. 
 

In this paper the finite field )2(GF  is simply denoted as F , and [ ]xF �is the polynomial ring 

of unknown x over the field F. The symbols ⊕ , ⊗will represent the bitwise addition XOR, 

bitwise and, that is the operation & in C, and symbols >>, <<, |  and ~ stand for the operations 

right-shift, left-shift, concatenate and complement respectively 

Suppose that ζ is a binary string, denoted by biti][ζ and bitji ],[ζ  the i-th bit and the segment 

from i-th bit to j-th bit respectively, and there are the similar expressions bytebyte jii ],[,][ ζζ  and 

wordword jii ],[,][ ζζ  measured in bytes and words respectively, and if the meaning is explicit 

from the context, the low-index bit, byte and word will be omitted. In this paper, the size of a word 
is 32 bits.  
 
 
2. Construction    
 
As the general stream ciphers, the proposal cipher is also encrypt the plaintext and decrypt the 
ciphertext by adding bitwise a binary string called keystream, namely,  

Ciphertext Plain text Keystream= ⊕                  (2.1) 

The keystream generator contains two main parts, a controller H and a combiner C. The controller 

H is made from two projectors 1Γ , 2Γ  and two counters tD′ , tD ′′  which are also called dices. 

Denoted by tα  and tβ  the states of 1Γ  and 2Γ  in time t  respectively, which come from 

the finite fields 1E  and 2E  respectively, 1 1[ ] / ( )x p x=E F  and 2 2[ ] / ( )x p x=E F , 

)(1 xp  and )(2 xp  are the primitive polynomials with degree 127 and 126 respectively, which 

expression are given in the List 1. They satisfy the simple recurrence equations 

8 8
1 1, , 0,1, 2, .. .i i i ix x iα α β β+ += ⋅ = ⋅ = .          (2.2) 

In other words, tα  and tβ  move a byte in a cycling. 



The dices tD′  and tD ′′  are two integers to record the last eight bits of tα  and tβ  

respectively. The combiner C also contains two projectors 3Γ  and 4Γ , which are based on the 

two finite fields 3E and 4E respectively, 3 3[ ] / ( )x p x=E F , 4 4[ ] / ( )x p x=E F , )(3 xp  and 

)(4 xp are primitive polynomials of degree 128 given in the List 1. Denoted by tω  and tτ the 

states of 3Γ  and 4Γ in the time t  respectively, 3tω ∈E  and 4tτ ∈E . Denoted by 

)( ttt DDD ′′⊕′= , ,15&tDa =  4)( >>= tDb , then  

t
b

tt
a

t xx ττωω ⋅=⋅= ++ 11 , .                     (2.3) 

Besides, we use two memorizes tu  and tv to assemble tω and tτ  respectively,  

1 1, , 0t t t t t tu u v v for tω τ− −= ⊕ = ⊕ > ,               (2.4) 

where .011 == −− vu  

We will employ a S-box )(0 xS , which is defined in the following. Suppose that K  is a finite 

field )2( 8GF , [ ] / ( )x p x=K F , where )(xp  is an irreducible polynomial of degree eight, 

which expression is given in the List 1. The 0 ( )S x  is defined as 

127
0 ( ) 5 ( 3) ,S x x x= ⋅ ⊕ ∈K .                  (2.5) 

We also adopt the representation )(0 ζS  for a bytes string ζ to represent that S-box 0S  

substitute each byte of the array ζ . 

The initialization process is as following. Suppose that K  is the secret key, and IV is the initial 
value. Let 

256
,

| (~ ) 128,
I

I
I I

K if K
K K IV K

K K if K
⎧ =⎪′= ⊕ = ⎨ =⎪⎩

           (2.6) 

Let ic be the constants, which are equal to the integer part of the logarithm of the i-th prime 

number with multiplying properly w2 , 32, 31 30,w or= 1 8i≤ ≤ , and 1 2 8( , ,.. ., )c c c c= . 

Define 
 

0 ( )ICSK S K c′= ⊕ .                            (2.7) 



0 0[0,126] , [128, 253]ICS bit ICS bitK Kα β= = .              (2.8) 

Moreover, denoted by 
0 32

[ ]ICS
i

s K i
≤ <

= ⊕ , let σ  be a bytes string of length 32, 

[ ] , 0 32i s iσ = ≤ < . Define 

0 ( (~ ))II ICSK S K cσ= ⊕ ⊕ ,                      (2.9) 

and  

0 0[0,127] , [128, 255]II bit II bitK Kω τ= = .               (2.10) 

 
Follow the initializing, there is a self-cycling sub-process of 64 loops, in which only the states are 
updated but without outputs. In this sub process, the states of the first 32 cycles are used to make 
up two affine transformations A  and B , which are used to renew the S-box and set up a mixed 

transformation 1L on 4K respectively. The procedure is in the below: For a string ρ of 8 bytes, 

we define a vector Vρ of 8 bits and a 8 8× matrix M ρ : [ ] [8 ] ,0 8,bitV i i i iρ ρ= + ≤ <  and 

u lM T Tρ = ⋅ .                            (2.11) 

where 88, )( ×= jiu aT  and , 8 8( )l i jT b ×= are the upper-triangular matrix and the lower-triangular 

matrix respectively,  

, ,

[8 ] , [8 ] ,
1 , 1 ,
0 , 0 .

bit bit

i j i j

i j if i j i j if i j
a if i j b if i j

if i j if i j

ρ ρ+ < + >⎧ ⎧
⎪ ⎪= = = =⎨ ⎨
⎪ ⎪> <⎩ ⎩

 

Let iλ  be the strings of length 16 bytes, which is iteratively defined as  

000 τωλ ⊕= ,  1 ( ) ( ),i i i i i iλ λ α β ω τ−= ⊗ ⊕ ⊕ ⊕ 1 32i≤ ≤ .    (2.12) 

Denoted by 32 32[0,7] , [8,15]byte byteλ λ λ λ′ ′′= = , and define two affine transformations 

         1 8( ) ( ) , ( ) ( ) , .A x M x V B x M M x V V xλ λ λ λ λ λ
−

′ ′ ′′ ′ ′ ′′= ⊕ = ⋅ ⊕ ⊕ ∈F       (2.13) 

In the 32-th loop of the self-cycling, we define a new S-box )(xS and a transformation 1L on 

4K , 

0 1

1 1 1
1 1 1

( ) ( ),
1 1 1

1 1 1

B B
B B

S x A S x L
B B

B B

⊕⎛ ⎞
⎜ ⎟⊕⎜ ⎟= ⋅ =
⎜ ⎟⊕
⎜ ⎟
⊕⎝ ⎠

.        (2.14) 



Moreover, suppose that K is a finite field 32(2 )GF , 5[ ] / ( )x p x=K F �, 5 ( )p x  is an 

irreducible polynomial of degree 32 , which expression given in List 1. We will employ another 

linear transformation 2 , 4 4( )i jL c ×= on 4K , which is a circulated matrix generated by the vector 

(2,1,3,1) . Suppose that ζ is an array of 16 bytes, then ζ can be arranged as a 44× matrix, 

, 4 4( )i jaζ ×= , , [4 ] , 0 , 4i j bytea i j i jζ= + ≤ < . So, denoted by )(1 ζL  the transformation 1L  

takes on the each row of ζ , and by )(2 ζL the transformation 2L  takes on the vector 

( [0] , [1] , [2] , [3] )word word word wordζ ζ ζ ζ . 

After self-cycling, the process enters the recurrence part of generating keystream, each cycle 
includes two sub-processes of updating and combining. In the updating, all the states are updated 

from the time 1t −  to the time t . The combining functions 0 ( )C ζ  and ( , )C ζ ϑ are defined 

as  

0 2 1 0( ) ( ( ( ))), ( , ) ( )C L L S C Cζ ζ ζ ϑ ζ ϑ= = ⊕ .             (2.15) 

where ϑ  and ζ  are two arrays of length 16 bytes. The combing process is controlled by the 

case :t tD D′ ′′ , which is formulized as in the following, tz is denoted as the keystream,  

( , ) , ,
( , ) , ,

, .

t t t t

t t t t t

t t t t

C u v if D D
z C v u if D D

u v if D D

′ ′′>⎧
⎪ ′ ′′= <⎨
⎪ ′ ′′⊕ =⎩

                (2.16) 

We have summarized the whole process in a sketch as Fig. 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



List of the Primitive Polynomials used 
                                

Polynomials               Expression 

)(xp  1568 ++++ xxxx  

)(1 xp  127 89 41 3( 1)( 1)x x x x+ + + +  

)(2 xp  126 83 35 7( 1)( 1)x x x x+ + + +  

)(3 xp  )1)(1( 27355790128 ++++++ xxxxxx  

)(4 xp  )1)(1( 7275897128 ++++++ xxxxxx  

5 ( )p x  32 19 17 11 4 2 1x x x x x x+ + + + + +  

 
List 1 

 
 

The Sketch of Encryption Process 
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Fig.1 
 
 

Self-cycling 64 times

without outputs, in 32-th 
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This is the

recurrence part 



3.  Security Analysis 
 
In the design, we always take the security as the aspect of the first important. In the beginning of 
this section, we will show some results about the periods and distributions for proposal stream 
cipher, and then give an investigation with respect to standard cryptanalytic attacks, finally 
provide some results of statistic tests. 
 
Period and Distribution 
 
Clearly, the periodicity of a sequence implies it is predictable after a period, so with a larger period 

is a requisite for the keystream. Denoted by ( )tPeriod π  as the period of a sequence tπ . 

 
Proposition 1   

126 127( ) (2 1)(2 1),tPeriod D = − −                      (3.1) 

126 127 128( ) ( ) (2 1)(2 1)(2 1) /15t tPeriod Periodω τ= = − − −            (3.2) 

 

Proof.  Note that polynomials )(1 xp  and )(2 xp  are primitive, and the order of x  in the 

fields 1E  and 2E  are 12127 −  and 12126 −  respectively, hence  

                    12)(,12)( 126127 −=−= tt PeriodPeriod βα ,            (3.3)  

and equation (3.1) is followed for 126 127(2 1, 2 1) 1− − = . 

Write ik
i x⋅= 0ωω , and let )12)(12( 126127 −−=n , 

0
i

i n
m k

≤ <

= ∑ , it is easy to calculate that 

for each integer , 1 16c c≤ < , the occurrence times of c  in the sum above is  

122123249123122122123122123 2222)12(2)12(1422 −−=⋅−+⋅−+⋅⋅ .  

Thus, 

120)222( 122123249 ⋅−−=m                      (3.4) 

and  

                            352
00

2124 ⋅⋅−⋅=⋅= xxm
n ωωω                      (3.5) 

In the field 3E or 4E , the order of x  is equal to 1282 1− , and 15)352,12( 2124128 =⋅⋅− ,  

the formula (3.2) is followed.                                                      

 



Note that 1 1, ,t t t t t tu u v vω τ− −⊕ = ⊕ =  so we have  

 
Corollary 1 

126 127 128( ), ( ) (2 1)(2 1)(2 1) /15t tPeriod u Period v ≥ − − − .          (3.6) 

 

In order to have some knowledge about the distributions of the sequences , , ,t t tuω τ and tv , we 

show the following results. 
 

Proposition 2 Suppose that [ ] / ( )x q x=E�F  is a finite field )2( mGF , )(xq  is a primitive 

polynomial of degree m , and s is a positive integer, let )(xg be the generating function 

0
( ) k

k s
g x x

≤ <

= ∑ , 
0 2 1

( ) ( )
m

n i
i

i

g x c n x
≤ < −

= ∑ , then for each integer i , 0 2 1mi≤ < − . 

)12/(1)/)((lim −=
→∝

mn
in

snc                       (3.7) 

 

Proof.  Let )(/)( npsnc i
n

i = , then 1)( =∑ np
i

i . Denoted by { }( ) min ( ) ,ii
p n p n′ =  

{ }( ) max ( )ii
p n p n′′ = . It is easy to know that the sequence { ( )}p n′ is non-decreasing and the 

sequence { ( )}p n′′ is non-increasing. Suppose that lim ( )
n

p n µ′ = , j and k are two integers 

such that ( ) ( )jp n p n′= , ( ) ( )kp n p n′′= , without loss generality, we can assume that 

lim ( ) lim ( )jn n
p n p n µ′ = = . Let d  be the least non-negative integer such that 

)12(mod −≡− mdjk , and ⎡ ⎤ 0/ dsd = , then it has 

                                           

sdsd
npnp

npdnp
m

jk
jj +

−−
≥

+

−
≥−+

µ)12/(1)()(
)()( 0 . 

Let ,→∝n  it follows that 

                                 
12

1
−

= mµ .                                  

 
We know that m-sequences have good statistic properties in randomness [11,19], so we introduce 

the following conception, for an event once , denoted by ˆ( )P once  the probability of the event 

once occurs under the assumption the dices tD′ and tD′′  behave randomly. Then the Proposition 



2 can be rewritten as following, for any integer 128, 0 2 1i i≤ < − ,  

128

1ˆlim ( )
2 1

i
tn

P xω
→∝

= =
−

, 128

1ˆlim ( )
2 1

i
tn

P xτ
→∝

= =
−

.       (3.8) 

Similarly, we have 
 

Proposition 3   For 3 4,orµ∀ ∈E E , it has 

128

1ˆlim ( )
2tt

P u µ
→∝

= = ,  128

1ˆlim ( )
2tt

P v µ
→∝

= = ,               (3.9) 

moreover, for any finite subset J ⊂ Z , denoted by ,J J
t i t t i t

i J i J
U u V v+ +

∈ ∈

= =⊕ ⊕ , if 

0 00, 0J JU V≠ ≠ , then 

128

1ˆlim ( )
2

J
tt

P U µ
→∝

= = ,  128

1ˆlim ( )
2

J
tt

P V µ
→∝

= = .             (3.10) 

 
Proof. The proof is similar to the one of Proposition 2, but note that the any element in 

3 4,orE E is a polynomial with degree less than 128 , and so can be represented as a combination 

of { }127

0t i i
u + =

, the detail proof is omitted.                                             

 
With larger periods and good statistic properties, LFSRs are usually applied in the stream ciphers 
as main components. However, on the other hand, the linear relations between the bits of a LFSR’s 
sequence is the fatal weakness which incur the various attacks, such as correlation attacks, 
algebraic attacks, distinguishing attacks, etc. In the cipher DICING, the relations between the 
states are dynamic, so that the attacks that draw support from the correlations are foiled in some 
degree. In the next, we give a discussion in respect to the main ones of the known attacks. 
  
Correlation Attack 
Correlation attack is one of main analyses for the stream ciphers, and there have been a lot of 
researches on this topic since the earlier work T. Siegenthaler[25] and W. Meier, O. Staffelbach 
[18]. See [3,10,21,23,24]. The cipher Deffe is a famous example in the stream ciphers that are 
encountered this kind of attacks [22,25].  
Suppose that x  is a binary segment of length l , let  

1

0
( ) [ ]

l

i
x x iδ

−

=

=⊕                             (3.11) 

It is obvious that 1,0)( orx =δ , depending on that the number of s'1  bits in the segment x  

is even or odd. Furthermore, suppose that )(xf is a function from nF  to mF , for na∈F and 

mb∈F , 0≠a . We write 



)&())(&())(,,( xbxfaxfbaL δδ ⊕= .               (3.12) 

Clearly, 1,0))(,,( orxfbaL =  as the variable x varies, namely, equal to 0 for some sx'  and 

equal to 1 for the other sx' . We call the equations 

,0))(,,( =xfbaL or 1))(,,( =xfbaL                (3.13) 

the linear approximations of function )(xf with coefficients a and b , which are probabilistic 

equations. Clearly, if one of the equations in (3.13) is certainly known true or wrong by some way, 

then it will reveal a relation between the input x and the values of function )(xf in some bits, 

and so a relation among the contents of the input x will be found, for the values of function )(xf  

are known in a plaintext-known attack, thus this case should be avoided in a stream cipher. The 
case that the equations in (3.13) have greater probabilities is this kind of case, since it is easier to 
find true value by the samples test in statistics. This means that for a good cipher the chance of 

1,0))(,,( orxfbaL =  should be balanced for all possible a and b . We define 

( , , ) ( , , ( ))
x

d f a b L a b f x=∑ ,                     (3.14) 

( , , ) (2 ( , , ) 2 ) / 2m mf a b d f a bΛ = − ,                (3.15) 

                           { }),,(max)(
,

baff
ba

Λ=∆ ,                       (3.16) 

{ })0,,(max)(
00 aff

a
Λ=∆

≠
,                       (3.17) 

in (3.14) the summarize is the integer addition, which is just the times of 1))(,,( =xfbaL , 

and ),,( bafΛ is the bias between the times of equations 1))(,,( =xfbaL  and 

0))(,,( =xfbaL  as x  run over the domain., )( f∆ is the maximum bias as a and b run over 

nF and mF  respectively, and 0( )f∆  is a special case of )( f∆  in 0.b =  

We know that the keystream can be written as ( )tf x , where ( )tf x is a nonlinear function and 

tx usually come from some LFSR’s. As each bit of LFSR is linearly related to the initial state, that 

is, a linear combination of the initial bits { } 1
0 0
[ ] lx i −

of sequence tx , this means that every linear 

approximation as (3.13) will return to an equation about the initial bits { } 1
0 0
[ ] lx i −

by, for example, 

Berlekamp-Massey algorithm. So if there are l  or more linear approximations as (3.13) which 



are known absolutely true or with a rather higher probability, then the initial state will be deduced 

by solving the resulting linear system about { } 1
0 0
[ ] lx i −

. The main idea of correlation attack is to 

find the l  linear approximations with higher probabilities. The first step in the attack is to look 

for sufficient correlations satisfied by tx . Secondly, from these correlations, set up the 

corresponding parity checks, in which some are equal to 0, the others are equal to 1.Then select 
the l  linear approximations with highest probabilities by maximum likelihood rule.  
It is known that there are two ways to find these correlations, one is by squaring and shifting a 
correlation polynomial iteratively, and another is by selecting the polynomial multiples of the 
connection polynomial [10]. 
By squaring and shifting, it is easy to know that the number m of the correlations that one 

tx satisfy is about 

)2/(log2 kNtm ⋅≈ ,                         (3.18) 

where the parameters kN , and t  are the length of the known keystream, the length of a 

correlation and the number of nonzero terms in a correlation polynomial [20].  
From formula (3.18), we can know the number of correlations that one x  satisfying will be 

limited, for example, in the case of the key space is 256 bits, and ,64≤t  then 

142 .m ≤                               (3.19) 

This implies that the attack will be incapable when the bias of the parity check sequence 71/ 2 .≤  

The output size of the proposal cipher is 128 bits, so it is difficult to find ( , , )d C a b  and ( )C∆  

for the computer capability limited. Nevertheless, we can provide an estimate for the upper bound 

about the bias. For the S-box ( )S x used in DICING, it has 

3( ) 1 2S∆ =                             (3.20) 

Moreover, in the combining function )(0 ϑC , there are at least four S-boxes are activated, so we 

obtained the following estimation 

12
0( ) ( ) 1 2C C∆ ≤ ∆ ≤ .                      (3.21) 

It is known that the bias of the parity check formed by w  linear approximations with bias ∆  is 
equal to w∆ , thus the correlation attack in this case is not feasible for DICING, as the number of 
nonzero terms in a correlation no less than two, i.e. 2.w ≥  
As to the second way, selecting polynomial multiples, it is known that to find N multiples with 
the weight (number of nonzero monomials) no higher than w , the required computations is  

/( 1)( 2 )r w wCost N −≥ ⋅                        (3.22) 



where the parameter r is the degree of the connection polynomial, cf. [9]. 
On the other hand, we know that the bias of the parity check formed by w  linear approximations 

with bias ∆  is equal to w∆ , so, by the theory of hypothesis testing, about 2( )wO −∆  tests of 

parity checks are needed. From (3.21), we have known that 121/ 2∆ ≤ , and in the formula (3.22) 

let 2 242 , 128,w wN r−= ∆ = =  then the required computations will be greater than  

(24 128) /( 1) 2982 2w w w+ − > ,  
thereby, this kind of correlation attack is also impossible for the cipher DICING. 
 
Algebraic Attack. 
In the above discussion for the correlation attack, we have seen that the stream ciphers should 
avoid the linear relations between the output and the inside components. Thus, the functions are 
generally used in the filters or the combiners are nonlinear, and the Boolean functions in each bit 
are not linear functions. Algebraic attack is such an attack for these ciphers that the orders of 
Boolean functions are not enough high, cf. [5]. In this analysis, the main idea is that taking every 
possible monomial in the Boolean function as a new variable, so the original algebraic equations 
become the linear equations but the number of the variables increases. If the size of the input is 

m bits, then the number of the monomials of order no greater than k  is ∑
≤≤ ki

i
mC

0
. Thus, if the 

order of the Boolean functions is large, then the number of the variables will increase very fast in 
the linearization. Hence, the Boolean functions used in the stream ciphers should have higher 
order. However, on the other hand, it is known that by multiplying some multiplies can reduce the 

order of Boolean functions such that the order of the result function is no more than ⎡ ⎤2/)1( +m , 

see [5].  

In DICING, the S-box 127
0 )3(5)( ⊕⋅= xxS , it can be written as  

0 0 1 7( ) ( , ,..., )S x f f f= ,                      (3.23) 

where )(xfi , 0 7i≤ ≤ , are the Boolean functions of order seven. Hence the number of new 

variables after the linearization will be about ∑
≤≤

≈
70

5.37
128 22

i

iC , In order to set up 372 linear 

equations over the field F , 302 output blocks are needed. We have seen that in DICING the 

relations between state tω (or tτ ) and state 1+tω (or 1+tτ ) are not known, the successful 

probability of a guess the relation from the time t  to time 1+t  is no more than 42/1 , and so 

the successful probability of a guess the relation between tu and ktu + is no more than k×42/1 . 

Therefore, algebraic attack for DICING is impossible. 
 



It maybe should mention that here we have not counted the efficiency of the key-defining method 

used in S-box )(xS and the transformation 1L . 

 
Distinguishing Attack 
To guarantee the good randomness of the keystream, it is required that the keystream should not 
be distinguished from a truly random sequence with computations less than the exhaustive search. 
This implies that the keystream should be very balanced for statistics. It is shown by the practice 
that this requirement is somehow severe for the design of stream ciphers, a number of the known 
stream ciphers such as SNOW, SOBER and SCREAM etc. are encountered this kind of attack, see 
[4,8,17]. The main tool used in this attack is the theory of hypothesis testing in statistics. There are 
two ways to take this attack, one is directly to the distribution of output values of keystream, 
which is usually for the stream ciphers with smaller output sizes, the another is through linear 
approximations and parity checks. The following is a simple description for this kind of attack. 

Assume that some linear approximations ))(,,( xfbaL with bias s21 , and the states ix  

satisfy the correlation  

                               1,0 orxi
Ji

=⊕
∈

                             (3.24) 

where J ⊂ Z  is a finite subset of the non-negative integers. Then we have 

1,0))(&()(,,( orxfaxfbaL i
Ji

i
Ji

==⊕⊕
∈∈

δ .           (3.25) 

Denoted by ( ) ( )t i
i J

y t f x +
∈

=⊕ , the cardinality J w= , then it is easy to know that the 

sequence ( )y t  is of the distribution with the bias about 1 2ws , that is, 

0 ( ( )) 1/ 2wsy t∆ ≈ .                          (3.26) 

By the theory of hypothesis testing, through about 2(2 )wsO sample tests will distinguish this 

distribution from a random one with a significant level.  

In order to analysis the cipher DICING, let 1, ba and 2b be the arrays of length 16 bytes, write 

),( 21 bbb = , then 

)))(&()&())(&((
)&()&()),(&()),(,,(

210

21

bavubuCa
vbubvuCavuCbaL

⊕⊕⊕=
⊕⊕=

δ
δδδ

.    (3.27) 

So, we have  

0 2( ( , ), , ) ( ) ( , ,0)d C u v a b C d v a b≤ ∆ ⋅ ⊕                (3.28) 

From Proposition 2 and 3, we know that the distribution of the sequences tu  and tv are nearly 

uniform, so if ab ≠2 , then it has  
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1( ( , ), , )
2

d C u v a b +≤ .                       (3.29) 

This means that if the linear approximation ),),,(( bavuCL is applied to a distinguishing attack, 

it should be ab =2 , thereby, 02 ≠b . Moreover, it is clear the values of function )(0 uC is 

uniformly distributed, so 01 ≠b . Consequently, if a subset J ⊂ Z  is applied to form a parity 

check, then it should be that  

0i
i J

u
∈

=⊕  and  0i
i J

v
∈

=⊕ .                      (3.30) 

This case seems very scarce for that the sequences tu and tv are nearly independent of each other.  

We call a subset J ⊂ Z  as a correlation set if J satisfies the equations (3.30). Define 

{ }max ,J b a a b J= − ∈ , we conjecture that there is no identical correlation set J with 

( )tJ Period u< , where term identical means independent of the key K . On the other hand, 

suppose J ⊂ Z  is a correlation set, denoted by ( ) t i
i J

y t z +
∈

=⊕ , then   

                               12
0 ( ( )) 1/ 2 Jy t ⋅∆ ≤ , 

and so 10.J ≤   

 
Time-memory trade-off attacks 
This attack has the aid of a pre-computed table that list the correspondences between the states and 
keystream. Clearly, this attack only success in the cases that the size of state is small or there are 
the relations between a small part of states and the keystream, and these relations are independent 
of the other part of the states. In DICING, the size of states is near to 5092 bits, and the states 

tu and tv  have similar status in the process of generating keystream, moreover, with the 

transformations 1 2,L L , and S-box ( )S x such that the content of each bit will effect all the other 

bits in at most two cycles, so there are no the correspondences between some of small isolated 
parts of the states and the keystream. 
 
Guess-and-Determine attacks 
In this attack, at first guess the contents of some variables, which usually are the bits of the key or 
the states or the intermediary variables, and then deduce the contents of the rest variables by some 
conventional ways. If total computations in this procedure are less than the exhaustive search, then 
the attack is successful. The ciphers with bias construction or small states size are easy baffled by 
this attack. For the same reason as above, it seems no flaws in the proposal cipher for this attack. 
 



Inversion Attacks 

Though it is possible to take the inversion operation for the linear transformation 2L  in a block 

of keystream, but as tu and tv  mask alternately, thus it will have few results in this way. 

 
Some tests in statistics  
We have made some tests about the statistic property of DICING. One test is in respect to the bias 

of linear approximations, for 2 , 0,1, .. .,127,da b d= = =  with 302 outputs, the maximum 

bias 13.31/ 2≤ . Another test is for the distributions of the bit segments of the keystream, we have 

calculated the frequencies of segments of length 10 bits with 302 outputs, the standard deviation 

of the frequencies 18.51/ 2≤ , indicates that it is near uniformly distributed 

 
 
4. Implementation 
 

The substitution ( )S x and the transformation 1L  can be combined into four 328×  table 

look-ups )(xSi , 41 ≤≤ i , and )(xSi  acts on the i-th byte of each row respectively,   

41 ≤≤ i . The method once was applied in AES [6]. 
 
In the platform of AMD G8.1 , 32-bit processor, Borland C++ 5.0, the performance of DICING is 
presented in the following List 2  
 

Report of Performance 
 

Sub-processes                 Time or Rate 
Initialization                  918 cycles 
Self-cycling                57600 cycles 

Encrypt/Decrypt Rate            24 cycles/byte or 384 cycles/block 
 

List 2 
 
From the list above we have seen that the DICING is faster than AES about two times. It is likely 
that there will be an improvement for the rate with an optimal code, and anticipatable that the 
cipher DICING will run much better in the cases of 64-processor or hardware. 
 
 
5. Some Considerations in the Design 
 



In the proposal cipher we introduced the called projectors replacing of LFSRs for that it seems 
more flexible for applications, which can be regarded as a combination of a LFSR and a FSM, 

finite states machine. For example, in this paper, the projectors 1Γ  and 2Γ  play the role of 

LFSR, and the projectors 3Γ  and 4Γ resemble FSM. 

The mechanism of applying two dices to control the process like the clock-controlled one is to 
interfere the linear relations in regular LFSRs or the Projectors.  
The purpose of applying a self-cycling sub-process is that first to have the data in the initial states 
mixed enough, second to have the states start to output far from the initial states. This treatment 
had once occurred in the existed ciphers before, e.g. SNOW [7]. 
As ordinarily, S-boxes are used to get higher order of non-linearity, and linear transformations are 
employed for the diffusion of the data.  
The key-defining procedure employed in (2.11) ~ (2.14) is to interfere the linear approximating, 
which was once applied in our block cipher designs. The affine transformation B  in fact may be 
even arbitrary, not need restricted in non-singular.  
 
6. Some possible variance in DICING 
 
In the following are some possible simplifications if wish to enhance the performance rate. 

1) The key-defining procedure may be leaved out, and simply let .,4,2,1 etcorBA ==  It is 

noted that in the security analysis above, we have not relied on the advantage of this 
procedure, therefore, the simplified will still satisfy the security requirement. But this only 
decreases the startup time. 

2) The Pr. 2Γ may be reduced, that only affect the period of the sequences, but it will have 

enough security at least for the key size 128 bits. 

3) In the updating of the states tω and tτ  may adopt the method of that one go and one stop 

instead of both forwards.    
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