
Cryptanalysis of Stream Cipher DECIM

Hongjun Wu and Bart Preneel

Katholieke Universiteit Leuven, Dept. ESAT/COSIC
{wu.hongjun,bart.preneel}@esat.kuleuven.be

Abstract. Stream cipher DECIM is a hardware oriented cipher with
80-bit key and 64-bit IV. In this paper, we point out two serious flaws
in DECIM. One flaw is in the initialization of DECIM. It causes about
half of the key bits being recovered bit-by-bit when one key is used with
about 220 random IVs, and only the first two bytes of each keystream are
needed in the attack. The amount of computations required in the at-
tack is negligible. Another flaw is in the keystream generation algorithm
of DECIM. It causes the keystream heavily biased. Any two adjacent
keystream bits would be equal with probability about 1

2
+ 2−9. A mes-

sage could be recovered from the ciphertexts if that message is encrypted
by DECIM for about 218 times. The DECIM with 80-bit key and 80-bit
IV is also vulnerable to the attacks.

1 Introduction

DECIM [1] is stream cipher submitted to the ECRYPT stream cipher project.
In this paper, we point out two flaws in DECIM, one in the initialization, and
another one in the keystream generation algorithm. The flaw in the initialization
causes the key being easily recovered from the keystreams when one key is used
with about 220 random IVs. The flaw in the keystream generation algorithm
causes the keystream heavily biased, and thus vulnerable to the broadcast attack.

In Section 2, we illustrate the DECIM cipher. Section 3 presents the key
recovery attack on DECIM. The key recovery attack on DECIM is improved
in Section 4. The broadcast attack on DECIM is given in Section 5. Section 6
shows that the DECIM with 80-bit IV is also vulnerable to the attacks. Section
7 concludes this paper.

2 Stream Cipher DECIM

The main feature of the stream cipher DECIM is the use of the ABSG decimation
mechanism in the keystream generation.

2.1 Keystream Generation

The keystream generation diagram of DECIM is given in Fig. 1. DECIM has a
regularly clocked LFSR which is defined by the feedback polynomial

P (X) = X192 + X189 + X188 + X169 + X156 + X155 + X132 +
X131 + X94 + X77 + X46 + X17 + X16 + X5 + 1

over GF (2). The related recursion is given as

s192+n = s187+n ⊕ s176+n ⊕ s175+n ⊕ s146+n ⊕ s115+n ⊕ s98+n ⊕ s61+n

⊕ s60+n ⊕ s37+n ⊕ s36+n ⊕ s23+n ⊕ s4+n ⊕ s3+n ⊕ sn

At each stage, two bits are generated from the LFSR as follows:

yt,1 = f(st+1, st+32, st+40, st+101, st+164, st+178, st+187),

yt,2 = f(st+6, st+8, st+60, st+116, st+145, st+181, st+191),

where the Boolean function f is defined as

f(xi1 , ..., xi7) =
∑

1≤j<k≤7

xij
xik

The binary sequence y consists of all the yt,1 and yt,2 as

y = y0,1y0,2y1,1y1,2 · · · yt,1yt,2 · · ·

The keystream sequence z is generated from the binary sequence y through the
ABSG decimation algorithm. The sequence y is split into subsequences of the
form (b̄, bi, b̄), with i ≥ 0 and b ∈ {0, 1}; b̄ denotes the complement of b in {0, 1}.
For every subsequence (b̄, bi, b̄), the output bit is b for i = 0, and b̄ otherwise.
The ABSG algorithm is given below as

Input: (y0, y1, ...)
Set: i ← 0; j ← 0;
Repeat the following steps:

e ← yi, zj ← yi+1;
i ← i + 1;
while (yi = ē) i ← i + 1;
i ← i + 1;
output zj

j ← j + 1

Remarks. The above description of the ABSG and the pseudo code of ABSG are
quoted from [1]. However the outputs of the pseudo code are the complements
of that of the ABSG algorithm. Anyway, this difference has no effect on the
security of DECIM. In the rest of the paper, we assume that the DECIM uses
the pseudo code of ABSG given above.

The DECIM is designed to output one bit every two stages. A 32-bit buffer is
used to ensure that the probability that there is output bit missing is extremely
small (2−89).

2

2.2 Initialization

The secret key K is a 80-bit key. The 64-bit IV is expanded to a 80-bit length
vector by adding zeros from position 64 up to position 79. The initial value of
the LFSR state is loaded as follows

si =

Ki ∨ IVi for 0 ≤ i ≤ 55
Ki−56 ∧ IVi−56 for 56 ≤ i ≤ 111
Ki−112 ⊕ IVi−112 for 112 ≤ i ≤ 191

The LFSR is clocked 192 times. After the LFSR being clocked linearly at the
t-th stage, the yt,1 and yt,2 are XORed to the xt,192 as

st+192 = st+192 ⊕ yt,1 ⊕ yt,2

Then one of two permutations π1 and π2 is applied to permute 7 elements st+5,
st+31, st+59, st+100, st+144, st+177, st+186. Two bits yt,1 and yt,2 are input to the
ABSG, if the output of the ABSG is 1, then π1 is applied; otherwise the output
of the ABSG is 0 or no output, then π2 is applied. The two permutations are
defined as

π1 = (1 6 3)(4 5 2 7), π2 = (1 4 7 3 5 2 6).

Fig. 1. Keystream Generation Diagram of DECIM [1]

3

3 Key Recovery Attack on DECIM

In this section, we develop attacks to recover the secret key of DECIM. The
attack applies when the same secret key is used with a number of random IVs,
and the first 3 bytes of each keystream are known.

3.1 The effects of the permutations π1 and π2

The two permutations in the initialization stage of DECIM provide high non-
linearity to the initialization process. However, the permutations also cause some
bits in the LFSR being updated improperly. The consequence is disastrous.

The permutation π1 is poorly designed. To investigate the effects of this
permutation, we analyze a weak version by assuming that only this permutation
is used in the initialization process, i.e., we replace π2 with π1. The values of
140 elements in the LFSR would never be updated by the initialization process.
Those 140 elements are s5,s6,. . . ,s58, and s100,s101,. . . ,s185. For example, s21

would always become s192+6. The details are given below. We trace the bit s21,
after 16 steps it becomes s16+5 due to the shift of the LFSR. Then it becomes
s16+177 due to the permutation π1. After 33 steps, it becomes s49+144 due to the
shift of the LFSR. Then it becomes s49+31 due to the permutation π1. After 26
steps, it becomes s75+5 due to the shift of the LFSR. Then it becomes s75+177 due
to the permutation π1. This process repeats and at the end of the initialization
process, it becomes s192+6.

The first bit of the keystream is given as y192,2, it is computed as y192,2 =
f(s192+6, s192+8, s192+60, s192+116, s192+145, s192+181, s192+191). By tracing the bits
of LFSR during the initialization process, we know that s192+6 ⇐ s21, s192+8 ⇐
s23, s192+116 ⇐ s132, s192+145 ⇐ s160, s192+181 ⇐ s33. If every key and IV pair is
randomly generated, then according to the loading of the key and IV, we know
that s21, s23, and s33 are with value 1 with probability 0.75. Thus according to
the definition of the function f , the value of y192,2 is 0 with probability 0.582.
So the first bit of the keystream is heavily biased. It shows that the effect of the
permutation π1 is terrible.

In DECIM, there are two permutations, π1 and π2. They are chosen according
to the output of ABSG: π1 is chosen with probability 1

3 , π2 with probability 2
3 .

Due to these two permutations, the number of bits that are not updated by the
initialization process is reduced to 54.5 (obtained by running 216 random key
and IV pairs). It shows that the permutations π1 and π2 which are chosen by
the output of ABSG cause severe damage to DECIM.

3.2 Recovering K21

In the initialization process, we trace the bit s21. s21 would become s192+6 with
probability 1

27 . If s192+6 is with value 0, and assume all the other bits in the
LFSR at the 192-th step are random, then the value of the first bit of the
keystream is 0 with probability q0 = 56

128 . If s192+6 is with value 1, and assume
all the other bits of the LFSR at the 192-th step are random, then the value

4

of the first bit of the keystream is 0 with probability q1 = 72
128 . Denote the

probability that the value of the first keystream bit is 0 when s21 = 0 as p0, and
the probability that the value of the first keystream bit is 0 when s21 = 1 as p1.
Then ∆p = p1 − p0 = 1

27 × (q1 − q0) = 2−7.75. In the experiment, we carried out
220 initializations with random IVs for s21 = 0, and another 220 initializations
for s21 = 1, we found that ∆p = 2−7.99. The experiment result confirms that the
theoretical result ∆p = 2−7.75 is correct.

The above property can be applied to recover K21 as follows. Suppose that the
same key is used with N random IVs to generate keystreams. For the keystreams
with IV21 = 0, we compute the probability that the value of the first bit is 0,
and denote this probability as p′0. For the keystreams with IV21 = 1, we compute
the probability that the value of the first bit is 0, and denote this probability as
p′1. If p′1 − p′0 > ∆p

2 = 2−8.75, we consider that K21 = 0; otherwise, K21 = 1. For
N = (∆p

2)−2× 2 = 218.5, the attack can determine the value of K21 with success
rate 0.977.

3.3 Recovering K22K23 . . . K30

By tracing the bits in the initialization process, we notice that each s22+i is
mapped to s192+7+i with probability 1

27 for 0 ≤ i ≤ 8 (each of them is only
mapped by π1 at st+5). We know that s22+i = K22+i ∨ IV22+i , and s192+7+i,
s192+9+i are used in the generation of y193+i,2 for 0 ≤ i ≤ 10. In this subsec-
tion, we show that the key bits K22K23K24 . . . K30 can be recovered from the
keystream.

The attack similar to that given in Subsection 3.1 can be applied to recover
the value of K23 from the first keystream bits generated from 218.5 IVs.

To determine the values of K22 and K24, we observe the second bit of the
keystream. Due to the disturbance of the ABSG, y193,2 becomes the second
keystream bit with probability 0.5. Thus ∆p′ = 0.5 × ∆p = 2−8.75. To recover
K22 and K24, we need 220.5 IVs in order to obtain the success rate 0.977.

To determine the value of K25, we observe the second and third bits of the
keystream. y194,2 would become the second bit of the keystream with probability
1
8 , and become the third bit of the keystream with probability 1

4 . Thus ∆p′′ =
1
2×(1

4 + 1
8)×∆p = 2−10.165. To recover K25, we need 222.3 IVs in order to obtain

the success rate 0.977.
We omit the details of recovering K26 · · ·K29. To recover K30, we observe

the fifth, sixth and seventh bits of the keystream. y199,2 would become one of
these three bits with probability 77

256 . Thus ∆p′′′ = 1
3 × 77

256 ×∆p = 2−11.068. To
recover K29, we need 223.5514 IVs in order to obtain the success rate 0.977.

3.4 Recovering K9K10 . . . K19

Tracing the bits in the initialization process, we notice that each s9+i is mapped
to s192+166+i with probability 1

27 for 0 ≤ i ≤ 10 (each of them is only mapped
by π1 at st+5). We know that s9+i = K9+i∨ IV9+i, and s192+166+i is used in the

5

generation of y194+i,1 for 0 ≤ i ≤ 10. The attacks given in this subsection are
similar to those given in the above subsection. We only illustrate how to recover
K9 and K19.

To determine the value of K9, we observe the second bit of the keystream.
y194,1 would become the second bit of the keystream with probability 1

4 . Thus
∆p(4) = 1

4 ×∆p = 2−9.75. To recover K9, we need 222.5 IVs in order to obtain
the success rate 0.977.

To determine the value of K19, we observe the 8-th, 9-th and 10-th bits of the
keystream. y204,1 would become one of these three bits with probability 0.25966.
Thus ∆p(5) = 1

3 × 0.25966 ×∆p = 2−11.28. To recover K19, we need 223.98 IVs
in order to obtain the success rate 0.977.

3.5 Recovering K32K33 . . . K46

Tracing the bits in the initialization process, we notice that each s144+i is mapped
to s192+16+i with probability 1

27 for 0 ≤ i ≤ 14 (each of them is only mapped
by π1 at st+5). We know that s144+i = K32+i ∨ IV32+i, and s192+16+i is used in
the generation of y200+i,1 for 0 ≤ i ≤ 14.

Since for s144+i (0 ≤ i ≤ 14), the key bits are XORed with the IV bits, the
attack is slightly modified. For example, if the probability of 0 in the keystream
for IV32 = 0 is higher than the probability of 0 in the keystream for IV32 = 1,
then we predict that K32 = 1; otherwise, K32 = 0.

We only illustrate how to recover K32 and K46.
To determine the value of K32, we observe the sixth, seventh and eighth bits

of the keystream. y200,2 would become one of these three bits with probability
0.28027. Thus ∆p(6) = 1

3 × 0.28027 × ∆p = 2−11.17. To recover K32, we need
223.755 IVs in order to obtain the success rate 0.977.

To determine the value of K46, we assume that starting from the fourth bit
of the sequence y, each bit would become the output with probability 1

3 . Then
y214,2 would become one of the 12th, 13th, . . . , 18th bits of the keystream with
probability 0.16637. Thus ∆p(7) = 1

7 × 0.16637×∆p = 2−13.145. To recover K29,
we need 226.482 IVs in order to obtain the success rate 0.977.

The attacks given in this section recover 36 bits of the secret key with about 226

random IVs. For each IV, only the first 3 bytes of the keystream are needed in
the attack.

4 Improving the Key Recovery Attack

In the above attacks, we only deal with the bits permuted only by π1 at st+5.
To improve the attack above, we trace all the possibilities for each bit si (0 ≤
i ≤ 175) during the initialization process to find out the distribution of that bit
at the end of initialization. Then we search the optimal attack for that bit. We
performed the experiment, and found that 44 key bits can be recovered with
less than 220 IVs, and only the first 2 bytes of the keystream are required in the
attack. The preliminary experiment results are given in Table 2 in Appendix A.

6

5 The Keystream of DECIM Is Heavily Biased

The improperly designed function f in DECIM results in heavily biased keystream.

5.1 The keysteam is biased

We start with analyzing the function f .

f(xi1 , ..., xi7) =
∑

1≤j<k≤7

xij
xik

If any one bit of the input of f is with value 1, then f generates ‘1’ with proba-
bility 72

128 ; otherwise it generates ‘1’ with probability 56
128 . Thus for f(xi1 , ..., xi7)

and f(x′i1 , ..., x
′
i7

), if one bit of one input is always equal to one bit of another
inputs (i.e., xia

= x′ib
where 0 ≤ a, b ≤ 7), then the outputs related to these two

inputs would be equal with probability (56
128)2 + (72

128)2 = 65
128 .

Note that yt,1 and yt,2 are computed as follows

yt,1 = f(st+1, st+32, st+40, st+101, st+164, st+178, st+187)

yt,2 = f(st+6, st+8, st+60, st+116, st+145, st+181, st+191)

Denote A = {1, 32, 40, 101, 164, 178, 187}, B = {6, 8, 60, 116, 145, 181, 191}, and
denote each element of A as ai, and each element of B as bi (1 ≤ i ≤ 7). Then
yt,1 = yt+ai−aj ,1 and yt,2 = yt+bi−bj ,2 with probability 65

128 for 1 ≤ i, j ≤ 7 and
i 6= j. And yt+bi−aj ,1 = yt,2 with probability 65

128 for 1 ≤ i, j ≤ 7. It shows that
the binary sequence y is heavily biased.

The heavily biased sequence y is used as input to the ABSG decimation
algorithm. It results in heavily biased output. In the attack, we are interested in
those biases in y that would not be significantly reduced by the ABSG Algorithm.
Thus we will analyze the bias of (yt+3,1, yt,2), (yt+4,1, yt,2) and (yt,2, yt+2,2) to
find out how they affect the randomness of the output of ABSG.

For example, we analyze the effect of the bias of (yt+3,1, yt,2). yt+3,1 = yt,2

with probability 65
128 . Denote the i-th bit of the sequence y as yi. Thus yi = yi+5

with probability 129
256 . (yi, yi+5) would affect the bias of the output of the ABSG

in two approaches. One approach is that (yi, yi+5) would become (zj , zj+2) with
probability 1

4 (case 1: yi = yi−1, yi+2 6= yi+1 and yi+3 = yi+2; case 2: yi 6= yi−1,
yi+1 = yi−1 and yi+3 = yi+2). Thus for this approach, the bias of (yi, yi+5) causes
that zj = zj+2 with probability 513

1024 . Another approach is that if yi = yi−1 and
yi+2 = yi+1, then (yi, yi+4) would become (zj , zj+2). Note that yi+4 = yi−1 with
probability 129

256 , so zj = zj+2 with probability 129
256 . This approach happens with

probability 1
4 . Thus the bias of (yi, yi+5) causes that zj = zj+2 with probability

513
1024 . Combining these two approaches, we know that zj = zj+2 with probability
257
512 .

We continue analyzing the above example since the output of ABSG dec-
imation algorithm should pass through the buffer before becoming keystream.
By analyzing the ABSG decimation algorithm and the buffer, we notice that

7

if (yi, yi+5) becomes zj = zj+2 after the ABSG decimation algorithm, then
it would become z′k = z′k+1 with probability 0.6135 after passing through the
buffer; if (yi, yi+4) becomes zj = zj+2 after the ABSG decimation algorithm,
then it would become z′k = z′k+1 with probability 0.5189 after passing through
the buffer. Thus after passing through the buffer, the two approaches lead to
z′k = z′k+1 with probability 1

2 + 0.6135× 1
1024 + 0.5189× 1

1024 = 1
2 + 2−9.82.

The similar analysis can be applied to the biases resulting from (yt+4,1, yt,2)
and (yt,2, yt+2,2). The bias of (yt,2, yt+2,2) would cause z′k = z′k+1 with probability
about 1

2 + 2−10.84, and the bias of (yt+4,1, yt,2) would cause z′k = z′k+1 with
probability about 1

2 + 2−11.73.
Combining the effects of (yt+3,1, yt,2), (yt+4,1, yt,2) and (yt,2, yt+2,2), the bias

of z′k = z′k+1 is about 1
2 + 2−9.82 + 2−10.84 + 2−11.73 = 1

2 + 2−9.00.
Now we verify the above analysis with experiment. We generated about 230

keystream bits from DECIM and found that z′k = z′k+1 is about 1
2 + 2−8.67. The

experiment result shows that the analysis result is close to that obtained from
the experiment.

5.2 Broadcast attack

Due to the bias in the keystream, part of the message could be recovered from
the ciphertexts if the same message is encrypted for many times using DECIM
with random key and IV pairs. The similar attack has been applied to RC4 [2].

Suppose that one message bit is encrypted for N times, and each keystream
bit is 0 with probability 1

2 + ∆p with ∆p > 0. Denote n0 as the number of ‘0’ in
the ciphertext bits. If n0 > N

2 , we conclude that the message bit is with value
0; otherwise, we conclude that the message bit is with value 1. For N = ∆p−2,
the message bit could be recovered with success rate 0.977.

Thus if one message is encrypted with different keys and IVs for about 218

times, the message could be recovered from the ciphertexts.

6 Attacks on DECIM with 80-bit IV

The keystream generation algorithm of DECIM with 80-bit IV is the same as
DECIM with 64-bit IV. Thus DECIM with 80-bit IV still generates heavily
biased keystream and vulnerable to the broadcast attack.

The initialization process of DECIM with 80-bit IV is slightly different from
the 64-bit IV version. The key and IV are loaded into the LFSR as

si =

0 for 0 ≤ i ≤ 31
Ki−32 ⊕ IVi−32 for 32 ≤ i ≤ 111
Ki−112 for 112 ≤ i ≤ 191

Similar to the attack given in Section 4, we carry out the experiment to
compute the IVs required to recover each bit. With 221 IVs, 41 bits of the secret
key could be recovered. Only the first 2 bytes of the keystream are required in
the attack. The experiment results are given in Table 3 in Appendix A.

8

7 Conclusion

DECIM is insecure.

References

1. C. Berbain, O. Billet, A. Canteaut, N. Courtois, B. Debraize, H. Gilbert, L. Goubin,
A. Gouget, L. Granboulan, C. Lauradoux, M. Minier, T. Pornin and H. Sibert.
“Decim - A New Stream Cipher for Hardware Applications”. ECRYPT Stream
Cipher Project Report 2005/004. Available at http://www.ecrypt.eu.org/stream/

2. I. Mantin, A. Shamir. “A Practical Attack on Broadcast RC4”. Fast Software
Encryption (FSE2001), LNCS2335, pp. 152-164, Springer-Verlag, 2001.

A The Amount of IVs Required to Break DECIM

Table 2 gives the amount of IVs required to break DECIM with 64-bit IV. 44
key bits can be recovered with less than 220 IVs. Table 3 gives the amount of IVs
required to break DECIM with 80-bit IV. 41 key bits can be recovered with less
than 221 IVs. Only the first 2 bytes of the keystream are required in the attack,
and the amount of computations required in the attacks is negligible.

We explain Table 2 with K0 as an example. K0 is related to s112 since s112 =
K0 ⊕ IV0. s112 is mapped to s192+60 with probability 0.0318 (this probability
is obtained by tracing s112 through the initialization process). Thus K0 could
be recovered by observing the first bits of the keystreams. About 218.95 IVs are
required to achieve the success rate 0.977.

9

Table 1. Amount of IVs required to recover the key bits (64-bit IV)

Affected Bits Amount of
IVs (Log2)

Affected Bits Amount of
IVs (Log2)

K0 s112 ⇒ s192+60 18.95 K1 s57 ⇒ s192+122 20.83
K2 s58 ⇒ s192+116 18.80 K3 s115 ⇒ s192+104 20.46
K4 s116 ⇒ s192+105 21.41 K5 s117 ⇒ s192+106 21.54
K6 s118 ⇒ s192+107 21.67 K7 s119 ⇒ s192+108 21.72
K8 s120 ⇒ s192+145 21.21 K9 s121 ⇒ s192+110 21.92
K10 s10 ⇒ s192+116 17.69 K11 s11 ⇒ s192+117 19.62
K12 s68 ⇒ s192+6 18.88 K13 s69 ⇒ s192+7 20.82
K14 s70 ⇒ s192+8 18.82 K15 s127 ⇒ s192+116 16.66
K16 s128 ⇒ s192+117 18.70 K17 s17 ⇒ s192+6 16.92
K18 s18 ⇒ s192+7 18.82 K19 s19 ⇒ s192+8 16.80
K20 s20 ⇒ s192+9 18.73 K21 s21 ⇒ s192+6 18.59
K22 s22 ⇒ s192+7 20.67 K23 s23 ⇒ s192+8 18.70
K24 s80 ⇒ s192+146 20.80 K25 s25 ⇒ s192+116 17.97
K26 s138 ⇒ s192+6 17.79 K27 s139 ⇒ s192+7 19.87
K28 s140 ⇒ s192+8 17.86 K29 s141 ⇒ s192+9 19.67
K30 s142 ⇒ s192+10 21.46 K31 s31 ⇒ s192+182 18.36
K32 s32 ⇒ s192+183 20.70 K33 s33 ⇒ s192+113 20.97
K34 s34 ⇒ s192+114 21.03 K35 s91 ⇒ s192+116 19.95
K36 s36 ⇒ s192+116 15.55 K37 s37 ⇒ s192+117 17.56
K38 s94 ⇒ s192+145 18.94 K39 s39 ⇒ s192+104 19.62
K40 s152 ⇒ s192+60 16.43 K41 s153 ⇒ s192+116 17.90
K42 s154 ⇒ s192+117 19.93 K43 s43 ⇒ s192+108 20.61
K44 s156 ⇒ s192+145 16.90 K45 s157 ⇒ s192+146 18.96
K46 s46 ⇒ s192+35 20.45 K47 s47 ⇒ s192+6 16.68
K48 s160 ⇒ s192+145 18.68 K49 s161 ⇒ s192+181 15.59
K50 s162 ⇒ s192+182 17.59 K51 s51 ⇒ s192+116 15.62
K52 s52 ⇒ s192+117 17.64 K53 s53 ⇒ s192+118 19.47
K54 s54 ⇒ s192+119 20.05 K55 s55 ⇒ s192+120 20.61
K56 s168 ⇒ s192+76 22.27 K57 s169 ⇒ s192+103 18.43
K58 s170 ⇒ s192+104 18.17 K59 s171 ⇒ s192+105 18.93
K60 s172 ⇒ s192+106 19.11 K61 s173 ⇒ s192+107 19.24
K62 s174 ⇒ s192+108 19.42 K63 s175 ⇒ s192+109 19.58

10

Table 2. Amount of IVs required to recover the key bits (80-bit IV)

Affected Bits Amount of
IVs (Log2)

Affected Bits Amount of
IVs (Log2)

K0 s32 ⇒ s192+183 20.70 K1 s33 ⇒ s192+113 20.97
K2 s34 ⇒ s192+114 21.03 K3 s35 ⇒ s192+115 21.13
K4 s36 ⇒ s192+116 15.55 K5 s37 ⇒ s192+117 17.56
K6 s38 ⇒ s192+118 19.43 K7 s39 ⇒ s192+104 19.62
K8 s40 ⇒ s192+105 20.37 K9 s41 ⇒ s192+121 20.30
K10 s42 ⇒ s192+107 20.48 K11 s43 ⇒ s192+108 20.61
K12 s44 ⇒ s192+109 20.77 K13 s45 ⇒ s192+34 20.70
K14 s46 ⇒ s192+35 20.45 K15 s47 ⇒ s192+6 16.68
K16 s48 ⇒ s192+7 18.72 K17 s49 ⇒ s192+8 16.68
K18 s50 ⇒ s192+9 18.66 K19 s51 ⇒ s192+116 15.62
K20 s52 ⇒ s192+117 17.64 K21 s53 ⇒ s192+118 19.47
K22 s54 ⇒ s192+119 20.05 K23 s55 ⇒ s192+120 20.61
K24 s56 ⇒ s192+121 20.63 K25 s57 ⇒ s192+122 20.83
K26 s58 ⇒ s192+116 18.80 K27 s59 ⇒ s192+12 23.00
K28 s60 ⇒ s192+13 23.41 K29 s61 ⇒ s192+14 23.66
K30 s62 ⇒ s192+15 23.78 K31 s63 ⇒ s192+16 24.09
K32 s64 ⇒ s192+17 24.00 K33 s65 ⇒ s192+18 24.19
K34 s66 ⇒ s192+19 24.22 K35 s67 ⇒ s192+5 23.44
K36 s68 ⇒ s192+6 18.88 K37 s69 ⇒ s192+7 20.82
K38 s70 ⇒ s192+8 18.82 K39 s71 ⇒ s192+60 16.77
K40 s72 ⇒ s192+61 18.75 K41 s73 ⇒ s192+62 20.59
K42 s74 ⇒ s192+63 21.11 K43 s75 ⇒ s192+64 21.71
K44 s76 ⇒ s192+65 21.67 K45 s77 ⇒ s192+66 21.85
K46 s78 ⇒ s192+67 21.81 K47 s79 ⇒ s192+145 18.82
K48 s80 ⇒ s192+146 20.80 K49 s81 ⇒ s192+70 22.05
K50 s82 ⇒ s192+71 22.18 K51 s83 ⇒ s192+72 22.40
K52 s84 ⇒ s192+73 22.43 K53 s85 ⇒ s192+74 22.42
K54 s86 ⇒ s192+75 22.43 K55 s87 ⇒ s192+76 22.55
K56 s88 ⇒ s192+154 24.02 K57 s89 ⇒ s192+155 24.04
K58 s90 ⇒ s192+156 24.15 K59 s91 ⇒ s192+116 19.95
K60 s92 ⇒ s192+117 21.97 K61 s93 ⇒ s192+118 23.77
K62 s94 ⇒ s192+145 18.94 K63 s95 ⇒ s192+146 20.91
K64 s96 ⇒ s192+147 22.79 K65 s97 ⇒ s192+148 23.33
K66 s98 ⇒ s192+149 23.77 K67 s99 ⇒ s192+150 23.64
K68 s100 ⇒ s192+63 22.65 K69 s101 ⇒ s192+4 23.12
K70 s102 ⇒ s192+65 23.66 K71 s103 ⇒ s192+178 23.80
K72 s104 ⇒ s192+179 23.77 K73 s105 ⇒ s192+145 20.94
K74 s106 ⇒ s192+181 18.24 K75 s107 ⇒ s192+182 19.97
K76 s108 ⇒ s192+183 21.81 K77 s109 ⇒ s192+6 20.86
K78 s110 ⇒ s192+7 22.83 K79 s111 ⇒ s192+8 20.94

11

