
Cycle counts for authenticated encryption

Daniel J. Bernstein ?

Department of Mathematics, Statistics, and Computer Science (M/C 249)
The University of Illinois at Chicago, Chicago, IL 60607–7045

djb@cr.yp.to

System Cipher Cipher MAC Total
key bits key bits

abc-v3-poly1305 128 ABC v3 Poly1305 256
aes-128-poly1305 128 10-round AES Poly1305 256
aes-256-poly1305 256 14-round AES Poly1305 384
cryptmt-v3-poly1305 256 CryptMT 3 Poly1305 384
dicing-p2-poly1305 256 DICING P2 Poly1305 384
dragon-poly1305 256 Dragon Poly1305 384
grain-128-poly1305 128 Grain-128 Poly1305 256
grain-v1-poly1305 80 Grainv1 Poly1305 208
hc-128-poly1305 128 HC-128 Poly1305 256
hc-256-poly1305 256 HC-256 Poly1305 384
lex-v1-poly1305 128 LEX v1 Poly1305 256
mickey-128-2-poly1305 128 MICKEY-128 2.0 Poly1305 256
nls-ae 128 NLS built-in 128
nls-poly1305 128 NLS Poly1305 256
phelix 256 Phelix built-in 256
polarbear-2-poly1305 128 Polar Bear 2.0 Poly1305 256
py6-poly1305 256 Py6 Poly1305 384
py-poly1305 256 Py Poly1305 384
pypy-poly1305 256 Pypy Poly1305 384
rabbit-poly1305 128 Rabbit Poly1305 256
rc4-poly1305 256 RC4 Poly1305 384
salsa20-8-poly1305 256 Salsa20/8 Poly1305 384
salsa20-12-poly1305 256 Salsa20/12 Poly1305 384
salsa20-poly1305 256 Salsa20 Poly1305 384
snow-2.0-poly1305 256 SNOW 2.0 Poly1305 384
sosemanuk-poly1305 256 SOSEMANUK Poly1305 384
trivium-poly1305 80 TRIVIUM Poly1305 208

? Date of this document: 2007.01.12. Permanent ID of this document:
be6b4df07eb1ae67aba9338991b78388.



Abstract. How much time is needed to encrypt, authenticate, verify,
and decrypt a message? The answer depends on the machine (most
importantly, but not solely, the CPU), on the choice of authenticated-
encryption function, on the message length, on the level of competition
for the instruction cache, on the number of keys handled in parallel, et
al. This paper reports, in graphical and tabular form, measurements of
the speeds of a wide variety of authenticated-encryption functions on a
wide variety of CPUs.

This paper reports speed measurements for the secret-key authenticated-
encryption systems listed on the first page. I included all of the “hardware focus”
ciphers in phase 2 of eSTREAM, the ECRYPT Stream Cipher Project: Grain,
MICKEY, Phelix, and Trivium. I also included all of the “software” ciphers in
phase 2 of eSTREAM: not just the “focus” ciphers DRAGON, HC, LEX, Phelix,
Py, Salsa20, and SOSEMANUK, but also ABC, CryptMT, DICING, NLS, Polar
Bear, and Rabbit.

I did not exclude ciphers for which there are claims of attacks: ABC, NLS,
Py, and RC4. For LEX, I chose version 1 (for which there is a claim of an attack)
rather than version 2 (for which there are no such claims) because I’m not aware
of functioning software for version 2 of LEX; my impression is that the versions
will have similar speeds, but speculation is no substitute for measurement.

I included counter-mode AES, the Advanced Encryption Standard, as a basis
for comparison, along with SNOW 2.0 and RC4.

Non-authenticating stream ciphers

Most of the stream ciphers do not include message authentication. I converted
each non-authenticating stream cipher into an authenticated-encryption system
by combining it in a standard way with Poly1305, a state-of-the-art message-
authentication code.

Here are the details: The key for the authenticated-encryption system is
(r, k) where r a 16-byte Poly1305 key and k is a key for the non-authenticating
stream cipher F . The authenticated encryption of a message m with nonce n is
(Poly1305r(c, s), c) where (s, c) = Fk(n)⊕ (0,m), both s and 0 having 16 bytes.
Here Fk(n) is the “keystream” produced by F using key k and nonce n; this
keystream is implicitly truncated to same length as (0,m).

Previous eSTREAM benchmarks did not include separate authenticators;
they simply reported encryption timings for non-authenticating ciphers along
with encryption timings for authenticating ciphers. The reality is that users
need authenticated encryption, not just encryption, so they need to combine non-
authenticating ciphers with message-authentication codes, slowing down those
ciphers. How quickly do these combined systems handle legitimate packets, and
how quickly do they reject forged packets? Are they faster than ciphers with
built-in authentication? To compare the speeds of authenticating ciphers and
non-authenticating ciphers from the user’s perspective, benchmarks must take
the extra authentication time into account.



“Isn’t this a purely academic question?” one might ask. “Haven’t all the
authenticating ciphers been broken? Frogbit flunks a simple IV-diffusion test.
Courtois broke SFINKS. Cho and Piperzyk broke both versions of NLS. Wu
and Preneel broke Phelix. Okay, okay, VEST is untouched, but it’s much too
expensive for anyone to want to use.” The simplest response is that, in fact,
Phelix has not been broken. (The Wu-Preneel “attack” ignores both the concept
of a nonce and the standard definition of cipher security; the “attack” assumes
that senders repeat nonces. The same silly assumption easily “breaks” every
eSTREAM submission.) Phelix remains one of the top eSTREAM submissions.

I’m planning future work to extend my database of timings to cover other
authenticated-encryption systems. I plan to include more ciphers, for example;
I plan to include other modes of use of Poly1305; and I plan to include UMAC,
VMAC, CBC-MAC, and HMAC-SHA-1 as alternatives to Poly1305. I will also
endeavor to incorporate improved implementations of systems already covered:
for example, I’m planning a 64-bit implementation of Poly1305. But the existing
data should already be useful in comparing eSTREAM candidates.

“Why is it necessary to time authenticated encryption?” one might ask. “If
you want a table of authenticated-encryption timings, why not simply add a
table of authentication timings to a table of encryption timings?” Response: The
existing tables are deficient. This paper’s timings are much more comprehensive
than previous encryption timings. This paper systematically measures all packet
lengths in a wide range, for example, and systematically measures multiple-key
cache-miss costs. Furthermore, adding all the contributing times isn’t as easy
as it sounds; for example, if the authentication software uses more than half
of the code cache, and the encryption software uses more than half of the code
cache, authenticated encryption will need time for code-cache misses. Component
benchmarks can be interesting and informative, but whole-function benchmarks
are the simplest way to ensure that no components are forgotten.

API for authenticated-encryption systems

What does a secret-key authenticated-encryption system do for the user? It
takes keys; it encrypts and authenticates each outgoing packet; it verifies and
decrypts each incoming packet. So I specified an authenticated-encryption API
with three functions: makekey to generate a key (and an “expanded key,” the
output of any desired precomputation); encrypt to authenticate and encrypt an
outgoing packet; and decrypt to verify and decrypt an incoming packet.

The encrypt function includes an authenticator in its encrypted output
packet. The decrypt function is given an encrypted packet allegedly produced
by encrypt; it rejects the packet if the authenticator is wrong. Many systems can
limit their decryption work for long messages when the authenticator is wrong.
In particular, for the Poly1305 combination described above, an authenticator
can be checked as soon as 16 bytes of keystream have been generated; if the
authenticator is wrong then one can skip the work of generating the remaining
bytes of keystream.



In contrast, in the official eSTREAM stream-cipher API, both encrypt and
decrypt put an authenticator somewhere else. It is the responsibility of the
decrypt user to verify authenticators. Having decrypt write an authenticator,
rather than read it, means that rejection of forged packets is necessarily just
as slow as decryption of legitimate packets. This doesn’t seem to have been a
problem for the authenticating stream ciphers submitted to eSTREAM, but it
unnecessarily slows down other authenticated-encryption systems.

There are many other details of the API, but this paper can be read without
regard to those details. Example: encrypt and decrypt receive lengths as 64-bit
integers (long long in C). On many CPUs, using fewer bits for lengths would
save a few cycles, marginally shifting the graphs in this paper.

Tools for benchmarking

Previous eSTREAM speed reports use the official eSTREAM benchmarking
toolkit. The toolkit includes (1) software written by Christophe de Cannière
to measure the speeds of stream-cipher implementations that follow the official
eSTREAM stream-cipher API and (2) stream-cipher implementations collected
from cipher authors.

To collect the timings reported in this paper I wrote a new benchmarking
toolkit, ciphercycles, available from http://cr.yp.to/streamciphers.html.
I wrote a separate tool to convert stream ciphers from the official eSTREAM
stream-cipher API to my new API (and in particular to add authentication
to the non-authenticating stream ciphers); the resulting implementations are
included in the toolkit. Subsequent updates to the implementations in the official
eSTREAM benchmarking toolkit will be easy to reflect in ciphercycles.

Many portions of ciphercycles are derived from BATMAN (Benchmarking
of Asymmetric Tools on Multiple Architectures, Non-Interactively), a public-
key benchmarking toolkit that I wrote for eBATS (ECRYPT Benchmarking of
Asymmetric Systems). The new speed reports produced by ciphercycles, like
the eBATS speed reports, are in a simple format designed for easy computer
processing. I’m planning future work to integrate benchmarking projects.

The timings collected by ciphercycles include (authenticated) encryption,
(verified) decryption of legitimately encrypted packets, and rejection of forged
packets. Decryption times are usually almost identical to encryption times, but
rejection times are often much smaller, for the reasons discussed above. The
official eSTREAM timings include only encryption times.

The timings collected by ciphercycles systematically cover each packet
length between 0 bytes and 8192 bytes. By superimposing graphs one can easily
see the message-length cutoffs between different ciphers. The official eSTREAM
timings include only a few selected lengths (40 bytes, 576 bytes, 1500 bytes,
long), hiding block-size penalties and many other length-dependent effects.

The timings collected by ciphercycles include benchmarks for encryption
of short packets bouncing between multiple keys: for example, when there are
1024 active keys, how many cycles are used for encryption of a 775-byte packet
under a random choice of key, including the cache misses needed to access the



key? The official eSTREAM timings include one fuzzy “agility” number for each
cipher but are otherwise dedicated to single-key benchmarks.

The timings collected by ciphercycles also include makekey timings, but
those timings are not reported in this paper.

Graphs

The sample graph on the left below shows timings for the abc-v3-poly1305
system on a 900MHz AMD Athlon (622) computer named thoth.

The horizontal axis is packet length, between 0 bytes and 8192 bytes. The
vertical axis is time, between 0 cycles and 98304 cycles. The diagonal from the
lower left corner of the graph to the upper right corner is 12 cycles per byte.

The two main lines visible on the graph are (1) roughly 7 cycles per byte for
encryption and decryption and (2) roughly 3 cycles per byte for rejection. Faint
lines are visible above the main lines; there are 15 timings for each packet length,
and initial timings are slightly slower because of cache misses. There is also a
short curve up the left side of the graph for encrypting packets of ≤ 1024 bytes
using a random key from a pool of 1024 active keys. Also plotted, and faintly
visible, are packet lengths of ≤ 960 bytes for 512 active keys, packet lengths of
≤ 896 bytes for 256 active keys, etc.

The sample graph on the right shows timings for the pypy-poly1305 system
on a 2137MHz Intel Core 2 Duo (6f6) computer named katana. The spreading
line shows variance in Pypy’s stream-generation time, perhaps from cache-timing
effects. Note also the large cost of handling small packets.



abc-v3-poly1305

aes-128-poly1305

aes-256-poly1305

cryptmt-v3-poly1305

dicing-p2-poly1305

dragon-poly1305

hc-128-poly1305

hc-256-poly1305



lex-v1-poly1305

nls-ae

nls-poly1305

phelix-poly1305

py6-poly1305

py-poly1305

pypy-poly1305

rabbit-poly1305



rc4-poly1305

salsa20-8-poly1305

salsa20-12-poly1305

salsa20-poly1305

snow-2.0-poly1305

sosemanuk-poly1305

trivium-poly1305



Each line of graphs on the last three pages has

• a graph for a 2137MHz Intel Core 2 Duo (6f6) named katana;
• a graph for a 2000MHz AMD Athlon 64 X2 (15,75,2) named mace; and
• a graph for a 900MHz AMD Athlon (622) named thoth.

I omitted graphs for three very slow systems (grain-128, grain-v1, mickey-128-2).
I also omitted timings for one system (polarbear-2) because I couldn’t make the
code work.

I’m planning to include graphs for an UltraSPARC and a Pentium M in this
paper, and of course many more CPUs online.

Tables

Sorry, this is still a draft! Plans: one table of authenticated-encryption cycle
counts for various CPUs, one table of authenticated-encryption cycle counts for
various numbers of active keys, one table of decryption cycle counts for various
message lengths, and one table of rejection cycle counts for various message
lengths.


