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Abstract. We present several attacks against Achterbahn, one of the
new stream ciphers proposed to the eSTREAM competition. Our best
attack breaks the reduced version of the cipher with complexity of 256

steps and the full version with complexity of 273 steps.

It highlights some problems in the design principle of Achterbahn, i.e.

combining the outputs of several non-linear (but small) shift registers
using a non-linear (but rather sparse) output function.

1 Introduction

The European project ECRYPT recently decided to launch a competition to
identify new stream ciphers that might be suitable for widespread adoption.
This project is called eSTREAM [3] and received 35 submissions, some of which
have already been broken.

Among these new algorithms, a challenging new design is Achterbahn [4]. It
is a relatively simple, hardware-oriented stream cipher, using a secret key of 80
bits. In this paper, we present several attacks which break the cipher faster than a
brute force attack. Our results suggest that the design principle for Achterbahn,
i.e. combining several small, non-linear shift registers by a very sparse combining
function does not offer a satisfactory level of security.

2 Description of Achterbahn

2.1 General structure

Achterbahn uses 8 small non-linear registers, denoted by R1, . . . , R8. Their size
ranges from 22 to 31 bits. The total size of the internal state is of 211 bits. At the
t-th clock cycle, each register produces one output bit, denoted respectively by
y1(t), . . . , y8(t). Then, the t-th output byte z(t) of the stream cipher Achterbahn



is produced by the following filtering function F :

z(t) = F (y1(t), y2(t), y3(t), y4(t), y5(t), y6(t), y7(t), y8(t))

= y1(t)⊕ y2(t)⊕ y3(t)⊕ y4(t)⊕

y5(t)y7(t)⊕ y6(t)y7(t)⊕ y6(t)y8(t)⊕ y5(t)y6(t)y7(t)⊕ y6(t)y7(t)y8(t)

We can observe that F is a sparse polynomial of degree 3. There are only 3 mono-
mials of degree 2 and 2 monomials of degree 3. In the full version of Achterbahn,
the input of F is not directly the output of each register, but a key-dependent
combination of several consecutive outputs1. In the reduced version of Achter-
bahn, the input of F is directly the output of each register.

Each register is clocked similarly to a Linear with Feedback Shift Register
(LFSR), except that the feedback bit is not a linear function, but a polynomial
of degree 4. Details of this clocking are not relevant in our attack.

2.2 Initialization

The internal state of Achterbahn is initialized from a secret key K of size 80 bits
and from an initialization vector IV of length 80 bits.

First, the state of each register is loaded with a certain number of key bits
(this number depends on the register length). Then, the rest of the key, followed
by the IV, is introduced sequentially in each register. In order to introduce
this auxiliary input bit, it is simply XORed with the feedback bit during the
register update. Before the encryption starts, several extra clockings are applied
for diffusion purpose.

3 Weakness of Achterbahn’s design

3.1 General observations about the design

Combination of several small Linear Feedback Shift Registers (LFSR) is a well-
known method for building stream ciphers. The output of the registers are gen-
erally combined with a function F , in order to produce one keystream bit (see
Figure 1). A popular example is the algorithm E0 [1], which is used in the Blue-
tooth technology2. Unfortunately such constructions have some problems, that
originate from the linearity of the LFSR’s. For instance, correlation attacks [6,
7] exploit linear approximations of the function F to attack the whole stream
cipher. Another method is algebraic attacks [2] that take advantage of low degree
polynomial equations satisfied by F .

Criteria that should be satisfied by the boolean function F , in order to
counter such attacks have been widely studied. However there appears to be lim-
itations that cannot be overcome. To improve the designs, it is often suggested
to replace linear registers by non-linear registers. This idea is the bottomline of
Achterbahn’s design.

1 The number of consecutive outputs involved in this linear combination varies from
6 for R1 to 10 for R8

2 E0 has the particularity that the function F uses a small auxiliary memory
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Fig. 1. Stream Cipher built by Combination of LFSR’s

3.2 Linear Complexity of Achterbahn

If the linear registers of Figure 1 are replaced by non-linear registers, one may
expect to counter many problems arising from the linearity of LFSR’s. A usual
tool to analyze such constructions is the linear complexity. For a binary se-
quence, it is defined as the length of the shortest LFSR that could generate the
sequence.

For a LFSR of length n bits, the linear complexity of its output sequence
is L = n, provided its feedback polynomial is properly chosen. For a non-linear
register, it is not always easy to compute the linear complexity of its output
sequence, but clearly it cannot exceed its period. In the case of Achterbahn, the
keystream bit b is computed by

b = F (y1, . . . , y8)

Then, it is well-known that the linear complexity of the keystream sequence is
given by

L = F (L1, . . . , L8)

where Li denotes the linear complexity of each single register. This observation
shows that it would be insecure to combine the small non-linear regis-

ters using a linear function. Indeed, in this case, the linear complexity L of
Achterbahn would be bounded by 8 × 231 since 31 is the length of the largest
register.

For Achterbahn, F is not linear, but its algebraic degree is 3. The original
paper [4] does not contain an exact proof of the linear complexity of the 8 non-
linear registers, but it is reasonable to assume that Li ' 2ni where ni denotes
the length of register Ri. Even with this assumption, the linear complexity of
Achterbahn’s outputs is only :

L ≤ 228
× 229

× 231 = 288

If we apply the Berlekamp-Massey algorithm [5], we can expect to distinguish
this sequence if we analyze 289 known output bits. Since the running time of
Berlekamp-Massey is about L2, this attack is way above the complexity of a
brute-force attack.



3.3 Ideas for improvement

These observations about the linear complexity were taken into account by the
designers of Achterbahn (see page 20 of [4]). However, we should also consider
that several refinements are possible :

– The output function is sparse. Indeed z(t) is computed by a simple filter,
which is almost linear. For instance, when y6(t) = 0, only one non-linear
term remains. If y5(t) is also equal to 0, the output function becomes purely
linear.

– Each single register has a small period. This is unavoidable due to the
small size of each register (31 bits for the largest one, R8).

– Each register is autonomous. Therefore when we guess its initial state, we
know its content at all stages of the encryption.

Our idea is to guess the initial state of two registers (R5 and R6). Then we
select particular positions in the output sequence, for which

y5 = y6 = 0

All non-linear terms in F cancel out, so the linear complexity of this subsequence
is much smaller than for the whole Achterbahn. Finally, we test if several parity
checks, resulting from the low linear complexity are satisfied or not. Hence, we
can determine when the initial guess on R5 and R6 is correct.

Several tricks are needed in order for the attack to work properly. In partic-
ular, it is important to find low-weight parity checks. The details of this attack
are given in the next Section.

4 Cryptanalysis of reduced Achterbahn

4.1 Preliminary

Our starting point is to observe that when y5(t) = 0 and y6(t) = 0, the output
function becomes purely linear :

z(t) = l(t) = y1(t)⊕ y2(t)⊕ y3(t)⊕ y4(t)

Although its period is rather large, l(t) has a very low linear complexity L
as pointed out in Section 3.2. Indeed, L is bounded by :

L ≤ 2n1 + 2n2 + 2n3 + 2n4 ' 226

By definition, l can be generated by a LFSR of length L, so it will satisfy
some parity checks involving L consecutive bits at most. Actually, it can be
demonstrated that sparse parity checks are satisfied, which will prove to be
crucial in the rest of our attack.



4.2 Construction of Sparse Parity Checks

We denote by Ti the period of register Ri. From [4], we can see that :

T1 = 222
− 1

T2 = 223
− 1

T3 = 225
− 1

T4 = 226
− 1

Let

ll(t) = l(t)⊕ l(t + T1)

Because the period of the first register is T1, this expression does not contain
any term in y1 Similarly, define

lll(t) = ll(t)⊕ ll(t + T2)

llll(t) = lll(t)⊕ lll(t + T3)

llll(t) contains no term in y2 or y3, so it is a combination of bits coming from
the register R4 only. Thus it satisfies :

llll(t) = llll(t + T4)

In other terms, we have the following relation on the bits l(i) :

0 = l(t) + l(t + T1) + l(t + T2) + l(t + T3) + l(t + T4)

+ l(t + T1 + T2) + l(t + T1 + T3) + l(t + T1 + T4)

+ l(t + T2 + T3) + l(t + T2 + T4) + l(t + T3 + T4)

+ l(t + T1 + T2 + T3) + l(t + T1 + T2 + T4) + l(t + T1 + T3 + T4)

+ l(t + T2 + T3 + T4) + l(t + T1 + T2 + T3 + T4)

This is the basic parity check on l(t) that we will use in our attack. We can
observe that it is the XOR of 16 different bits from the sequence l(i). They all
belong to a time interval of length

Tmax = T1 + T2 + T3 + T4 = 113246204 ' 226.75

Such parity checks are satisfied by the keystream sequence, under certain con-
straints on the outputs of the registers R5 and R6 (several bits y5(i) and y6(i)
must be equal to 0).

We split the attack in two phases : first, we precompute particular states
of R5 and R6 for which z(t) = l(t). Then we look at a given keystream sequence
and test when the parity check is satisfied. This information is used to identify
one of the precomputed states of R5 and R6.



4.3 Precomputation

The goal of the precomputation step is to identify particular state values of R5

and R6 for which the parity checks will be satisfied. For that, we need y5(t) and
y6(t) to be both equal to 0 for the 16 positions that appear in the previous parity
check. Consider the case of register R5 first. We are looking for states of R5 at
time t such that the corresponding outputs satisfy :

y5(t) = 0

y5(t + T1) = 0

y5(t + T2) = 0

y5(t + T3) = 0

y5(t + T4) = 0

y5(t + T1 + T2) = 0

y5(t + T1 + T3) = 0

y5(t + T1 + T4) = 0

y5(t + T2 + T3) = 0

y5(t + T2 + T4) = 0

y5(t + T3 + T4) = 0

y5(t + T1 + T2 + T3) = 0

y5(t + T1 + T2 + T4) = 0

y5(t + T1 + T3 + T4) = 0

y5(t + T2 + T3 + T4) = 0

y5(t + T1 + T2 + T3 + T4) = 0

If we enumerate the 227 possible states of R5, and clock the register Tmax times,
we can find all states that satisfy the above equations. The expected number of
solutions is :

227
× 2−16 = 211

since there are 16 binary constraints to satisfy simultaneously. The complexity
of this stage is about 227 × Tmax = 253.75. It is possible to do it more efficiently
if we store the whole sequence of outputs from R5, but this step will prove not
to be the bottleneck of our attack. Similarly, we can find 212 states of R6 that
satisfy the same 16 constraints. The corresponding time complexity is 254.75. To
summarize, we can enumerate

212
× 211 = 223

favorable states for the registers R5 and R6. We store these 223 states in an
auxiliary table.

In addition, for each favorable state, we clock R5 and R6 until we reach
another favorable state. In the auxiliary table, we store the distance from each
favorable state to the next one. This information will be useful in the next



Section. In average, we need 232 clockings per favorable state, resulting in a
time complexity of 223 × 232 = 255 steps.

4.4 Identification

We suppose that we are given a certain sequence of 240 keystream bits. To
simplify the following, we start by computing the parity checks on the keystream
bits :

pc(t) = z(t) + z(t + T1) + z(t + T2) + z(t + T3) + z(t + T4)

+ z(t + T1 + T2) + z(t + T1 + T3) + z(t + T1 + T4)

+ z(t + T2 + T3) + z(t + T2 + T4) + z(t + T3 + T4)

+ z(t + T1 + T2 + T3) + z(t + T1 + T2 + T4) + z(t + T1 + T3 + T4)

+ z(t + T2 + T3 + T4) + z(t + T1 + T2 + T3 + T4)

for t = 0 . . . 240 − Tmax.
It is very likely that R5 and R6 are in a favorable state, for at least one of

the first 232 positions in the sequence. We call to such a positions, then we must
have pc(t0) = 0. This is only one bit of information, which is not sufficient to
identify a favorable state.

Therefore, we enumerate all positions t0 from 0 to 232 and all the 223 fa-
vorable states. Suppose we have pc(t0) = 0 (otherwise we discard immediately
the candidate). Then we use the auxiliary table to search for the next favorable
state. Suppose the table says it will occur at the position t1 > t0. Then we jump
to the position t1 in the keystream sequence and check if pc(t1) = 0. If it is not
the case, we discard this candidate. Otherwise, we iterate the process.

Since we have 240 keystream bits and the distance between two favorable
states is about 232, we might be able to iterate up to 28 = 256 times the process
with success. This is sufficient to identify a favorable state, while a false alarm
is very unlikely.

With our ”early abort” strategy, we need to test only an average of 2 parity
checks for each of the 232× 223 = 255 candidates. So the time complexity of this
phase is about 256 steps.

4.5 Retrieving the key

We have identified the value of the state of R5 and R6 at a certain position t0
in the output sequence. We would like to retrieve the key from this information,
so a natural idea is to backtrack the updating of these registers. This is easy to
do until we reach the initial state, since the update is invertible.

Next, we want to backtrack the initialization process of Achterbahn. During
the extra clockings for diffusion and during the IV introduction, there is no diffi-
culty to backtrack, since we can always predict the feedback bit. Unfortunately,
we can no longer backtrack during the phase where the key was introduced.

Then, our idea is to perform a meet-in-the-middle attack : we split the
key in two halves of 40 bits each. On the one hand, we guess the first 40 bits



from the key and predict the state of R5 and R6 after the introduction of these
40 bits. On the other hand, we guess the last 40 bits from the key and backtrack
the introduction of these bits from the known state of R5 and R6. We search for
a match between the two lists of 240 elements.

We should observe 240×240×2−55 ' 225 matches since the length of R5 and
R6 sum up to 55 bits. Each of them provides a key candidate, which is easy to
test by producing several keystream bits. To summarize, from one known state
of R5 and R6, we can retrieve the secret key with time and memory complexity
of 240.

4.6 Analysis

Both the precomputation and the identification phase of our attack have a time
complexity of about 256 steps. In addition, we need to store about 240 (parity
checks of) keystream bits and an auxiliary table of size 223 after the precompu-
tation phase.

The key recovery phase can be achieved using different trade-offs between
time and memory. It is possible to do it with time and memory of 240. But a
more reasonable trade-off could be with time 250 and memory 230

5 Cryptanalysis of full Achterbahn

If we want to attack the full Achterbahn, we must take into account the key-
dependent linear combination used to compute the outputs of each register.

This additional feature preserves the period of each registers, as well as the
properties of the function F , so the observations on parity checks are unchanged.
However, when looking for the favorable states of R5 and R6, we must guess in
addition the 8 + 9 = 17 key-dependent taps.

Depending on our guess on these key-dependent taps, we obtain a different
set of favorable states. Therefore we must repeat 217 times the second phase of
our attack, and the whole complexity for attacking the full Achterbahn is about
273 computation steps.

6 Another Cryptanalysis of Achterbahn

In this Section, we propose another attack technique against Achterbahn, based
on approximating its output function by a linear expression. It is less efficient
than the previous attack, and provides only a distinguisher. However it applies
similarly for the full and the reduced Achterbahn, and reveals another weakness
of the algorithm.



6.1 Linear approximations of the output function

Reconsider the Achterbahn’s output function given in Section 2 :

z(t) = F (y1(t), y2(t), y3(t), y4(t), y5(t), y6(t), y7(t), y8(t))

= y1(t)⊕ y2(t)⊕ y3(t)⊕ y4(t)⊕

y5(t)y7(t)⊕ y6(t)y7(t)⊕ y6(t)y8(t)⊕ y5(t)y6(t)y7(t)⊕ y6(t)y7(t)y8(t)

We use the notation l(t) = y1(t)⊕ y2(t)⊕ y3(t)⊕ y4(t) to refer to the linear part
of F . it is easy to observe that F verifies the following linear approximations :

z(t) = l(t)⊕ y5(t) with probability 10/16

z(t) = l(t)⊕ y6(t) with probability 12/16

z(t) = l(t)⊕ y7(t) with probability 12/16

z(t) = l(t)⊕ y8(t) with probability 10/16

In particular, we focus on the second approximation :

z(t) = l(t)⊕ y6(t) (1)

with probability 12

16
= 0.75 = 0.5 (1 + 0.5). Therefore the bias of this linear

approximation is ε = 0.5

6.2 Using the sparse parity checks

Similarly to Section 4.2, we can construct parity checks satisfied by the sequence
of bits l(t) ⊕ y6(t). Such a parity check will involve 32 keystream bits (instead
of 16 like in Section 4.2) distant from at most

Tmax = T1 + T2 + T3 + T4 + T6 = 381681659 ' 228.51

positions. This parity check is not directly satisfied by the output sequence of
Achterbahn since l(t) ⊕ y6(t) is only an approximation of the output function.
However we can combine 32 times the linear approximation (1), which has the
effect of multiplying the biases. Therefore, the parity check is satisfied by the
sequence z(t) with probability

0.5
(

1 + ε32
)

= 0.5

(

1 +
1

232

)

Therefore if we consider a sequence of 264 output bits and evaluate all the parity
checks, we will detect this bias. This allows to distinguish Achterbahn’ outputs
from truly random sequences. In addition, this attack is not affected if we add
key-dependent taps to each register, so its complexity is the same for the reduced
and for the full Achterbahn.



7 Conclusion

We proposed several attacks against Achterbahn. In spite of the non-linear up-
date, the fact that all registers are small and autonomous seems to be a major
problem. Our idea is first to observe that a linear output function would give
a low linear complexity and therefore allow several attacks in spite of the non-
linearity of the registers. Then we suggest to approximate the output function
by a linear expression, and we build parity checks that the linearized version of
Achterbahn should satisfy.

Our best attack is based on guessing the state of two registers to simplify the
linearization of the output function. It allows to recover the key for the reduced
version of Achterbahn with complexity of about 256 steps (while Achterbahn
uses a key of 80 bits and a state of 211 bits). It also breaks the full Achterbahn
with complexity of 273 steps.

In addition, we propose a distinguishing attack based on linear approxima-
tions of Achterbahn. It requires to process about 264 keystream bits and works
identically for the reduced and the full Achterbahn.

It is interesting to notice that this attack is independent of the feedback
of the non-linear registers, so it illustrates important flaws in the design itself,
rather than an unfortunate instantiation.
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