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Abstract 
 ABC is a synchronous stream proposed as a candidate to ECRYPT 
Project. ABC gets a 128-bit key and a 128-bit IV and produces 1195 
bits as the internal state of the cipher. Using some statistical 
simulations we show that one of the ABC components, a key-IV 
dependent function over GF(232) called C which is chosen 
randomly from a family of functions, is slightly better than a randomly 
chosen function over GF(232). Using this great weakness of C we 
propose a correlation based divide and conquer attack which finds 63 
bits of the state bits by searching over all 263 possible choices for them 
in time complexity of 10×295 simple word operations using 10×232

 
output words. Although the attack is performable using less data and 
time complexities, we have not considered it here. After we find these 
63 bits of the initial state, searching over all 293 possible choices for 
another set of 93 bits of the initial state and constructing a 33-
unknown linear system of equations, we show that the whole initial 
state could be found in time complexity of 2108 simple word operations 
using a few output words. Therefore the total time and data 
complexity of our attack for breaking the whole cipher are 2108 simple 
word operations and 10×232 words respectively. 
Keywords. ABC stream cipher, ECRYPT Project, divide and conquer 
attack, correlation attack, hypothesis testing. 

1 Introduction 

ABC is a synchronous stream cipher optimized for software applications. ABC deals 
with a 128-bit key and a 128-bit IV proposed as a candidate to ECRYPT Stream Cipher 
Project- a multi-year effort to identify new stream ciphers that might become suitable for 
widespread adoption [2].  ABC consists of 38, 32-bit registers which three of them 
denoted by z0, z1, x are considered as the state of ABC cipher and the rest 35 registers, 
denoted by d0, d1, e, e0, e1, … and e31, are considered as constant parameters fed to the 
cipher. The values of these 38 registers are determined during a key expansion routine. 
Although each register is a 32-bit word, the total number of initial bits are 1195 bits and 
not 1216 bits because of restrictions z0 ≡ 2 or 3 (mod 4), e31 ≡ 216 (mod 217), d0 ≡ 1 (mod 
2) and d1 ≡ 0 (mod 4) which are made during initialization. The main components of 
ABC are three filter functions denoted by A, B and C. The designers of ABC have 
claimed that ABC offers a security level of 2128, and C function is its main security block. 
In this paper we show that C is far from a random substitution box and more likely 
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behaves as a randomly chosen function which is not acceptable for cryptographic 
purposes. Using this weakness of C we propose a divide and conquer correlation attack 
on ABC targeting the 263 possible initial states of z0 and z1 registers. Our analysis shows 
that the initial states of z0 and z1 registers can be found using 10×232 output words. 
Although the attack is performable using less output words, we have not considered it 
here. Since for each 263 possible initial state of z0 and z1 registers we have to process 
10×232 words, the time and data complexities of this phase are 10×295 simple word 
operations and 10×232 words respectively. 

After finding the initial state of z0 and z1 registers, searching over all 293 possible 
initial values for x, d0 and d1 registers, the values of e, e0, e1, … and e31 could be found 
by constructing a linear system of equations versus these 33 unknowns for each guess. 
This phase needs 2108 simple word operations and a few words of the output sequence. 
Therefore the total time and data complexity of our attack for breaking the whole cipher 
are 2108 simple word operations and 232 words, respectively.  

The paper is organized as follows. In section 2, a brief description of ABC 
components and key stream generator algorithm is presented. In section 3 the non-
uniform distribution of C family function is discussed. In section 4 we will explain how 
to distinguish the output sequence of a purely random filtered sequence from a purely 
random sequence where the filter function is chosen randomly from a set of functions. 
The attack procedure to determine the initial state of (z0, z1) registers and break the whole 
cipher is presented in Section 5. Conclusions are given in Section 6. 

2 ABC Stream Cipher Description 

In this section we briefly describe the ABC key stream generator algorithm and 
components. For more details on ABC and its key schedule see the reference paper [1]. 

2.1 ABC Components 

ABC works with 32-bit integer values. A 32-bit vector (a31,a30,...,a1,a0) is denoted by 

integer a where . ABC uses 38 32-bit variables that are calculated from the 

key and IV at the initialization stage by applying a special key expansion routine. These 
variables are saved in 38 registers denoted by z

∑
=

=
31

0
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0, z1, x, e, e0, …, e31, d0 and d1. Having 
been defined once, the variables d0, d1, e and ei's, remain unchanged during the whole 
subsequent encryption stage. The variables z0, z1 and x construct the current internal state 
of the ABC stream cipher and are updated while each 32-bit output word denoted by y is 
produced. Throughout this paper the symbols <<<>>><<>>⊕  and , , ,  are respectively 
used for 32-bit xor, right shift, left shift, right rotation and left rotation, and the 
symbols are respectively used for multiplication, addition, subtraction and 
summation module 2

∑−+⋅  and   ,  ,  
32 unless otherwise stated. ABC key stream generator uses three 

filter functions A, B and C defined by the following expressions. 
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A is a linear transformation on the vector space GF(264). A(z1,z0) has been defined by 
an LFSR of length 64 with characteristic polynomial φ(θ) = ψ(θ)θ, where ψ(θ) = θ63+ θ31 
+ 1 is primitive. The cycle length of this LFSR is 263 − 1, and not 264 − 1. The cycle 
length becomes 1 in case that the initial state (z0, z1) of A is either (0, 0) or (0, 1), so this 
values are eliminated during initialization by forcing the second LSB of z0 to 1 in ABC 
initialization process. 

B is a T-function [3] and the parameters d0 and d1 must be chosen in a way that d0 ≡ 1 
(mod 2) and d1 ≡ 0 (mod 4). These restrictions guarantee that B is a single cycle map. 

It has been claimed that C is a highly non-linear mapping and is the main security 
block of ABC. As it will be shown in Section 3, it is disaster for ABC stream cipher and 
makes our divide and conquer correlation attack possible. The value of e31 is chosen 
according to e31 ≡ 216 (mod 217). This restriction provides long period, uniform 
distribution, and high linear complexity of output sequences [1]. 

2.2 ABC Key Stream Generator Algorithm 

The key stream generation routine of ABC involves the primitives described in 
Section 2.1 and consists of 3 steps. 

ABC KEY STREAM GENERATOR 

 

INPUT: z0, z1, x ∈GF(232)  

(z0, z1) ← A(z0, z1)      (4) 

x  ←  z1+ B(x)       (5) 

y  ←  z0+ C(x)       (6) 

OUTPUT: z0, z1, x, y∈GF(232) 

This routine generates the next 32 key stream bits, y. The newly computed values z0, 
z1 and x form the input of the next iteration of the key stream generator routine. 

Denoting the states sequence and the output key stream sequence by  
and , the key stream generation routine can be expressed by the following 
recursive equations 

∞
=0

01 } , ,{ nnnn xzz
∞
=1}{ nny

) ,() ,( 0
1

1
1

01
−−= nnnn zzAzz      (7) 
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for , where ,  and  are respectively the initial values of  z1≥n 0
0z 1

0z 0x 0, z1 and x 
registers.1

3 Statistical Behavior of C Family Functions  

In this section we investigate the behavior of the output of the C function assuming a 
uniform distribution for its input over GF(232). Because of good statistical properties of 
LFSR’s output sequences, it is reasonable to think of  as a purely random sequence. 
By distribution of C(x) we mean the probability mass function of random variable C(x) 
considering x as a uniform random variable over its domain. It seems hard to 
theoretically compute the distribution of C(x). Particularly, it must be noted that the 
distribution of C(x) completely depends on the values of e and e

}{ nx

i's. Let Ωm denote the set 
of all functions over GF(2m). To investigate the behavior of the distribution of C(x), in a 
generalized model we define Cm as a subset of Ωm, which every F∈Cm is of the form  

∑
−

=
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1

0
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m

i
iiexexF       (10) 

where m=2t is an even integer, e and ei's are integer values over GF(2m) conditioned 

on em-1 ≡ 2t (mod 2t+1),  is the integer representation of the vector (x∑
−

=

=
1

0
2

m

i

i
ixx m-1, xm-2, 

..., x0), and the symbols + and Σ respectively represent the addition and summation 
module 2m. 

Ignoring the 16 bit right rotation of the C function in ABC doesn't put any restriction 
in our analysis, so we can consider it as a member of C32. The number of functions in Cm 
is , but the number of possible choices for C in ABC is determined by key 
expansion routine. For a good key expansion routine, as is the case for proposed ABC to 
ECRYPT, it is determined by the total length of the key and IV, that is 2

12

2 −+tm

256. We neglect 
this difference and treat the C function in ABC as a uniformly distributed function over 
all  possible functions in C116322

2 −+
32 instead of 2256. This is equivalent to consider e and 

ei's as uniform independent random variables. 

                                                 
1 Note that  for  and we could deal with one of the sequences and  instead 

of both of them, for example the sequence satisfies the recursive equation 

 for where  and  are respectively the initial values of z
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and z1 registers. 
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Every component of a cipher must satisfy some criteria in order to prevent some 
attacks. In some cases, i.e. T-functions [3], some interesting criteria could be proved 
theoretically. Usually any function  F: GF(2m)→GF(2n) ( ) which is designed for 
cryptographic purposes, at least is considered to be balanced, that is for every y∈GF(2

nm ≥
n) 

there are exactly 2m-n x∈GF(2m) satisfying F(x) = y. If m=n this criterion is equivalent to 
that F is a permutation. Although a theoretical justification of cryptographic properties of 
a cipher elements are desirable, in some situations we could evaluated them using some 
statistical simulations. The designers of ABC have not neither evaluated C fuction 
theoretically nor using statistical simulations and just have designed C function to 
provide a provably minimum period for its output sequences [1]. Choosing C according 
to the general form of (10) is not sufficient to guarantee to be even approximately a 
permutation. In the following theorem the condition and probability which under, a 
function in Cm is a permutation is given. 

Theorem 1. Every F∈Cm is a permutation if and only if for every subset M of the set 
{0, 1, 2, ..., m-1}, we have 

0≠∑
∈Mi

ie  

where ∑ is performed on module 2m. Moreover the probability that a randomly 

chosen F∈Cm be a permutation is . ( )∏
−

=

−+ −−
1

1

1 2)12(1
m

k

mk

Using approximation  for xex ≈+1 1|| <<x , it could be shown that this probability is 
approximately equal to . The probability that a randomly chosen F∈Ωme −− 21

m be a 
permutation is 

mmm 2)2(!2 , which using Stirling’s approximation is approximately equal 

to mm

e 222 π− . Although the asymptotical behavior of these two probabilities are not 
similar, we will show that the behavior of a randomly chosen function over Cm slightly 
deviates from a randomly chosen function from Ωm. To this end we first define two 
characteristics denoted by Q vector and Λ square matrix for a randomly chosen function 
from Ω, a given subset of functions over GF(2m). Then we compare Q elements and Λ 
diagonal elements for a randomly chosen function from Ωm and Cm using some statistical 
simulations. We use these parameters to theoretically analyze our distinguishing method 
between the output of C function and uniform distribution in Section 4.  

Let for every F∈Ωm and k∈{0,1,2...2m}, Tk denote the proportion of outputs which 
have been repeated exactly k times in the output range of F. For example T0 means that 
the number of x∈GF(2m) which have not been appeared in the output range of F, is 2mT0. 
If F is a permutation T0=1 and Tk=0 for k>0. If F is picked randomly from a given Ω, the 
Tk’s are random variables. We use the notations Q and Λ respectively for average vector 
and covariance matrix of the vector random variable [T0 T1 … Tk]. If we denote the 
average and variance of Tk by  and , ’s and ’s construct the elements of Q and 
the diagonal elements of Λ respectively. 

kq 2
ks kq 2

ks
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The computation of Q and Λ for a randomly chosen function from either Cm or Ωm is 
interesting. It seems very hard to theoretically compute these values. In the Tables 1 and 
2 we have estimated the average and variance of Tk for m=8:4:24 over 100 randomly 
chosen functions from Cm. 

Table 1. Estimated values of  over 100 randomly chosen functions from Ckq m

  0 1 2 3 4 5 6 7 8 9 

8 0.3782 0.3457 0.2004 0.0548 0.0173 0.0018 0.0017 0.0001 0.0000 0.0000 

12 0.3752 0.3567 0.1868 0.0610 0.0158 0.0035 0.0007 0.0002 0.0000 0.0000 

16 0.3655 0.3691 0.1867 0.0612 0.0144 0.0027 0.0004 0.0000 0.0000 0.0000 

20 0.3668 0.3690 0.1845 0.0610 0.0151 0.0030 0.0005 0.0001 0.0000 0.0000 

24 0.3688 0.3668 0.1837 0.0614 0.0155 0.0031 0.0005 0.0001 0.0000 0.0000 

Table 2. Estimated values of  over 100 randomly chosen functions from C2
ks m (multiplied by 2m) 

  0 1 2 3 4 5 6 7 8 9 

8 2.7347 5.0129 0.8514 0.3872 0.1482 0.0090 0.0137 0.0002 0.0000 0.0000 

12 9.2381 11.8759 2.1642 0.3994 0.3693 0.0787 0.0104 0.0012 0.0001 0.0000 

16 29.624 37.9064 6.1175 1.7604 1.1824 0.1717 0.0109 0.0006 0.0000 0.0000 

20 237.51 256.575 52.7279 8.4157 9.5599 1.7994 0.1669 0.0093 0.0005 0.0000 

24 1476.0 1656.06 287.4170 43.6064 56.6035 10.8645 0.9688 0.0540 0.0021 0.0001 

In order to compare the behavior of a randomly chosen function from Cm with a 
randomly chosen one from Ωm, in Tables 3 and 4 we have also estimated the average and 
variance of Tk for m=8:4:24 over 100 randomly chosen functions from Ωm. 

Table 3. Estimated values of  over 100 randomly chosen functions from Ωkq m

  0 1 2 3 4 5 6 7 8 9 

8 0.3681 0.3670 0.1861 0.0590 0.0163 0.0029 0.0006 0.0001 0.0000 0.0000 

12 0.3663 0.3699 0.1838 0.0616 0.0149 0.0029 0.0005 0.0001 0.0000 0.0000 

16 0.3679 0.3679 0.1839 0.0612 0.0154 0.0031 0.0005 0.0001 0.0000 0.0000 

20 0.3676 0.3682 0.1841 0.0613 0.0153 0.0031 0.0005 0.0001 0.0000 0.0000 

24 0.3655 0.3703 0.1852 0.0609 0.0148 0.0029 0.0005 0.0001 0.0000 0.0000 
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Table 4. Estimated values of  over 100 randomly chosen functions from Ω2
ks m (multiplied by 2m) 

  0 1 2 3 4 5 6 7 8 9 

8 0.0985 0.2419 0.1321 0.0407 0.0129 0.0028 0.0007 0.0001 0.0000 0.0000 

12 0.0867 0.2048 0.1030 0.0461 0.0128 0.0028 0.0005 0.0001 0.0000 0.0000 

16 0.0954 0.2424 0.1035 0.0423 0.0098 0.0027 0.0005 0.0001 0.0000 0.0000 

20 0.0870 0.1911 0.1251 0.0447 0.0112 0.0027 0.0004 0.0001 0.0000 0.0000 

24 0.0534 0.2133 0.0960 0.0250 0.0049 0.0038 0.0006 0.0000 0.0000 0.0000 

Looking into Tables 1 to 4 the following results seems to be true: 

1. For each k, the  value for a randomly chosen function from Ckq m is approximately 
the same as a randomly chosen function from Ωm (Tables 1 and 3).  

2. For each k, the  value is a convergent sequence versus m for a randomly chosen 
function from both C

kq
m and Ωm, and they approximately converge to the same 

sequence; esp. T0, T1→ e-1≅ 0.3679 (Table 1 and 3). 

3. For each k, while the  value for a randomly chosen function from C2
ks m differs from a 

randomly chosen function from Ωm, they both approaches to zero when m increases. 
But the convergence rate for a randomly chosen function from Ωm is faster than one 
from Cm (divided values of Tables 2 and 4 by 2m).  

4. At least for k<7, the  value converges to a non-zero value when m increases for 
a randomly chosen function from Ω

22 k
m s

m, while it diverges for a randomly chosen 
function from Cm (Tables 2 and 4). 

5. The value of approaches to 1 as both K and m increases for a randomly chosen 

function from both Ω

∑
=

K

k
kkq

0

m and Cm. 

More simulations show that the same results are true for all entries of Λ. That is they 
all exponentially approach to zero versus m for both cases, but the convergence rate for a 
randomly chosen function from Ωm is faster than one from Cm. We will refer to these 
results in Section 5.  

It seems that the computation of Q vector and Λ matrix for a randomly chosen 
function from Ωm be much easier than that from Cm. This problem can be considered as a 
generalization of the so-called “Balls and Bins Problem”, which is proposed as a open 
problem. 

Generalized Balls and Bins Problem. We are throwing n balls into n bins randomly 
(i.e., for every ball we randomly and uniformly pick a bin from the n available bins, and 
place the ball in the bin picked). We define the random variable Tk as the number of bins 
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which contain exactly k balls. What are the asymptotic behavior of average value of Tk 
and covariance value of Tk and Ti versus n for each k and i? 

4 Distinguishing a Purely Random Filtered Sequence From a Purely 
Random Sequence 

In this section we assume that F is a purely random chosen function from Ω, a given 
subset of functions over GF(2m). The aim of this section is to make a hypothesis testing 
between these two hypotheses, given a sequence . N

nnw 1}{ =

H0:  is a purely random sequence over GF(2N
nnw 1}{ =

m). 
H1:  is a filtered purely random sequence over GF(2N

nnw 1}{ =
m) where the filter 

function has been chosen randomly from Ω, that is wn=F(xn) where{xn}is a 
purely random sequence over GF(2m) and F is a randomly chosen function from 
Ω. 

We focus on Ω= Ωm and Ω=Cm and propose a method for distinguishing between 
these two hypotheses which works with arbitrary small error probability, in time, 
memory and data complexities of O(2m). 

Let denote Pr{wxp n=x}. Under hypothesis H0 we have for all x∈GF(2m
xp −= 2 m), 

while under hypothesis H1 the values of  are not known because the filter function F 
is not known. If we knew the F function exactly, the values of  were available, and a 
Likelihood Ratio Test could be applied. In this case which we don't know F, although it 
is easy to show that there is not a UMP test for this hypothesis testing problem, the 
presence of a UMPI test is under question. The interesting readers are referred to [5] for 
more details on UMP and UPI tests. In this paper we concentrate on finding an ad-hoc 
solution for this hypothesis testing problem rather than finding a UMPI one which is 
sufficient for our cryptanalysis. 

xp

xp

The ad-hoc statistic which we are going to use for this problem in some way is 
similar to Index of Coincidence (IC) or Measure of Roughness (MR) which is used in 
cryptanalysis of Classic Ciphers [6]. Let  and  respectively denote the number and 
frequency of occurrence of x in the sequence  for each x∈GF(2

xf̂ xp̂
N
nnw 1}{ =

m), that is 

. For a given sequence {wNfp xx /ˆˆ = n} we use the following statistic for distinguishing 
between H0 and H1. 

∑
−

=

−−=Δ
12

0
|2ˆ|

m

x

m
xp       (11) 

We suppose that . In this paper we just consider the casemN 2λ= 1>>λ . We have 
tried to compute the average and variance of ∆ under both hypotheses using appropriate 
approximations, and then approximate the distribution of ∆ using CLT2 [7] by Normal 

                                                 
2 Central Limit Theorem 
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distribution with corresponding averages and variances. 

In the appendix we have shown that the average and variance of ∆ under hypotheses 
H0 and H1 can be approximately computed using the following formulas. 

πλ
μ 2

0| =Δ H        (12) 

m
H

−−
Δ −= 2)21( 12

| 0
λ

π
σ       (13) 

T
H μQ1
| 1

−
Δ = λμ        (14) 

)2( 22
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T2T QσμΛμ m
H

−−
Δ += λσ     (15) 

Q and Λ are the average vector and covariance matrix of the vector random variable 
[T0 T1 … TK] for a randomly chosen function from Ω, defined in Section 4. μ=[ μ0 μ1 … 

μK] and  where ] ...  [ 22
1

2
0 Kσσσ=2σ kμ and  are defined as follows and K=10 is 

enough for good approximation. 
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Our simulations show that the above theoretical analysis is very accurate. We have 

plotted the theoretical and empirical distribution of ∆ for λ=10 and m=12 in Figure 1 for 
three different cases, under hypothesis H0, under hypothesis H1 assuming Ω=Ωm and 
under hypothesis H1 assuming Ω=Cm. Since the resolution of x-axis is very high in 
diagrams of Figure 1, the difference between the theoretical and empirical distribution of 
∆ may be a little eye-catching. However plotting these six diagrams in a unit coordinate, 
the difference between theoretical and empirical distribution will not be sensible and they 
seem to be coincident. This shows that as we expected the theoretical approximation is 
very well. In Figure 2 we have plotted just the empirical distribution of ∆ for λ=10 under 
hypothesis H0, under hypothesis H1 assuming Ω=Ωm and under H1 assuming Ω=Cm for 
three different values of m (4, 8, 12).  The empirical distributions of Figures 1 and 2 have 
been estimated over 10,000 randomly chosen sample sequences. Under hypothesis H1, 
100 sample functions from Ω have been randomly chosen to estimate the Q vector and Λ 
matrix. 

Since  exponentially decreases when m increases, under hypothesis H2
| 0HΔσ 0 the 

distribution of ∆ approaches to a delta function centered on 
πλ

μ 2
0| =Δ H  which is 
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approximately equal to 0.2523 for λ=10. As we mentioned in Section 4, our simulations 
show that increasing m, the entries of Λ exponentially approach to zero,  and 

 for both Ω=Ω

1
10 , −→ eqq

∑
=

→
K

k
kkq

0

1 m and Ω=Cm. Using these results it could be shown that under 

hypothesis H1 the distribution of ∆ approaches to a delta function centered on 
1

| )22(
1

−
Δ +≈ eH π

λλμ  which is approximately equal to 0.8285 for λ=10. See Figures 1 

and 2 to know how our results are accurate. 

The more m increases, the easier the discrimination between these two hypotheses 
will be for both Ω=Ωm and Ω=Cm. Since the variance of ∆ approaches to zero for Ω=Ωm 
a bit faster than that for Ω=Cm, distinguishing is a bit easier for Ω=Ωm than Ω=Cm. As m 
increases this will not be important and shows that choosing C function randomly from 
C32 is approximately the same as choosing it from Ω32. 

 
Figure 1. Theoretical and empirical distribution of ∆ for λ=10 and m=12 under 

hypothesis a) H0, b) H1 (Ω=Ωm) and c) H1 (Ω=Cm) on the same coordinate 

 

In hypothesis testing we deal with two error probabilities  
and . To be more precise, if we rely on our theoretical analysis, can 
be computed versus  by eliminating γ from the following equations.

}|Pr{ 10 HHpmiss =
}|Pr{ 01 HHp fa = missp

fap 3

                                                 

3 Q function is defined as ∫
∞ −

=
z

x

dxezQ 2

2

2
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π
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)(}Pr{ 0|| 00
γγσμ QHp HHfa =+>Δ= ΔΔ    (16)  

( )
010100 ||||1|| ))((}Pr{ HHHHHHmiss QHp ΔΔΔΔΔΔ +−=+<Δ= σγσμμγσμ  (17) 

We will refer to these equations to analyze our attack in Section 5. 
Figure 1. Empirical distribution of ∆ for λ=10 under hypothesis H1 (Ω=Ωm), H1  (Ω=Cm) 

and H0, for a) m=4, b) m=8 and c) m=12 on the same coordinate 

 

5 Attack Procedure 

In this section we explain how to use the ability to distinguish the distribution of C(x) 
from the uniform distribution to develop a divide and conquer attack on ABC to find the 
initial value of z1 and z0 registers. In fact this is not a new attack and can be considered as 
a generalization of correlation attack introduced in [4] by Siegenthaler. The aim of 
correlation attack introduced by Siegenthaler is to find the initial state of a binary LFSR 
of length L, given the noisy output sequence of a BMSC4 when the output sequence of 
the LFSR is applied to the input of this channel. As the first N bits of the output sequence 
of an LFSR is a codeword of the corresponding truncated cyclic linear code of given 
LFSR, the problem is essentially a decoding problem. Siegenthaler solves this problem 

                                                 
4 Binary Memoryless Symmetric Channel  
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using ML decoding and shows that in order to successfully finding the initial state of the 
LFSR, the minimum required output length of the given noisy sequence, N, is determined 
by the error probability of the corresponding channel [4]. In this case, ML decoding is 
performed by searching over all 2L possible initial states for the LFSR and choosing one 
that its corresponding output sequence has the least hamming distance from the given 
noisy sequence, assuming that the channel error probability is less than one half. 

Looking into equation (9), the output expression of the ABC, it is clear that can 
be considered as the noisy version of , where is treated as the noise sequence. 
We are going to find the correct value of z

}{ ny
}{ 0

nz )}({ nxC
1 and z0 registers by exhaustive search over all 

263 possible values for them. Corresponding to each assigned value and 1ẑ 0ẑ  to the 
registers z1 and z0, we denote the states sequence of these registers by  and 

. For each assigned value to the registers z

∞
=0

1 }ˆ{ nnz
∞
=0

0}ˆ{ nnz 1 and z0, we compute the 
sequence , where  for . ∞

=1}{ nnw 0ˆnnn zyw −= 1≥n

If we are trying the correct initial state of z1 and z0 registers we have  which 
shows that . So in regard to good statistical properties of , the sequence 

 seems as a filtered uniform sequence, where the filter function has been chosen 
randomly from C

00ˆ nn zz =
)( nn xCw = }{ nx

∞
=1}{ nnw

32. If we are trying an incorrect initial state of z1 and z0 registers, we 
have . Because of good statistical properties of LFSR 
output sequences,  and  can be regarded as mutually independent purely 
random sequences. In this case the sequence  also has very good statistical 
properties and can hide the non-uniform distribution of  very well. So it is 
reasonable to consider the sequence  as a uniform sequence for an incorrect guess 
of z

)(ˆˆ 000
nnnnnn xCzzzyw +−=−=

}ˆ{ 0
nz }{ 0

nz
}ˆ{ 00

nn zz −
)}({ nxC

∞
=1}{ nnw

1 and z0 registers.  

Therefore we are dealing with two hypotheses and , respectively corresponding 
to a correct initial state and an incorrect one for z

1Ĥ 0Ĥ
1 and z0 registers. Given a sequence of 

length N of the output sequence, that is , we are going to find the most likely 
candidates for the initial value of z

N
nny 1}{ =

1 and z0 registers. In order to successfully finding of 
the initial value of z1 and z0 registers, the error probability }|Pr{ 01 HHp fa =  must be in 
the order of 2-63 while the error probability }|Pr{ 10 HHpmiss =  has been set to a 
reasonable value, e.g. 0.01 or 0.1. The rationale behind this expression is that altogether 
there are 263-1 incorrect choices for the initial value of z1 and z0 registers. As  has 
been set to 2

fap
-63 we expect that in average one of these incorrect choices be in the 

candidate set for the initial value of z1 and z0 registers while with a good probability the 
correct choice has not been missed.  

Computation of the minimum required output length of the key stream generator to 
apply a successful attack is under investigation. At this point using our theoretical results 
in Section 4, we show that using 10×232 words of the output sequence, the attack is 
successful. 
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As , setting γ=9 in equations (16) satisfies the required . Since 
computing  using equation (17) needs to know Q and Λ for C

-632Q(9) ≈ fap

missp 32 which take a long 
time to estimate them (O(232)), we have not computed it, but we practically expect to be 
zero for λ=10. Note that λ=10 is the minimum value of λ >>1 which our theoretical 
analysis is valid. Since for each possible initial state of z0 and z1 registers we have to 
process 10×232 words, the time and data complexities of this phase are 10×295 simple 
word operations and 10×232 words, respectively.  

In the rest of this section we explain how to attack the whole cipher after finding the 
initial state of z1 and z0 registers. Having found the initial value of z1 and z0 registers, the 
attacker can search over all possible initial value of register x and constant values d0 and 
d1. Knowing the values of these three registers and finding the initial values of z1 and z0 
registers at the previous step, the attacker can construct a linear equation for 33 unknown 
parameters e, e1, e2, …, e32 according to (9) and (3). The coefficient of these equations 
come from GF(2). Using slightly more than 33 equations, we can be sure that we have 33 
linearly independent equations which reveals the values of these unknown parameters. 
After finding the values of the parameters e, e1, e2, …, e32, the attacker can check the 
correctness of her/his guess by comparing a few other output words of the output 
sequence. Since d0 ≡ 1 (mod 2) and d1 ≡ 0 (mod 4) the attacker must try 232+31+30

 guesses 
for unknown values of x, d0 and d1, and then for each guess solves a linear system of 33 
unknowns. Therefore, the time complexity of this step is 333×293≈ 2108 simple word 
operations and data complexity is a few words.  

In order to summarize the attack results, it can be said that the time and data 
complexities for breaking the whole cipher are 2108 and 10×232, respectively. 

6 Conclusion 

In this paper we proposed a divide and conquer correlation attack on ABC stream 
cipher. We showed that C function in ABC is slightly better than a randomly chosen 
function over GF(232). Using this great weakness of C we proposed a correlation based 
divide and conquer attack which finds the initial values of z0 and z1 registers by searching 
over all 263 possible choices for them in time complexity of 10×295 simple word 
operations using 10×232 output words. Although the attack is performable using less data 
and time complexities, we just theoretically analyzed this amount of data.   

Assuming that the initial values of z0 and z1 registers are available, we suggested to 
find the values of e, e0, e1, … and e31 registers by searching over all 293 possible initial 
values for x, d0 and d1 registers which needs 2108 simple word operations and a few 
words of the output sequence. Therefore the total time and data complexity of our attack 
for breaking the whole cipher are 2108 simple word operations and 10×232 words, 
respectively.  

It is worth investigating the possibility of 

1. Computing the minimum required output length for successfully finding the 
initial values of z0 and z1 registers. 
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2. Finding the initial values of z0 and z1 registers using some methods similar to 
fast correlation attack techniques.  

3. Finding (Estimating) the values of e, e0, e1, … and e31 just using the distribution 
of C function without searching over x, d0 and d1 registers. 
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Appendix 

Deriving the equations (12-15) 

In this section we try to compute the distribution of Δ under both hypotheses H0, H1 
using appropriate approximations. For , (11) is simplified as  mN 2λ=

∑
−

=

−− −=Δ
12

0

1 |ˆ|2
m

x
x

m f λλ  

If m
x kp 2= ,  has Binomial distribution , where under the condition xf̂ )2,2( mm kB −λ
1>>λ could well be approximated by Normal ),( λλ kkN  distribution [6].5 Using this 

approximation it can be shown that the average and variance of , denoted 
respectively by 

|ˆ| λ−xf

kμ and , are as follows. 2
kσ

                                                 
5 The probability mass function of B(n,p) and the probability density function  of N(μ,σ2) are respectively 

defined by  and }..., ,2 ,1 ,0 ,)1(}{Pr{ nkpp
k
n

kx knk =−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
== − 2

2)(

2
1)( σ

μ

σπ

−
−

=
x

x exf . 
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Using the computed values of 1μ  and , the average and variance of Δ under 
hypothesis H

2
1σ

0 are as follows. 

m
HH

−−
ΔΔ −=

⋅
= 2)21( ,2 12

|| 00
λ

π
σ

λπ
μ  

It must be noted that although the random variables  and are not independent, we 
have considered them as independent random variables in deriving the variance of Δ. 

xf̂ yf̂

To compute the average and variance of Δ under hypothesis H1 Let again Tk denote the 
proportion of outputs of C which have been repeated exactly k times in the output range 
of it. In addition we suppose Tk  is equal to zero for k>K. If we knew the values of Tk, the 
average and variance of Δ under hypothesis H1 could be computed as  

∑

∑

=

−−

=

−

⋅=Δ

=Δ

K

k
kk

m
k

K

k
kkk

TsTHVar

TsTHE

0

22
1

0

1
1

2}',|{ 

}',|{

σλ

μλ
 

Under hypothesis H1, where the values of Tk’s are not known, we can treat them as 
random variables. Using Q vector and Λ matrix defined in Section 4, the average and 
variance of Δ can be computed using a generalization of Random Sum Problem [6] which 
has been retold here. 

Random Sum Problem. Let  denote a sequence of i.i.d. random variables with 
average and variance μ

∞
=1}{ kkx

x and , and n be a discrete random variable over positive 2
xσ
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integers, independent of {xk}, with average and variance μn and . The average and 

variance of random variable  are equal to: 

2
nσ

∑
=

=
n

n xS
1k

k

xnE μμ=}{ nS , . 222)( xnnxVar σμσμ +=nS

Generalized Random Sum Problem. Let  denote L mutually 
independent sequence of i.i.d. random variables with average and variance 

Llk
l
k ,...,2,1  ,}{ 1 =∞

=x

jμ and , 
and n=[n

2
jσ

1, n2, …, nL] be a discrete vector random variable over positive integers, 
independent of , with average vector μ}{ j

kx n and variance covariance matrix Λn. The 

average and variance of random variable  are equal to: ∑∑
= =

=
L

l k

l
k

l

1 1

n

xS

xnE μμ=}{ nS ,  T
n

2
x

T
xnx μσμΛμS +=)(Var

where T denotes vector transposition, ] ..., , ,[ 21 Lμμμ=xμ and . ] ..., , ,[ 22
2

2
1 Lσσσ=2

xσ

 

Using above theorem considering just first K+1 significant values of Tk, setting nk=2mTk 
we have 

T
H μQ1
| 1

−
Δ = λμ  

)2( 22
| 1

T2T QσμΛμ m
H

−−
Δ += λσ  

μ=[ μ0 μ1 … μK],  and Q and Λ are the average vector and covariance 
matrix of the vector random variable [T

] ...  [ 22
1

2
0 Kσσσ=2σ

0 T1 … TK] for a randomly chosen function from 
Ω. For good approximation it is sufficient to take K=10. 

Here again we have used the independence assumption of random variables  and  to 
compute the variance of Δ. 

xf̂ yf̂
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