
Cryptanalysis of ABC

Côme Berbain, Henri Gilbert

France Telecom R&D,
38-40 rue du Général Leclerc,

F-92794 Issy-les-Moulineaux, France.
{come.berbain, henri.gilbert}@francetelecom.com

Abstract. ABC ([1]) is a synchronous stream cipher submitted by Anashin,
Bogdanov, Kizhvatov and Kumar to the ECRYPT call for Stream Cipher
Primitives. In this paper, we present an attack against ABC which retrieves
the complete internal state of the keystream generator after the key setup and
before the IV setup (and thus provides an equivalent key). The attack requires
295 computations and 232 32-bit keystream words.

1 Brief description of ABC

ABC is a synchronous stream cipher which uses a 128-bit key and a 128-bit IV and
claims a security level of 2128. ABC consists in three components:

Fig. 1. ABC

Component A is a linear transformation on GF (2)64. It uses a 64-bit Linear Feed-
back Shift Register which current state is represented by two 32-bit words z0 and z1.



At each clock the LFSR is updated as follows:

ζ = z1 ⊕ (z0 >> 1) ⊕ (z1 << 31), z0 = z1, z1 = ζ

Component B is the following single cycle T-function where d0 and d1 represent 32-bit
key and IV dependent words.

B(x) = d0 + 5(x ⊕ d1) mod 232.

Component C is a mapping from GF (2)32 to GF (2)32 which definition involves key
dependent constant 32-bit vectors e and ei, 0 ≤ i ≤ 31. It works as a selector depend-
ing on x: if bit i of x (denoted by δi(x)) is equal to 1 then the vector ei is added. The
obtained result is rotated:

C(x) =

(

e +
31
∑

i=0

eiδi(x) mod 232

)

>>> 16 (1)

To generate a 32 bit word of keystream, component A is first applied on z =
(z0, z1), then component B is applied on x and the result is added modulo 232 to z1

to update x. Then component C is applied on x and the result is added modulo 232

to z0 to produce the keystream.

2 Description of the attack

We denote by z0

0
, z0

1
and x0 the values of z0, z1 and x after the IV setup and by zt

0
,

zt
1 and xt the values of z0, z1 and x after the t-th keystream word has been produced.

We first present a distinguisher on ABC, we can convert efficiently into an attack
which recovers the whole internal state.

2.1 A distinguishing attack which recovers z

Expression (1) suggests that the output of component C can be expected to be
strongly biased for nearly all values of the ei constants, due to the fact that it is
extremely unlikely to represent a one to one mapping. This was confirmed by com-
puter experiments. Consequently, the deviation from the behavior one would observe
if the component C output was uniformly distributed is easy to detect. Let us consider
N = 232 consecutive C output words. If the distribution of these words were uniform,
the average number of words reached k times would be:

N

(

N

k

)

1

Nk
(1 −

1

N
)N−k

We can approximate the underlying binomial law by a Poisson law of parameter 1.
Now for the actual output distribution of component C, the detected bias depends
on the ei. In exceptional cases, for instance if we had ei = 2i, 0 ≤ i ≤ 31, one nearly
uniform distribution would be obtained. However because the ei are generated as 32
consecutive output words of ABC, this is extremely unlikely to happen and a rough

2



heuristic argument suggests an order of magnitude of 232
(

1 − 1

e

)

for the average
number of possible C output values1.

To illustrate the bias, we give the frequency table of N = 232 output words of
component C and compare it with the average values one would obtain from a Poisson
distribution:

k Poisson law experimental result
0 1580030168 2283981230
1 1580030168 838584300
2 790015084 573760447
3 263338361 313263951
4 65834590 155322135
5 13166918 73033783
6 2194486 32879000
7 313498 14230621
8 39187 5953672
9 4354 2417630
10 435 953271
11 39 367907
12 3 139207
13 51327
14 18610
15 6682
16 2324
17 768
18 280
19 109
20 29
21 10
22 1
23 2

Let us now outline how to exploit the former bias to derive the state words z0

0
and

z0

1
based on N consecutive keystream words st, 0 ≤ t ≤ N − 1.
One can notice that because of the shift operation by 1 in the update of the

component A, bit 0 of z0

0
does not have any influence on the keystream. So we only

have to guess 63 bits to recover z1
0 and z1

1 .
For each of the 263 considered values of z0

0
and z0

1
, we derive the associated sequence

(zt
0) and with the keystream sequence (st), we compute the sequence (c̃t) given by:

c̃t = (st
− zt

0) >>> 16

If we have made the right guess, then c̃t is the actual output of component C:
c̃t = C(xt). Otherwise the sequence can be expected to be more uniformly distributed.

1 One can argue that we are in an intermediate situation between the one where 232
C

output values would result from choosing 232 32-bit words at random and the one which
would occur if modulo 232 addition were replaced by xor’s in the expression of C. The
number of distinct C output values would then be 2r, where r is the dimension of the
vector space spanned by the ei.

3



We use the bias found in the output of component C to detect whether we have made
the correct guess or not.

For each guess we can build the table T which entry T [i] (0 ≤ i ≤ 232−1) is defined

as the number of occurrences of value i in the sequence c̃t. Then we can compute the
indicator:

χ2 =

2
32

−1
∑

i=0

(T [i] − 1)2

One can expect χ2 to be much larger in the case of the unbalanced (c̃t) distribution
corresponding to the right guess than for the more uniform distribution corresponding
to incorrect guesses. Therefore the maximum value of χ2 can be expected to corre-
spond to (z0

0
, z0

1
) or to (z0

0
⊕ 0x00000001, z0

1
). In both cases we can compute (z1

0
, z1

1
).

This was confirmed experimentally by applying the above test to the right value of
(z0

0 , z0

1) and to numerous incorrect assumptions. Moreover it was also confirmed ex-
perimentally on a reduced version of ABC, where 32-bit words of the actual ABC
were replaced by 8-bit words, by doing the described exhaustive search for a very
large number of keys.

This first part of the attack costs 295 operations and requires 232 32-bit words of
keystream. It is certainly possible to detect the bias with less than 232 32-bit words of
keystream (and consequently to reduce the complexity of the attack) but then false
alarm candidates should be taken into account.

2.2 Retrieving the complete internal state

Once we know the complete sequences (zt
0
) and (zt

1
), we need to retrieve the values

of x0, d0, d1, e and ei, 0 ≤ i ≤ 31 to get the complete internal state after key and IV
loading.

First we retrieve the 16 least significant bits of x0, d0 and d1. Because the designers
want the T-function of component B to be single cycle, we know that d0 = 1 mod 2
and d1 = 0 mod 4. So we only have to guess 45 bits. For each guess we can derive the
16 least significant bits for all the values of xt and when those bits are all zero (which

happens with probability 2−16) we have access to the value e+
∑31

i=16
δi(x)ei mod 232

if we have made the right guess or to a less strongly biased value otherwise. Because
we already have 232 words of keystream, we obtain for each guess about 216 words
where the 16 least significant bits of xt are all zero. In the case of an incorrect guess,
we can expect these about 216 words to be nearly all distinct, since they are drawn
from the set of all possible C(x) values, which size is much larger than 216, though
strictly lower than 232. In the case of a correct guess, many multiple occurrences can
be expected, since the about 216 selected values are drawn from the set of possible
e +

∑31

i=16
δi(x)ei mod 232 values, which size is less or equal to 216.

We give the frequency table of 232 output words of component C, which were
obtained for an incorrect guess and a correct guess respectively:

4



k incorrect guess correct guess
0 4294901558 4294901844
1 65737 24062
2 1 12017
3 4004
4 1042
5 182
6 37
7 4
8 2

We can use the same estimator as in the first part of the attack (except that we
do not consider all the not reached values) to distinguish the correct guess from the
incorrect ones and we get the 16 least significant bits of x0, d0 and d1. An even more
simple but also effective test would consist in selecting the guess which maximizes the
number of multiple occurrences. Recovering the 16 least significant bits of x0, d0 and
d1 costs 277 operations and requires the same 232 words of keystream as previously.

To recover the end of the internal state, we guess the end of x0, d0, d1 and for each
hypothesis, we derive the entire values of xt. So we can write linear equations over
e and ei, 0 ≤ i ≤ 31 and as soon as we have 33 independent equations we can solve
the system and instantly check whether the guess is correct. So we have recovered the
complete internal state in 293 + 277 + 263 operations.

2.3 Study of the IV setup

Firstly we have noticed some flaws in the IV setup: for example one can change bit
number 33 of the IV without changing the keystream, which represents an undesirable
property. Moreover because bit 0 of zt

0 does not affect the later (zt
′

0 , zt
′

1 ) and because
of some bits of the internal state fixed to special values during the IV setup, several
IV can lead to the same internal state after the IV setup. Consequently we can go
backward from the internal state just after the IV setup to find one of the possible
internal states after the key setup. This only costs 232 operations.

3 Conclusion

We have presented a distinguishing attack on ABC which needs 232 words of keystream,
requires 293 operations and retrieves the complete internal state after key and IV
setup. This attack can be transformed into an attack that retrieves the internal state
before the IV setup (and thus provides an equivalent key) for a negligible increase of
the cost.

References

1. Vladimir Anashin, Andrey Bogdanov, Ilya Kizhvatov, and Sandeep Kumar. ABC: A new
fast flexible stream cipher. ECRYPT Stream Cipher Project Report 2005/001, 2005.
http://www.ecrypt.eu.org/stream.

5


