
Salsa20 speed

Daniel J. Bernstein ?

Department of Mathematics, Statistics, and Computer Science (M/C 249)
The University of Illinois at Chicago

Chicago, IL 60607–7045
snuffle@box.cr.yp.to

1 Introduction

This document discusses a range of benchmarks relevant to cryptographic speed;
estimates Salsa20’s performance on those benchmarks; and explains, at a lower
level, techniques to achieve this performance.

The bottom line is that Salsa20 provides consistent high speed in a wide
variety of applications across a wide variety of platforms. Consistency means
that, in each of these contexts, Salsa20 is not far from the fastest cryptographic
function that I have seen at the same conjectured security level.

2 Review of the Salsa20 structure

Encryption of a 64-byte block is xor with the output of the Salsa20 hash function,
where the input consists of the 32-byte Salsa20 key, the 8-byte nonce (unique
message number), the 8-byte block counter, and 16 constant bytes. The reader is
cautioned that encryption time is slightly longer than hashing time: in particular,
a 64-byte xor is not free.

The Salsa20 hash function regards its 64-byte input x as an array of 16
words in little-endian form. It performs 320 invertible modifications, where each
modification changes one word of the array. The resulting words are added to the
original words, producing, in little-endian form, the 64-byte output Salsa20(x).

Each modification involves xoring into one word a rotated version of the sum
of two other words. Thus the 320 modifications involve, overall, 320 additions,
320 rotations, and 320 xors. The rotations are all by constant distances.

The entire series of modifications is a series of 10 identical double-rounds.
Each double-round is a series of 2 rounds. Each round is a set of 4 parallel
quarter-rounds. Each quarter-round is a series of 4 word modifications.

3 Benchmarks

One often sees a stream cipher described as taking, e.g., “7 clock cycles per byte
on a Pentium II.” But this isolated figure tells only a small part of the story.

? The author was supported by the National Science Foundation under grant CCR–
9983950, and by the Alfred P. Sloan Foundation. Date of this document: 2005.04.27.

Athlon; Pentium; PowerPC; etc.

The Pentium II is not the only popular general-purpose CPU. For example, in the
last few months I’ve used an AMD Athlon, an AMD Athlon 64, an IBM PowerPC
RS64 IV (Sstar), an Intel Pentium III, an Intel Pentium 4 f12 (Willamette), an
Intel Pentium 4 f29 (Northwood), an Intel Pentium M, a Motorola PowerPC
7410 (G4), a Sun UltraSPARC II, and a Sun UltraSPARC III.

Some functions have cycle counts that stay fairly consistent from one CPU
to another. Other functions don’t. There are many examples of cryptographic
functions that are specially designed to run well on a particular CPU (using the
Pentium 4’s complicated pmuludq instruction, for example) and that turn out
to be much slower on other CPUs.

Salsa20 performs well on all of these CPUs, and I anticipate that it will
also have good performance on tomorrow’s popular general-purpose CPUs. Its
basic operations—addition modulo 232, constant-distance 32-bit rotation, and
32-bit xor—are consistently fast. It has enough implementation flexibility—in
particular, enough internal parallelism—that it is not crippled by the latency
problems of some CPUs.

Specifically, the Salsa20 hash function takes between 8 and 17 cycles/byte
on a wide range of CPUs. See Sections 4 through 11 for detailed comments on
several specific CPUs, including timings of my published Salsa20 software.

General-purpose CPUs; embedded CPUs; FPGAs; ASICs

The large CPUs in laptop computers, desktop computers, and servers are not the
only target platforms for cryptography. Cryptographic functions are sometimes
implemented on tiny CPUs with 8-bit arithmetic operations and (e.g.) 128 bytes
of memory; or on small portions of field-programmable gate arrays; or as small
application-specific integrated circuits.

Some functions scale reasonably to all of these contexts: they maintain good
price-performance ratios on tiny CPUs and inside FPGAs, and they achieve
even better performance in application-specific circuits. Other functions don’t.
There are many examples of cryptographic functions that rely heavily on, e.g.,
random access to multi-kilobyte tables, and that slow down drastically on smaller
circuits.

Salsa20 scales reasonably to all of these contexts. Its operations decompose
easily into 8-bit operations on tiny CPUs, into 4-bit operations in typical gate
arrays, and into 1-bit operations in dedicated circuits. It fits comfortably into
128 bytes of memory.

Long messages; short messages

A typical “cycles per byte” benchmark assumes that messages are long—e.g.,
8192 bytes. But, in most networking protocols, such long messages never occur.
The average Internet packet is only a few hundred bytes long. The average packet
in some applications is even smaller.

Some functions perform well across a wide range of message lengths. Other
functions don’t. There are many examples of cryptographic functions that have
very small “cycles per byte” figures but that slow down dramatically for small
messages. For example, one function was advertised as taking 1 cycle per byte,
with the fine print revealing a setup cost of 2000 cycles per message; this function
is not competitive with a function that takes 3 cycles per byte with much lower
per-message overhead.

The only Salsa20 per-message setup costs are creating a nonce and initializing
a block counter to 0. In other words, Salsa20 offers excellent message agility.

This feature of Salsa20 is shared by any block cipher in counter mode, but
it is certainly not shared by all stream ciphers.

Convenient message lengths; inconvenient message lengths

A typical benchmark is limited to convenient message lengths: e.g., multiples of
256 bytes. But messages of these convenient lengths are not the only types of
messages encrypted. A thorough benchmark suite includes 0-byte packets, 1-byte
packets, 2-byte packets, 3-byte packets, and so on through 8192-byte packets.

(Do I know any Internet applications that encrypt 1-byte packets? No. But
it’s better for a benchmark to provide too much information than too little. The
reader can disregard packet sizes that he doesn’t care about.)

For most functions, the convenient lengths are exactly the multiples of a
function-specific “block size.” Handling a message of an inconvenient length takes
roughly the same amount of time as handling a message of the next convenient
length.

The Salsa20 block size is 64 bytes.

Aligned messages; unaligned messages

Most benchmarks assume that messages begin at aligned addresses in memory:
e.g., multiples of 16 bytes. But this assumption forces every application layer to
either (1) take the time to align messages or (2) impose alignment constraints
upon higher layers. There are free-form network protocols that allow encrypted
messages to begin at arbitrary byte positions within a network packet; unless and
until those protocols are eliminated, someone will have to deal with unaligned
messages.

The penalty for handling unaligned messages can be quite noticeable. For
example, in the SPARC instruction set, a single load instruction can load 8 bytes
of plaintext, and a single store instruction can store 8 bytes of ciphertext—if the
plaintext and ciphertext are required to be aligned. Code to handle arbitrary
alignments needs 8 separate byte-load instructions and 8 separate byte-store
instructions. The extra instructions take time even if the plaintext is actually
aligned. Branching to separate code for aligned and unaligned plaintext costs
code space, which creates other speed problems, as discussed below.

Consequently, one must distinguish three types of benchmarks: encryption of
aligned data by code that cannot handle unaligned data; encryption of aligned

data by code that can handle unaligned data; and encryption of unaligned data.
These distinctions have little to do with the choice of cryptographic function,
but they make a sufficiently large difference in timings that they must be made
explicit.

One key; many keys

Most cryptographic benchmarks assume that a single key is used for a long time.
For example, on large CPUs, the benchmarks assume that any key-dependent
tables have been precomputed and loaded into L1 cache, along with the key
itself. But there are many applications that bounce rapidly between keys. A
thorough benchmark suite includes bouncing among n keys for various values n:
e.g., n ∈ {1, 2, 4, 8, . . . , 1048576}.

The penalty for a table is not merely the “key setup time,” i.e., the time
to precompute the table, amortized over all uses of the key. It is also the time
to load the table from L2 cache or from DRAM. This cache-miss time—which
depends on the table size, the pattern of table-entry access, etc.—is incurred
whenever many other keys have been active recently.

There is no precomputation in Salsa20. In particular, there are no key-
dependent tables: 32-byte Salsa20 keys are stored in exactly 32 bytes. In other
words, Salsa20 offers excellent key agility. There is no point in a “key-setup”
function for Salsa20.

(In theory, small changes in (k, n) allow a small percentage of the Salsa20k(n)
operations to be eliminated at the expense of storage. I do not expect any such
tradeoffs to be used in practice. My cost estimates assume that these tradeoffs
are not used.)

One message; many messages

Most encryption benchmarks assume that one message is encrypted at a time: an
application provides a message as a single packet, which is encrypted in a single
burst. But, at a lower level, bytes near the beginning of a message are typically
created before bytes near the end. One can reduce latency on parallel platforms
by encrypting each message block before subsequent blocks have arrived.

When several messages are simultaneously built from smaller components,
each message has its own cipher state. A larger state means that the available
hardware (e.g., L1 cache) can handle fewer simultaneous messages.

One must distinguish two different measurements of state size. In applications
where many messages use the same key, what matters is the “fixed-key state
size”: the number of state bytes used for an additional message with the same
key. In applications where each message uses a different key, what matters is
the “variable-key state size”: the number of state bytes used for an additional
message with another key.

Salsa20 has minimal state size in both situations. Its variable-key state size
is just 48 bytes: 32 bytes for the key, 8 bytes for a nonce, and 8 bytes for a block

counter. Its fixed-key state size is just 16 bytes: 8 bytes for the nonce and 8 bytes
for the block counter. The state can usually be compressed further: for example,
in many applications, messages are below 16384 bytes, so the block counter can
be compressed to 1 byte.

This feature of Salsa20, like the minimal per-message setup costs, is shared
by any block cipher in counter mode, but it is certainly not shared by all stream
ciphers. Many stream ciphers have fixed-key state sizes of 64 bytes or more.

Sequential positions; parallel positions

Most encryption benchmarks focus on sequential platforms handling the blocks
of a message serially: one encrypts the first block of a message, then the second
block, etc. But parallel platforms can often drastically reduce latency by handling
several blocks in parallel—if the cipher does not serialize blocks.

Salsa20 has minimal serialization of blocks. Each message block is encrypted
independently, the only block-specific input being the block counter.

This is another feature shared by any block cipher in counter mode but
certainly not shared by all stream ciphers. Many stream ciphers cannot take
advantage of parallel platforms to reduce long-message latency.

Cryptography in isolation; cryptography in context

Most large-CPU encryption benchmarks assume that the CPU is doing nothing
other than encryption. But encryption is merely one part of a network protocol.
A CPU typically cycles between generating a packet, encrypting the packet,
transmitting the packet, etc.; each of these stages involves quite a bit of code.

There can be dramatic slowdowns—tens of thousands of cycles for every
packet—when this code does not fit into cache. Avoiding this slowdown means
more than fitting the encryption code into cache; it means fitting the generation

and encryption and transmission code, and all other active code, into cache. A
thorough benchmark suite includes various levels of competition for cache space.

Salsa20 performs well even with tiny code sizes. One does not need to fully
unroll the 20 rounds of the Salsa20 hash function to achieve good performance.
The maximum unrolling in my published Salsa20 software is 4 rounds. Even
a 20-iteration 1-round loop is reasonably fast. Code for one round typically
takes about 200 bytes, depending on the CPU; overhead for the hash function is
typically around 300 bytes; overhead for encryption depends on the complexity
of the encryption API but is generally small.

Encryption; decryption

Encryption time is only half of the picture. Most applications need to encrypt
and decrypt data.

Many “non-additive” stream ciphers, such as a block cipher in CBC mode,
incur extra costs in these applications. The encryption-and-decryption code is

often twice as large as the encryption code. A key-dependent encryption-and-
decryption table is often twice as large as a key-dependent encryption table. This
extra space often turns into extra time, as discussed above.

For Salsa20, encryption and decryption are identical. This feature is shared
by any block cipher in counter mode, and by many other stream ciphers.

4 Salsa20 on the AMD Athlon

My salsa20_word_pm software takes 29.25 Athlon cycles for a Salsa20 round,
totalling 585 cycles (9.15 cycles/byte) for 20 rounds, totalling 645 cycles (10.08
cycles/byte) for the Salsa20 hash function, timed as 680 cycles with 35 cycles
timing overhead. The timings are actually 655 or 656 cycles most of the time but
849 cycles on every eighth call, presumably because of branch mispredictions.

The compiled code occupies 1248 bytes. Its main loop occupies 937 bytes and
handles 4 rounds.

Details

The Athlon has 7 usable integer registers, one of which is consumed by a round
counter if the Salsa20 code is not completely unrolled. The Athlon is limited to
3 instructions per cycle and 2 memory operations per cycle.

The small number of registers means that each round requires many loads
and stores. Loads can be absorbed into load-operate instructions, although they
still count against the memory-operation bottleneck.

A quarter-round can be handled with 16 instructions (4 additions, 4 rotations,
4 xors, 4 stores), 12 memory operations (8 loads, 4 stores), and 1 register:

x0 = p store

p += x12 load add

p <<<= 7 rotate

p ^= x4 load xor

x4 = p store

p += x0 load add

p <<<= 9 rotate

p ^= x8 load xor

x8 = p store

p += x4 load add

p <<<= 13 rotate

p ^= x12 load xor

x12 = p store

p += x8 load add

p <<<= 18 rotate

p ^= x0 load xor

A quarter-round can also be handled with 17 instructions (the extra being a
load), just 9 memory operations (5 loads, 4 stores), and 2 registers:

x5 = s store

r = x1 load

r += s add

r <<<= 7 rotate

r ^= x9 load xor

x9 = r store

s += r add

s <<<= 9 rotate

s ^= x13 load xor

x13 = s store

r += s add

r <<<= 13 rotate

r ^= x1 load xor

x1 = r store

s += r add

s <<<= 18 rotate

s ^= x5 load xor

Performing four quarter-rounds in parallel, half in one way and half in the other,
takes 6 registers, 66 instructions (at least 22 cycles), and 42 memory operations
(at least 21 cycles). There are also 2 loop-control instructions for every 4 rounds.

The Athlon can’t decode 3 instructions per cycle if any instructions cross 16-
byte boundaries in memory. My salsa20_word_pm software makes no attempt
to align instructions; this can easily explain the gap between ≈ 22 cycles/round
and ≈ 29 cycles/round. In fact, my salsa20_word_pm software has no Athlon
tuning; it was designed for the Pentium M.

I plan to try aligning instructions, to try shifting the balance slightly towards
memory operations, and to experiment with XMM code as on the Pentium 4.
There are other Athlon bottlenecks that are more difficult to analyze, so I won’t
speculate as to the achievable number of cycles/round.

As for the 60-cycles-per-hash overhead: One can easily eliminate some of this
overhead by merging the Salsa20 hash function with a higher-level encryption
function.

Comparison to AES timings

Osvik reports that unpublished software—with no protection against timing
leaks—takes 225 Athlon cycles (over 14 cycles/byte) to encrypt a 16-byte block
with a 16-byte AES key, assuming that the key was pre-expanded into 176 bytes.

One can reasonably extrapolate that similar software would take over 300
Athlon cycles (over 18 cycles/byte) to encrypt a 16-byte block with a 32-byte
AES key, assuming that the key was pre-expanded into 240 bytes.

5 Salsa20 on the IBM PowerPC RS64 IV (Sstar)

My salsa20_word_aix software takes 33 PowerPC RS64 IV cycles for each
Salsa20 round, totalling 660 cycles (10.32 cycles/byte) for 20 rounds, totalling

756 cycles (11.82 cycles/byte) for the Salsa20 hash function, timed as 770 cycles
with 14 cycles timing overhead.

The compiled code for the Salsa20 hash function occupies 768 bytes. Its main
loop occupies 392 bytes and handles 2 rounds.

Details

The PowerPC RS64 IV has enough registers to avoid all loads and stores inside
the hash-function rounds. The 16 words of hash-function input are loaded into
separate registers; 4 quarter-rounds are performed in parallel, with 1 temporary
register for each quarter-round; after 20 rounds, the input is loaded again, added
to the round output, and stored.

The obvious bottleneck is that the PowerPC RS64 IV is limited to 2 integer
operations per cycle, with a rotate instruction counting as 2 operations. Each
round has 64 operations and therefore takes at least 32 cycles, totalling 640 cycles
(10.00 cycles/byte) for 20 rounds, even with fully unrolled code. I’m satisfied with
my current 33 cycles/round.

The above comment regarding the cost of rotation is a guess based on limited
experiments. As far as I can tell, the only RS64 IV performance documentation
is a 14-page introductory article that does not discuss this cost.

My software interleaves four parallel rounds in a reasonably straightforward
way; rotations are presumed to have high latency and are scheduled early. Here
is the first quarter of the code for four parallel quarter-rounds:

y4 = x0 + x12

y4 <<<= 7

y9 = x5 + x1

y9 <<<= 7

y14 = x10 + x6

y14 <<<= 7

y3 = x15 + x11

y3 <<<= 7

x4 ^= y4

x9 ^= y9

x14 ^= y14

x3 ^= y3

Simpler C code fed through gcc -O3 -mcpu=power takes 36.5 cycles per round.
As for the 96-cycles-per-hash overhead: One can easily eliminate most of this

overhead by merging the Salsa20 hash function with a higher-level encryption
function. The PowerPC function-call overhead is made particularly severe by the
large number of PowerPC callee-save registers.

6 Salsa20 on the Intel Pentium III

My salsa20_word_pii software takes 37.5 Pentium III cycles for each Salsa20
round, totalling 750 cycles (11.72 cycles/byte) for 20 rounds, totalling 837 cycles

(13.08 cycles/byte) for the Salsa20 hash function, timed as 872 cycles with 35
cycles timing overhead. (The timings are actually 859 cycles most of the time but
908 cycles on every fourth call, presumably because of branch mispredictions.)

The compiled code for the Salsa20 hash function occupies 1280 bytes. Its
main loop occupies 937 bytes and handles 4 rounds.

Details

The Pentium III has 7 usable integer registers, one of which is consumed by a
round counter if the Salsa20 code is not completely unrolled. The small number
of registers means that each round requires many loads and stores.

The Pentium III is limited to 3 operations per cycle. A store instruction
counts as 2 operations. A load-operate instruction counts as 2 operations. The
Pentium III is also limited to 2 integer operations per cycle.

A store to the stack, and a subsequent load from the stack, can be replaced
with a store to “MMX registers,” and a subsequent load from MMX registers.
The MMX store counts for only 1 operation, unlike a stack store. On the other
hand, the MMX load and the MMX store both count as integer operations,
unlike a stack load and a stack store.

My software handles each quarter-round with 4 loads, 4 stores, 4 additions,
4 rotations, and 4 xors:

a = x12

b = x0

c = x4

e = a + b

e <<<= 7

c ^= e

x4 = c

d = x8

e = b + c

e <<<= 9

d ^= e

x8 = d

c += d

c <<<= 13

a ^= c

x12 = a

a += d

a <<<= 18

b ^= a

x0 = b

The number of registers used by this code ranges up to 5 but is often smaller,
allowing some overlap between quarter-rounds. The Pentium III can rearrange
quite a few instructions internally to improve parallelism. On the other hand,

Intel has failed to document the rules by which the Pentium III chooses which
operations to perform next, so it is difficult to predict exact timings except by
experiment.

With six MMX registers, operations are balanced with integer operations:
each double-round has 120 integer operations, taking at least 30 cycles/round,
and 180 operations, taking at least 30 cycles/round. After some experiments I
ended up putting x1, x2, x6, x7, x11, and x12 into MMX registers.

Beware that there are many other interesting Pentium III bottlenecks; code
not tuned for the Pentium III is unlikely to achieve good performance. For
example, salsa20_word_pm takes nearly 60 Pentium III cycles/round.

Perhaps 37.5 cycles/round can be improved. However, blind experiments are
quite painful for the programmer, so I don’t plan to put further effort into the
Pentium III until I have a better Pentium III simulator.

As for the 87-cycles-per-hash overhead: One can easily eliminate some of this
overhead by merging the Salsa20 hash function with a higher-level encryption
function.

Comparison to AES timings

Osvik reports that unpublished software—with no protection against timing
leaks—takes 224 Pentium III cycles (14 cycles/byte) to encrypt a 16-byte block
with a 16-byte AES key, assuming that the key was pre-expanded into 176 bytes.

One can reasonably extrapolate that similar software would take over 300
Pentium III cycles (over 18 cycles/byte) to encrypt a 16-byte block with a 32-
byte AES key, assuming that the key was pre-expanded into 240 bytes.

7 Salsa20 on the Intel Pentium 4 f12 (Willamette)

My salsa20_word_p4 software takes 48 Pentium 4 f12 (Willamette) cycles for
each Salsa20 round, totalling 960 cycles (15 cycles/byte) for 20 rounds, totalling
1052 cycles (16.44 cycles/byte) for the Salsa20 hash function, timed as 1136
cycles with 84 cycles timing overhead.

The compiled code for the Salsa20 hash function occupies 1144 bytes. Its
main loop occupies 629 bytes and handles 4 rounds.

Details

The Pentium 4 does badly with salsa20_word_pii: it has a high latency for
moving data between the 32-bit integer registers and the 64-bit MMX registers.
The Pentium 4 f12 does better with salsa20_word_pm, but other Pentium 4
CPUs have a high latency for reading data that was recently written to memory.
So salsa20_word_p4 takes a completely different approach.

The Pentium 4 has eight “XMM registers,” each of which can hold four 32-bit
integers. The Pentium 4 has several XMM instructions:

• Add an XMM register (r0, r1, r2, r3) into an XMM register (s0, s1, s2, s3):
i.e., replace (s0, s1, s2, s3) with (s0 + r0, s1 + r1, s2 + r2, s3 + r3). This has
2-cycle latency.

• Xor an XMM register into an XMM register: i.e., replace (s0, s1, s2, s3) with
(s0 ⊕ r0, s1 ⊕ r1, s2 ⊕ r2, s3 ⊕ r3). For example, set a register to 0. This has
2-cycle latency.

• Shift an XMM register (r0, r1, r2, r3) left or right by some number of bits:
for example, replace (r0, r1, r2, r3) with (r0 << 7, r1 << 7, r2 << 7, r3 << 7).
This has 2-cycle latency.

• Shuffle an XMM register (r0, r1, r2, r3) into an XMM register (s0, s1, s2, s3).
For example, a 32-bit left rotation replaces (s0, s1, s2, s3) with (r3, r0, r1, r2).
(Recall that “left” really means “towards more significant bits,” which is
towards the right on a little-endian computer.) This has 4-cycle latency.

The Pentium 4 cannot perform two of these operations on the same cycle; it
cannot perform two arithmetic operations (add, xor) on adjacent cycles; it cannot
perform two shift operations (shift, shuffle) on adjacent cycles.

At the beginning of a column round, salsa20_word_p4 stores the input
(x0, x1, . . . , x15) in four XMM registers: diag0 has (x0, x5, x10, x15), diag1 has
(x12, x1, x6, x11), diag2 has (x8, x13, x2, x7), and diag3 has (x4, x9, x14, x3). It
performs a column round with the following instructions, which just barely fit
into 8 registers:

Two instructions inserted into gaps in previous round:

a0 = diag1 <<< 0

b0 = 0

Main loop begins here, with more than two gaps:

a0 += diag0

a1 = diag0 <<< 0

b0 += a0

a0 <<= 7

b1 = 0

b0 >>= 25

diag3 ^= a0

diag3 ^= b0

a1 += diag3

a2 = diag3 <<< 0

b1 += a1

a1 <<= 9

b2 = 0

b1 >>= 23

diag2 ^= a1

diag3 <<<= 32

diag2 ^= b1

a2 += diag2

a3 = diag2 <<< 0

b2 += a2

a2 <<= 13

b3 = 0

b2 >>= 19

diag1 ^= a2

diag2 <<<= 64

diag1 ^= b2

a3 += diag1

b3 += a3

a3 <<= 18

b3 >>= 14

diag0 ^= a3

diag1 <<<= 96

diag0 ^= b3

At this point diag0 has (y0, y5, y10, y15), diag1 has (y1, y6, y11, y12), diag2 has
(y2, y7, y8, y13), and diag3 has (y3, y4, y9, y14). Essentially the same code then
performs a row round and shifts the indices back to the original positions.

Each round has 20 arithmetic instructions and 15 shift instructions, and
therefore takes at least 40 cycles. It’s possible to eliminate some instructions,
but I don’t see any way to decrease the theoretical latency below 40 cycles. I
don’t know why the actual performance is 48 cycles/round.

As for the 92-cycles-per-hash overhead: One can easily eliminate some of this
overhead by merging the Salsa20 hash function with a higher-level encryption
function.

Comparison to AES timings

Osvik reports that unpublished software—with no protection against timing
leaks—takes 260 Pentium 4 (f12?) cycles (16.25 cycles/byte) to encrypt a 16-byte
block with a 16-byte AES key, assuming that the key was pre-expanded into 176
bytes. Matsui and Fukuda report that unpublished software—with no protection
against timing leaks—takes 251 Pentium 4 (f29?) cycles (15.68 cycles/byte) and
284 Pentium 4 f33 cycles (17.75 cycles/byte).

One can reasonably extrapolate that similar software would take over 340
Pentium 4 f12 cycles (over 21 cycles/byte) to encrypt a 16-byte block with a
32-byte AES key, assuming that the key was pre-expanded into 240 bytes.

8 Salsa20 on the Intel Pentium M

My salsa20_word_pm software takes 33.75 Pentium M cycles for each Salsa20
round, totalling 675 cycles (10.55 cycles/byte) for 20 rounds, totalling 740 cycles

(11.57 cycles/byte) for the Salsa20 hash function, timed as 790 cycles with 50
cycles timing overhead. (The timings are actually 780 or 781 cycles most of
the time but 856 cycles on every eighth call, presumably because of branch
mispredictions.)

The compiled code for the Salsa20 hash function occupies 1248 bytes. Its
main loop occupies 937 bytes and handles 4 rounds.

Details

The Pentium M has 7 usable integer registers, one of which is consumed by a
round counter if the Salsa20 code is not completely unrolled. The small number
of registers means that each round requires many loads and stores.

The Pentium M is limited to 3 operations per cycle. Like the Pentium III,
the Pentium M counts a load-operate instruction as 2 operations. Unlike the
Pentium III, the Pentium M counts a store instruction as 1 operation. This
difference means that salsa20_word_pii is slightly faster on the Pentium M
than on the Pentium III, taking only about 36 cycles/round; it also means that
a quite different sequence of instructions produces better results.

See Section 4 for details of how salsa20_word_pm handles quarter-rounds.
A round ends up using 90 operations (taking at least 30 cycles): 16 additions,
16 rotations, 16 xors, 16 stores, and 26 loads.

Perhaps 33.75 cycles/round can be improved. As in Section 6, I don’t plan
to carry out extensive blind experiments. I do plan to experiment with XMM
code as on the Pentium 4.

As for the 65-cycles-per-hash overhead: One can easily eliminate some of this
overhead by merging the Salsa20 hash function with a higher-level encryption
function.

Comparison to AES timings

The Pentium M might compute AES in marginally less time than the Pentium
III, but both CPUs face the same basic AES bottleneck: encrypting a 16-byte
block with a 16-byte AES key requires 200 S-box lookups, which cannot take
fewer than 200 cycles (12.5 cycles/byte). Similarly, encrypting a 16-byte block
with a 32-byte AES key requires 280 S-box lookups, which cannot take fewer
than 280 cycles (17.5 cycles/byte). Even more S-box lookups are required if keys
are not pre-expanded.

9 Salsa20 on the Motorola PowerPC 7410 (G4)

My salsa20_word_macos software takes 24.5 PowerPC 7410 cycles for each
Salsa20 round, totalling 490 cycles (7.66 cycles/byte) for 20 rounds, totalling
approximately 570 cycles (8.91 cycles/byte) for the Salsa20 hash function, timed
as approximately 584 cycles with 14 cycles timing overhead. (Precise timings are
difficult: the CPU’s cycle counter has 16-cycle resolution.)

The compiled code for the Salsa20 hash function occupies 768 bytes. Its main
loop occupies 392 bytes and handles 2 rounds.

Details

The PowerPC 7410, like the PowerPC RS64 IV, has enough registers to avoid
all loads and stores inside the hash-function rounds.

The obvious bottleneck is that the PowerPC 7410 is limited to 2 integer
operations per cycle. The PowerPC 7410, unlike the PowerPC RS64 IV, counts
a rotate instruction as 1 operation.

Each round has 48 operations and therefore takes at least 24 cycles, totalling
480 cycles (7.50 cycles/byte) for 20 rounds, even with fully unrolled code. I’m
satisfied with my current 24.5 cycles/round.

Here is the first quarter of the code for four parallel quarter-rounds:

y4 = x0 + x12

y9 = x5 + x1

y4 <<<= 7

y14 = x10 + x6

y9 <<<= 7

y3 = x15 + x11

y14 <<<= 7

x4 ^= y4

y3 <<<= 7

x9 ^= y9

x14 ^= y14

x3 ^= y3

As for the 80-cycles-per-hash overhead: One can easily eliminate some of this
overhead by merging the Salsa20 hash function with a higher-level encryption
function.

Comparison to AES timings

Lipmaa reports that AES software by Ahrens—with, presumably, no protection
against timing leaks—takes 401 PowerPC 7400 cycles (over 25 cycles/byte) to
encrypt a 16-byte block with a 16-byte AES key, assuming that the key was
pre-expanded into 176 bytes. I am not aware of any relevant differences between
the PowerPC 7400 and the PowerPC 7410.

It should be possible to do somewhat better—my own public-domain AES
software, including key expansion, takes about 490 cycles on the PowerPC 7410—
but AES is clearly much slower than Salsa20 on this CPU.

10 Salsa20 on the Sun UltraSPARC II

My salsa20_word_sparc software takes 40.5 UltraSPARC II cycles for each
Salsa20 round, totalling 810 cycles (12.66 cycles/byte) for 20 rounds, totalling

881 cycles (13.77 cycles/byte) for the Salsa20 hash function, timed as 892 cycles
with 11 cycles timing overhead.

The compiled code for the Salsa20 hash function occupies 936 bytes. Its main
loop occupies 652 bytes and handles 2 rounds.

Details

The UltraSPARC II handles each rotation with 3 integer operations: shift, shift,
add. It is limited to 2 integer operations per cycle, and to 1 shift per cycle. Like
the PowerPC, it has enough registers to avoid all loads and stores inside the
hash-function rounds.

A round has 80 integer operations—32 adds, 32 shifts, 16 xors—and therefore
takes at least 40 cycles. I’m satisfied with my current 40.5 cycles/round.

As for the 71-cycles-per-hash overhead: One can easily eliminate some of this
overhead by merging the Salsa20 hash function with a higher-level encryption
function.

Comparison to AES timings

Lipmaa reports that unpublished software—with, presumably, no protection
against timing leaks—takes 270 UltraSPARC II cycles (over 16 cycles/byte)
to encrypt a 16-byte block with a 16-byte AES key, assuming that the key was
pre-expanded into 176 bytes.

One can reasonably extrapolate that similar software would take over 370
UltraSPARC II cycles (over 23 cycles/byte) to encrypt a 16-byte block with a
32-byte AES key, assuming that the key was pre-expanded into 240 bytes.

11 Salsa20 on the Sun UltraSPARC III

My salsa20_word_sparc software takes 41 UltraSPARC III cycles for each
Salsa20 round, totalling 820 cycles (12.82 cycles/byte) for 20 rounds, totalling
889 cycles (13.90 cycles/byte) for the Salsa20 hash function, timed as 905 cycles
with 16 cycles timing overhead.

The compiled code for the Salsa20 hash function occupies 936 bytes. Its main
loop occupies 652 bytes and handles 2 rounds.

Details

The UltraSPARC III is very similar to the UltraSPARC II. The UltraSPARC
III documentation reports a few minor advantages that are not helpful for the
Salsa20 computation: e.g., both integer operations in a cycle can be shifts. The
disadvantages of the UltraSPARC III are not as well documented; I don’t know
why the UltraSPARC III is taking an extra 0.5 cycles per round. I don’t plan to
investigate.

Simple C code fed through gcc -m64 -O3 -mcpu=ultrasparc achieves 42.5
UltraSPARC III cycles per round. Beware that code using an array x[16] is
almost twice as slow as code using separate variables x0, x1, etc.

Simple C code fed through Sun’s compiler achieves 41.5 cycles per round,
although at the expense of a completely unrolled main loop.

As for the 69-cycles-per-hash overhead: One can easily eliminate most of this
overhead by merging the Salsa20 hash function with a higher-level encryption
function.

Comparison to AES timings

As far as I know, AES on an UltraSPARC III is at least as slow as AES on an
UltraSPARC II.

12 Salsa20 on next-generation CPUs

One can safely expect Salsa20 to perform well on tomorrow’s popular CPUs, for
the same reason that Salsa20 achieves consistent high speed on a wide variety
of existing CPUs.

The basic operations in Salsa20—addition modulo 232, constant-distance 32-
bit rotation, and 32-bit xor—are so simple, and so widely used, that they can be
safely expected to remain fast on future CPUs. Consider, as an extreme example,
the Pentium 4 f12, widely criticized for its “slow” shifts and rotations (fixed by
the Pentium 4 f33); this CPU can still perform two 32-bit shifts per cycle using
its XMM instructions.

The accompanying communication in Salsa20—the addition, rotation, and
xor modify 1 word out of 16 words, using 2 other words—is sufficiently small
that it can also be expected to remain fast on future CPUs. Fast Salsa20 code
is particularly easy to write if the 16 words, and a few temporary words, fit into
registers; but, as illustrated by my Salsa20 implementation for the Pentium M,
smaller register sets do not pose a serious problem.

Furthermore, Salsa20 can benefit from a CPU’s ability to perform several
operations in parallel. For example, the PowerPC 7450 (G4e) documentation
indicates that the PowerPC 7450 can perform 3 operations per cycle instead of
the 2 performed by the PowerPC 7410; I would not be surprised to see Salsa20
running at 6 cycles/byte on the PowerPC 7450. Latency does not become a
bottleneck for Salsa20 unless the CPU’s latency/throughput ratio exceeds 4.

One can imagine functions that use even simpler operations, and that have
even less communication, and that support even more parallelism. But what
really matters is that Salsa20 is simpler, smaller, and more parallel than the
average computation. It is hard to imagine how a CPU could make Salsa20
perform badly without also hurting a huge number of common computations.

13 Salsa20 on smaller platforms

Building a Salsa20 circuit is straightforward. A 32-bit add-rotate-xor fits into
a small amount of combinational logic. Salsa20’s 4 × 4 row-column structure is
a natural hardware layout; the regular pattern of operations means that each
quarter-round will have similar propagation delays. Of course, the exact speed of
a Salsa20 circuit will depend on the amount of hardware devoted to the circuit.

Similarly, the 32-bit operations in the Salsa20 computation can easily be
decomposed into common 8-bit operations for a small CPU:

• A 32-bit xor can be decomposed into four 8-bit xors.
• A 32-bit addition can be decomposed into four 8-bit additions (with carry).
• A 32-bit rotation can be decomposed into, e.g., several 8-bit rotate-carry

operations. The exact number of rotate-carry operations depends on how
close the rotation distance is to a multiple of 8.

An average Salsa20 word modification ends up taking about 20 8-bit arithmetic
operations—about 20 cycles on a typical 8-bit CPU. If loads and stores consume
another 32 cycles then 20 rounds of the Salsa20 hash function will take about
16640 cycles (260 cycles/byte). Salsa20 has no trouble fitting into the 128 bytes
of memory on a typical 8-bit CPU.

For comparison, AES with a 32-byte key reportedly takes 5221 cycles (326
cycles/byte) on the Intel 8051. Of course, a serious speed comparison would
require writing Salsa20 software for that CPU; it’s clear that Salsa20 won’t be
much slower than AES on the 8051, but at this point I don’t know whether it
will actually be faster.

